Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/soc/fsl/fsl_dma.c
26427 views
1
// SPDX-License-Identifier: GPL-2.0
2
//
3
// Freescale DMA ALSA SoC PCM driver
4
//
5
// Author: Timur Tabi <[email protected]>
6
//
7
// Copyright 2007-2010 Freescale Semiconductor, Inc.
8
//
9
// This driver implements ASoC support for the Elo DMA controller, which is
10
// the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
11
// the PCM driver is what handles the DMA buffer.
12
13
#include <linux/module.h>
14
#include <linux/init.h>
15
#include <linux/platform_device.h>
16
#include <linux/dma-mapping.h>
17
#include <linux/interrupt.h>
18
#include <linux/delay.h>
19
#include <linux/gfp.h>
20
#include <linux/of_address.h>
21
#include <linux/of_irq.h>
22
#include <linux/of_platform.h>
23
#include <linux/list.h>
24
#include <linux/slab.h>
25
26
#include <sound/core.h>
27
#include <sound/pcm.h>
28
#include <sound/pcm_params.h>
29
#include <sound/soc.h>
30
31
#include <asm/io.h>
32
33
#include "fsl_dma.h"
34
#include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
35
36
#define DRV_NAME "fsl_dma"
37
38
/*
39
* The formats that the DMA controller supports, which is anything
40
* that is 8, 16, or 32 bits.
41
*/
42
#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
43
SNDRV_PCM_FMTBIT_U8 | \
44
SNDRV_PCM_FMTBIT_S16_LE | \
45
SNDRV_PCM_FMTBIT_S16_BE | \
46
SNDRV_PCM_FMTBIT_U16_LE | \
47
SNDRV_PCM_FMTBIT_U16_BE | \
48
SNDRV_PCM_FMTBIT_S24_LE | \
49
SNDRV_PCM_FMTBIT_S24_BE | \
50
SNDRV_PCM_FMTBIT_U24_LE | \
51
SNDRV_PCM_FMTBIT_U24_BE | \
52
SNDRV_PCM_FMTBIT_S32_LE | \
53
SNDRV_PCM_FMTBIT_S32_BE | \
54
SNDRV_PCM_FMTBIT_U32_LE | \
55
SNDRV_PCM_FMTBIT_U32_BE)
56
struct dma_object {
57
struct snd_soc_component_driver dai;
58
dma_addr_t ssi_stx_phys;
59
dma_addr_t ssi_srx_phys;
60
unsigned int ssi_fifo_depth;
61
struct ccsr_dma_channel __iomem *channel;
62
unsigned int irq;
63
bool assigned;
64
};
65
66
/*
67
* The number of DMA links to use. Two is the bare minimum, but if you
68
* have really small links you might need more.
69
*/
70
#define NUM_DMA_LINKS 2
71
72
/** fsl_dma_private: p-substream DMA data
73
*
74
* Each substream has a 1-to-1 association with a DMA channel.
75
*
76
* The link[] array is first because it needs to be aligned on a 32-byte
77
* boundary, so putting it first will ensure alignment without padding the
78
* structure.
79
*
80
* @link[]: array of link descriptors
81
* @dma_channel: pointer to the DMA channel's registers
82
* @irq: IRQ for this DMA channel
83
* @substream: pointer to the substream object, needed by the ISR
84
* @ssi_sxx_phys: bus address of the STX or SRX register to use
85
* @ld_buf_phys: physical address of the LD buffer
86
* @current_link: index into link[] of the link currently being processed
87
* @dma_buf_phys: physical address of the DMA buffer
88
* @dma_buf_next: physical address of the next period to process
89
* @dma_buf_end: physical address of the byte after the end of the DMA
90
* @buffer period_size: the size of a single period
91
* @num_periods: the number of periods in the DMA buffer
92
*/
93
struct fsl_dma_private {
94
struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
95
struct ccsr_dma_channel __iomem *dma_channel;
96
unsigned int irq;
97
struct snd_pcm_substream *substream;
98
dma_addr_t ssi_sxx_phys;
99
unsigned int ssi_fifo_depth;
100
dma_addr_t ld_buf_phys;
101
unsigned int current_link;
102
dma_addr_t dma_buf_phys;
103
dma_addr_t dma_buf_next;
104
dma_addr_t dma_buf_end;
105
size_t period_size;
106
unsigned int num_periods;
107
};
108
109
/**
110
* fsl_dma_hardare: define characteristics of the PCM hardware.
