Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/soc/fsl/fsl_ssi.c
26444 views
1
// SPDX-License-Identifier: GPL-2.0
2
//
3
// Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
4
//
5
// Author: Timur Tabi <[email protected]>
6
//
7
// Copyright 2007-2010 Freescale Semiconductor, Inc.
8
//
9
// Some notes why imx-pcm-fiq is used instead of DMA on some boards:
10
//
11
// The i.MX SSI core has some nasty limitations in AC97 mode. While most
12
// sane processor vendors have a FIFO per AC97 slot, the i.MX has only
13
// one FIFO which combines all valid receive slots. We cannot even select
14
// which slots we want to receive. The WM9712 with which this driver
15
// was developed with always sends GPIO status data in slot 12 which
16
// we receive in our (PCM-) data stream. The only chance we have is to
17
// manually skip this data in the FIQ handler. With sampling rates different
18
// from 48000Hz not every frame has valid receive data, so the ratio
19
// between pcm data and GPIO status data changes. Our FIQ handler is not
20
// able to handle this, hence this driver only works with 48000Hz sampling
21
// rate.
22
// Reading and writing AC97 registers is another challenge. The core
23
// provides us status bits when the read register is updated with *another*
24
// value. When we read the same register two times (and the register still
25
// contains the same value) these status bits are not set. We work
26
// around this by not polling these bits but only wait a fixed delay.
27
28
#include <linux/init.h>
29
#include <linux/io.h>
30
#include <linux/module.h>
31
#include <linux/interrupt.h>
32
#include <linux/clk.h>
33
#include <linux/ctype.h>
34
#include <linux/device.h>
35
#include <linux/delay.h>
36
#include <linux/mutex.h>
37
#include <linux/slab.h>
38
#include <linux/spinlock.h>
39
#include <linux/of.h>
40
#include <linux/of_address.h>
41
#include <linux/of_irq.h>
42
#include <linux/of_platform.h>
43
#include <linux/dma/imx-dma.h>
44
45
#include <sound/core.h>
46
#include <sound/pcm.h>
47
#include <sound/pcm_params.h>
48
#include <sound/initval.h>
49
#include <sound/soc.h>
50
#include <sound/dmaengine_pcm.h>
51
52
#include "fsl_ssi.h"
53
#include "imx-pcm.h"
54
55
/* Define RX and TX to index ssi->regvals array; Can be 0 or 1 only */
56
#define RX 0
57
#define TX 1
58
59
/**
60
* FSLSSI_I2S_FORMATS: audio formats supported by the SSI
61
*
62
* The SSI has a limitation in that the samples must be in the same byte
63
* order as the host CPU. This is because when multiple bytes are written
64
* to the STX register, the bytes and bits must be written in the same
65
* order. The STX is a shift register, so all the bits need to be aligned
66
* (bit-endianness must match byte-endianness). Processors typically write
67
* the bits within a byte in the same order that the bytes of a word are
68
* written in. So if the host CPU is big-endian, then only big-endian
69
* samples will be written to STX properly.
70
*/
71
#ifdef __BIG_ENDIAN
72
#define FSLSSI_I2S_FORMATS \
73
(SNDRV_PCM_FMTBIT_S8 | \
74
SNDRV_PCM_FMTBIT_S16_BE | \
75
SNDRV_PCM_FMTBIT_S18_3BE | \
76
SNDRV_PCM_FMTBIT_S20_3BE | \
77
SNDRV_PCM_FMTBIT_S24_3BE | \
78
SNDRV_PCM_FMTBIT_S24_BE)
79
#else
80
#define FSLSSI_I2S_FORMATS \
81
(SNDRV_PCM_FMTBIT_S8 | \
82
SNDRV_PCM_FMTBIT_S16_LE | \
83
SNDRV_PCM_FMTBIT_S18_3LE | \
84
SNDRV_PCM_FMTBIT_S20_3LE | \
85
SNDRV_PCM_FMTBIT_S24_3LE | \
86
SNDRV_PCM_FMTBIT_S24_LE)
87
#endif
88
89
/*
90
* In AC97 mode, TXDIR bit is forced to 0 and TFDIR bit is forced to 1:
91
* - SSI inputs external bit clock and outputs frame sync clock -- CBM_CFS
92
* - Also have NB_NF to mark these two clocks will not be inverted
93
*/
94
#define FSLSSI_AC97_DAIFMT \
95
(SND_SOC_DAIFMT_AC97 | \
96
SND_SOC_DAIFMT_BC_FP | \
97
SND_SOC_DAIFMT_NB_NF)
98
99
#define FSLSSI_SIER_DBG_RX_FLAGS \
100
(SSI_SIER_RFF0_EN | \
101
SSI_SIER_RLS_EN | \
102
SSI_SIER_RFS_EN | \
103
SSI_SIER_ROE0_EN | \
104
SSI_SIER_RFRC_EN)
105
#define FSLSSI_SIER_DBG_TX_FLAGS \
106
(SSI_SIER_TFE0_EN | \
107
SSI_SIER_TLS_EN | \
108
SSI_SIER_TFS_EN | \
109
SSI_SIER_TUE0_EN | \
110
SSI_SIER_TFRC_EN)
111
112
enum fsl_ssi_type {
113
FSL_SSI_MCP8610,
114
FSL_SSI_MX21,
115
FSL_SSI_MX35,
116
FSL_SSI_MX51,
117
};
118
119
struct fsl_ssi_regvals {
120
u32 sier;
121
u32 srcr;
122
u32 stcr;
123
u32 scr;
124
};
125
126
static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
127
{
128
switch (reg) {
129
case REG_SSI_SACCEN:
130
case REG_SSI_SACCDIS:
131
return false;
132
default:
133
return true;
134
}
135
}
136
137
static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
138
{
139
switch (reg) {
140
case REG_SSI_STX0:
141
case REG_SSI_STX1:
142
case REG_SSI_SRX0:
143
case REG_SSI_SRX1:
144
case REG_SSI_SISR:
145
case REG_SSI_SFCSR:
146
case REG_SSI_SACNT:
147
case REG_SSI_SACADD:
148
case REG_SSI_SACDAT:
149
case REG_SSI_SATAG:
150
case REG_SSI_SACCST:
151
case REG_SSI_SOR:
152
return true;
153
default:
154
return false;
155
}
156
}
157
158
static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
159
{
160
switch (reg) {
161
case REG_SSI_SRX0:
162
case REG_SSI_SRX1:
163
case REG_SSI_SISR:
164
