Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/soc/atmel/mchp-spdifrx.c
26436 views
1
// SPDX-License-Identifier: GPL-2.0
2
//
3
// Driver for Microchip S/PDIF RX Controller
4
//
5
// Copyright (C) 2020 Microchip Technology Inc. and its subsidiaries
6
//
7
// Author: Codrin Ciubotariu <[email protected]>
8
9
#include <linux/clk.h>
10
#include <linux/io.h>
11
#include <linux/module.h>
12
#include <linux/pm_runtime.h>
13
#include <linux/regmap.h>
14
#include <linux/spinlock.h>
15
16
#include <sound/dmaengine_pcm.h>
17
#include <sound/pcm_params.h>
18
#include <sound/soc.h>
19
20
/*
21
* ---- S/PDIF Receiver Controller Register map ----
22
*/
23
#define SPDIFRX_CR 0x00 /* Control Register */
24
#define SPDIFRX_MR 0x04 /* Mode Register */
25
26
#define SPDIFRX_IER 0x10 /* Interrupt Enable Register */
27
#define SPDIFRX_IDR 0x14 /* Interrupt Disable Register */
28
#define SPDIFRX_IMR 0x18 /* Interrupt Mask Register */
29
#define SPDIFRX_ISR 0x1c /* Interrupt Status Register */
30
#define SPDIFRX_RSR 0x20 /* Status Register */
31
#define SPDIFRX_RHR 0x24 /* Holding Register */
32
33
#define SPDIFRX_CHSR(channel, reg) \
34
(0x30 + (channel) * 0x30 + (reg) * 4) /* Channel x Status Registers */
35
36
#define SPDIFRX_CHUD(channel, reg) \
37
(0x48 + (channel) * 0x30 + (reg) * 4) /* Channel x User Data Registers */
38
39
#define SPDIFRX_WPMR 0xE4 /* Write Protection Mode Register */
40
#define SPDIFRX_WPSR 0xE8 /* Write Protection Status Register */
41
42
#define SPDIFRX_VERSION 0xFC /* Version Register */
43
44
/*
45
* ---- Control Register (Write-only) ----
46
*/
47
#define SPDIFRX_CR_SWRST BIT(0) /* Software Reset */
48
49
/*
50
* ---- Mode Register (Read/Write) ----
51
*/
52
/* Receive Enable */
53
#define SPDIFRX_MR_RXEN_MASK GENMASK(0, 0)
54
#define SPDIFRX_MR_RXEN_DISABLE (0 << 0) /* SPDIF Receiver Disabled */
55
#define SPDIFRX_MR_RXEN_ENABLE (1 << 0) /* SPDIF Receiver Enabled */
56
57
/* Validity Bit Mode */
58
#define SPDIFRX_MR_VBMODE_MASK GENAMSK(1, 1)
59
#define SPDIFRX_MR_VBMODE_ALWAYS_LOAD \
60
(0 << 1) /* Load sample regardless of validity bit value */
61
#define SPDIFRX_MR_VBMODE_DISCARD_IF_VB1 \
62
(1 << 1) /* Load sample only if validity bit is 0 */
63
64
/* Data Word Endian Mode */
65
#define SPDIFRX_MR_ENDIAN_MASK GENMASK(2, 2)
66
#define SPDIFRX_MR_ENDIAN_LITTLE (0 << 2) /* Little Endian Mode */
67
#define SPDIFRX_MR_ENDIAN_BIG (1 << 2) /* Big Endian Mode */
68
69
/* Parity Bit Mode */
70
#define SPDIFRX_MR_PBMODE_MASK GENMASK(3, 3)
71
#define SPDIFRX_MR_PBMODE_PARCHECK (0 << 3) /* Parity Check Enabled */
72
#define SPDIFRX_MR_PBMODE_NOPARCHECK (1 << 3) /* Parity Check Disabled */
73
74
/* Sample Data Width */
75
#define SPDIFRX_MR_DATAWIDTH_MASK GENMASK(5, 4)
76
#define SPDIFRX_MR_DATAWIDTH(width) \
77
(((6 - (width) / 4) << 4) & SPDIFRX_MR_DATAWIDTH_MASK)
78
79
/* Packed Data Mode in Receive Holding Register */
80
#define SPDIFRX_MR_PACK_MASK GENMASK(7, 7)
81
#define SPDIFRX_MR_PACK_DISABLED (0 << 7)
82
#define SPDIFRX_MR_PACK_ENABLED (1 << 7)
83
84
/* Start of Block Bit Mode */
85
#define SPDIFRX_MR_SBMODE_MASK GENMASK(8, 8)
86
#define SPDIFRX_MR_SBMODE_ALWAYS_LOAD (0 << 8)
87
#define SPDIFRX_MR_SBMODE_DISCARD (1 << 8)
88
89
/* Consecutive Preamble Error Threshold Automatic Restart */
90
#define SPDIFRX_MR_AUTORST_MASK GENMASK(24, 24)
91
#define SPDIFRX_MR_AUTORST_NOACTION (0 << 24)
92
#define SPDIFRX_MR_AUTORST_UNLOCK_ON_PRE_ERR (1 << 24)
93
94
/*
95
* ---- Interrupt Enable/Disable/Mask/Status Register (Write/Read-only) ----
96
*/
97
#define SPDIFRX_IR_RXRDY BIT(0)
98
#define SPDIFRX_IR_LOCKED BIT(1)
99
#define SPDIFRX_IR_LOSS BIT(2)
100
#define SPDIFRX_IR_BLOCKEND BIT(3)
101
#define SPDIFRX_IR_SFE BIT(4)
102
#define SPDIFRX_IR_PAR_ERR BIT(5)
103
#define SPDIFRX_IR_OVERRUN BIT(6)
104
#define SPDIFRX_IR_RXFULL BIT(7)
105
#define SPDIFRX_IR_CSC(ch) BIT((ch) + 8)
106
#define SPDIFRX_IR_SECE BIT(10)
107
#define SPDIFRX_IR_BLOCKST BIT(11)
108
#define SPDIFRX_IR_NRZ_ERR BIT(12)
109
#define SPDIFRX_IR_PRE_ERR BIT(13)
110
#define SPDIFRX_IR_CP_ERR BIT(14)
111
112
/*
113
* ---- Receiver Status Register (Read/Write) ----