111
*
112
* The PCM hardware is the Freescale DMA controller. This structure defines
113
* the capabilities of that hardware.
114
*
115
* Since the sampling rate and data format are not controlled by the DMA
116
* controller, we specify no limits for those values. The only exception is
117
* period_bytes_min, which is set to a reasonably low value to prevent the
118
* DMA controller from generating too many interrupts per second.
119
*
120
* Since each link descriptor has a 32-bit byte count field, we set
121
* period_bytes_max to the largest 32-bit number. We also have no maximum
122
* number of periods.
123
*
124
* Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
125
* limitation in the SSI driver requires the sample rates for playback and
126
* capture to be the same.
127
*/
128
static const struct snd_pcm_hardware fsl_dma_hardware = {
129
130
.info = SNDRV_PCM_INFO_INTERLEAVED |
131
SNDRV_PCM_INFO_MMAP |
132
SNDRV_PCM_INFO_MMAP_VALID |
133
SNDRV_PCM_INFO_JOINT_DUPLEX |
134
SNDRV_PCM_INFO_PAUSE,
135
.formats = FSLDMA_PCM_FORMATS,
136
.period_bytes_min = 512, /* A reasonable limit */
137
.period_bytes_max = (u32) -1,
138
.periods_min = NUM_DMA_LINKS,
139
.periods_max = (unsigned int) -1,
140
.buffer_bytes_max = 128 * 1024, /* A reasonable limit */
141
};
142
143
/**
144
* fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
145
*
146
* This function should be called by the ISR whenever the DMA controller
147
* halts data transfer.
148
*/
149
static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
150
{
151
snd_pcm_stop_xrun(substream);
152
}
153
154
/**
155
* fsl_dma_update_pointers - update LD pointers to point to the next period
156
*
157
* As each period is completed, this function changes the link
158
* descriptor pointers for that period to point to the next period.
159
*/
160
static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
161
{
162
struct fsl_dma_link_descriptor *link =
163
&dma_private->link[dma_private->current_link];
164
165
/* Update our link descriptors to point to the next period. On a 36-bit
166
* system, we also need to update the ESAD bits. We also set (keep) the
167
* snoop bits. See the comments in fsl_dma_hw_params() about snooping.
168
*/
169
if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
170
link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
171
#ifdef CONFIG_PHYS_64BIT
172
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
173
upper_32_bits(dma_private->dma_buf_next));
174
#endif
175
} else {
176
link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
177
#ifdef CONFIG_PHYS_64BIT
178
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
179
upper_32_bits(dma_private->dma_buf_next));
180
#endif
181
}
182
183
/* Update our variables for next time */
184
dma_private->dma_buf_next += dma_private->period_size;
185
186
if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
187
dma_private->dma_buf_next = dma_private->dma_buf_phys;
188
189
if (++dma_private->current_link >= NUM_DMA_LINKS)
190
dma_private->current_link = 0;
191
}
192
193
/**
194
* fsl_dma_isr: interrupt handler for the DMA controller
195
*
196
* @irq: IRQ of the DMA channel
197
* @dev_id: pointer to the dma_private structure for this DMA channel
198
*/
199
static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
200
{
201
struct fsl_dma_private *dma_private = dev_id;
202
struct snd_pcm_substream *substream = dma_private->substream;
203
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
204
struct device *dev = rtd->dev;
205
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
206
irqreturn_t ret = IRQ_NONE;
207
u32 sr, sr2 = 0;
208
209
/* We got an interrupt, so read the status register to see what we
210
were interrupted for.