case REG_SSI_SACADD:
165
case REG_SSI_SACDAT:
166
case REG_SSI_SATAG:
167
return true;
168
default:
169
return false;
170
}
171
}
172
173
static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
174
{
175
switch (reg) {
176
case REG_SSI_SRX0:
177
case REG_SSI_SRX1:
178
case REG_SSI_SACCST:
179
return false;
180
default:
181
return true;
182
}
183
}
184
185
static const struct regmap_config fsl_ssi_regconfig = {
186
.max_register = REG_SSI_SACCDIS,
187
.reg_bits = 32,
188
.val_bits = 32,
189
.reg_stride = 4,
190
.val_format_endian = REGMAP_ENDIAN_NATIVE,
191
.num_reg_defaults_raw = REG_SSI_SACCDIS / sizeof(uint32_t) + 1,
192
.readable_reg = fsl_ssi_readable_reg,
193
.volatile_reg = fsl_ssi_volatile_reg,
194
.precious_reg = fsl_ssi_precious_reg,
195
.writeable_reg = fsl_ssi_writeable_reg,
196
.cache_type = REGCACHE_FLAT,
197
};
198
199
struct fsl_ssi_soc_data {
200
bool imx;
201
bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
202
bool offline_config;
203
u32 sisr_write_mask;
204
};
205
206
/**
207
* struct fsl_ssi - per-SSI private data
208
* @regs: Pointer to the regmap registers
209
* @irq: IRQ of this SSI
210
* @cpu_dai_drv: CPU DAI driver for this device
211
* @dai_fmt: DAI configuration this device is currently used with
212
* @streams: Mask of current active streams: BIT(TX) and BIT(RX)
213
* @i2s_net: I2S and Network mode configurations of SCR register
214
* (this is the initial settings based on the DAI format)
215
* @synchronous: Use synchronous mode - both of TX and RX use STCK and SFCK
216
* @use_dma: DMA is used or FIQ with stream filter
217
* @use_dual_fifo: DMA with support for dual FIFO mode
218
* @use_dyna_fifo: DMA with support for multi FIFO script
219
* @has_ipg_clk_name: If "ipg" is in the clock name list of device tree
220
* @fifo_depth: Depth of the SSI FIFOs
221
* @slot_width: Width of each DAI slot
222
* @slots: Number of slots
223
* @regvals: Specific RX/TX register settings
224
* @clk: Clock source to access register
225
* @baudclk: Clock source to generate bit and frame-sync clocks
226
* @baudclk_streams: Active streams that are using baudclk
227
* @regcache_sfcsr: Cache sfcsr register value during suspend and resume
228
* @regcache_sacnt: Cache sacnt register value during suspend and resume
229
* @dma_params_tx: DMA transmit parameters
230
* @dma_params_rx: DMA receive parameters
231
* @ssi_phys: physical address of the SSI registers
232
* @fiq_params: FIQ stream filtering parameters
233
* @card_pdev: Platform_device pointer to register a sound card for PowerPC or
234
* to register a CODEC platform device for AC97
235
* @card_name: Platform_device name to register a sound card for PowerPC or
236
* to register a CODEC platform device for AC97
237
* @card_idx: The index of SSI to register a sound card for PowerPC or
238
* to register a CODEC platform device for AC97
239
* @dbg_stats: Debugging statistics
240
* @soc: SoC specific data
241
* @dev: Pointer to &pdev->dev
242
* @fifo_watermark: The FIFO watermark setting. Notifies DMA when there are
243
* @fifo_watermark or fewer words in TX fifo or
244
* @fifo_watermark or more empty words in RX fifo.
245
* @dma_maxburst: Max number of words to transfer in one go. So far,
246
* this is always the same as fifo_watermark.
247
* @ac97_reg_lock: Mutex lock to serialize AC97 register access operations
248
* @audio_config: configure for dma multi fifo script
249
*/
250
struct fsl_ssi {
251
struct regmap *regs;
252
int irq;
253
struct snd_soc_dai_driver cpu_dai_drv;
254
255
unsigned int dai_fmt;
256
u8 streams;
257
u8 i2s_net;
258
bool synchronous;
259
bool use_dma;
260
bool use_dual_fifo;
261
bool use_dyna_fifo;
262
bool has_ipg_clk_name;
263
unsigned int fifo_depth;
264
unsigned int slot_width;
265
unsigned int slots;
266
struct fsl_ssi_regvals regvals[2];
267
268
struct clk *clk;
269
struct clk *baudclk;
270
unsigned int baudclk_streams;
271
272
u32 regcache_sfcsr;
273
u32 regcache_sacnt;
274
275
struct snd_dmaengine_dai_dma_data dma_params_tx;
276
struct snd_dmaengine_dai_dma_data dma_params_rx;
277
dma_addr_t ssi_phys;
278
279
struct imx_pcm_fiq_params fiq_params;
280
281
struct platform_device *card_pdev;
282
char card_name[32];
283
u32 card_idx;
284
285
struct fsl_ssi_dbg dbg_stats;
286
287
const struct fsl_ssi_soc_data *soc;
288
struct device *dev;
289
290
u32 fifo_watermark;
291
u32 dma_maxburst;
292
293
struct mutex ac97_reg_lock;
294
struct sdma_peripheral_config audio_config[2];
295
};
296
297
/*
298
* SoC specific data
299
*
300
* Notes:
301
* 1) SSI in earlier SoCS has critical bits in control registers that
302
* cannot be changed after SSI starts running -- a software reset
303
* (set SSIEN to 0) is required to change their values. So adding
304
* an offline_config flag for these SoCs.
305
* 2) SDMA is available since imx35. However, imx35 does not support
306
* DMA bits changing when SSI is running, so set offline_config.
307
* 3) imx51 and later versions support register configurations when
308
* SSI is running (SSIEN); For these versions, DMA needs to be
309
* configured before SSI sends DMA request to avoid an undefined
310
* DMA request on the SDMA side.