114
*/
115
/* Enable Status */
116
#define SPDIFRX_RSR_ULOCK BIT(0)
117
#define SPDIFRX_RSR_BADF BIT(1)
118
#define SPDIFRX_RSR_LOWF BIT(2)
119
#define SPDIFRX_RSR_NOSIGNAL BIT(3)
120
#define SPDIFRX_RSR_IFS_MASK GENMASK(27, 16)
121
#define SPDIFRX_RSR_IFS(reg) \
122
(((reg) & SPDIFRX_RSR_IFS_MASK) >> 16)
123
124
/*
125
* ---- Version Register (Read-only) ----
126
*/
127
#define SPDIFRX_VERSION_MASK GENMASK(11, 0)
128
#define SPDIFRX_VERSION_MFN_MASK GENMASK(18, 16)
129
#define SPDIFRX_VERSION_MFN(reg) (((reg) & SPDIFRX_VERSION_MFN_MASK) >> 16)
130
131
static bool mchp_spdifrx_readable_reg(struct device *dev, unsigned int reg)
132
{
133
switch (reg) {
134
case SPDIFRX_MR:
135
case SPDIFRX_IMR:
136
case SPDIFRX_ISR:
137
case SPDIFRX_RSR:
138
case SPDIFRX_CHSR(0, 0):
139
case SPDIFRX_CHSR(0, 1):
140
case SPDIFRX_CHSR(0, 2):
141
case SPDIFRX_CHSR(0, 3):
142
case SPDIFRX_CHSR(0, 4):
143
case SPDIFRX_CHSR(0, 5):
144
case SPDIFRX_CHUD(0, 0):
145
case SPDIFRX_CHUD(0, 1):
146
case SPDIFRX_CHUD(0, 2):
147
case SPDIFRX_CHUD(0, 3):
148
case SPDIFRX_CHUD(0, 4):
149
case SPDIFRX_CHUD(0, 5):
150
case SPDIFRX_CHSR(1, 0):
151
case SPDIFRX_CHSR(1, 1):
152
case SPDIFRX_CHSR(1, 2):
153
case SPDIFRX_CHSR(1, 3):
154
case SPDIFRX_CHSR(1, 4):
155
case SPDIFRX_CHSR(1, 5):
156
case SPDIFRX_CHUD(1, 0):
157
case SPDIFRX_CHUD(1, 1):
158
case SPDIFRX_CHUD(1, 2):
159
case SPDIFRX_CHUD(1, 3):
160
case SPDIFRX_CHUD(1, 4):
161
case SPDIFRX_CHUD(1, 5):
162
case SPDIFRX_WPMR:
163
case SPDIFRX_WPSR:
164
case SPDIFRX_VERSION:
165
return true;
166
default:
167
return false;
168
}
169
}
170
171
static bool mchp_spdifrx_writeable_reg(struct device *dev, unsigned int reg)
172
{
173
switch (reg) {
174
case SPDIFRX_CR:
175
case SPDIFRX_MR:
176
case SPDIFRX_IER:
177
case SPDIFRX_IDR:
178
case SPDIFRX_WPMR:
179
return true;
180
default:
181
return false;
182
}
183
}
184
185
static bool mchp_spdifrx_precious_reg(struct device *dev, unsigned int reg)
186
{
187
switch (reg) {
188
case SPDIFRX_ISR:
189
case SPDIFRX_RHR:
190
return true;
191
default:
192
return false;
193
}
194
}
195
196
static bool mchp_spdifrx_volatile_reg(struct device *dev, unsigned int reg)
197
{
198
switch (reg) {
199
case SPDIFRX_IMR:
200
case SPDIFRX_ISR:
201
case SPDIFRX_RSR:
202
case SPDIFRX_CHSR(0, 0):
203
case SPDIFRX_CHSR(0, 1):
204
case SPDIFRX_CHSR(0, 2):
205
case SPDIFRX_CHSR(0, 3):
206
case SPDIFRX_CHSR(0, 4):
207
case SPDIFRX_CHSR(0, 5):
208
case SPDIFRX_CHUD(0, 0):
209
case SPDIFRX_CHUD(0, 1):
210
case SPDIFRX_CHUD(0, 2):
211
case SPDIFRX_CHUD(0, 3):
212
case SPDIFRX_CHUD(0, 4):
213
case SPDIFRX_CHUD(0, 5):
214
case SPDIFRX_CHSR(1, 0):
215
case SPDIFRX_CHSR(1, 1):
216
case SPDIFRX_CHSR(1, 2):
217
case SPDIFRX_CHSR(1, 3):
218
case SPDIFRX_CHSR(1, 4):
219
case SPDIFRX_CHSR(1, 5):
220
case SPDIFRX_CHUD(1, 0):
221
case SPDIFRX_CHUD(1, 1):
222
case SPDIFRX_CHUD(1, 2):
223
case SPDIFRX_CHUD(1, 3):
224
case SPDIFRX_CHUD(1, 4):
225
case SPDIFRX_CHUD(1, 5):
226
case SPDIFRX_VERSION:
227
return true;
228
default:
229
return false;
230
}
231
}
232
233
static const struct regmap_config mchp_spdifrx_regmap_config = {
234
.reg_bits = 32,
235
.reg_stride = 4,
236
.val_bits = 32,
237
.max_register = SPDIFRX_VERSION,
238
.readable_reg = mchp_spdifrx_readable_reg,
239
.writeable_reg = mchp_spdifrx_writeable_reg,
240
.precious_reg = mchp_spdifrx_precious_reg,
241
.volatile_reg = mchp_spdifrx_volatile_reg,
242
.cache_type = REGCACHE_FLAT,
243
};
244
245
#define SPDIFRX_GCLK_RATIO_MIN (12 * 64)
246
247
#define SPDIFRX_CS_BITS 192
248
#define SPDIFRX_UD_BITS 192
249
250
#define SPDIFRX_CHANNELS 2
251
252
/**
253
* struct mchp_spdifrx_ch_stat: MCHP SPDIFRX channel status
254
* @data: channel status bits
255
* @done: completion to signal channel status bits acquisition done
256
*/
257
struct mchp_spdifrx_ch_stat {
258
unsigned char data[SPDIFRX_CS_BITS / 8];
259
struct completion done;
260
};
261
262
/**
263
* struct mchp_spdifrx_user_data: MCHP SPDIFRX user data
264
* @data: user data bits
265
* @done: completion to signal user data bits acquisition done
266
*/
267
struct mchp_spdifrx_user_data {