211
*/
212
sr = in_be32(&dma_channel->sr);
213
214
if (sr & CCSR_DMA_SR_TE) {
215
dev_err(dev, "dma transmit error\n");
216
fsl_dma_abort_stream(substream);
217
sr2 |= CCSR_DMA_SR_TE;
218
ret = IRQ_HANDLED;
219
}
220
221
if (sr & CCSR_DMA_SR_CH)
222
ret = IRQ_HANDLED;
223
224
if (sr & CCSR_DMA_SR_PE) {
225
dev_err(dev, "dma programming error\n");
226
fsl_dma_abort_stream(substream);
227
sr2 |= CCSR_DMA_SR_PE;
228
ret = IRQ_HANDLED;
229
}
230
231
if (sr & CCSR_DMA_SR_EOLNI) {
232
sr2 |= CCSR_DMA_SR_EOLNI;
233
ret = IRQ_HANDLED;
234
}
235
236
if (sr & CCSR_DMA_SR_CB)
237
ret = IRQ_HANDLED;
238
239
if (sr & CCSR_DMA_SR_EOSI) {
240
/* Tell ALSA we completed a period. */
241
snd_pcm_period_elapsed(substream);
242
243
/*
244
* Update our link descriptors to point to the next period. We
245
* only need to do this if the number of periods is not equal to
246
* the number of links.
247
*/
248
if (dma_private->num_periods != NUM_DMA_LINKS)
249
fsl_dma_update_pointers(dma_private);
250
251
sr2 |= CCSR_DMA_SR_EOSI;
252
ret = IRQ_HANDLED;
253
}
254
255
if (sr & CCSR_DMA_SR_EOLSI) {
256
sr2 |= CCSR_DMA_SR_EOLSI;
257
ret = IRQ_HANDLED;
258
}
259
260
/* Clear the bits that we set */
261
if (sr2)
262
out_be32(&dma_channel->sr, sr2);
263
264
return ret;
265
}
266
267
/**
268
* fsl_dma_new: initialize this PCM driver.
269
*
270
* This function is called when the codec driver calls snd_soc_new_pcms(),
271
* once for each .dai_link in the machine driver's snd_soc_card
272
* structure.
273
*
274
* snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
275
* (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
276
* is specified. Therefore, any DMA buffers we allocate will always be in low
277
* memory, but we support for 36-bit physical addresses anyway.
278
*
279
* Regardless of where the memory is actually allocated, since the device can
280
* technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
281
*/
282
static int fsl_dma_new(struct snd_soc_component *component,
283
struct snd_soc_pcm_runtime *rtd)
284
{
285
struct snd_card *card = rtd->card->snd_card;
286
struct snd_pcm *pcm = rtd->pcm;
287
int ret;
288
289
ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
290
if (ret)
291
return ret;
292
293
return snd_pcm_set_fixed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
294
card->dev,
295
fsl_dma_hardware.buffer_bytes_max);
296
}
297
298
/**
299
* fsl_dma_open: open a new substream.
300
*
301
* Each substream has its own DMA buffer.
302
*
303
* ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
304
* descriptors that ping-pong from one period to the next. For example, if
305
* there are six periods and two link descriptors, this is how they look
306
* before playback starts:
307
*
308
* The last link descriptor
309
* ____________ points back to the first
310
* | |
311
* V |
312
* ___ ___ |
313
* | |->| |->|
314
* |___| |___|
315
* | |
316
* | |
317
* V V
318
* _________________________________________
319
* | | | | | | | The DMA buffer is
320
* | | | | | | | divided into 6 parts
321
* |______|______|______|______|______|______|
322
*
323
* and here's how they look after the first period is finished playing:
324
*
325
* ____________
326
* | |
327
* V |
328
* ___ ___ |
329
* | |->| |->|
330
* |___| |___|
331
* | |
332
* |______________
333
* | |
334
* V V
335
* _________________________________________
336
* | | | | | | |
337
* | | | | | | |
338
* |______|______|______|______|______|______|
339
*
340
* The first link descriptor now points to the third period. The DMA
341
* controller is currently playing the second period. When it finishes, it
342
* will jump back to the first descriptor and play the third period.