311
*/
312
313
static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
314
.imx = false,
315
.offline_config = true,
316
.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
317
SSI_SISR_ROE0 | SSI_SISR_ROE1 |
318
SSI_SISR_TUE0 | SSI_SISR_TUE1,
319
};
320
321
static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
322
.imx = true,
323
.imx21regs = true,
324
.offline_config = true,
325
.sisr_write_mask = 0,
326
};
327
328
static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
329
.imx = true,
330
.offline_config = true,
331
.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
332
SSI_SISR_ROE0 | SSI_SISR_ROE1 |
333
SSI_SISR_TUE0 | SSI_SISR_TUE1,
334
};
335
336
static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
337
.imx = true,
338
.offline_config = false,
339
.sisr_write_mask = SSI_SISR_ROE0 | SSI_SISR_ROE1 |
340
SSI_SISR_TUE0 | SSI_SISR_TUE1,
341
};
342
343
static const struct of_device_id fsl_ssi_ids[] = {
344
{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
345
{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
346
{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
347
{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
348
{}
349
};
350
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
351
352
static bool fsl_ssi_is_ac97(struct fsl_ssi *ssi)
353
{
354
return (ssi->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
355
SND_SOC_DAIFMT_AC97;
356
}
357
358
static bool fsl_ssi_is_i2s_clock_provider(struct fsl_ssi *ssi)
359
{
360
return (ssi->dai_fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) ==
361
SND_SOC_DAIFMT_BP_FP;
362
}
363
364
static bool fsl_ssi_is_i2s_bc_fp(struct fsl_ssi *ssi)
365
{
366
return (ssi->dai_fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) ==
367
SND_SOC_DAIFMT_BC_FP;
368
}
369
370
/**
371
* fsl_ssi_isr - Interrupt handler to gather states
372
* @irq: irq number
373
* @dev_id: context
374
*/
375
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
376
{
377
struct fsl_ssi *ssi = dev_id;
378
struct regmap *regs = ssi->regs;
379
u32 sisr, sisr2;
380
381
regmap_read(regs, REG_SSI_SISR, &sisr);
382
383
sisr2 = sisr & ssi->soc->sisr_write_mask;
384
/* Clear the bits that we set */
385
if (sisr2)
386
regmap_write(regs, REG_SSI_SISR, sisr2);
387
388
fsl_ssi_dbg_isr(&ssi->dbg_stats, sisr);
389
390
return IRQ_HANDLED;
391
}
392
393
/**
394
* fsl_ssi_config_enable - Set SCR, SIER, STCR and SRCR registers with
395
* cached values in regvals
396
* @ssi: SSI context
397
* @tx: direction
398
*
399
* Notes:
400
* 1) For offline_config SoCs, enable all necessary bits of both streams
401
* when 1st stream starts, even if the opposite stream will not start
402
* 2) It also clears FIFO before setting regvals; SOR is safe to set online
403
*/
404
static void fsl_ssi_config_enable(struct fsl_ssi *ssi, bool tx)
405
{
406
struct fsl_ssi_regvals *vals = ssi->regvals;
407
int dir = tx ? TX : RX;
408
u32 sier, srcr, stcr;
409
410
/* Clear dirty data in the FIFO; It also prevents channel slipping */
411
regmap_update_bits(ssi->regs, REG_SSI_SOR,
412
SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
413
414
/*
415
* On offline_config SoCs, SxCR and SIER are already configured when
416
* the previous stream started. So skip all SxCR and SIER settings
417
* to prevent online reconfigurations, then jump to set SCR directly
418
*/
419
if (ssi->soc->offline_config && ssi->streams)
420
goto enable_scr;
421
422
if (ssi->soc->offline_config) {
423
/*
424
* Online reconfiguration not supported, so enable all bits for
425
* both streams at once to avoid necessity of reconfigurations
426
*/
427
srcr = vals[RX].srcr | vals[TX].srcr;
428
stcr = vals[RX].stcr | vals[TX].stcr;
429
sier = vals[RX].sier | vals[TX].sier;
430
} else {
431
/* Otherwise, only set bits for the current stream */
432
srcr = vals[dir].srcr;
433
stcr = vals[dir].stcr;
434
sier = vals[dir].sier;
435
}
436
437
/* Configure SRCR, STCR and SIER at once */
438
regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, srcr);
439
regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, stcr);
440
regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, sier);
441
442
enable_scr:
443
/*
444
* Start DMA before setting TE to avoid FIFO underrun
445
* which may cause a channel slip or a channel swap
446
*
447
* TODO: FIQ cases might also need this upon testing
448
*/
449
if (ssi->use_dma && tx) {
450
int try = 100;
451
u32 sfcsr;
452
453
/* Enable SSI first to send TX DMA request */
454
regmap_update_bits(ssi->regs, REG_SSI_SCR,
455
SSI_SCR_SSIEN, SSI_SCR_SSIEN);
456
457
/* Busy wait until TX FIFO not empty -- DMA working */
458
do {
459
regmap_read(ssi->regs, REG_SSI_SFCSR, &sfcsr);
460
if (SSI_SFCSR_TFCNT0(sfcsr))
461
break;
462
} while (--try);
463
464
/* FIFO still empty -- something might be wrong */
465
if (!SSI_SFCSR_TFCNT0(sfcsr))
466
dev_warn(ssi->dev, "Timeout waiting TX FIFO filling\n");
467
}
468
/* Enable all remaining bits in SCR */
469
regmap_update_bits(ssi->regs, REG_SSI_SCR,
470
vals[dir].scr, vals[dir].scr);
471
472
/* Log the enabled stream to the mask */
473
ssi->streams |= BIT(dir);
474
}
475
476
/*
477
* Exclude bits that are used by the opposite stream
478
*
479
* When both streams are active, disabling some bits for the current stream
480
* might break the other stream if these bits are used by it.