268
unsigned char data[SPDIFRX_UD_BITS / 8];
269
struct completion done;
270
};
271
272
/**
273
* struct mchp_spdifrx_mixer_control: MCHP SPDIFRX mixer control data structure
274
* @ch_stat: array of channel statuses
275
* @user_data: array of user data
276
* @ulock: ulock bit status
277
* @badf: badf bit status
278
* @signal: signal bit status
279
*/
280
struct mchp_spdifrx_mixer_control {
281
struct mchp_spdifrx_ch_stat ch_stat[SPDIFRX_CHANNELS];
282
struct mchp_spdifrx_user_data user_data[SPDIFRX_CHANNELS];
283
bool ulock;
284
bool badf;
285
bool signal;
286
};
287
288
/**
289
* struct mchp_spdifrx_dev: MCHP SPDIFRX device data structure
290
* @capture: DAI DMA configuration data
291
* @control: mixer controls
292
* @mlock: mutex to protect concurency b/w configuration and control APIs
293
* @dev: struct device
294
* @regmap: regmap for this device
295
* @pclk: peripheral clock
296
* @gclk: generic clock
297
* @trigger_enabled: true if enabled though trigger() ops
298
*/
299
struct mchp_spdifrx_dev {
300
struct snd_dmaengine_dai_dma_data capture;
301
struct mchp_spdifrx_mixer_control control;
302
struct mutex mlock;
303
struct device *dev;
304
struct regmap *regmap;
305
struct clk *pclk;
306
struct clk *gclk;
307
unsigned int trigger_enabled;
308
};
309
310
static void mchp_spdifrx_channel_status_read(struct mchp_spdifrx_dev *dev,
311
int channel)
312
{
313
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
314
u8 *ch_stat = &ctrl->ch_stat[channel].data[0];
315
u32 val;
316
int i;
317
318
for (i = 0; i < ARRAY_SIZE(ctrl->ch_stat[channel].data) / 4; i++) {
319
regmap_read(dev->regmap, SPDIFRX_CHSR(channel, i), &val);
320
*ch_stat++ = val & 0xFF;
321
*ch_stat++ = (val >> 8) & 0xFF;
322
*ch_stat++ = (val >> 16) & 0xFF;
323
*ch_stat++ = (val >> 24) & 0xFF;
324
}
325
}
326
327
static void mchp_spdifrx_channel_user_data_read(struct mchp_spdifrx_dev *dev,
328
int channel)
329
{
330
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
331
u8 *user_data = &ctrl->user_data[channel].data[0];
332
u32 val;
333
int i;
334
335
for (i = 0; i < ARRAY_SIZE(ctrl->user_data[channel].data) / 4; i++) {
336
regmap_read(dev->regmap, SPDIFRX_CHUD(channel, i), &val);
337
*user_data++ = val & 0xFF;
338
*user_data++ = (val >> 8) & 0xFF;
339
*user_data++ = (val >> 16) & 0xFF;
340
*user_data++ = (val >> 24) & 0xFF;
341
}
342
}
343
344
static irqreturn_t mchp_spdif_interrupt(int irq, void *dev_id)
345
{
346
struct mchp_spdifrx_dev *dev = dev_id;
347
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
348
u32 sr, imr, pending;
349
irqreturn_t ret = IRQ_NONE;
350
int ch;
351
352
regmap_read(dev->regmap, SPDIFRX_ISR, &sr);
353
regmap_read(dev->regmap, SPDIFRX_IMR, &imr);
354
pending = sr & imr;
355
dev_dbg(dev->dev, "ISR: %#x, IMR: %#x, pending: %#x\n", sr, imr,
356
pending);
357
358
if (!pending)
359
return IRQ_NONE;
360
361
if (pending & SPDIFRX_IR_BLOCKEND) {
362
for (ch = 0; ch < SPDIFRX_CHANNELS; ch++) {
363
mchp_spdifrx_channel_user_data_read(dev, ch);
364
complete(&ctrl->user_data[ch].done);
365
}
366
regmap_write(dev->regmap, SPDIFRX_IDR, SPDIFRX_IR_BLOCKEND);
367
ret = IRQ_HANDLED;
368
}
369
370
for (ch = 0; ch < SPDIFRX_CHANNELS; ch++) {
371
if (pending & SPDIFRX_IR_CSC(ch)) {
372
mchp_spdifrx_channel_status_read(dev, ch);
373
complete(&ctrl->ch_stat[ch].done);
374
regmap_write(dev->regmap, SPDIFRX_IDR, SPDIFRX_IR_CSC(ch));
375
ret = IRQ_HANDLED;
376
}
377
}
378
379
if (pending & SPDIFRX_IR_OVERRUN) {
380
dev_warn(dev->dev, "Overrun detected\n");
381
ret = IRQ_HANDLED;
382
}
383
384
return ret;
385
}
386
387
static int mchp_spdifrx_trigger(struct snd_pcm_substream *substream, int cmd,
388
struct snd_soc_dai *dai)
389
{
390
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
391
int ret = 0;
392
393
switch (cmd) {
394
case SNDRV_PCM_TRIGGER_START:
395
case SNDRV_PCM_TRIGGER_RESUME:
396
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
397
mutex_lock(&dev->mlock);
398
/* Enable overrun interrupts */
399
regmap_write(dev->regmap, SPDIFRX_IER, SPDIFRX_IR_OVERRUN);
400
401
/* Enable receiver. */
402
regmap_update_bits(dev->regmap, SPDIFRX_MR, SPDIFRX_MR_RXEN_MASK,
