Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/soc/fsl/fsl_spdif.c
26428 views
1
// SPDX-License-Identifier: GPL-2.0
2
//
3
// Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
4
//
5
// Copyright (C) 2013 Freescale Semiconductor, Inc.
6
//
7
// Based on stmp3xxx_spdif_dai.c
8
// Vladimir Barinov <[email protected]>
9
// Copyright 2008 SigmaTel, Inc
10
// Copyright 2008 Embedded Alley Solutions, Inc
11
12
#include <linux/bitrev.h>
13
#include <linux/clk.h>
14
#include <linux/module.h>
15
#include <linux/of.h>
16
#include <linux/regmap.h>
17
#include <linux/pm_runtime.h>
18
19
#include <sound/asoundef.h>
20
#include <sound/dmaengine_pcm.h>
21
#include <sound/soc.h>
22
23
#include "fsl_spdif.h"
24
#include "fsl_utils.h"
25
#include "imx-pcm.h"
26
27
#define FSL_SPDIF_TXFIFO_WML 0x8
28
#define FSL_SPDIF_RXFIFO_WML 0x8
29
30
#define INTR_FOR_PLAYBACK (INT_TXFIFO_RESYNC)
31
#define INTR_FOR_CAPTURE (INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
32
INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
33
INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
34
INT_LOSS_LOCK | INT_DPLL_LOCKED)
35
36
#define SIE_INTR_FOR(tx) (tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
37
38
/* Index list for the values that has if (DPLL Locked) condition */
39
static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
40
#define SRPC_NODPLL_START1 0x5
41
#define SRPC_NODPLL_START2 0xc
42
43
#define DEFAULT_RXCLK_SRC 1
44
45
#define RX_SAMPLE_RATE_KCONTROL "RX Sample Rate"
46
47
/**
48
* struct fsl_spdif_soc_data: soc specific data
49
*
50
* @imx: for imx platform
51
* @shared_root_clock: flag of sharing a clock source with others;
52
* so the driver shouldn't set root clock rate
53
* @raw_capture_mode: if raw capture mode support
54
* @cchannel_192b: if there are registers for 192bits C channel data
55
* @interrupts: interrupt number
56
* @tx_burst: tx maxburst size
57
* @rx_burst: rx maxburst size
58
* @tx_formats: tx supported data format
59
*/
60
struct fsl_spdif_soc_data {
61
bool imx;
62
bool shared_root_clock;
63
bool raw_capture_mode;
64
bool cchannel_192b;
65
u32 interrupts;
66
u32 tx_burst;
67
u32 rx_burst;
68
u64 tx_formats;
69
};
70
71
/*
72
* SPDIF control structure
73
* Defines channel status, subcode and Q sub
74
*/
75
struct spdif_mixer_control {
76
/* spinlock to access control data */
77
spinlock_t ctl_lock;
78
79
/* IEC958 channel tx status bit */
80
unsigned char ch_status[4];
81
82
/* User bits */
83
unsigned char subcode[2 * SPDIF_UBITS_SIZE];
84
85
/* Q subcode part of user bits */
86
unsigned char qsub[2 * SPDIF_QSUB_SIZE];
87
88
/* Buffer offset for U/Q */
89
u32 upos;
90
u32 qpos;
91
92
/* Ready buffer index of the two buffers */
93
u32 ready_buf;
94
};
95
96
/**
97
* struct fsl_spdif_priv - Freescale SPDIF private data
98
* @soc: SPDIF soc data
99
* @fsl_spdif_control: SPDIF control data
100
* @cpu_dai_drv: cpu dai driver
101
* @snd_card: sound card pointer
102
* @rxrate_kcontrol: kcontrol for RX Sample Rate
103
* @pdev: platform device pointer
104
* @regmap: regmap handler
105
* @dpll_locked: dpll lock flag
106
* @txrate: the best rates for playback
107
* @txclk_df: STC_TXCLK_DF dividers value for playback
108
* @sysclk_df: STC_SYSCLK_DF dividers value for playback
109
* @txclk_src: STC_TXCLK_SRC values for playback
110
* @rxclk_src: SRPC_CLKSRC_SEL values for capture
111
* @txclk: tx clock sources for playback
112
* @rxclk: rx clock sources for capture
113
* @coreclk: core clock for register access via DMA
114
* @sysclk: system clock for rx clock rate measurement
115
* @spbaclk: SPBA clock (optional, depending on SoC design)
116
* @dma_params_tx: DMA parameters for transmit channel
117
* @dma_params_rx: DMA parameters for receive channel
118
* @regcache_srpc: regcache for SRPC
119
* @bypass: status of bypass input to output
120
* @pll8k_clk: PLL clock for the rate of multiply of 8kHz
121
* @pll11k_clk: PLL clock for the rate of multiply of 11kHz
122
*/
123
struct fsl_spdif_priv {
124
const struct fsl_spdif_soc_data *soc;
125
struct spdif_mixer_control fsl_spdif_control;
126
struct snd_soc_dai_driver cpu_dai_drv;
127
struct snd_card *snd_card;
128
struct snd_kcontrol *rxrate_kcontrol;
129
struct platform_device *pdev;
130
struct regmap *regmap;
131
bool dpll_locked;
132
u32 txrate[SPDIF_TXRATE_MAX];
133
u8 txclk_df[SPDIF_TXRATE_MAX];
134
u16 sysclk_df[SPDIF_TXRATE_MAX];
135
u8 txclk_src[SPDIF_TXRATE_MAX];
136
u8 rxclk_src;
137
struct clk *txclk[STC_TXCLK_SRC_MAX];
138
struct clk *rxclk;
139
struct clk *coreclk;
140
struct clk *sysclk;
141
struct clk *spbaclk;
142
struct snd_dmaengine_dai_dma_data dma_params_tx;
143
struct snd_dmaengine_dai_dma_data dma_params_rx;
144
/* regcache for SRPC */
145
u32 regcache_srpc;
146
bool bypass;
147
struct clk *pll8k_clk;
148
struct clk *pll11k_clk;
149
};
150
151
static struct fsl_spdif_soc_data fsl_spdif_vf610 = {
152
.imx = false,
153
.shared_root_clock = false,
154
.raw_capture_mode = false,
155
.interrupts = 1,
156
.tx_burst = FSL_SPDIF_TXFIFO_WML,
157
.rx_burst = FSL_SPDIF_RXFIFO_WML,
158
.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
159
};
160
161
static struct fsl_spdif_soc_data fsl_spdif_imx35 = {
162
.imx = true,
163
.shared_root_clock = false,
164
.raw_capture_mode = false,
165
.interrupts = 1,
166
.tx_burst = FSL_SPDIF_TXFIFO_WML,
167
.rx_burst = FSL_SPDIF_RXFIFO_WML,
168
.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
169
};
170
171
static struct fsl_spdif_soc_data fsl_spdif_imx6sx = {
172
.imx = true,
173
.shared_root_clock = true,
174
.raw_capture_mode = false,
175
.interrupts = 1,
176
.tx_burst = FSL_SPDIF_TXFIFO_WML,
177
.rx_burst = FSL_SPDIF_RXFIFO_WML,
178
.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
179
180
};
181
182
static struct fsl_spdif_soc_data fsl_spdif_imx8qm = {
183
.imx = true,
184
.shared_root_clock = true,
185
.raw_capture_mode = false,
186
.interrupts = 2,
187
.tx_burst = 2, /* Applied for EDMA */
188
.rx_burst = 2, /* Applied for EDMA */
189
.tx_formats = SNDRV_PCM_FMTBIT_S24_LE, /* Applied for EDMA */
190
};
191
192
static struct fsl_spdif_soc_data fsl_spdif_imx8mm = {
193
.imx = true,
194
.shared_root_clock = false,
195
.raw_capture_mode = true,
196
.interrupts = 1,
197
.tx_burst = FSL_SPDIF_TXFIFO_WML,
198
.rx_burst = FSL_SPDIF_RXFIFO_WML,
199
.tx_formats = FSL_SPDIF_FORMATS_PLAYBACK,
200
};
201
202
static struct fsl_spdif_soc_data fsl_spdif_imx8ulp = {
203
.imx = true,
204