481
*
482
* @vals : regvals of the current stream
483
* @avals: regvals of the opposite stream
484
* @aactive: active state of the opposite stream
485
*
486
* 1) XOR vals and avals to get the differences if the other stream is active;
487
* Otherwise, return current vals if the other stream is not active
488
* 2) AND the result of 1) with the current vals
489
*/
490
#define _ssi_xor_shared_bits(vals, avals, aactive) \
491
((vals) ^ ((avals) * (aactive)))
492
493
#define ssi_excl_shared_bits(vals, avals, aactive) \
494
((vals) & _ssi_xor_shared_bits(vals, avals, aactive))
495
496
/**
497
* fsl_ssi_config_disable - Unset SCR, SIER, STCR and SRCR registers
498
* with cached values in regvals
499
* @ssi: SSI context
500
* @tx: direction
501
*
502
* Notes:
503
* 1) For offline_config SoCs, to avoid online reconfigurations, disable all
504
* bits of both streams at once when the last stream is abort to end
505
* 2) It also clears FIFO after unsetting regvals; SOR is safe to set online
506
*/
507
static void fsl_ssi_config_disable(struct fsl_ssi *ssi, bool tx)
508
{
509
struct fsl_ssi_regvals *vals, *avals;
510
u32 sier, srcr, stcr, scr;
511
int adir = tx ? RX : TX;
512
int dir = tx ? TX : RX;
513
bool aactive;
514
515
/* Check if the opposite stream is active */
516
aactive = ssi->streams & BIT(adir);
517
518
vals = &ssi->regvals[dir];
519
520
/* Get regvals of the opposite stream to keep opposite stream safe */
521
avals = &ssi->regvals[adir];
522
523
/*
524
* To keep the other stream safe, exclude shared bits between
525
* both streams, and get safe bits to disable current stream
526
*/
527
scr = ssi_excl_shared_bits(vals->scr, avals->scr, aactive);
528
529
/* Disable safe bits of SCR register for the current stream */
530
regmap_update_bits(ssi->regs, REG_SSI_SCR, scr, 0);
531
532
/* Log the disabled stream to the mask */
533
ssi->streams &= ~BIT(dir);
534
535
/*
536
* On offline_config SoCs, if the other stream is active, skip
537
* SxCR and SIER settings to prevent online reconfigurations
538
*/
539
if (ssi->soc->offline_config && aactive)
540
goto fifo_clear;
541
542
if (ssi->soc->offline_config) {
543
/* Now there is only current stream active, disable all bits */
544
srcr = vals->srcr | avals->srcr;
545
stcr = vals->stcr | avals->stcr;
546
sier = vals->sier | avals->sier;
547
} else {
548
/*
549
* To keep the other stream safe, exclude shared bits between
550
* both streams, and get safe bits to disable current stream
551
*/
552
sier = ssi_excl_shared_bits(vals->sier, avals->sier, aactive);
553
srcr = ssi_excl_shared_bits(vals->srcr, avals->srcr, aactive);
554
stcr = ssi_excl_shared_bits(vals->stcr, avals->stcr, aactive);
555
}
556
557
/* Clear configurations of SRCR, STCR and SIER at once */
558
regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, 0);
559
regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, 0);
560
regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, 0);
561
562
fifo_clear:
563
/* Clear remaining data in the FIFO */
564
regmap_update_bits(ssi->regs, REG_SSI_SOR,
565
SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
566
}
567
568
static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi)
569
{
570
struct regmap *regs = ssi->regs;
571
572
/* no SACC{ST,EN,DIS} regs on imx21-class SSI */
573
if (!ssi->soc->imx21regs) {
574
/* Disable all channel slots */
575
regmap_write(regs, REG_SSI_SACCDIS, 0xff);
576
/* Enable slots 3 & 4 -- PCM Playback Left & Right channels */
577
regmap_write(regs, REG_SSI_SACCEN, 0x300);
578
}
579
}
580
581
/**
582
* fsl_ssi_setup_regvals - Cache critical bits of SIER, SRCR, STCR and
583
* SCR to later set them safely
584
* @ssi: SSI context
585
*/
586
static void fsl_ssi_setup_regvals(struct fsl_ssi *ssi)
587
{
588
struct fsl_ssi_regvals *vals = ssi->regvals;
589
590
vals[RX].sier = SSI_SIER_RFF0_EN | FSLSSI_SIER_DBG_RX_FLAGS;
591
vals[RX].srcr = SSI_SRCR_RFEN0;
592
vals[RX].scr = SSI_SCR_SSIEN | SSI_SCR_RE;
593
vals[TX].sier = SSI_SIER_TFE0_EN | FSLSSI_SIER_DBG_TX_FLAGS;
594
vals[TX].stcr = SSI_STCR_TFEN0;
595
vals[TX].scr = SSI_SCR_SSIEN | SSI_SCR_TE;
596
597
/* AC97 has already enabled SSIEN, RE and TE, so ignore them */
598
if (fsl_ssi_is_ac97(ssi))
599
vals[RX].scr = vals[TX].scr = 0;
600
601
if (ssi->use_dual_fifo) {
602
vals[RX].srcr |= SSI_SRCR_RFEN1;
603
vals[TX].stcr |= SSI_STCR_TFEN1;
604
}
605
606
if (ssi->use_dma) {
607
vals[RX].sier |= SSI_SIER_RDMAE;
608
vals[TX].sier |= SSI_SIER_TDMAE;
609
} else {
610
vals[RX].sier |= SSI_SIER_RIE;
611
vals[TX].sier |= SSI_SIER_TIE;
612
}
613
}
614
615
static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi)
616
{
617
struct regmap *regs = ssi->regs;
618
619
/* Setup the clock control register */
620
regmap_write(regs, REG_SSI_STCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
621
regmap_write(regs, REG_SSI_SRCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
622
623
/* Enable AC97 mode and startup the SSI */
624
regmap_write(regs, REG_SSI_SACNT, SSI_SACNT_AC97EN | SSI_SACNT_FV);
625
626
/* AC97 has to communicate with codec before starting a stream */
627
regmap_update_bits(regs, REG_SSI_SCR,
628
SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE,
629
SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE);
630
631
regmap_write(regs, REG_SSI_SOR, SSI_SOR_WAIT(3));
632
}
633
634
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
635
struct snd_soc_dai *dai)
636
{
637
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
638
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
639
int ret;
640
641
ret = clk_prepare_enable(ssi->clk);
642
if (ret)
643
return ret;
644
645
/*
646
* When using dual fifo mode, it is safer to ensure an even period
647
* size. If appearing to an odd number while DMA always starts its
648
* task from fifo0, fifo1 would be neglected at the end of each
649
* period. But SSI would still access fifo1 with an invalid data.