403
SPDIFRX_MR_RXEN_ENABLE);
404
dev->trigger_enabled = true;
405
mutex_unlock(&dev->mlock);
406
break;
407
case SNDRV_PCM_TRIGGER_STOP:
408
case SNDRV_PCM_TRIGGER_SUSPEND:
409
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
410
mutex_lock(&dev->mlock);
411
/* Disable overrun interrupts */
412
regmap_write(dev->regmap, SPDIFRX_IDR, SPDIFRX_IR_OVERRUN);
413
414
/* Disable receiver. */
415
regmap_update_bits(dev->regmap, SPDIFRX_MR, SPDIFRX_MR_RXEN_MASK,
416
SPDIFRX_MR_RXEN_DISABLE);
417
dev->trigger_enabled = false;
418
mutex_unlock(&dev->mlock);
419
break;
420
default:
421
ret = -EINVAL;
422
}
423
424
return ret;
425
}
426
427
static int mchp_spdifrx_hw_params(struct snd_pcm_substream *substream,
428
struct snd_pcm_hw_params *params,
429
struct snd_soc_dai *dai)
430
{
431
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
432
u32 mr = 0;
433
int ret;
434
435
dev_dbg(dev->dev, "%s() rate=%u format=%#x width=%u channels=%u\n",
436
__func__, params_rate(params), params_format(params),
437
params_width(params), params_channels(params));
438
439
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
440
dev_err(dev->dev, "Playback is not supported\n");
441
return -EINVAL;
442
}
443
444
if (params_channels(params) != SPDIFRX_CHANNELS) {
445
dev_err(dev->dev, "unsupported number of channels: %d\n",
446
params_channels(params));
447
return -EINVAL;
448
}
449
450
switch (params_format(params)) {
451
case SNDRV_PCM_FORMAT_S16_BE:
452
case SNDRV_PCM_FORMAT_S20_3BE:
453
case SNDRV_PCM_FORMAT_S24_3BE:
454
case SNDRV_PCM_FORMAT_S24_BE:
455
mr |= SPDIFRX_MR_ENDIAN_BIG;
456
fallthrough;
457
case SNDRV_PCM_FORMAT_S16_LE:
458
case SNDRV_PCM_FORMAT_S20_3LE:
459
case SNDRV_PCM_FORMAT_S24_3LE:
460
case SNDRV_PCM_FORMAT_S24_LE:
461
mr |= SPDIFRX_MR_DATAWIDTH(params_width(params));
462
break;
463
default:
464
dev_err(dev->dev, "unsupported PCM format: %d\n",
465
params_format(params));
466
return -EINVAL;
467
}
468
469
mutex_lock(&dev->mlock);
470
if (dev->trigger_enabled) {
471
dev_err(dev->dev, "PCM already running\n");
472
ret = -EBUSY;
473
goto unlock;
474
}
475
476
/* GCLK is enabled by runtime PM. */
477
clk_disable_unprepare(dev->gclk);
478
479
ret = clk_set_min_rate(dev->gclk, params_rate(params) *
480
SPDIFRX_GCLK_RATIO_MIN + 1);
481
if (ret) {
482
dev_err(dev->dev,
483
"unable to set gclk min rate: rate %u * ratio %u + 1\n",
484
params_rate(params), SPDIFRX_GCLK_RATIO_MIN);
485
/* Restore runtime PM state. */
486
clk_prepare_enable(dev->gclk);
487
goto unlock;
488
}
489
ret = clk_prepare_enable(dev->gclk);
490
if (ret) {
491
dev_err(dev->dev, "unable to enable gclk: %d\n", ret);
492
goto unlock;
493
}
494
495
dev_dbg(dev->dev, "GCLK range min set to %d\n",
496
params_rate(params) * SPDIFRX_GCLK_RATIO_MIN + 1);
497
498
ret = regmap_write(dev->regmap, SPDIFRX_MR, mr);
499
500
unlock:
501
mutex_unlock(&dev->mlock);
502
503
return ret;
504
}
505
506
#define MCHP_SPDIF_RATES SNDRV_PCM_RATE_8000_192000
507
508
#define MCHP_SPDIF_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \
509
SNDRV_PCM_FMTBIT_U16_BE | \
510
SNDRV_PCM_FMTBIT_S20_3LE | \
511
SNDRV_PCM_FMTBIT_S20_3BE | \
512
SNDRV_PCM_FMTBIT_S24_3LE | \
513
SNDRV_PCM_FMTBIT_S24_3BE | \
514
SNDRV_PCM_FMTBIT_S24_LE | \
515
SNDRV_PCM_FMTBIT_S24_BE \
516
)
517
518
static int mchp_spdifrx_info(struct snd_kcontrol *kcontrol,
519
struct snd_ctl_elem_info *uinfo)
520
{
521
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
522
uinfo->count = 1;
523
524
return 0;
525
}
526
527
static int mchp_spdifrx_cs_get(struct mchp_spdifrx_dev *dev,
528
int channel,
529
struct snd_ctl_elem_value *uvalue)
530
{
531
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
532
struct mchp_spdifrx_ch_stat *ch_stat = &ctrl->ch_stat[channel];
533
int ret = 0;
534
535
mutex_lock(&dev->mlock);
536
537
ret = pm_runtime_resume_and_get(dev->dev);
538
if (ret < 0)
539
goto unlock;
540
541
/*
542
* We may reach this point with both clocks enabled but the receiver
543
* still disabled. To void waiting for completion and return with
544
* timeout check the dev->trigger_enabled.