343
*
344
* There are four reasons we do this:
345
*
346
* 1. The only way to get the DMA controller to automatically restart the
347
* transfer when it gets to the end of the buffer is to use chaining
348
* mode. Basic direct mode doesn't offer that feature.
349
* 2. We need to receive an interrupt at the end of every period. The DMA
350
* controller can generate an interrupt at the end of every link transfer
351
* (aka segment). Making each period into a DMA segment will give us the
352
* interrupts we need.
353
* 3. By creating only two link descriptors, regardless of the number of
354
* periods, we do not need to reallocate the link descriptors if the
355
* number of periods changes.
356
* 4. All of the audio data is still stored in a single, contiguous DMA
357
* buffer, which is what ALSA expects. We're just dividing it into
358
* contiguous parts, and creating a link descriptor for each one.
359
*/
360
static int fsl_dma_open(struct snd_soc_component *component,
361
struct snd_pcm_substream *substream)
362
{
363
struct snd_pcm_runtime *runtime = substream->runtime;
364
struct device *dev = component->dev;
365
struct dma_object *dma =
366
container_of(component->driver, struct dma_object, dai);
367
struct fsl_dma_private *dma_private;
368
struct ccsr_dma_channel __iomem *dma_channel;
369
dma_addr_t ld_buf_phys;
370
u64 temp_link; /* Pointer to next link descriptor */
371
u32 mr;
372
int ret = 0;
373
unsigned int i;
374
375
/*
376
* Reject any DMA buffer whose size is not a multiple of the period
377
* size. We need to make sure that the DMA buffer can be evenly divided
378
* into periods.
379
*/
380
ret = snd_pcm_hw_constraint_integer(runtime,
381
SNDRV_PCM_HW_PARAM_PERIODS);
382
if (ret < 0) {
383
dev_err(dev, "invalid buffer size\n");
384
return ret;
385
}
386
387
if (dma->assigned) {
388
dev_err(dev, "dma channel already assigned\n");
389
return -EBUSY;
390
}
391
392
dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
393
&ld_buf_phys, GFP_KERNEL);
394
if (!dma_private) {
395
dev_err(dev, "can't allocate dma private data\n");
396
return -ENOMEM;
397
}
398
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
399
dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
400
else
401
dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
402
403
dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
404
dma_private->dma_channel = dma->channel;
405
dma_private->irq = dma->irq;
406
dma_private->substream = substream;
407
dma_private->ld_buf_phys = ld_buf_phys;
408
dma_private->dma_buf_phys = substream->dma_buffer.addr;
409
410
ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
411
dma_private);
412
if (ret) {
413
dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
414
dma_private->irq, ret);
415
dma_free_coherent(dev, sizeof(struct fsl_dma_private),
416
dma_private, dma_private->ld_buf_phys);
417
return ret;
418
}
419
420
dma->assigned = true;
421
422
snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
423
runtime->private_data = dma_private;
424
425
/* Program the fixed DMA controller parameters */
426
427
dma_channel = dma_private->dma_channel;
428
429
temp_link = dma_private->ld_buf_phys +
430
sizeof(struct fsl_dma_link_descriptor);
431
432
for (i = 0; i < NUM_DMA_LINKS; i++) {
433
dma_private->link[i].next = cpu_to_be64(temp_link);
434
435
temp_link += sizeof(struct fsl_dma_link_descriptor);
436
}
437
/* The last link descriptor points to the first */
438
dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
439
440
/* Tell the DMA controller where the first link descriptor is */
441
out_be32(&dma_channel->clndar,
442
CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
443
out_be32(&dma_channel->eclndar,
444
CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
445
446
/* The manual says the BCR must be clear before enabling EMP */
447
out_be32(&dma_channel->bcr, 0);
448
449
/*
450
* Program the mode register for interrupts, external master control,
451
* and source/destination hold. Also clear the Channel Abort bit.
452
*/
453
mr = in_be32(&dma_channel->mr) &
454
~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
455
456
/*
457
* We want External Master Start and External Master Pause enabled,
458
* because the SSI is controlling the DMA controller. We want the DMA
459
* controller to be set up in advance, and then we signal only the SSI
460
* to start transferring.