650
*/
651
if (ssi->use_dual_fifo || ssi->use_dyna_fifo)
652
snd_pcm_hw_constraint_step(substream->runtime, 0,
653
SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
654
655
return 0;
656
}
657
658
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
659
struct snd_soc_dai *dai)
660
{
661
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
662
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
663
664
clk_disable_unprepare(ssi->clk);
665
}
666
667
/**
668
* fsl_ssi_set_bclk - Configure Digital Audio Interface bit clock
669
* @substream: ASoC substream
670
* @dai: pointer to DAI
671
* @hw_params: pointers to hw_params
672
*
673
* Notes: This function can be only called when using SSI as DAI master
674
*
675
* Quick instruction for parameters:
676
* freq: Output BCLK frequency = samplerate * slots * slot_width
677
* (In 2-channel I2S Master mode, slot_width is fixed 32)
678
*/
679
static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
680
struct snd_soc_dai *dai,
681
struct snd_pcm_hw_params *hw_params)
682
{
683
bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
684
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
685
struct regmap *regs = ssi->regs;
686
u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
687
unsigned long clkrate, baudrate, tmprate;
688
unsigned int channels = params_channels(hw_params);
689
unsigned int slot_width = params_width(hw_params);
690
unsigned int slots = 2;
691
u64 sub, savesub = 100000;
692
unsigned int freq;
693
bool baudclk_is_used;
694
int ret;
695
696
/* Override slots and slot_width if being specifically set... */
697
if (ssi->slots)
698
slots = ssi->slots;
699
if (ssi->slot_width)
700
slot_width = ssi->slot_width;
701
702
/* ...but force 32 bits for stereo audio using I2S Master Mode */
703
if (channels == 2 &&
704
(ssi->i2s_net & SSI_SCR_I2S_MODE_MASK) == SSI_SCR_I2S_MODE_MASTER)
705
slot_width = 32;
706
707
/* Generate bit clock based on the slot number and slot width */
708
freq = slots * slot_width * params_rate(hw_params);
709
710
/* Don't apply it to any non-baudclk circumstance */
711
if (IS_ERR(ssi->baudclk))
712
return -EINVAL;
713
714
/*
715
* Hardware limitation: The bclk rate must be
716
* never greater than 1/5 IPG clock rate
717
*/
718
if (freq * 5 > clk_get_rate(ssi->clk)) {
719
dev_err(dai->dev, "bitclk > ipgclk / 5\n");
720
return -EINVAL;
721
}
722
723
baudclk_is_used = ssi->baudclk_streams & ~(BIT(substream->stream));
724
725
/* It should be already enough to divide clock by setting pm alone */
726
psr = 0;
727
div2 = 0;
728
729
factor = (div2 + 1) * (7 * psr + 1) * 2;
730
731
for (i = 0; i < 255; i++) {
732
tmprate = freq * factor * (i + 1);
733
734
if (baudclk_is_used)
735
clkrate = clk_get_rate(ssi->baudclk);
736
else
737
clkrate = clk_round_rate(ssi->baudclk, tmprate);
738
739
clkrate /= factor;
740
afreq = clkrate / (i + 1);
741
742
if (freq == afreq)
743
sub = 0;
744
else if (freq / afreq == 1)
745
sub = freq - afreq;
746
else if (afreq / freq == 1)
747
sub = afreq - freq;
748
else
749
continue;
750
751
/* Calculate the fraction */
752
sub *= 100000;
753
do_div(sub, freq);
754
755
if (sub < savesub && !(i == 0)) {
756
baudrate = tmprate;
757
savesub = sub;
758
pm = i;
759
}
760
761
/* We are lucky */
762
if (savesub == 0)
763
break;
764
}
765
766
/* No proper pm found if it is still remaining the initial value */
767
if (pm == 999) {
768
dev_err(dai->dev, "failed to handle the required sysclk\n");
769
return -EINVAL;
770
}
771
772
stccr = SSI_SxCCR_PM(pm + 1);
773
mask = SSI_SxCCR_PM_MASK | SSI_SxCCR_DIV2 | SSI_SxCCR_PSR;
774
775
/* STCCR is used for RX in synchronous mode */
776
tx2 = tx || ssi->synchronous;
777
regmap_update_bits(regs, REG_SSI_SxCCR(tx2), mask, stccr);
778
779
if (!baudclk_is_used) {
780
ret = clk_set_rate(ssi->baudclk, baudrate);
781
if (ret) {
782
dev_err(dai->dev, "failed to set baudclk rate\n");
783
return -EINVAL;
784
}
785
}
786
787
return 0;
788
}
789
790
/**
791
* fsl_ssi_hw_params - Configure SSI based on PCM hardware parameters
792
* @substream: ASoC substream
793
* @hw_params: pointers to hw_params
794
* @dai: pointer to DAI
795
*
796
* Notes:
797
* 1) SxCCR.WL bits are critical bits that require SSI to be temporarily
798
* disabled on offline_config SoCs. Even for online configurable SoCs
799
* running in synchronous mode (both TX and RX use STCCR), it is not
800
* safe to re-configure them when both two streams start running.
801
* 2) SxCCR.PM, SxCCR.DIV2 and SxCCR.PSR bits will be configured in the
802
* fsl_ssi_set_bclk() if SSI is the DAI clock master.
803
*/
804
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
805
struct snd_pcm_hw_params *hw_params,
806
struct snd_soc_dai *dai)
807
{
808
bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
809
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
810
struct fsl_ssi_regvals *vals = ssi->regvals;
811
struct regmap *regs = ssi->regs;
812
unsigned int channels = params_channels(hw_params);
813
unsigned int sample_size = params_width(hw_params);
814
u32 wl = SSI_SxCCR_WL(sample_size);
815
int ret;
816
817
if (fsl_ssi_is_i2s_clock_provider(ssi)) {
818
ret = fsl_ssi_set_bclk(substream, dai, hw_params);
819
if (ret)
820
return ret;
821
822
/* Do not enable the clock if it is already enabled */
823
if (!(ssi->baudclk_streams & BIT(substream->stream))) {
824
ret = clk_prepare_enable(ssi->baudclk);
825
if (ret)
826
return ret;
827
828
ssi->baudclk_streams |= BIT(substream->stream);
829
}
830
}
831
832
/*
833
* SSI is properly configured if it is enabled and running in
834
* the synchronous mode; Note that AC97 mode is an exception
835
* that should set separate configurations for STCCR and SRCCR
836
* despite running in the synchronous mode.
837
*/
838
if (ssi->streams && ssi->synchronous)
839
return 0;
840
841
if (!fsl_ssi_is_ac97(ssi)) {
842
/*
843
* Keep the ssi->i2s_net intact while having a local variable
844
* to override settings for special use cases. Otherwise, the
845
* ssi->i2s_net will lose the settings for regular use cases.