545
*
546
* To retrieve data:
547
* - if the receiver is enabled CSC IRQ will update the data in software
548
* caches (ch_stat->data)
549
* - otherwise we just update it here the software caches with latest
550
* available information and return it; in this case we don't need
551
* spin locking as the IRQ is disabled and will not be raised from
552
* anywhere else.
553
*/
554
555
if (dev->trigger_enabled) {
556
reinit_completion(&ch_stat->done);
557
regmap_write(dev->regmap, SPDIFRX_IER, SPDIFRX_IR_CSC(channel));
558
/* Check for new data available */
559
ret = wait_for_completion_interruptible_timeout(&ch_stat->done,
560
msecs_to_jiffies(100));
561
/* Valid stream might not be present */
562
if (ret <= 0) {
563
dev_dbg(dev->dev, "channel status for channel %d timeout\n",
564
channel);
565
regmap_write(dev->regmap, SPDIFRX_IDR, SPDIFRX_IR_CSC(channel));
566
ret = ret ? : -ETIMEDOUT;
567
goto pm_runtime_put;
568
} else {
569
ret = 0;
570
}
571
} else {
572
/* Update software cache with latest channel status. */
573
mchp_spdifrx_channel_status_read(dev, channel);
574
}
575
576
memcpy(uvalue->value.iec958.status, ch_stat->data,
577
sizeof(ch_stat->data));
578
579
pm_runtime_put:
580
pm_runtime_put_autosuspend(dev->dev);
581
unlock:
582
mutex_unlock(&dev->mlock);
583
return ret;
584
}
585
586
static int mchp_spdifrx_cs1_get(struct snd_kcontrol *kcontrol,
587
struct snd_ctl_elem_value *uvalue)
588
{
589
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
590
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
591
592
return mchp_spdifrx_cs_get(dev, 0, uvalue);
593
}
594
595
static int mchp_spdifrx_cs2_get(struct snd_kcontrol *kcontrol,
596
struct snd_ctl_elem_value *uvalue)
597
{
598
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
599
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
600
601
return mchp_spdifrx_cs_get(dev, 1, uvalue);
602
}
603
604
static int mchp_spdifrx_cs_mask(struct snd_kcontrol *kcontrol,
605
struct snd_ctl_elem_value *uvalue)
606
{
607
memset(uvalue->value.iec958.status, 0xff,
608
sizeof(uvalue->value.iec958.status));
609
610
return 0;
611
}
612
613
static int mchp_spdifrx_subcode_ch_get(struct mchp_spdifrx_dev *dev,
614
int channel,
615
struct snd_ctl_elem_value *uvalue)
616
{
617
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
618
struct mchp_spdifrx_user_data *user_data = &ctrl->user_data[channel];
619
int ret = 0;
620
621
mutex_lock(&dev->mlock);
622
623
ret = pm_runtime_resume_and_get(dev->dev);
624
if (ret < 0)
625
goto unlock;
626
627
/*
628
* We may reach this point with both clocks enabled but the receiver
629
* still disabled. To void waiting for completion to just timeout we
630
* check here the dev->trigger_enabled flag.
631
*
632
* To retrieve data:
633
* - if the receiver is enabled we need to wait for blockend IRQ to read
634
* data to and update it for us in software caches
635
* - otherwise reading the SPDIFRX_CHUD() registers is enough.
636
*/
637
638
if (dev->trigger_enabled) {
639
reinit_completion(&user_data->done);
640
regmap_write(dev->regmap, SPDIFRX_IER, SPDIFRX_IR_BLOCKEND);
641
ret = wait_for_completion_interruptible_timeout(&user_data->done,
642
msecs_to_jiffies(100));
643
/* Valid stream might not be present. */
644
if (ret <= 0) {
645
dev_dbg(dev->dev, "user data for channel %d timeout\n",
646
channel);
647
regmap_write(dev->regmap, SPDIFRX_IDR, SPDIFRX_IR_BLOCKEND);
648
ret = ret ? : -ETIMEDOUT;
649
goto pm_runtime_put;
650
} else {
651
ret = 0;
652
}
653
} else {
654
/* Update software cache with last available data. */
655
mchp_spdifrx_channel_user_data_read(dev, channel);
656
}
657
658
memcpy(uvalue->value.iec958.subcode, user_data->data,
659
sizeof(user_data->data));
660
661
pm_runtime_put:
662
pm_runtime_put_autosuspend(dev->dev);
663
unlock:
664
mutex_unlock(&dev->mlock);
665
return ret;
666
}
667
668
static int mchp_spdifrx_subcode_ch1_get(struct snd_kcontrol *kcontrol,
669
struct snd_ctl_elem_value *uvalue)
670
{
671
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
672
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
673
674
return mchp_spdifrx_subcode_ch_get(dev, 0, uvalue);
675
}
676
677
static int mchp_spdifrx_subcode_ch2_get(struct snd_kcontrol *kcontrol,
678
struct snd_ctl_elem_value *uvalue)
679
{
680
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
681
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
682
683
return mchp_spdifrx_subcode_ch_get(dev, 1, uvalue);
684
}
685
686
static int mchp_spdifrx_boolean_info(struct snd_kcontrol *kcontrol,
687
struct snd_ctl_elem_info *uinfo)
688
{
689
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
690
uinfo->count = 1;
691
uinfo->value.integer.min = 0;
692
uinfo->value.integer.max = 1;
693
694
return 0;
695
}
696
697
static int mchp_spdifrx_ulock_get(struct snd_kcontrol *kcontrol,
698
struct snd_ctl_elem_value *uvalue)
699
{
700
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
701
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
702
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
703
u32 val;
704
int ret;
705
bool ulock_old = ctrl->ulock;
706
707
mutex_lock(&dev->mlock);
708
709
ret = pm_runtime_resume_and_get(dev->dev);
710
if (ret < 0)
711
goto unlock;
712
713
/*
714
* The RSR.ULOCK has wrong value if both pclk and gclk are enabled
715
* and the receiver is disabled. Thus we take into account the
716
* dev->trigger_enabled here to return a real status.