.shared_root_clock = true,
205
.raw_capture_mode = false,
206
.interrupts = 1,
207
.tx_burst = 2, /* Applied for EDMA */
208
.rx_burst = 2, /* Applied for EDMA */
209
.tx_formats = SNDRV_PCM_FMTBIT_S24_LE, /* Applied for EDMA */
210
.cchannel_192b = true,
211
};
212
213
/* Check if clk is a root clock that does not share clock source with others */
214
static inline bool fsl_spdif_can_set_clk_rate(struct fsl_spdif_priv *spdif, int clk)
215
{
216
return (clk == STC_TXCLK_SPDIF_ROOT) && !spdif->soc->shared_root_clock;
217
}
218
219
/* DPLL locked and lock loss interrupt handler */
220
static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
221
{
222
struct regmap *regmap = spdif_priv->regmap;
223
struct platform_device *pdev = spdif_priv->pdev;
224
u32 locked;
225
226
regmap_read(regmap, REG_SPDIF_SRPC, &locked);
227
locked &= SRPC_DPLL_LOCKED;
228
229
dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
230
locked ? "locked" : "loss lock");
231
232
spdif_priv->dpll_locked = locked ? true : false;
233
234
if (spdif_priv->snd_card && spdif_priv->rxrate_kcontrol) {
235
snd_ctl_notify(spdif_priv->snd_card,
236
SNDRV_CTL_EVENT_MASK_VALUE,
237
&spdif_priv->rxrate_kcontrol->id);
238
}
239
}
240
241
/* Receiver found illegal symbol interrupt handler */
242
static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
243
{
244
struct regmap *regmap = spdif_priv->regmap;
245
struct platform_device *pdev = spdif_priv->pdev;
246
247
dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
248
249
/* Clear illegal symbol if DPLL unlocked since no audio stream */
250
if (!spdif_priv->dpll_locked)
251
regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
252
}
253
254
/* U/Q Channel receive register full */
255
static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
256
{
257
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
258
struct regmap *regmap = spdif_priv->regmap;
259
struct platform_device *pdev = spdif_priv->pdev;
260
u32 *pos, size, val, reg;
261
262
switch (name) {
263
case 'U':
264
pos = &ctrl->upos;
265
size = SPDIF_UBITS_SIZE;
266
reg = REG_SPDIF_SRU;
267
break;
268
case 'Q':
269
pos = &ctrl->qpos;
270
size = SPDIF_QSUB_SIZE;
271
reg = REG_SPDIF_SRQ;
272
break;
273
default:
274
dev_err(&pdev->dev, "unsupported channel name\n");
275
return;
276
}
277
278
dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);
279
280
if (*pos >= size * 2) {
281
*pos = 0;
282
} else if (unlikely((*pos % size) + 3 > size)) {
283
dev_err(&pdev->dev, "User bit receive buffer overflow\n");
284
return;
285
}
286
287
regmap_read(regmap, reg, &val);
288
ctrl->subcode[*pos++] = val >> 16;
289
ctrl->subcode[*pos++] = val >> 8;
290
ctrl->subcode[*pos++] = val;
291
}
292
293
/* U/Q Channel sync found */
294
static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
295
{
296
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
297
struct platform_device *pdev = spdif_priv->pdev;
298
299
dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");
300
301
/* U/Q buffer reset */
302
if (ctrl->qpos == 0)
303
return;
304
305
/* Set ready to this buffer */
306
ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
307
}
308
309
/* U/Q Channel framing error */
310
static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
311
{
312
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
313
struct regmap *regmap = spdif_priv->regmap;
314
struct platform_device *pdev = spdif_priv->pdev;
315
u32 val;
316
317
dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");
318
319
/* Read U/Q data to clear the irq and do buffer reset */
320
regmap_read(regmap, REG_SPDIF_SRU, &val);
321
regmap_read(regmap, REG_SPDIF_SRQ, &val);
322
323
/* Drop this U/Q buffer */
324
ctrl->ready_buf = 0;
325
ctrl->upos = 0;
326
ctrl->qpos = 0;
327
}
328
329
/* Get spdif interrupt status and clear the interrupt */
330
static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
331
{
332
struct regmap *regmap = spdif_priv->regmap;
333
u32 val, val2;
334
335
regmap_read(regmap, REG_SPDIF_SIS, &val);
336
regmap_read(regmap, REG_SPDIF_SIE, &val2);
337
338
regmap_write(regmap, REG_SPDIF_SIC, val & val2);
339
340
return val;
341
}
342
343
static irqreturn_t spdif_isr(int irq, void *devid)
344
{
345
struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
346
struct platform_device *pdev = spdif_priv->pdev;
347
u32 sis;
348
349
sis = spdif_intr_status_clear(spdif_priv);
350
351
if (sis & INT_DPLL_LOCKED)
352
spdif_irq_dpll_lock(spdif_priv);
353
354
if (sis & INT_TXFIFO_UNOV)
355
dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");
356
357
if (sis & INT_TXFIFO_RESYNC)
358
dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");
359
360
if (sis & INT_CNEW)
361
dev_dbg(&pdev->dev, "isr: cstatus new\n");
362
363
if (sis & INT_VAL_NOGOOD)
364
dev_dbg(&pdev->dev, "isr: validity flag no good\n");
365
366
if (sis & INT_SYM_ERR)
367
spdif_irq_sym_error(spdif_priv);
368
369
if (sis & INT_BIT_ERR)
370
dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");
371
372
if (sis & INT_URX_FUL)
373
spdif_irq_uqrx_full(spdif_priv, 'U');
374
375
if (sis & INT_URX_OV)
376
dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");
377
378
if (sis & INT_QRX_FUL)
379
spdif_irq_uqrx_full(spdif_priv, 'Q');
380
381
if (sis & INT_QRX_OV)
382
dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");
383
384
if (sis & INT_UQ_SYNC)
385
spdif_irq_uq_sync(spdif_priv);
386
387
if (sis & INT_UQ_ERR)
388
spdif_irq_uq_err(spdif_priv);
389
390
if (sis & INT_RXFIFO_UNOV)
391
dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");
392
393
if (sis & INT_RXFIFO_RESYNC)
394
dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");
395
396
if (sis & INT_LOSS_LOCK)
397
spdif_irq_dpll_lock(spdif_priv);
398
399
/* FIXME: Write Tx FIFO to clear TxEm */
400
if (sis & INT_TX_EM)
401
dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");
402
403
/* FIXME: Read Rx FIFO to clear RxFIFOFul */
404
if (sis & INT_RXFIFO_FUL)
405
dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");
406
407
return IRQ_HANDLED;
408
}
409
410
static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
411
{
412
struct regmap *regmap = spdif_priv->regmap;
413
u32 val, cycle = 1000;
414
415
regcache_cache_bypass(regmap, true);
416
417
regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);
418
419
/*
420
* RESET bit would be cleared after finishing its reset procedure,
421
* which typically lasts 8 cycles. 1000 cycles will keep it safe.