461
*
462
* We want End-Of-Segment Interrupts enabled, because this will generate
463
* an interrupt at the end of each segment (each link descriptor
464
* represents one segment). Each DMA segment is the same thing as an
465
* ALSA period, so this is how we get an interrupt at the end of every
466
* period.
467
*
468
* We want Error Interrupt enabled, so that we can get an error if
469
* the DMA controller is mis-programmed somehow.
470
*/
471
mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
472
CCSR_DMA_MR_EMS_EN;
473
474
/* For playback, we want the destination address to be held. For
475
capture, set the source address to be held. */
476
mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
477
CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
478
479
out_be32(&dma_channel->mr, mr);
480
481
return 0;
482
}
483
484
/**
485
* fsl_dma_hw_params: continue initializing the DMA links
486
*
487
* This function obtains hardware parameters about the opened stream and
488
* programs the DMA controller accordingly.
489
*
490
* One drawback of big-endian is that when copying integers of different
491
* sizes to a fixed-sized register, the address to which the integer must be
492
* copied is dependent on the size of the integer.
493
*
494
* For example, if P is the address of a 32-bit register, and X is a 32-bit
495
* integer, then X should be copied to address P. However, if X is a 16-bit
496
* integer, then it should be copied to P+2. If X is an 8-bit register,
497
* then it should be copied to P+3.
498
*
499
* So for playback of 8-bit samples, the DMA controller must transfer single
500
* bytes from the DMA buffer to the last byte of the STX0 register, i.e.
501
* offset by 3 bytes. For 16-bit samples, the offset is two bytes.
502
*
503
* For 24-bit samples, the offset is 1 byte. However, the DMA controller
504
* does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
505
* and 8 bytes at a time). So we do not support packed 24-bit samples.
506
* 24-bit data must be padded to 32 bits.
507
*/
508
static int fsl_dma_hw_params(struct snd_soc_component *component,
509
struct snd_pcm_substream *substream,
510
struct snd_pcm_hw_params *hw_params)
511
{
512
struct snd_pcm_runtime *runtime = substream->runtime;
513
struct fsl_dma_private *dma_private = runtime->private_data;
514
struct device *dev = component->dev;
515
516
/* Number of bits per sample */
517
unsigned int sample_bits =
518
snd_pcm_format_physical_width(params_format(hw_params));
519
520
/* Number of bytes per frame */
521
unsigned int sample_bytes = sample_bits / 8;
522
523
/* Bus address of SSI STX register */
524
dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
525
526
/* Size of the DMA buffer, in bytes */
527
size_t buffer_size = params_buffer_bytes(hw_params);
528
529
/* Number of bytes per period */
530
size_t period_size = params_period_bytes(hw_params);
531
532
/* Pointer to next period */
533
dma_addr_t temp_addr = substream->dma_buffer.addr;
534
535
/* Pointer to DMA controller */
536
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
537
538
u32 mr; /* DMA Mode Register */
539
540
unsigned int i;
541
542
/* Initialize our DMA tracking variables */
543
dma_private->period_size = period_size;
544
dma_private->num_periods = params_periods(hw_params);
545
dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
546
dma_private->dma_buf_next = dma_private->dma_buf_phys +
547
(NUM_DMA_LINKS * period_size);
548
549
if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
550
/* This happens if the number of periods == NUM_DMA_LINKS */
551
dma_private->dma_buf_next = dma_private->dma_buf_phys;
552
553
mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
554
CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
555
556
/* Due to a quirk of the SSI's STX register, the target address
557
* for the DMA operations depends on the sample size. So we calculate
558
* that offset here. While we're at it, also tell the DMA controller
559
* how much data to transfer per sample.