717
*/
718
if (dev->trigger_enabled) {
719
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
720
ctrl->ulock = !(val & SPDIFRX_RSR_ULOCK);
721
} else {
722
ctrl->ulock = 0;
723
}
724
725
uvalue->value.integer.value[0] = ctrl->ulock;
726
727
pm_runtime_put_autosuspend(dev->dev);
728
unlock:
729
mutex_unlock(&dev->mlock);
730
731
return ulock_old != ctrl->ulock;
732
}
733
734
static int mchp_spdifrx_badf_get(struct snd_kcontrol *kcontrol,
735
struct snd_ctl_elem_value *uvalue)
736
{
737
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
738
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
739
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
740
u32 val;
741
int ret;
742
bool badf_old = ctrl->badf;
743
744
mutex_lock(&dev->mlock);
745
746
ret = pm_runtime_resume_and_get(dev->dev);
747
if (ret < 0)
748
goto unlock;
749
750
/*
751
* The RSR.ULOCK has wrong value if both pclk and gclk are enabled
752
* and the receiver is disabled. Thus we take into account the
753
* dev->trigger_enabled here to return a real status.
754
*/
755
if (dev->trigger_enabled) {
756
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
757
ctrl->badf = !!(val & SPDIFRX_RSR_BADF);
758
} else {
759
ctrl->badf = 0;
760
}
761
762
pm_runtime_put_autosuspend(dev->dev);
763
unlock:
764
mutex_unlock(&dev->mlock);
765
766
uvalue->value.integer.value[0] = ctrl->badf;
767
768
return badf_old != ctrl->badf;
769
}
770
771
static int mchp_spdifrx_signal_get(struct snd_kcontrol *kcontrol,
772
struct snd_ctl_elem_value *uvalue)
773
{
774
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
775
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
776
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
777
u32 val = ~0U, loops = 10;
778
int ret;
779
bool signal_old = ctrl->signal;
780
781
mutex_lock(&dev->mlock);
782
783
ret = pm_runtime_resume_and_get(dev->dev);
784
if (ret < 0)
785
goto unlock;
786
787
/*
788
* To get the signal we need to have receiver enabled. This
789
* could be enabled also from trigger() function thus we need to
790
* take care of not disabling the receiver when it runs.
791
*/
792
if (!dev->trigger_enabled) {
793
regmap_update_bits(dev->regmap, SPDIFRX_MR, SPDIFRX_MR_RXEN_MASK,
794
SPDIFRX_MR_RXEN_ENABLE);
795
796
/* Wait for RSR.ULOCK bit. */
797
while (--loops) {
798
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
799
if (!(val & SPDIFRX_RSR_ULOCK))
800
break;
801
usleep_range(100, 150);
802
}
803
804
regmap_update_bits(dev->regmap, SPDIFRX_MR, SPDIFRX_MR_RXEN_MASK,
805
SPDIFRX_MR_RXEN_DISABLE);
806
} else {
807
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
808
}
809
810
pm_runtime_put_autosuspend(dev->dev);
811
812
unlock:
813
mutex_unlock(&dev->mlock);
814
815
if (!(val & SPDIFRX_RSR_ULOCK))
816
ctrl->signal = !(val & SPDIFRX_RSR_NOSIGNAL);
817
else
818
ctrl->signal = 0;
819
uvalue->value.integer.value[0] = ctrl->signal;
820
821
return signal_old != ctrl->signal;
822
}
823
824
static int mchp_spdifrx_rate_info(struct snd_kcontrol *kcontrol,
825
struct snd_ctl_elem_info *uinfo)
826
{
827
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
828
uinfo->count = 1;
829
uinfo->value.integer.min = 0;
830
uinfo->value.integer.max = 192000;
831
832
return 0;
833
}
834
835
static int mchp_spdifrx_rate_get(struct snd_kcontrol *kcontrol,
836
struct snd_ctl_elem_value *ucontrol)
837
{
838
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
839
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
840
unsigned long rate;
841
u32 val;
842
int ret;
843
844
mutex_lock(&dev->mlock);
845
846
ret = pm_runtime_resume_and_get(dev->dev);
847
if (ret < 0)
848
goto unlock;
849
850
/*
851
* The RSR.ULOCK has wrong value if both pclk and gclk are enabled
852
* and the receiver is disabled. Thus we take into account the
853
* dev->trigger_enabled here to return a real status.