422
*/
423
do {
424
regmap_read(regmap, REG_SPDIF_SCR, &val);
425
} while ((val & SCR_SOFT_RESET) && cycle--);
426
427
regcache_cache_bypass(regmap, false);
428
regcache_mark_dirty(regmap);
429
regcache_sync(regmap);
430
431
if (cycle)
432
return 0;
433
else
434
return -EBUSY;
435
}
436
437
static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
438
u8 mask, u8 cstatus)
439
{
440
ctrl->ch_status[3] &= ~mask;
441
ctrl->ch_status[3] |= cstatus & mask;
442
}
443
444
static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
445
{
446
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
447
struct regmap *regmap = spdif_priv->regmap;
448
struct platform_device *pdev = spdif_priv->pdev;
449
u32 ch_status;
450
451
ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
452
(bitrev8(ctrl->ch_status[1]) << 8) |
453
bitrev8(ctrl->ch_status[2]);
454
regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);
455
456
dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
457
458
ch_status = bitrev8(ctrl->ch_status[3]) << 16;
459
regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);
460
461
dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
462
463
if (spdif_priv->soc->cchannel_192b) {
464
ch_status = (bitrev8(ctrl->ch_status[0]) << 24) |
465
(bitrev8(ctrl->ch_status[1]) << 16) |
466
(bitrev8(ctrl->ch_status[2]) << 8) |
467
bitrev8(ctrl->ch_status[3]);
468
469
regmap_update_bits(regmap, REG_SPDIF_SCR, 0x1000000, 0x1000000);
470
471
/*
472
* The first 32bit should be in REG_SPDIF_STCCA_31_0 register,
473
* but here we need to set REG_SPDIF_STCCA_191_160 on 8ULP
474
* then can get correct result with HDMI analyzer capture.
475
* There is a hardware bug here.
476
*/
477
regmap_write(regmap, REG_SPDIF_STCCA_191_160, ch_status);
478
}
479
}
480
481
/* Set SPDIF PhaseConfig register for rx clock */
482
static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
483
enum spdif_gainsel gainsel, int dpll_locked)
484
{
485
struct regmap *regmap = spdif_priv->regmap;
486
u8 clksrc = spdif_priv->rxclk_src;
487
488
if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
489
return -EINVAL;
490
491
regmap_update_bits(regmap, REG_SPDIF_SRPC,
492
SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
493
SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));
494
495
return 0;
496
}
497
498
static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv, enum spdif_txrate index);
499
500
static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
501
int sample_rate)
502
{
503
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
504
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
505
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
506
struct regmap *regmap = spdif_priv->regmap;
507
struct platform_device *pdev = spdif_priv->pdev;
508
unsigned long csfs = 0;
509
u32 stc, mask, rate;
510
u16 sysclk_df;
511
u8 clk, txclk_df;
512
int ret;
513
514
switch (sample_rate) {
515
case 22050:
516
rate = SPDIF_TXRATE_22050;
517
csfs = IEC958_AES3_CON_FS_22050;
518
break;
519
case 32000:
520
rate = SPDIF_TXRATE_32000;
521
csfs = IEC958_AES3_CON_FS_32000;
522
break;
523
case 44100:
524
rate = SPDIF_TXRATE_44100;
525
csfs = IEC958_AES3_CON_FS_44100;
526
break;
527
case 48000:
528
rate = SPDIF_TXRATE_48000;
529
csfs = IEC958_AES3_CON_FS_48000;
530
break;
531
case 88200:
532
rate = SPDIF_TXRATE_88200;
533
csfs = IEC958_AES3_CON_FS_88200;
534
break;
535
case 96000:
536
rate = SPDIF_TXRATE_96000;
537
csfs = IEC958_AES3_CON_FS_96000;
538
break;
539
case 176400:
540
rate = SPDIF_TXRATE_176400;
541
csfs = IEC958_AES3_CON_FS_176400;
542
break;
543
case 192000:
544
rate = SPDIF_TXRATE_192000;
545
csfs = IEC958_AES3_CON_FS_192000;
546
break;
547
default:
548
dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
549
return -EINVAL;
550
}
551
552
ret = fsl_spdif_probe_txclk(spdif_priv, rate);
553
if (ret)
554
return ret;
555
556
clk = spdif_priv->txclk_src[rate];
557
if (clk >= STC_TXCLK_SRC_MAX) {
558
dev_err(&pdev->dev, "tx clock source is out of range\n");
559
return -EINVAL;
560
}
561
562
txclk_df = spdif_priv->txclk_df[rate];
563
if (txclk_df == 0) {
564
dev_err(&pdev->dev, "the txclk_df can't be zero\n");
565
return -EINVAL;
566
}
567
568
sysclk_df = spdif_priv->sysclk_df[rate];
569
570
if (!fsl_spdif_can_set_clk_rate(spdif_priv, clk))
571
goto clk_set_bypass;
572
573
/* The S/PDIF block needs a clock of 64 * fs * txclk_df */
574
ret = clk_set_rate(spdif_priv->txclk[clk],
575
64 * sample_rate * txclk_df);
576
if (ret) {
577
dev_err(&pdev->dev, "failed to set tx clock rate\n");
578
return ret;
579
}
580
581
clk_set_bypass:
582
dev_dbg(&pdev->dev, "expected clock rate = %d\n",
583
(64 * sample_rate * txclk_df * sysclk_df));
584
dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
585
clk_get_rate(spdif_priv->txclk[clk]));
586
587
/* set fs field in consumer channel status */
588
spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);
589
590
/* select clock source and divisor */
591
stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
592
STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
593
mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
594
STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
595
regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);
596
597
dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
598
spdif_priv->txrate[rate], sample_rate);
599
600
return 0;
601
}
602
603
static int fsl_spdif_startup(struct snd_pcm_substream *substream,
604
struct snd_soc_dai *cpu_dai)
605
{
606
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
607
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
608
struct platform_device *pdev = spdif_priv->pdev;
609
struct regmap *regmap = spdif_priv->regmap;
610
u32 scr, mask;
611
int ret;
612
613
/* Reset module and interrupts only for first initialization */
614
if (!snd_soc_dai_active(cpu_dai)) {
615
ret = spdif_softreset(spdif_priv);
616
if (ret) {
617
dev_err(&pdev->dev, "failed to soft reset\n");
618
return ret;
619
}
620
621
/* Disable all the interrupts */
622
regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
623
}
624
625
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
626
scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
627
SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
628
SCR_TXFIFO_FSEL_IF8;
629
mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
630
SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
631
SCR_TXFIFO_FSEL_MASK;
632
} else {
633
scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
634
mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
635
SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
636
}
637
regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
638
639
/* Power up SPDIF module */
640
regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);
641
642
return 0;
643
}
644
645
static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
646
struct snd_soc_dai *cpu_dai)
647
{
648
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
649
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
650
struct regmap *regmap = spdif_priv->regmap;
651
u32 scr, mask;
652
653
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
654
scr = 0;
655
mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
656
SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
657
SCR_TXFIFO_FSEL_MASK;
658
/* Disable TX clock */
659
regmap_update_bits(regmap, REG_SPDIF_STC, STC_TXCLK_ALL_EN_MASK, 0);
660
} else {
661
scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
662
mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
663
SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
664
}
665
regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
666
667
/* Power down SPDIF module only if tx&rx are both inactive */
668
if (!snd_soc_dai_active(cpu_dai)) {
669
spdif_intr_status_clear(spdif_priv);
670
regmap_update_bits(regmap, REG_SPDIF_SCR,
671
SCR_LOW_POWER, SCR_LOW_POWER);
672
}
673
}
674
675
static int spdif_reparent_rootclk(struct fsl_spdif_priv *spdif_priv, unsigned int sample_rate)
676
{
677
struct platform_device *pdev = spdif_priv->pdev;
678
struct clk *clk;
679
int ret;
680
681
/* Reparent clock if required condition is true */
682
if (!fsl_spdif_can_set_clk_rate(spdif_priv, STC_TXCLK_SPDIF_ROOT))
683
return 0;
684
685
/* Get root clock */
686
clk = spdif_priv->txclk[STC_TXCLK_SPDIF_ROOT];
687
688
/* Disable clock first, for it was enabled by pm_runtime */
689
clk_disable_unprepare(clk);
690
fsl_asoc_reparent_pll_clocks(&pdev->dev, clk, spdif_priv->pll8k_clk,
691
spdif_priv->pll11k_clk, sample_rate);
692
ret = clk_prepare_enable(clk);
693
if (ret)
694
return ret;
695
696
return 0;
697
}
698
static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
699
struct snd_pcm_hw_params *params,
700
struct snd_soc_dai *dai)
701
{
702
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
703
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
704
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
705
struct platform_device *pdev = spdif_priv->pdev;
706
u32 sample_rate = params_rate(params);
707
int ret = 0;
708
709
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
710
ret = spdif_reparent_rootclk(spdif_priv, sample_rate);
711
if (ret) {
712
dev_err(&pdev->dev, "%s: reparent root clk failed: %d\n",
713
__func__, sample_rate);
714
return ret;
715
}
716
717
ret = spdif_set_sample_rate(substream, sample_rate);
718
if (ret) {
719
dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
720
__func__, sample_rate);
721
return ret;
722
}
723
spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
724
IEC958_AES3_CON_CLOCK_1000PPM);
725
spdif_write_channel_status(spdif_priv);
726
} else {
727
/* Setup rx clock source */
728
ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
729
}
730
731
return ret;
732
}
733
734
static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
735
int cmd, struct snd_soc_dai *dai)
736
{
737
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
738
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
739
struct regmap *regmap = spdif_priv->regmap;
740
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
741
u32 intr = SIE_INTR_FOR(tx);
742
u32 dmaen = SCR_DMA_xX_EN(tx);
743
744
switch (cmd) {
745
case SNDRV_PCM_TRIGGER_START:
746
case SNDRV_PCM_TRIGGER_RESUME:
747
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
748
regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
749
regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
750
break;
751
case SNDRV_PCM_TRIGGER_STOP:
752
case SNDRV_PCM_TRIGGER_SUSPEND:
753
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
754
regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
755
regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
756
regmap_write(regmap, REG_SPDIF_STL, 0x0);
757
regmap_write(regmap, REG_SPDIF_STR, 0x0);
758
break;
759
default:
760
return -EINVAL;
761
}
762
763
return 0;
764
}
765
766
/*
767
* FSL SPDIF IEC958 controller(mixer) functions
768
*
769
* Channel status get/put control
770
* User bit value get/put control
771
* Valid bit value get control
772
* DPLL lock status get control
773
* User bit sync mode selection control
774
*/
775
776
static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
777
struct snd_ctl_elem_info *uinfo)
778
{
779
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
780
uinfo->count = 1;
781
782
return 0;
783
}
784
785
static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
786
struct snd_ctl_elem_value *uvalue)
787
{
788
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
789
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
790
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
791
792
uvalue->value.iec958.status[0] = ctrl->ch_status[0];
793
uvalue->value.iec958.status[1] = ctrl->ch_status[1];
794
uvalue->value.iec958.status[2] = ctrl->ch_status[2];
795
uvalue->value.iec958.status[3] = ctrl->ch_status[3];
796
797
return 0;
798
}
799
800
static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
801
struct snd_ctl_elem_value *uvalue)
802
{
803
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
804
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
805
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
806
807
ctrl->ch_status[0] = uvalue->value.iec958.status[0];
808
ctrl->ch_status[1] = uvalue->value.iec958.status[1];
809
ctrl->ch_status[2] = uvalue->value.iec958.status[2];
810
ctrl->ch_status[3] = uvalue->value.iec958.status[3];
811
812
spdif_write_channel_status(spdif_priv);
813
814
return 0;
815
}
816
817
/* Get channel status from SPDIF_RX_CCHAN register */
818
static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
819
struct snd_ctl_elem_value *ucontrol)
820
{
821
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
822
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
823
struct regmap *regmap = spdif_priv->regmap;
824
u32 cstatus, val;
825
826
regmap_read(regmap, REG_SPDIF_SIS, &val);
827
if (!(val & INT_CNEW))
828
return -EAGAIN;
829
830
regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
831
ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
832
ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
833
ucontrol->value.iec958.status[2] = cstatus & 0xFF;
834
835
regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
836
ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
837
ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
838
ucontrol->value.iec958.status[5] = cstatus & 0xFF;
839
840
/* Clear intr */
841
regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);
842
843
return 0;
844
}
845
846
/*
847
* Get User bits (subcode) from chip value which readed out
848
* in UChannel register.
849
*/
850
static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
851
struct snd_ctl_elem_value *ucontrol)
852
{
853
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
854
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
855
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
856
unsigned long flags;
857
int ret = -EAGAIN;
858
859
spin_lock_irqsave(&ctrl->ctl_lock, flags);
860
if (ctrl->ready_buf) {
861
int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
862
memcpy(&ucontrol->value.iec958.subcode[0],
863
&ctrl->subcode[idx], SPDIF_UBITS_SIZE);
864
ret = 0;
865
}
866
spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
867
868
return ret;
869
}
870
871
/* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */
872
static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