560
*/
561
switch (sample_bits) {
562
case 8:
563
mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
564
ssi_sxx_phys += 3;
565
break;
566
case 16:
567
mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
568
ssi_sxx_phys += 2;
569
break;
570
case 32:
571
mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
572
break;
573
default:
574
/* We should never get here */
575
dev_err(dev, "unsupported sample size %u\n", sample_bits);
576
return -EINVAL;
577
}
578
579
/*
580
* BWC determines how many bytes are sent/received before the DMA
581
* controller checks the SSI to see if it needs to stop. BWC should
582
* always be a multiple of the frame size, so that we always transmit
583
* whole frames. Each frame occupies two slots in the FIFO. The
584
* parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
585
* (MR[BWC] can only represent even powers of two).
586
*
587
* To simplify the process, we set BWC to the largest value that is
588
* less than or equal to the FIFO watermark. For playback, this ensures
589
* that we transfer the maximum amount without overrunning the FIFO.
590
* For capture, this ensures that we transfer the maximum amount without
591
* underrunning the FIFO.
592
*
593
* f = SSI FIFO depth
594
* w = SSI watermark value (which equals f - 2)
595
* b = DMA bandwidth count (in bytes)
596
* s = sample size (in bytes, which equals frame_size * 2)
597
*
598
* For playback, we never transmit more than the transmit FIFO
599
* watermark, otherwise we might write more data than the FIFO can hold.
600
* The watermark is equal to the FIFO depth minus two.
601
*
602
* For capture, two equations must hold:
603
* w > f - (b / s)
604
* w >= b / s
605
*
606
* So, b > 2 * s, but b must also be <= s * w. To simplify, we set
607
* b = s * w, which is equal to
608
* (dma_private->ssi_fifo_depth - 2) * sample_bytes.
609
*/
610
mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
611
612
out_be32(&dma_channel->mr, mr);
613
614
for (i = 0; i < NUM_DMA_LINKS; i++) {
615
struct fsl_dma_link_descriptor *link = &dma_private->link[i];
616
617
link->count = cpu_to_be32(period_size);
618
619
/* The snoop bit tells the DMA controller whether it should tell
620
* the ECM to snoop during a read or write to an address. For
621
* audio, we use DMA to transfer data between memory and an I/O
622
* device (the SSI's STX0 or SRX0 register). Snooping is only
623
* needed if there is a cache, so we need to snoop memory
624
* addresses only. For playback, that means we snoop the source
625
* but not the destination. For capture, we snoop the
626
* destination but not the source.
627
*
628
* Note that failing to snoop properly is unlikely to cause
629
* cache incoherency if the period size is larger than the
630
* size of L1 cache. This is because filling in one period will
631
* flush out the data for the previous period. So if you
632
* increased period_bytes_min to a large enough size, you might
633
* get more performance by not snooping, and you'll still be
634
* okay. You'll need to update fsl_dma_update_pointers() also.
635
*/
636
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
637
link->source_addr = cpu_to_be32(temp_addr);
638
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
639
upper_32_bits(temp_addr));
640
641
link->dest_addr = cpu_to_be32(ssi_sxx_phys);
642
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
643
upper_32_bits(ssi_sxx_phys));
644
} else {
645
link->source_addr = cpu_to_be32(ssi_sxx_phys);
646
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
647
upper_32_bits(ssi_sxx_phys));
648
649
link->dest_addr = cpu_to_be32(temp_addr);
650
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
651
upper_32_bits(temp_addr));
652
}
653
654
temp_addr += period_size;
655
}
656
657
return 0;
658
}
659
660
/**
661
* fsl_dma_pointer: determine the current position of the DMA transfer
662
*
663
* This function is called by ALSA when ALSA wants to know where in the
664
* stream buffer the hardware currently is.
665
*
666
* For playback, the SAR register contains the physical address of the most
667
* recent DMA transfer. For capture, the value is in the DAR register.
668
*
669
* The base address of the buffer is stored in the source_addr field of the
670
* first link descriptor.
671
*/
672
static snd_pcm_uframes_t fsl_dma_pointer(struct snd_soc_component *component,
673
struct snd_pcm_substream *substream)
674
{
675
struct snd_pcm_runtime *runtime = substream->runtime;
676
struct fsl_dma_private *dma_private = runtime->private_data;
677
struct device *dev = component->dev;
678
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
679
dma_addr_t position;
680
snd_pcm_uframes_t frames;
681
682
/* Obtain the current DMA pointer, but don't read the ESAD bits if we
683
* only have 32-bit DMA addresses. This function is typically called
684
* in interrupt context, so we need to optimize it.