854
*/
855
if (dev->trigger_enabled) {
856
regmap_read(dev->regmap, SPDIFRX_RSR, &val);
857
/* If the receiver is not locked, ISF data is invalid. */
858
if (val & SPDIFRX_RSR_ULOCK || !(val & SPDIFRX_RSR_IFS_MASK)) {
859
ucontrol->value.integer.value[0] = 0;
860
goto pm_runtime_put;
861
}
862
} else {
863
/* Reveicer is not locked, IFS data is invalid. */
864
ucontrol->value.integer.value[0] = 0;
865
goto pm_runtime_put;
866
}
867
868
rate = clk_get_rate(dev->gclk);
869
870
ucontrol->value.integer.value[0] = rate / (32 * SPDIFRX_RSR_IFS(val));
871
872
pm_runtime_put:
873
pm_runtime_put_autosuspend(dev->dev);
874
unlock:
875
mutex_unlock(&dev->mlock);
876
return ret;
877
}
878
879
static struct snd_kcontrol_new mchp_spdifrx_ctrls[] = {
880
/* Channel status controller */
881
{
882
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
883
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT)
884
" Channel 1",
885
.access = SNDRV_CTL_ELEM_ACCESS_READ |
886
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
887
.info = mchp_spdifrx_info,
888
.get = mchp_spdifrx_cs1_get,
889
},
890
{
891
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
892
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT)
893
" Channel 2",
894
.access = SNDRV_CTL_ELEM_ACCESS_READ |
895
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
896
.info = mchp_spdifrx_info,
897
.get = mchp_spdifrx_cs2_get,
898
},
899
{
900
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
901
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
902
.access = SNDRV_CTL_ELEM_ACCESS_READ,
903
.info = mchp_spdifrx_info,
904
.get = mchp_spdifrx_cs_mask,
905
},
906
/* User bits controller */
907
{
908
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
909
.name = "IEC958 Subcode Capture Default Channel 1",
910
.access = SNDRV_CTL_ELEM_ACCESS_READ |
911
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
912
.info = mchp_spdifrx_info,
913
.get = mchp_spdifrx_subcode_ch1_get,
914
},
915
{
916
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
917
.name = "IEC958 Subcode Capture Default Channel 2",
918
.access = SNDRV_CTL_ELEM_ACCESS_READ |
919
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
920
.info = mchp_spdifrx_info,
921
.get = mchp_spdifrx_subcode_ch2_get,
922
},
923
/* Lock status */
924
{
925
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
926
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, NONE) "Unlocked",
927
.access = SNDRV_CTL_ELEM_ACCESS_READ |
928
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
929
.info = mchp_spdifrx_boolean_info,
930
.get = mchp_spdifrx_ulock_get,
931
},
932
/* Bad format */
933
{
934
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
935
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, NONE)"Bad Format",
936
.access = SNDRV_CTL_ELEM_ACCESS_READ |
937
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
938
.info = mchp_spdifrx_boolean_info,
939
.get = mchp_spdifrx_badf_get,
940
},
941
/* Signal */
942
{
943
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
944
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, NONE) "Signal",
945
.access = SNDRV_CTL_ELEM_ACCESS_READ |
946
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
947
.info = mchp_spdifrx_boolean_info,
948
.get = mchp_spdifrx_signal_get,
949
},
950
/* Sampling rate */
951
{
952
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
953
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, NONE) "Rate",
954
.access = SNDRV_CTL_ELEM_ACCESS_READ |
955
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
956
.info = mchp_spdifrx_rate_info,
957
.get = mchp_spdifrx_rate_get,
958
},
959
};
960
961
static int mchp_spdifrx_dai_probe(struct snd_soc_dai *dai)
962
{
963
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
964
struct mchp_spdifrx_mixer_control *ctrl = &dev->control;
965
int ch;
966
967
snd_soc_dai_init_dma_data(dai, NULL, &dev->capture);
968
969
/* Software reset the IP */
970
regmap_write(dev->regmap, SPDIFRX_CR, SPDIFRX_CR_SWRST);
971
972
/* Default configuration */
973
regmap_write(dev->regmap, SPDIFRX_MR,
974
SPDIFRX_MR_VBMODE_DISCARD_IF_VB1 |
975
SPDIFRX_MR_SBMODE_DISCARD |
976
SPDIFRX_MR_AUTORST_NOACTION |
977
SPDIFRX_MR_PACK_DISABLED);
978
979
for (ch = 0; ch < SPDIFRX_CHANNELS; ch++) {
980
init_completion(&ctrl->ch_stat[ch].done);
981
init_completion(&ctrl->user_data[ch].done);
982
}
983
984
/* Add controls */
985
snd_soc_add_dai_controls(dai, mchp_spdifrx_ctrls,
986
ARRAY_SIZE(mchp_spdifrx_ctrls));
987
988
return 0;
989
}
990
991
static int mchp_spdifrx_dai_remove(struct snd_soc_dai *dai)
992
{
993
struct mchp_spdifrx_dev *dev = snd_soc_dai_get_drvdata(dai);
994
995
/* Disable interrupts */
996
regmap_write(dev->regmap, SPDIFRX_IDR, GENMASK(14, 0));
997
998
return 0;
999
}
1000
1001
static const struct snd_soc_dai_ops mchp_spdifrx_dai_ops = {
1002
.probe = mchp_spdifrx_dai_probe,
1003
.remove = mchp_spdifrx_dai_remove,
1004
.trigger = mchp_spdifrx_trigger,
1005
.hw_params = mchp_spdifrx_hw_params,
1006
};
1007
1008
static struct snd_soc_dai_driver mchp_spdifrx_dai = {
1009
.name = "mchp-spdifrx",
1010
.capture = {
1011
.stream_name = "Capture",
1012
.channels_min = SPDIFRX_CHANNELS,
1013
.channels_max = SPDIFRX_CHANNELS,
1014
.rates = MCHP_SPDIF_RATES,
1015
.formats = MCHP_SPDIF_FORMATS,
1016
},
1017
.ops = &mchp_spdifrx_dai_ops,