873
struct snd_ctl_elem_info *uinfo)
874
{
875
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
876
uinfo->count = SPDIF_QSUB_SIZE;
877
878
return 0;
879
}
880
881
/* Get Q subcode from chip value which readed out in QChannel register */
882
static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
883
struct snd_ctl_elem_value *ucontrol)
884
{
885
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
886
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
887
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
888
unsigned long flags;
889
int ret = -EAGAIN;
890
891
spin_lock_irqsave(&ctrl->ctl_lock, flags);
892
if (ctrl->ready_buf) {
893
int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
894
memcpy(&ucontrol->value.bytes.data[0],
895
&ctrl->qsub[idx], SPDIF_QSUB_SIZE);
896
ret = 0;
897
}
898
spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
899
900
return ret;
901
}
902
903
/* Get valid good bit from interrupt status register */
904
static int fsl_spdif_rx_vbit_get(struct snd_kcontrol *kcontrol,
905
struct snd_ctl_elem_value *ucontrol)
906
{
907
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
908
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
909
struct regmap *regmap = spdif_priv->regmap;
910
u32 val;
911
912
regmap_read(regmap, REG_SPDIF_SIS, &val);
913
ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
914
regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);
915
916
return 0;
917
}
918
919
static int fsl_spdif_tx_vbit_get(struct snd_kcontrol *kcontrol,
920
struct snd_ctl_elem_value *ucontrol)
921
{
922
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
923
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
924
struct regmap *regmap = spdif_priv->regmap;
925
u32 val;
926
927
regmap_read(regmap, REG_SPDIF_SCR, &val);
928
val = (val & SCR_VAL_MASK) >> SCR_VAL_OFFSET;
929
val = 1 - val;
930
ucontrol->value.integer.value[0] = val;
931
932
return 0;
933
}
934
935
static int fsl_spdif_tx_vbit_put(struct snd_kcontrol *kcontrol,
936
struct snd_ctl_elem_value *ucontrol)
937
{
938
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
939
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
940
struct regmap *regmap = spdif_priv->regmap;
941
u32 val = (1 - ucontrol->value.integer.value[0]) << SCR_VAL_OFFSET;
942
943
regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_VAL_MASK, val);
944
945
return 0;
946
}
947
948
static int fsl_spdif_rx_rcm_get(struct snd_kcontrol *kcontrol,
949
struct snd_ctl_elem_value *ucontrol)
950
{
951
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
952
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
953
struct regmap *regmap = spdif_priv->regmap;
954
u32 val;
955
956
regmap_read(regmap, REG_SPDIF_SCR, &val);
957
val = (val & SCR_RAW_CAPTURE_MODE) ? 1 : 0;
958
ucontrol->value.integer.value[0] = val;
959
960
return 0;
961
}
962
963
static int fsl_spdif_rx_rcm_put(struct snd_kcontrol *kcontrol,
964
struct snd_ctl_elem_value *ucontrol)
965
{
966
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
967
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
968
struct regmap *regmap = spdif_priv->regmap;
969
u32 val = (ucontrol->value.integer.value[0] ? SCR_RAW_CAPTURE_MODE : 0);
970
971
if (val)
972
cpu_dai->driver->capture.formats |= SNDRV_PCM_FMTBIT_S32_LE;
973
else
974
cpu_dai->driver->capture.formats &= ~SNDRV_PCM_FMTBIT_S32_LE;
975
976
regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_RAW_CAPTURE_MODE, val);
977
978
return 0;
979
}
980
981
static int fsl_spdif_bypass_get(struct snd_kcontrol *kcontrol,
982
struct snd_ctl_elem_value *ucontrol)
983
{
984
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
985
struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai);
986
987
ucontrol->value.integer.value[0] = priv->bypass ? 1 : 0;
988
989
return 0;
990
}
991
992
static int fsl_spdif_bypass_put(struct snd_kcontrol *kcontrol,
993
struct snd_ctl_elem_value *ucontrol)
994
{
995
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
996
struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai);
997
struct snd_soc_card *card = dai->component->card;
998
bool set = (ucontrol->value.integer.value[0] != 0);
999
struct regmap *regmap = priv->regmap;
1000
struct snd_soc_pcm_runtime *rtd;
1001
u32 scr, mask;
1002
int stream;
1003
1004
rtd = snd_soc_get_pcm_runtime(card, card->dai_link);
1005
1006
if (priv->bypass == set)
1007
return 0; /* nothing to do */
1008
1009
if (snd_soc_dai_active(dai)) {
1010
dev_err(dai->dev, "Cannot change BYPASS mode while stream is running.\n");
1011
return -EBUSY;
1012
}
1013
1014
pm_runtime_get_sync(dai->dev);
1015
1016
if (set) {
1017
/* Disable interrupts */
1018
regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
1019
1020
/* Configure BYPASS mode */
1021
scr = SCR_TXSEL_RX | SCR_RXFIFO_OFF;
1022
mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK |
1023
SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK | SCR_TXSEL_MASK;
1024
/* Power up SPDIF module */
1025
mask |= SCR_LOW_POWER;
1026
} else {
1027
/* Power down SPDIF module, disable TX */
1028
scr = SCR_LOW_POWER | SCR_TXSEL_OFF;
1029
mask = SCR_LOW_POWER | SCR_TXSEL_MASK;
1030
}
1031
1032
regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);
1033
1034
/* Disable playback & capture if BYPASS mode is enabled, enable otherwise */
1035
for_each_pcm_streams(stream)
1036
rtd->pcm->streams[stream].substream_count = (set ? 0 : 1);
1037
1038
priv->bypass = set;
1039
pm_runtime_put_sync(dai->dev);
1040
1041
return 0;
1042
}
1043
1044
/* DPLL lock information */
1045
static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
1046
struct snd_ctl_elem_info *uinfo)
1047
{
1048
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1049
uinfo->count = 1;
1050
uinfo->value.integer.min = 16000;
1051
uinfo->value.integer.max = 192000;
1052
1053
return 0;
1054
}
1055
1056
static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
1057
24, 16, 12, 8, 6, 4, 3,
1058
};
1059
1060
/* Get RX data clock rate given the SPDIF bus_clk */
1061
static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
1062
enum spdif_gainsel gainsel)
1063
{
1064
struct regmap *regmap = spdif_priv->regmap;
1065
struct platform_device *pdev = spdif_priv->pdev;
1066
u64 tmpval64, busclk_freq = 0;
1067
u32 freqmeas, phaseconf;
1068
u8 clksrc;
1069
1070
regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
1071
regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);
1072
1073
clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
1074
1075
/* Get bus clock from system */
1076
if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
1077
busclk_freq = clk_get_rate(spdif_priv->sysclk);
1078
1079
/* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
1080
tmpval64 = (u64) busclk_freq * freqmeas;
1081
do_div(tmpval64, gainsel_multi[gainsel] * 1024);
1082
do_div(tmpval64, 128 * 1024);
1083
1084
dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
1085
dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
1086
dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);
1087
1088
return (int)tmpval64;
1089
}
1090
1091
/*
1092
* Get DPLL lock or not info from stable interrupt status register.
1093