685
*/
686
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
687
position = in_be32(&dma_channel->sar);
688
#ifdef CONFIG_PHYS_64BIT
689
position |= (u64)(in_be32(&dma_channel->satr) &
690
CCSR_DMA_ATR_ESAD_MASK) << 32;
691
#endif
692
} else {
693
position = in_be32(&dma_channel->dar);
694
#ifdef CONFIG_PHYS_64BIT
695
position |= (u64)(in_be32(&dma_channel->datr) &
696
CCSR_DMA_ATR_ESAD_MASK) << 32;
697
#endif
698
}
699
700
/*
701
* When capture is started, the SSI immediately starts to fill its FIFO.
702
* This means that the DMA controller is not started until the FIFO is
703
* full. However, ALSA calls this function before that happens, when
704
* MR.DAR is still zero. In this case, just return zero to indicate
705
* that nothing has been received yet.
706
*/
707
if (!position)
708
return 0;
709
710
if ((position < dma_private->dma_buf_phys) ||
711
(position > dma_private->dma_buf_end)) {
712
dev_err(dev, "dma pointer is out of range, halting stream\n");
713
return SNDRV_PCM_POS_XRUN;
714
}
715
716
frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
717
718
/*
719
* If the current address is just past the end of the buffer, wrap it
720
* around.
721
*/
722
if (frames == runtime->buffer_size)
723
frames = 0;
724
725
return frames;
726
}
727
728
/**
729
* fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
730
*
731
* Release the resources allocated in fsl_dma_hw_params() and de-program the
732
* registers.
733
*
734
* This function can be called multiple times.
735
*/
736
static int fsl_dma_hw_free(struct snd_soc_component *component,
737
struct snd_pcm_substream *substream)
738
{
739
struct snd_pcm_runtime *runtime = substream->runtime;
740
struct fsl_dma_private *dma_private = runtime->private_data;
741
742
if (dma_private) {
743
struct ccsr_dma_channel __iomem *dma_channel;
744
745
dma_channel = dma_private->dma_channel;
746
747
/* Stop the DMA */
748
out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
749
out_be32(&dma_channel->mr, 0);
750
751
/* Reset all the other registers */
752
out_be32(&dma_channel->sr, -1);
753
out_be32(&dma_channel->clndar, 0);
754
out_be32(&dma_channel->eclndar, 0);
755
out_be32(&dma_channel->satr, 0);
756
out_be32(&dma_channel->sar, 0);
757
out_be32(&dma_channel->datr, 0);
758
out_be32(&dma_channel->dar, 0);
759
out_be32(&dma_channel->bcr, 0);
760
out_be32(&dma_channel->nlndar, 0);
761
out_be32(&dma_channel->enlndar, 0);
762
}
763
764
return 0;
765
}
766
767
/**
768
* fsl_dma_close: close the stream.
769
*/
770
static int fsl_dma_close(struct snd_soc_component *component,
771
struct snd_pcm_substream *substream)
772
{
773
struct snd_pcm_runtime *runtime = substream->runtime;
774
struct fsl_dma_private *dma_private = runtime->private_data;
775
struct device *dev = component->dev;
776
struct dma_object *dma =
777
container_of(component->driver, struct dma_object, dai);
778
779
if (dma_private) {
780
if (dma_private->irq)
781
free_irq(dma_private->irq, dma_private);
782
783
/* Deallocate the fsl_dma_private structure */
784
dma_free_coherent(dev, sizeof(struct fsl_dma_private),
785
dma_private, dma_private->ld_buf_phys);
786
substream->runtime->private_data = NULL;
787
}
788
789
dma->assigned = false;
790
791
return 0;
792
}
793
794
/**
795
* find_ssi_node -- returns the SSI node that points to its DMA channel node
796
*
797
* Although this DMA driver attempts to operate independently of the other
798
* devices, it still needs to determine some information about the SSI device
799
* that it's working with. Unfortunately, the device tree does not contain
800
* a pointer from the DMA channel node to the SSI node -- the pointer goes the
801
* other way. So we need to scan the device tree for SSI nodes until we find
802
* the one that points to the given DMA channel node. It's ugly, but at least
803
* it's contained in this one function.