1018
};
1019
1020
static const struct snd_soc_component_driver mchp_spdifrx_component = {
1021
.name = "mchp-spdifrx",
1022
.legacy_dai_naming = 1,
1023
};
1024
1025
static const struct of_device_id mchp_spdifrx_dt_ids[] = {
1026
{
1027
.compatible = "microchip,sama7g5-spdifrx",
1028
},
1029
{ /* sentinel */ }
1030
};
1031
MODULE_DEVICE_TABLE(of, mchp_spdifrx_dt_ids);
1032
1033
static int mchp_spdifrx_runtime_suspend(struct device *dev)
1034
{
1035
struct mchp_spdifrx_dev *spdifrx = dev_get_drvdata(dev);
1036
1037
regcache_cache_only(spdifrx->regmap, true);
1038
clk_disable_unprepare(spdifrx->gclk);
1039
clk_disable_unprepare(spdifrx->pclk);
1040
1041
return 0;
1042
}
1043
1044
static int mchp_spdifrx_runtime_resume(struct device *dev)
1045
{
1046
struct mchp_spdifrx_dev *spdifrx = dev_get_drvdata(dev);
1047
int ret;
1048
1049
ret = clk_prepare_enable(spdifrx->pclk);
1050
if (ret)
1051
return ret;
1052
1053
ret = clk_prepare_enable(spdifrx->gclk);
1054
if (ret)
1055
goto disable_pclk;
1056
1057
regcache_cache_only(spdifrx->regmap, false);
1058
regcache_mark_dirty(spdifrx->regmap);
1059
ret = regcache_sync(spdifrx->regmap);
1060
if (ret) {
1061
regcache_cache_only(spdifrx->regmap, true);
1062
clk_disable_unprepare(spdifrx->gclk);
1063
disable_pclk:
1064
clk_disable_unprepare(spdifrx->pclk);
1065
}
1066
1067
return ret;
1068
}
1069
1070
static const struct dev_pm_ops mchp_spdifrx_pm_ops = {
1071
RUNTIME_PM_OPS(mchp_spdifrx_runtime_suspend, mchp_spdifrx_runtime_resume,
1072
NULL)
1073
};
1074
1075
static int mchp_spdifrx_probe(struct platform_device *pdev)
1076
{
1077
struct mchp_spdifrx_dev *dev;
1078
struct resource *mem;
1079
struct regmap *regmap;
1080
void __iomem *base;
1081
int irq;
1082
int err;
1083
u32 vers;
1084
1085
/* Get memory for driver data. */
1086
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
1087
if (!dev)
1088
return -ENOMEM;
1089
1090
/* Map I/O registers. */
1091
base = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
1092
if (IS_ERR(base))
1093
return PTR_ERR(base);
1094
1095
regmap = devm_regmap_init_mmio(&pdev->dev, base,
1096
&mchp_spdifrx_regmap_config);
1097
if (IS_ERR(regmap))
1098
return PTR_ERR(regmap);
1099
1100
/* Request IRQ. */
1101
irq = platform_get_irq(pdev, 0);
1102
if (irq < 0)
1103
return irq;
1104
1105
err = devm_request_irq(&pdev->dev, irq, mchp_spdif_interrupt, 0,
1106
dev_name(&pdev->dev), dev);
1107
if (err)
1108
return err;
1109
1110
/* Get the peripheral clock */
1111
dev->pclk = devm_clk_get(&pdev->dev, "pclk");
1112
if (IS_ERR(dev->pclk)) {
1113
err = PTR_ERR(dev->pclk);
1114
dev_err(&pdev->dev, "failed to get the peripheral clock: %d\n",
1115
err);
1116
return err;
1117
}
1118
1119
/* Get the generated clock */
1120
dev->gclk = devm_clk_get(&pdev->dev, "gclk");
1121
if (IS_ERR(dev->gclk)) {
1122
err = PTR_ERR(dev->gclk);
1123
dev_err(&pdev->dev,
1124
"failed to get the PMC generated clock: %d\n", err);
1125
return err;
1126
}
1127
1128
/*
1129
* Signal control need a valid rate on gclk. hw_params() configures
1130
* it propertly but requesting signal before any hw_params() has been
1131
* called lead to invalid value returned for signal. Thus, configure
1132
* gclk at a valid rate, here, in initialization, to simplify the
1133
* control path.
1134
*/
1135
clk_set_min_rate(dev->gclk, 48000 * SPDIFRX_GCLK_RATIO_MIN + 1);
1136
1137
mutex_init(&dev->mlock);
1138
1139
dev->dev = &pdev->dev;
1140
dev->regmap = regmap;
1141
platform_set_drvdata(pdev, dev);
1142
1143
pm_runtime_enable(dev->dev);
1144
if (!pm_runtime_enabled(dev->dev)) {
1145
err = mchp_spdifrx_runtime_resume(dev->dev);
1146
if (err)
1147
goto pm_runtime_disable;
1148
}
1149
1150
dev->capture.addr = (dma_addr_t)mem->start + SPDIFRX_RHR;
1151
dev->capture.maxburst = 1;
1152
1153
err = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
1154
if (err) {
1155
dev_err(&pdev->dev, "failed to register PCM: %d\n", err);
1156
goto pm_runtime_suspend;
1157
}
1158
1159
err = devm_snd_soc_register_component(&pdev->dev,
1160
&mchp_spdifrx_component,
1161
&mchp_spdifrx_dai, 1);
1162
if (err) {
1163
dev_err(&pdev->dev, "fail to register dai\n");
1164
goto pm_runtime_suspend;
1165
}
1166
1167
regmap_read(regmap, SPDIFRX_VERSION, &vers);
1168
dev_info(&pdev->dev, "hw version: %#lx\n", vers & SPDIFRX_VERSION_MASK);
1169
1170
return 0;
1171
1172
pm_runtime_suspend:
1173
if (!pm_runtime_status_suspended(dev->dev))
1174
mchp_spdifrx_runtime_suspend(dev->dev);
1175
pm_runtime_disable:
1176
pm_runtime_disable(dev->dev);
1177
return err;
1178
}
1179
1180
static void mchp_spdifrx_remove(struct platform_device *pdev)
1181
{
1182
struct mchp_spdifrx_dev *dev = platform_get_drvdata(pdev);
1183
1184
pm_runtime_disable(dev->dev);
1185
if (!pm_runtime_status_suspended(dev->dev))
1186
mchp_spdifrx_runtime_suspend(dev->dev);
1187
}
1188
1189
static struct platform_driver mchp_spdifrx_driver = {
1190
.probe = mchp_spdifrx_probe,
1191
.remove = mchp_spdifrx_remove,
1192
.driver = {
1193
.name = "mchp_spdifrx",
1194
.of_match_table = mchp_spdifrx_dt_ids,
1195
.pm = pm_ptr(&mchp_spdifrx_pm_ops),
1196
},
1197
};
1198
1199
module_platform_driver(mchp_spdifrx_driver);
1200
1201
MODULE_AUTHOR("Codrin Ciubotariu <[email protected]>");
1202
MODULE_DESCRIPTION("Microchip S/PDIF RX Controller Driver");
1203
MODULE_LICENSE("GPL v2");
1204
1205