* User application must use this control to get locked,
1094
* then can do next PCM operation
1095
*/
1096
static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
1097
struct snd_ctl_elem_value *ucontrol)
1098
{
1099
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1100
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
1101
int rate = 0;
1102
1103
if (spdif_priv->dpll_locked)
1104
rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
1105
1106
ucontrol->value.integer.value[0] = rate;
1107
1108
return 0;
1109
}
1110
1111
/*
1112
* User bit sync mode:
1113
* 1 CD User channel subcode
1114
* 0 Non-CD data
1115
*/
1116
static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
1117
struct snd_ctl_elem_value *ucontrol)
1118
{
1119
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1120
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
1121
struct regmap *regmap = spdif_priv->regmap;
1122
u32 val;
1123
1124
regmap_read(regmap, REG_SPDIF_SRCD, &val);
1125
ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;
1126
1127
return 0;
1128
}
1129
1130
/*
1131
* User bit sync mode:
1132
* 1 CD User channel subcode
1133
* 0 Non-CD data
1134
*/
1135
static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
1136
struct snd_ctl_elem_value *ucontrol)
1137
{
1138
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
1139
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
1140
struct regmap *regmap = spdif_priv->regmap;
1141
u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;
1142
1143
regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);
1144
1145
return 0;
1146
}
1147
1148
/* FSL SPDIF IEC958 controller defines */
1149
static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
1150
/* Status cchanel controller */
1151
{
1152
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1153
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1154
.access = SNDRV_CTL_ELEM_ACCESS_READ |
1155
SNDRV_CTL_ELEM_ACCESS_WRITE |
1156
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1157
.info = fsl_spdif_info,
1158
.get = fsl_spdif_pb_get,
1159
.put = fsl_spdif_pb_put,
1160
},
1161
{
1162
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1163
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
1164
.access = SNDRV_CTL_ELEM_ACCESS_READ |
1165
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1166
.info = fsl_spdif_info,
1167
.get = fsl_spdif_capture_get,
1168
},
1169
/* User bits controller */
1170
{
1171
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1172
.name = "IEC958 Subcode Capture Default",
1173
.access = SNDRV_CTL_ELEM_ACCESS_READ |
1174
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1175
.info = fsl_spdif_info,
1176
.get = fsl_spdif_subcode_get,
1177
},
1178
{
1179
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1180
.name = "IEC958 Q-subcode Capture Default",
1181
.access = SNDRV_CTL_ELEM_ACCESS_READ |
1182
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1183
.info = fsl_spdif_qinfo,
1184
.get = fsl_spdif_qget,
1185
},
1186
/* Valid bit error controller */
1187
{
1188
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1189
.name = "IEC958 RX V-Bit Errors",
1190
.access = SNDRV_CTL_ELEM_ACCESS_READ |
1191
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1192
.info = snd_ctl_boolean_mono_info,
1193
.get = fsl_spdif_rx_vbit_get,
1194
},
1195
{
1196
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1197
.name = "IEC958 TX V-Bit",
1198
.access = SNDRV_CTL_ELEM_ACCESS_READ |
1199
SNDRV_CTL_ELEM_ACCESS_WRITE |
1200
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1201
.info = snd_ctl_boolean_mono_info,
1202
.get = fsl_spdif_tx_vbit_get,
1203
.put = fsl_spdif_tx_vbit_put,
1204
},
1205
/* DPLL lock info get controller */
1206
{
1207
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1208
.name = RX_SAMPLE_RATE_KCONTROL,
1209
.access = SNDRV_CTL_ELEM_ACCESS_READ |
1210
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1211
.info = fsl_spdif_rxrate_info,
1212
.get = fsl_spdif_rxrate_get,
1213
},
1214
/* RX bypass controller */
1215
{
1216
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1217
.name = "Bypass Mode",
1218
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1219
.info = snd_ctl_boolean_mono_info,
1220
.get = fsl_spdif_bypass_get,
1221
.put = fsl_spdif_bypass_put,
1222
},
1223
/* User bit sync mode set/get controller */
1224
{
1225
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1226
.name = "IEC958 USyncMode CDText",
1227
.access = SNDRV_CTL_ELEM_ACCESS_READ |
1228
SNDRV_CTL_ELEM_ACCESS_WRITE |
1229
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1230
.info = snd_ctl_boolean_mono_info,
1231
.get = fsl_spdif_usync_get,
1232
.put = fsl_spdif_usync_put,
1233
},
1234
};
1235
1236
static struct snd_kcontrol_new fsl_spdif_ctrls_rcm[] = {
1237
{
1238
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1239
.name = "IEC958 Raw Capture Mode",
1240
.access = SNDRV_CTL_ELEM_ACCESS_READ |
1241
SNDRV_CTL_ELEM_ACCESS_WRITE |
1242
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1243
.info = snd_ctl_boolean_mono_info,
1244
.get = fsl_spdif_rx_rcm_get,
1245
.put = fsl_spdif_rx_rcm_put,
1246
},
1247
};
1248
1249
static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
1250
{
1251
struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);
1252
1253
snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
1254
&spdif_private->dma_params_rx);
1255
1256
snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));
1257
1258
if (spdif_private->soc->raw_capture_mode)
1259
snd_soc_add_dai_controls(dai, fsl_spdif_ctrls_rcm,
1260
ARRAY_SIZE(fsl_spdif_ctrls_rcm));
1261
1262
spdif_private->snd_card = dai->component->card->snd_card;
1263
spdif_private->rxrate_kcontrol = snd_soc_card_get_kcontrol(dai->component->card,
1264
RX_SAMPLE_RATE_KCONTROL);
1265
if (!spdif_private->rxrate_kcontrol)
1266
dev_err(&spdif_private->pdev->dev, "failed to get %s kcontrol\n",
1267
RX_SAMPLE_RATE_KCONTROL);
1268
1269
/*Clear the val bit for Tx*/
1270
regmap_update_bits(spdif_private->regmap, REG_SPDIF_SCR,
1271
SCR_VAL_MASK, SCR_VAL_CLEAR);
1272
1273
return 0;
1274
}
1275
1276
static const struct snd_soc_dai_ops fsl_spdif_dai_ops = {
1277
.probe = fsl_spdif_dai_probe,
1278
.startup = fsl_spdif_startup,
1279
.hw_params = fsl_spdif_hw_params,
1280
.trigger = fsl_spdif_trigger,
1281
.shutdown = fsl_spdif_shutdown,
1282
};
1283
1284
static struct snd_soc_dai_driver fsl_spdif_dai = {
1285
.playback = {
1286
.stream_name = "CPU-Playback",
1287
.channels_min = 2,
1288
.channels_max = 2,
1289
.rates = FSL_SPDIF_RATES_PLAYBACK,
1290
.formats = FSL_SPDIF_FORMATS_PLAYBACK,
1291
},
1292
.capture = {
1293
.stream_name = "CPU-Capture",
1294
.channels_min = 2,
1295
.channels_max = 2,
1296
.rates = FSL_SPDIF_RATES_CAPTURE,
1297
.formats = FSL_SPDIF_FORMATS_CAPTURE,
1298
},
1299
.ops = &fsl_spdif_dai_ops,
1300
};
1301
1302
static const struct snd_soc_component_driver fsl_spdif_component = {
1303
.name = "fsl-spdif",
1304
.legacy_dai_naming = 1,
1305
};
1306
1307
/* FSL SPDIF REGMAP */
1308
static const struct reg_default fsl_spdif_reg_defaults[] = {
1309
{REG_SPDIF_SCR, 0x00000400},
1310
{REG_SPDIF_SRCD, 0x00000000},
1311
{REG_SPDIF_SIE, 0x00000000},
1312