846
*/
847
u8 i2s_net = ssi->i2s_net;
848
849
/* Normal + Network mode to send 16-bit data in 32-bit frames */
850
if (fsl_ssi_is_i2s_bc_fp(ssi) && sample_size == 16)
851
i2s_net = SSI_SCR_I2S_MODE_NORMAL | SSI_SCR_NET;
852
853
/* Use Normal mode to send mono data at 1st slot of 2 slots */
854
if (channels == 1)
855
i2s_net = SSI_SCR_I2S_MODE_NORMAL;
856
857
regmap_update_bits(regs, REG_SSI_SCR,
858
SSI_SCR_I2S_NET_MASK, i2s_net);
859
}
860
861
/* In synchronous mode, the SSI uses STCCR for capture */
862
tx2 = tx || ssi->synchronous;
863
regmap_update_bits(regs, REG_SSI_SxCCR(tx2), SSI_SxCCR_WL_MASK, wl);
864
865
if (ssi->use_dyna_fifo) {
866
if (channels == 1) {
867
ssi->audio_config[0].n_fifos_dst = 1;
868
ssi->audio_config[1].n_fifos_src = 1;
869
vals[RX].srcr &= ~SSI_SRCR_RFEN1;
870
vals[TX].stcr &= ~SSI_STCR_TFEN1;
871
vals[RX].scr &= ~SSI_SCR_TCH_EN;
872
vals[TX].scr &= ~SSI_SCR_TCH_EN;
873
} else {
874
ssi->audio_config[0].n_fifos_dst = 2;
875
ssi->audio_config[1].n_fifos_src = 2;
876
vals[RX].srcr |= SSI_SRCR_RFEN1;
877
vals[TX].stcr |= SSI_STCR_TFEN1;
878
vals[RX].scr |= SSI_SCR_TCH_EN;
879
vals[TX].scr |= SSI_SCR_TCH_EN;
880
}
881
ssi->dma_params_tx.peripheral_config = &ssi->audio_config[0];
882
ssi->dma_params_tx.peripheral_size = sizeof(ssi->audio_config[0]);
883
ssi->dma_params_rx.peripheral_config = &ssi->audio_config[1];
884
ssi->dma_params_rx.peripheral_size = sizeof(ssi->audio_config[1]);
885
}
886
887
return 0;
888
}
889
890
static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
891
struct snd_soc_dai *dai)
892
{
893
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
894
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
895
896
if (fsl_ssi_is_i2s_clock_provider(ssi) &&
897
ssi->baudclk_streams & BIT(substream->stream)) {
898
clk_disable_unprepare(ssi->baudclk);
899
ssi->baudclk_streams &= ~BIT(substream->stream);
900
}
901
902
return 0;
903
}
904
905
static int _fsl_ssi_set_dai_fmt(struct fsl_ssi *ssi, unsigned int fmt)
906
{
907
u32 strcr = 0, scr = 0, stcr, srcr, mask;
908
unsigned int slots;
909
910
ssi->dai_fmt = fmt;
911
912
/* Synchronize frame sync clock for TE to avoid data slipping */
913
scr |= SSI_SCR_SYNC_TX_FS;
914
915
/* Set to default shifting settings: LSB_ALIGNED */
916
strcr |= SSI_STCR_TXBIT0;
917
918
/* Use Network mode as default */
919
ssi->i2s_net = SSI_SCR_NET;
920
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
921
case SND_SOC_DAIFMT_I2S:
922
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
923
case SND_SOC_DAIFMT_BP_FP:
924
if (IS_ERR(ssi->baudclk)) {
925
dev_err(ssi->dev,
926
"missing baudclk for master mode\n");
927
return -EINVAL;
928
}
929
fallthrough;
930
case SND_SOC_DAIFMT_BC_FP:
931
ssi->i2s_net |= SSI_SCR_I2S_MODE_MASTER;
932
break;
933
case SND_SOC_DAIFMT_BC_FC:
934
ssi->i2s_net |= SSI_SCR_I2S_MODE_SLAVE;
935
break;
936
default:
937
return -EINVAL;
938
}
939
940
slots = ssi->slots ? : 2;
941
regmap_update_bits(ssi->regs, REG_SSI_STCCR,
942
SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
943
regmap_update_bits(ssi->regs, REG_SSI_SRCCR,
944
SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
945
946
/* Data on rising edge of bclk, frame low, 1clk before data */
947
strcr |= SSI_STCR_TFSI | SSI_STCR_TSCKP | SSI_STCR_TEFS;
948
break;
949
case SND_SOC_DAIFMT_LEFT_J:
950
/* Data on rising edge of bclk, frame high */
951
strcr |= SSI_STCR_TSCKP;
952
break;
953
case SND_SOC_DAIFMT_DSP_A:
954
/* Data on rising edge of bclk, frame high, 1clk before data */
955
strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP | SSI_STCR_TEFS;
956
break;
957
case SND_SOC_DAIFMT_DSP_B:
958
/* Data on rising edge of bclk, frame high */
959
strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP;
960
break;
961
case SND_SOC_DAIFMT_AC97:
962
/* Data on falling edge of bclk, frame high, 1clk before data */
963
strcr |= SSI_STCR_TEFS;
964
break;
965
default:
966
return -EINVAL;
967
}
968
969
scr |= ssi->i2s_net;
970
971
/* DAI clock inversion */
972
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
973
case SND_SOC_DAIFMT_NB_NF:
974
/* Nothing to do for both normal cases */
975
break;
976
case SND_SOC_DAIFMT_IB_NF:
977
/* Invert bit clock */
978
strcr ^= SSI_STCR_TSCKP;
979
break;
980
case SND_SOC_DAIFMT_NB_IF:
981
/* Invert frame clock */
982
strcr ^= SSI_STCR_TFSI;
983
break;
984
case SND_SOC_DAIFMT_IB_IF:
985
/* Invert both clocks */
986
strcr ^= SSI_STCR_TSCKP;
987
strcr ^= SSI_STCR_TFSI;
988
break;
989
default:
990
return -EINVAL;
991
}
992
993
/* DAI clock provider masks */
994
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
995
case SND_SOC_DAIFMT_BP_FP:
996
/* Output bit and frame sync clocks */
997
strcr |= SSI_STCR_TFDIR | SSI_STCR_TXDIR;
998
scr |= SSI_SCR_SYS_CLK_EN;
999
break;
1000
case SND_SOC_DAIFMT_BC_FC:
1001
/* Input bit or frame sync clocks */
1002
break;
1003
case SND_SOC_DAIFMT_BC_FP:
1004
/* Input bit clock but output frame sync clock */
1005
strcr |= SSI_STCR_TFDIR;
1006
break;
1007
default:
1008
return -EINVAL;
1009
}
1010
1011
stcr = strcr;
1012
srcr = strcr;
1013
1014
/* Set SYN mode and clear RXDIR bit when using SYN or AC97 mode */
1015
if (ssi->synchronous || fsl_ssi_is_ac97(ssi)) {
1016
srcr &= ~SSI_SRCR_RXDIR;
1017
scr |= SSI_SCR_SYN;
1018
}
1019
1020
mask = SSI_STCR_TFDIR | SSI_STCR_TXDIR | SSI_STCR_TSCKP |
1021
SSI_STCR_TFSL | SSI_STCR_TFSI | SSI_STCR_TEFS | SSI_STCR_TXBIT0;
1022
1023
regmap_update_bits(ssi->regs, REG_SSI_STCR, mask, stcr);
1024
regmap_update_bits(ssi->regs, REG_SSI_SRCR, mask, srcr);
1025
1026
mask = SSI_SCR_SYNC_TX_FS | SSI_SCR_I2S_MODE_MASK |
1027
SSI_SCR_SYS_CLK_EN | SSI_SCR_SYN;
1028
regmap_update_bits(ssi->regs, REG_SSI_SCR, mask, scr);
1029
1030
return 0;
1031
}
1032
1033
/**
1034
* fsl_ssi_set_dai_fmt - Configure Digital Audio Interface (DAI) Format
1035
* @dai: pointer to DAI
1036
* @fmt: format mask
1037
*/
1038
static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
1039
{
1040
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1041
1042
/* AC97 configured DAIFMT earlier in the probe() */
1043
if (fsl_ssi_is_ac97(ssi))
1044
return 0;
1045
1046
return _fsl_ssi_set_dai_fmt(ssi, fmt);
1047
}
1048
1049
/**
1050
* fsl_ssi_set_dai_tdm_slot - Set TDM slot number and slot width
1051
* @dai: pointer to DAI
1052
* @tx_mask: mask for TX
1053
* @rx_mask: mask for RX
1054
* @slots: number of slots
1055
* @slot_width: number of bits per slot
1056
*/
1057
static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
1058
u32 rx_mask, int slots, int slot_width)
1059
{
1060
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1061
struct regmap *regs = ssi->regs;
1062
u32 val;
1063
1064
/* The word length should be 8, 10, 12, 16, 18, 20, 22 or 24 */
1065
if (slot_width & 1 || slot_width < 8 || slot_width > 24) {
1066
dev_err(dai->dev, "invalid slot width: %d\n", slot_width);
1067
return -EINVAL;
1068
}
1069
1070
/* The slot number should be >= 2 if using Network mode or I2S mode */
1071
if (ssi->i2s_net && slots < 2) {
1072
dev_err(dai->dev, "slot number should be >= 2 in I2S or NET\n");
1073
return -EINVAL;
1074
}
1075
1076
regmap_update_bits(regs, REG_SSI_STCCR,
1077
SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1078
regmap_update_bits(regs, REG_SSI_SRCCR,
1079
SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1080
1081
/* Save the SCR register value */
1082
regmap_read(regs, REG_SSI_SCR, &val);
1083
/* Temporarily enable SSI to allow SxMSKs to be configurable */
1084
regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, SSI_SCR_SSIEN);
1085
1086
regmap_write(regs, REG_SSI_STMSK, ~tx_mask);
1087
regmap_write(regs, REG_SSI_SRMSK, ~rx_mask);
1088
1089
/* Restore the value of SSIEN bit */
1090
regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, val);
1091
1092
ssi->slot_width = slot_width;
1093
ssi->slots = slots;
1094
1095
return 0;
1096
}
1097
1098
/**
1099
* fsl_ssi_trigger - Start or stop SSI and corresponding DMA transaction.