804
*/
805
static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
806
{
807
struct device_node *ssi_np, *np;
808
809
for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
810
/* Check each DMA phandle to see if it points to us. We
811
* assume that device_node pointers are a valid comparison.
812
*/
813
np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
814
of_node_put(np);
815
if (np == dma_channel_np)
816
return ssi_np;
817
818
np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
819
of_node_put(np);
820
if (np == dma_channel_np)
821
return ssi_np;
822
}
823
824
return NULL;
825
}
826
827
static int fsl_soc_dma_probe(struct platform_device *pdev)
828
{
829
struct dma_object *dma;
830
struct device_node *np = pdev->dev.of_node;
831
struct device_node *ssi_np;
832
struct resource res;
833
const uint32_t *iprop;
834
int ret;
835
836
/* Find the SSI node that points to us. */
837
ssi_np = find_ssi_node(np);
838
if (!ssi_np) {
839
dev_err(&pdev->dev, "cannot find parent SSI node\n");
840
return -ENODEV;
841
}
842
843
ret = of_address_to_resource(ssi_np, 0, &res);
844
if (ret) {
845
dev_err(&pdev->dev, "could not determine resources for %pOF\n",
846
ssi_np);
847
of_node_put(ssi_np);
848
return ret;
849
}
850
851
dma = kzalloc(sizeof(*dma), GFP_KERNEL);
852
if (!dma) {
853
of_node_put(ssi_np);
854
return -ENOMEM;
855
}
856
857
dma->dai.name = DRV_NAME;
858
dma->dai.open = fsl_dma_open;
859
dma->dai.close = fsl_dma_close;
860
dma->dai.hw_params = fsl_dma_hw_params;
861
dma->dai.hw_free = fsl_dma_hw_free;
862
dma->dai.pointer = fsl_dma_pointer;
863
dma->dai.pcm_construct = fsl_dma_new;
864
865
/* Store the SSI-specific information that we need */
866
dma->ssi_stx_phys = res.start + REG_SSI_STX0;
867
dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
868
869
iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
870
if (iprop)
871
dma->ssi_fifo_depth = be32_to_cpup(iprop);
872
else
873
/* Older 8610 DTs didn't have the fifo-depth property */
874
dma->ssi_fifo_depth = 8;
875
876
of_node_put(ssi_np);
877
878
ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
879
if (ret) {
880
dev_err(&pdev->dev, "could not register platform\n");
881
kfree(dma);
882
return ret;
883
}
884
885
dma->channel = of_iomap(np, 0);
886
dma->irq = irq_of_parse_and_map(np, 0);
887
888
dev_set_drvdata(&pdev->dev, dma);
889
890
return 0;
891
}
892
893
static void fsl_soc_dma_remove(struct platform_device *pdev)
894
{
895
struct dma_object *dma = dev_get_drvdata(&pdev->dev);
896
897
iounmap(dma->channel);
898
irq_dispose_mapping(dma->irq);
899
kfree(dma);
900
}
901
902
static const struct of_device_id fsl_soc_dma_ids[] = {
903
{ .compatible = "fsl,ssi-dma-channel", },
904
{}
905
};
906
MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
907
908
static struct platform_driver fsl_soc_dma_driver = {
909
.driver = {
910
.name = "fsl-pcm-audio",
911
.of_match_table = fsl_soc_dma_ids,
912
},
913
.probe = fsl_soc_dma_probe,
914
.remove = fsl_soc_dma_remove,
915
};
916
917
module_platform_driver(fsl_soc_dma_driver);
918
919
MODULE_AUTHOR("Timur Tabi <[email protected]>");
920
MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
921
MODULE_LICENSE("GPL v2");
922
923