{REG_SPDIF_STL, 0x00000000},
1313
{REG_SPDIF_STR, 0x00000000},
1314
{REG_SPDIF_STCSCH, 0x00000000},
1315
{REG_SPDIF_STCSCL, 0x00000000},
1316
{REG_SPDIF_STCSPH, 0x00000000},
1317
{REG_SPDIF_STCSPL, 0x00000000},
1318
{REG_SPDIF_STC, 0x00020f00},
1319
};
1320
1321
static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
1322
{
1323
switch (reg) {
1324
case REG_SPDIF_SCR:
1325
case REG_SPDIF_SRCD:
1326
case REG_SPDIF_SRPC:
1327
case REG_SPDIF_SIE:
1328
case REG_SPDIF_SIS:
1329
case REG_SPDIF_SRL:
1330
case REG_SPDIF_SRR:
1331
case REG_SPDIF_SRCSH:
1332
case REG_SPDIF_SRCSL:
1333
case REG_SPDIF_SRU:
1334
case REG_SPDIF_SRQ:
1335
case REG_SPDIF_STCSCH:
1336
case REG_SPDIF_STCSCL:
1337
case REG_SPDIF_STCSPH:
1338
case REG_SPDIF_STCSPL:
1339
case REG_SPDIF_SRFM:
1340
case REG_SPDIF_STC:
1341
case REG_SPDIF_SRCCA_31_0:
1342
case REG_SPDIF_SRCCA_63_32:
1343
case REG_SPDIF_SRCCA_95_64:
1344
case REG_SPDIF_SRCCA_127_96:
1345
case REG_SPDIF_SRCCA_159_128:
1346
case REG_SPDIF_SRCCA_191_160:
1347
case REG_SPDIF_STCCA_31_0:
1348
case REG_SPDIF_STCCA_63_32:
1349
case REG_SPDIF_STCCA_95_64:
1350
case REG_SPDIF_STCCA_127_96:
1351
case REG_SPDIF_STCCA_159_128:
1352
case REG_SPDIF_STCCA_191_160:
1353
return true;
1354
default:
1355
return false;
1356
}
1357
}
1358
1359
static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg)
1360
{
1361
switch (reg) {
1362
case REG_SPDIF_SRPC:
1363
case REG_SPDIF_SIS:
1364
case REG_SPDIF_SRL:
1365
case REG_SPDIF_SRR:
1366
case REG_SPDIF_SRCSH:
1367
case REG_SPDIF_SRCSL:
1368
case REG_SPDIF_SRU:
1369
case REG_SPDIF_SRQ:
1370
case REG_SPDIF_SRFM:
1371
case REG_SPDIF_SRCCA_31_0:
1372
case REG_SPDIF_SRCCA_63_32:
1373
case REG_SPDIF_SRCCA_95_64:
1374
case REG_SPDIF_SRCCA_127_96:
1375
case REG_SPDIF_SRCCA_159_128:
1376
case REG_SPDIF_SRCCA_191_160:
1377
return true;
1378
default:
1379
return false;
1380
}
1381
}
1382
1383
static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
1384
{
1385
switch (reg) {
1386
case REG_SPDIF_SCR:
1387
case REG_SPDIF_SRCD:
1388
case REG_SPDIF_SRPC:
1389
case REG_SPDIF_SIE:
1390
case REG_SPDIF_SIC:
1391
case REG_SPDIF_STL:
1392
case REG_SPDIF_STR:
1393
case REG_SPDIF_STCSCH:
1394
case REG_SPDIF_STCSCL:
1395
case REG_SPDIF_STCSPH:
1396
case REG_SPDIF_STCSPL:
1397
case REG_SPDIF_STC:
1398
case REG_SPDIF_STCCA_31_0:
1399
case REG_SPDIF_STCCA_63_32:
1400
case REG_SPDIF_STCCA_95_64:
1401
case REG_SPDIF_STCCA_127_96:
1402
case REG_SPDIF_STCCA_159_128:
1403
case REG_SPDIF_STCCA_191_160:
1404
return true;
1405
default:
1406
return false;
1407
}
1408
}
1409
1410
static const struct regmap_config fsl_spdif_regmap_config = {
1411
.reg_bits = 32,
1412
.reg_stride = 4,
1413
.val_bits = 32,
1414
1415
.max_register = REG_SPDIF_STCCA_191_160,
1416
.reg_defaults = fsl_spdif_reg_defaults,
1417
.num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults),
1418
.readable_reg = fsl_spdif_readable_reg,
1419
.volatile_reg = fsl_spdif_volatile_reg,
1420
.writeable_reg = fsl_spdif_writeable_reg,
1421
.cache_type = REGCACHE_FLAT,
1422
};
1423
1424
static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
1425
struct clk *clk, u64 savesub,
1426
enum spdif_txrate index, bool round)
1427
{
1428
static const u32 rate[] = { 22050, 32000, 44100, 48000, 88200, 96000, 176400,
1429
192000, };
1430
bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk);
1431
u64 rate_ideal, rate_actual, sub;
1432
u32 arate;
1433
u16 sysclk_dfmin, sysclk_dfmax, sysclk_df;
1434
u8 txclk_df;
1435
1436
/* The sysclk has an extra divisor [2, 512] */
1437
sysclk_dfmin = is_sysclk ? 2 : 1;
1438
sysclk_dfmax = is_sysclk ? 512 : 1;
1439
1440
for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
1441
for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
1442
rate_ideal = rate[index] * txclk_df * 64ULL;
1443
if (round)
1444
rate_actual = clk_round_rate(clk, rate_ideal);
1445
else
1446
rate_actual = clk_get_rate(clk);
1447
1448
arate = rate_actual / 64;
1449
arate /= txclk_df * sysclk_df;
1450
1451
if (arate == rate[index]) {
1452
/* We are lucky */
1453
savesub = 0;
1454
spdif_priv->txclk_df[index] = txclk_df;
1455
spdif_priv->sysclk_df[index] = sysclk_df;
1456
spdif_priv->txrate[index] = arate;
1457
goto out;
1458
} else if (arate / rate[index] == 1) {
1459
/* A little bigger than expect */
1460
sub = (u64)(arate - rate[index]) * 100000;
1461
do_div(sub, rate[index]);
1462
if (sub >= savesub)
1463
continue;
1464
savesub = sub;
1465
spdif_priv->txclk_df[index] = txclk_df;
1466
spdif_priv->sysclk_df[index] = sysclk_df;
1467
spdif_priv->txrate[index] = arate;
1468
} else if (rate[index] / arate == 1) {
1469
/* A little smaller than expect */
1470
sub = (u64)(rate[index] - arate) * 100000;
1471
do_div(sub, rate[index]);
1472
if (sub >= savesub)
1473
continue;
1474
savesub = sub;
1475
spdif_priv->txclk_df[index] = txclk_df;
1476
spdif_priv->sysclk_df[index] = sysclk_df;
1477
spdif_priv->txrate[index] = arate;
1478
}
1479
}
1480
}
1481
1482
out:
1483
return savesub;
1484
}
1485
1486
static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
1487
enum spdif_txrate index)
1488
{
1489
static const u32 rate[] = { 22050, 32000, 44100, 48000, 88200, 96000, 176400,
1490
192000, };
1491
struct platform_device *pdev = spdif_priv->pdev;
1492
struct device *dev = &pdev->dev;
1493
u64 savesub = 100000, ret;
1494
struct clk *clk;
1495
int i;
1496
1497
for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1498
clk = spdif_priv->txclk[i];
1499
if (IS_ERR(clk)) {
1500
dev_err(dev, "no rxtx%d clock in devicetree\n", i);
1501
return PTR_ERR(clk);
1502
}
1503
if (!clk_get_rate(clk))
1504
continue;
1505
1506
ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
1507
fsl_spdif_can_set_clk_rate(spdif_priv, i));
1508
if (savesub == ret)
1509
continue;
1510
1511
savesub = ret;
1512
spdif_priv->txclk_src[index] = i;
1513
1514
/* To quick catch a divisor, we allow a 0.1% deviation */
1515
if (savesub < 100)
1516
break;
1517
}
1518
1519
dev_dbg(dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
1520
spdif_priv->txclk_src[index], rate[index]);
1521
dev_dbg(dev, "use txclk df %d for %dHz sample rate\n",
1522
spdif_priv->txclk_df[index], rate[index]);
1523
if (clk_is_match(spdif_priv->txclk[spdif_priv->txclk_src[index]], spdif_priv->sysclk))
1524
dev_dbg(dev, "use sysclk df %d for %dHz sample rate\n",
1525
spdif_priv->sysclk_df[index], rate[index]);
1526
dev_dbg(dev, "the best rate for %dHz sample rate is %dHz\n",
1527
rate[index], spdif_priv->txrate[index]);
1528
1529
return 0;
1530
}
1531
1532
static int fsl_spdif_probe(struct platform_device *pdev)
1533
{
1534
struct fsl_spdif_priv *spdif_priv;
1535
struct spdif_mixer_control *ctrl;
1536
struct resource *res;
1537
void __iomem *regs;
1538
int irq, ret, i;
1539
char tmp[16];
1540
1541
spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL);
1542
if (!spdif_priv)
1543
return -ENOMEM;
1544
1545
spdif_priv->pdev = pdev;
1546
1547
spdif_priv->soc = of_device_get_match_data(&pdev->dev);
1548
1549
/* Initialize this copy of the CPU DAI driver structure */
1550
memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
1551
spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev);
1552
spdif_priv->cpu_dai_drv.playback.formats =
1553
spdif_priv->soc->tx_formats;