1100
* @substream: ASoC substream
1101
* @cmd: trigger command
1102
* @dai: pointer to DAI
1103
*
1104
* The DMA channel is in external master start and pause mode, which
1105
* means the SSI completely controls the flow of data.
1106
*/
1107
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1108
struct snd_soc_dai *dai)
1109
{
1110
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
1111
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0));
1112
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1113
1114
switch (cmd) {
1115
case SNDRV_PCM_TRIGGER_START:
1116
case SNDRV_PCM_TRIGGER_RESUME:
1117
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1118
/*
1119
* SACCST might be modified via AC Link by a CODEC if it sends
1120
* extra bits in their SLOTREQ requests, which'll accidentally
1121
* send valid data to slots other than normal playback slots.
1122
*
1123
* To be safe, configure SACCST right before TX starts.
1124
*/
1125
if (tx && fsl_ssi_is_ac97(ssi))
1126
fsl_ssi_tx_ac97_saccst_setup(ssi);
1127
fsl_ssi_config_enable(ssi, tx);
1128
break;
1129
1130
case SNDRV_PCM_TRIGGER_STOP:
1131
case SNDRV_PCM_TRIGGER_SUSPEND:
1132
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1133
fsl_ssi_config_disable(ssi, tx);
1134
break;
1135
1136
default:
1137
return -EINVAL;
1138
}
1139
1140
return 0;
1141
}
1142
1143
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1144
{
1145
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1146
1147
if (ssi->soc->imx && ssi->use_dma)
1148
snd_soc_dai_init_dma_data(dai, &ssi->dma_params_tx,
1149
&ssi->dma_params_rx);
1150
1151
return 0;
1152
}
1153
1154
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1155
.probe = fsl_ssi_dai_probe,
1156
.startup = fsl_ssi_startup,
1157
.shutdown = fsl_ssi_shutdown,
1158
.hw_params = fsl_ssi_hw_params,
1159
.hw_free = fsl_ssi_hw_free,
1160
.set_fmt = fsl_ssi_set_dai_fmt,
1161
.set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
1162
.trigger = fsl_ssi_trigger,
1163
};
1164
1165
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1166
.playback = {
1167
.stream_name = "CPU-Playback",
1168
.channels_min = 1,
1169
.channels_max = 32,
1170
.rates = SNDRV_PCM_RATE_CONTINUOUS,
1171
.formats = FSLSSI_I2S_FORMATS,
1172
},
1173
.capture = {
1174
.stream_name = "CPU-Capture",
1175
.channels_min = 1,
1176
.channels_max = 32,
1177
.rates = SNDRV_PCM_RATE_CONTINUOUS,
1178
.formats = FSLSSI_I2S_FORMATS,
1179
},
1180
.ops = &fsl_ssi_dai_ops,
1181
};
1182
1183
static const struct snd_soc_component_driver fsl_ssi_component = {
1184
.name = "fsl-ssi",
1185
.legacy_dai_naming = 1,
1186
};
1187
1188
static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1189
.symmetric_channels = 1,
1190
.playback = {
1191
.stream_name = "CPU AC97 Playback",
1192
.channels_min = 2,
1193
.channels_max = 2,
1194
.rates = SNDRV_PCM_RATE_8000_48000,
1195
.formats = SNDRV_PCM_FMTBIT_S16 | SNDRV_PCM_FMTBIT_S20,
1196
},
1197
.capture = {
1198
.stream_name = "CPU AC97 Capture",
1199
.channels_min = 2,
1200
.channels_max = 2,
1201
.rates = SNDRV_PCM_RATE_48000,
1202
/* 16-bit capture is broken (errata ERR003778) */
1203
.formats = SNDRV_PCM_FMTBIT_S20,
1204
},
1205
.ops = &fsl_ssi_dai_ops,
1206
};
1207
1208
static struct fsl_ssi *fsl_ac97_data;
1209
1210
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1211
unsigned short val)
1212
{
1213
struct regmap *regs = fsl_ac97_data->regs;
1214
unsigned int lreg;
1215
unsigned int lval;
1216
int ret;
1217
1218
if (reg > 0x7f)
1219
return;
1220
1221
mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1222
1223
ret = clk_prepare_enable(fsl_ac97_data->clk);
1224
if (ret) {
1225
pr_err("ac97 write clk_prepare_enable failed: %d\n",
1226
ret);
1227
goto ret_unlock;
1228
}
1229
1230
lreg = reg << 12;
1231
regmap_write(regs, REG_SSI_SACADD, lreg);
1232
1233
lval = val << 4;
1234
regmap_write(regs, REG_SSI_SACDAT, lval);
1235
1236
regmap_update_bits(regs, REG_SSI_SACNT,
1237
SSI_SACNT_RDWR_MASK, SSI_SACNT_WR);
1238
udelay(100);
1239
1240
clk_disable_unprepare(fsl_ac97_data->clk);
1241
1242
ret_unlock:
1243
mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1244
}
1245
1246
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1247
unsigned short reg)
1248
{
1249
struct regmap *regs = fsl_ac97_data->regs;
1250
unsigned short val = 0;
1251
u32 reg_val;
1252
unsigned int lreg;
1253
int ret;
1254
1255
mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1256
1257