1554
1555
/* Get the addresses and IRQ */
1556
regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1557
if (IS_ERR(regs))
1558
return PTR_ERR(regs);
1559
1560
spdif_priv->regmap = devm_regmap_init_mmio(&pdev->dev, regs, &fsl_spdif_regmap_config);
1561
if (IS_ERR(spdif_priv->regmap)) {
1562
dev_err(&pdev->dev, "regmap init failed\n");
1563
return PTR_ERR(spdif_priv->regmap);
1564
}
1565
1566
for (i = 0; i < spdif_priv->soc->interrupts; i++) {
1567
irq = platform_get_irq(pdev, i);
1568
if (irq < 0)
1569
return irq;
1570
1571
ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
1572
dev_name(&pdev->dev), spdif_priv);
1573
if (ret) {
1574
dev_err(&pdev->dev, "could not claim irq %u\n", irq);
1575
return ret;
1576
}
1577
}
1578
1579
for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1580
sprintf(tmp, "rxtx%d", i);
1581
spdif_priv->txclk[i] = devm_clk_get(&pdev->dev, tmp);
1582
if (IS_ERR(spdif_priv->txclk[i])) {
1583
dev_err(&pdev->dev, "no rxtx%d clock in devicetree\n", i);
1584
return PTR_ERR(spdif_priv->txclk[i]);
1585
}
1586
}
1587
1588
/* Get system clock for rx clock rate calculation */
1589
spdif_priv->sysclk = spdif_priv->txclk[5];
1590
if (IS_ERR(spdif_priv->sysclk)) {
1591
dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
1592
return PTR_ERR(spdif_priv->sysclk);
1593
}
1594
1595
/* Get core clock for data register access via DMA */
1596
spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
1597
if (IS_ERR(spdif_priv->coreclk)) {
1598
dev_err(&pdev->dev, "no core clock in devicetree\n");
1599
return PTR_ERR(spdif_priv->coreclk);
1600
}
1601
1602
spdif_priv->spbaclk = devm_clk_get(&pdev->dev, "spba");
1603
if (IS_ERR(spdif_priv->spbaclk))
1604
dev_warn(&pdev->dev, "no spba clock in devicetree\n");
1605
1606
/* Select clock source for rx/tx clock */
1607
spdif_priv->rxclk = spdif_priv->txclk[1];
1608
if (IS_ERR(spdif_priv->rxclk)) {
1609
dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
1610
return PTR_ERR(spdif_priv->rxclk);
1611
}
1612
spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;
1613
1614
fsl_asoc_get_pll_clocks(&pdev->dev, &spdif_priv->pll8k_clk,
1615
&spdif_priv->pll11k_clk);
1616
1617
/* Initial spinlock for control data */
1618
ctrl = &spdif_priv->fsl_spdif_control;
1619
spin_lock_init(&ctrl->ctl_lock);
1620
1621
/* Init tx channel status default value */
1622
ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
1623
IEC958_AES0_CON_EMPHASIS_5015;
1624
ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
1625
ctrl->ch_status[2] = 0x00;
1626
ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
1627
IEC958_AES3_CON_CLOCK_1000PPM;
1628
1629
spdif_priv->dpll_locked = false;
1630
1631
spdif_priv->dma_params_tx.maxburst = spdif_priv->soc->tx_burst;
1632
spdif_priv->dma_params_rx.maxburst = spdif_priv->soc->rx_burst;
1633
spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
1634
spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;
1635
1636
/* Register with ASoC */
1637
dev_set_drvdata(&pdev->dev, spdif_priv);
1638
pm_runtime_enable(&pdev->dev);
1639
regcache_cache_only(spdif_priv->regmap, true);
1640
1641
/*
1642
* Register platform component before registering cpu dai for there
1643
* is not defer probe for platform component in snd_soc_add_pcm_runtime().
1644
*/
1645
ret = imx_pcm_dma_init(pdev);
1646
if (ret) {
1647
dev_err_probe(&pdev->dev, ret, "imx_pcm_dma_init failed\n");
1648
goto err_pm_disable;
1649
}
1650
1651
ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
1652
&spdif_priv->cpu_dai_drv, 1);
1653
if (ret) {
1654
dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1655
goto err_pm_disable;
1656
}
1657
1658
return ret;
1659
1660
err_pm_disable:
1661
pm_runtime_disable(&pdev->dev);
1662
return ret;
1663
}
1664
1665
static void fsl_spdif_remove(struct platform_device *pdev)
1666
{
1667
pm_runtime_disable(&pdev->dev);
1668
}
1669
1670
static int fsl_spdif_runtime_suspend(struct device *dev)
1671
{
1672
struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1673
int i;
1674
1675
/* Disable all the interrupts */
1676
regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SIE, 0xffffff, 0);
1677
1678
regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC,
1679
&spdif_priv->regcache_srpc);
1680
regcache_cache_only(spdif_priv->regmap, true);
1681
1682
for (i = 0; i < STC_TXCLK_SRC_MAX; i++)
1683
clk_disable_unprepare(spdif_priv->txclk[i]);
1684
1685
if (!IS_ERR(spdif_priv->spbaclk))
1686
clk_disable_unprepare(spdif_priv->spbaclk);
1687
clk_disable_unprepare(spdif_priv->coreclk);
1688
1689
return 0;
1690
}
1691
1692
static int fsl_spdif_runtime_resume(struct device *dev)
1693
{
1694
struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1695
int ret;
1696
int i;
1697
1698
ret = clk_prepare_enable(spdif_priv->coreclk);
1699
if (ret) {
1700
dev_err(dev, "failed to enable core clock\n");
1701
return ret;
1702
}
1703
1704
if (!IS_ERR(spdif_priv->spbaclk)) {
1705
ret = clk_prepare_enable(spdif_priv->spbaclk);
1706
if (ret) {
1707
dev_err(dev, "failed to enable spba clock\n");
1708
goto disable_core_clk;
1709
}
1710
}
1711
1712
for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
1713
ret = clk_prepare_enable(spdif_priv->txclk[i]);
1714
if (ret)
1715
goto disable_tx_clk;
1716
}
1717
1718
regcache_cache_only(spdif_priv->regmap, false);
1719
regcache_mark_dirty(spdif_priv->regmap);
1720
1721
regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC,
1722
SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
1723
spdif_priv->regcache_srpc);
1724
1725
ret = regcache_sync(spdif_priv->regmap);
1726
if (ret)
1727
goto disable_tx_clk;
1728
1729
return 0;
1730
1731
disable_tx_clk:
1732
for (i--; i >= 0; i--)
1733
clk_disable_unprepare(spdif_priv->txclk[i]);
1734
if (!IS_ERR(spdif_priv->spbaclk))
1735
clk_disable_unprepare(spdif_priv->spbaclk);
1736
disable_core_clk:
1737
clk_disable_unprepare(spdif_priv->coreclk);
1738
1739
return ret;
1740
}
1741
1742
static const struct dev_pm_ops fsl_spdif_pm = {
1743
SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
1744
RUNTIME_PM_OPS(fsl_spdif_runtime_suspend, fsl_spdif_runtime_resume,
1745
NULL)
1746
};
1747
1748
static const struct of_device_id fsl_spdif_dt_ids[] = {
1749
{ .compatible = "fsl,imx35-spdif", .data = &fsl_spdif_imx35, },
1750
{ .compatible = "fsl,vf610-spdif", .data = &fsl_spdif_vf610, },
1751
{ .compatible = "fsl,imx6sx-spdif", .data = &fsl_spdif_imx6sx, },
1752
{ .compatible = "fsl,imx8qm-spdif", .data = &fsl_spdif_imx8qm, },
1753
{ .compatible = "fsl,imx8mm-spdif", .data = &fsl_spdif_imx8mm, },
1754
{ .compatible = "fsl,imx8ulp-spdif", .data = &fsl_spdif_imx8ulp, },
1755
{}
1756
};
1757
MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);
1758
1759
static struct platform_driver fsl_spdif_driver = {
1760
.driver = {
1761
.name = "fsl-spdif-dai",
1762
.of_match_table = fsl_spdif_dt_ids,
1763
.pm = pm_ptr(&fsl_spdif_pm),
1764
},
1765
.probe = fsl_spdif_probe,
1766
.remove = fsl_spdif_remove,
1767
};
1768
1769
module_platform_driver(fsl_spdif_driver);
1770
1771
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1772
MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
1773
MODULE_LICENSE("GPL v2");
1774
MODULE_ALIAS("platform:fsl-spdif-dai");
1775
1776