ret = clk_prepare_enable(fsl_ac97_data->clk);
1258
if (ret) {
1259
pr_err("ac97 read clk_prepare_enable failed: %d\n", ret);
1260
goto ret_unlock;
1261
}
1262
1263
lreg = (reg & 0x7f) << 12;
1264
regmap_write(regs, REG_SSI_SACADD, lreg);
1265
regmap_update_bits(regs, REG_SSI_SACNT,
1266
SSI_SACNT_RDWR_MASK, SSI_SACNT_RD);
1267
1268
udelay(100);
1269
1270
regmap_read(regs, REG_SSI_SACDAT, &reg_val);
1271
val = (reg_val >> 4) & 0xffff;
1272
1273
clk_disable_unprepare(fsl_ac97_data->clk);
1274
1275
ret_unlock:
1276
mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1277
return val;
1278
}
1279
1280
static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1281
.read = fsl_ssi_ac97_read,
1282
.write = fsl_ssi_ac97_write,
1283
};
1284
1285
/**
1286
* fsl_ssi_hw_init - Initialize SSI registers
1287
* @ssi: SSI context
1288
*/
1289
static int fsl_ssi_hw_init(struct fsl_ssi *ssi)
1290
{
1291
u32 wm = ssi->fifo_watermark;
1292
1293
/* Initialize regvals */
1294
fsl_ssi_setup_regvals(ssi);
1295
1296
/* Set watermarks */
1297
regmap_write(ssi->regs, REG_SSI_SFCSR,
1298
SSI_SFCSR_TFWM0(wm) | SSI_SFCSR_RFWM0(wm) |
1299
SSI_SFCSR_TFWM1(wm) | SSI_SFCSR_RFWM1(wm));
1300
1301
/* Enable Dual FIFO mode */
1302
if (ssi->use_dual_fifo)
1303
regmap_update_bits(ssi->regs, REG_SSI_SCR,
1304
SSI_SCR_TCH_EN, SSI_SCR_TCH_EN);
1305
1306
/* AC97 should start earlier to communicate with CODECs */
1307
if (fsl_ssi_is_ac97(ssi)) {
1308
_fsl_ssi_set_dai_fmt(ssi, ssi->dai_fmt);
1309
fsl_ssi_setup_ac97(ssi);
1310
}
1311
1312
return 0;
1313
}
1314
1315
/**
1316
* fsl_ssi_hw_clean - Clear SSI registers
1317
* @ssi: SSI context
1318
*/
1319
static void fsl_ssi_hw_clean(struct fsl_ssi *ssi)
1320
{
1321
/* Disable registers for AC97 */
1322
if (fsl_ssi_is_ac97(ssi)) {
1323
/* Disable TE and RE bits first */
1324
regmap_update_bits(ssi->regs, REG_SSI_SCR,
1325
SSI_SCR_TE | SSI_SCR_RE, 0);
1326
/* Disable AC97 mode */
1327
regmap_write(ssi->regs, REG_SSI_SACNT, 0);
1328
/* Unset WAIT bits */
1329
regmap_write(ssi->regs, REG_SSI_SOR, 0);
1330
/* Disable SSI -- software reset */
1331
regmap_update_bits(ssi->regs, REG_SSI_SCR, SSI_SCR_SSIEN, 0);
1332
}
1333
}
1334
1335
/*
1336
* Make every character in a string lower-case
1337
*/
1338
static void make_lowercase(char *s)
1339
{
1340
if (!s)
1341
return;
1342
for (; *s; s++)
1343
*s = tolower(*s);
1344
}
1345
1346
static int fsl_ssi_imx_probe(struct platform_device *pdev,
1347
struct fsl_ssi *ssi, void __iomem *iomem)
1348
{
1349
struct device *dev = &pdev->dev;
1350
int ret;
1351
1352
/* Backward compatible for a DT without ipg clock name assigned */
1353
if (ssi->has_ipg_clk_name)
1354
ssi->clk = devm_clk_get(dev, "ipg");
1355
else
1356
ssi->clk = devm_clk_get(dev, NULL);
1357
if (IS_ERR(ssi->clk)) {
1358
ret = PTR_ERR(ssi->clk);
1359
dev_err(dev, "failed to get clock: %d\n", ret);
1360
return ret;
1361
}
1362
1363
/* Enable the clock since regmap will not handle it in this case */
1364
if (!ssi->has_ipg_clk_name) {
1365
ret = clk_prepare_enable(ssi->clk);
1366
if (ret) {
1367
dev_err(dev, "clk_prepare_enable failed: %d\n", ret);
1368
return ret;
1369
}
1370
}
1371
1372
/* Do not error out for consumer cases that live without a baud clock */
1373
ssi->baudclk = devm_clk_get(dev, "baud");
1374
if (IS_ERR(ssi->baudclk))
1375
dev_dbg(dev, "failed to get baud clock: %ld\n",
1376
PTR_ERR(ssi->baudclk));
1377
1378
ssi->dma_params_tx.maxburst = ssi->dma_maxburst;
1379
ssi->dma_params_rx.maxburst = ssi->dma_maxburst;
1380
ssi->dma_params_tx.addr = ssi->ssi_phys + REG_SSI_STX0;
1381
ssi->dma_params_rx.addr = ssi->ssi_phys + REG_SSI_SRX0;
1382
1383
/* Use even numbers to avoid channel swap due to SDMA script design */
1384
if (ssi->use_dual_fifo || ssi->use_dyna_fifo) {
1385
ssi->dma_params_tx.maxburst &= ~0x1;
1386
ssi->dma_params_rx.maxburst &= ~0x1;
1387
}
1388
1389
if (!ssi->use_dma) {
1390
/*
1391
* Some boards use an incompatible codec. Use imx-fiq-pcm-audio
1392
* to get it working, as DMA is not possible in this situation.
1393
*/
1394
ssi->fiq_params.irq = ssi->irq;
1395
ssi->fiq_params.base = iomem;
1396
ssi->fiq_params.dma_params_rx = &ssi->dma_params_rx;
1397
ssi->fiq_params.dma_params_tx = &ssi->dma_params_tx;
1398
1399
ret = imx_pcm_fiq_init(pdev, &ssi->fiq_params);
1400
if (ret)
1401
goto error_pcm;
1402
} else {
1403
ret = imx_pcm_dma_init(pdev);
1404
if (ret) {
1405
dev_err_probe(dev, ret, "Failed to init PCM DMA\n");
1406
goto error_pcm;
1407
}
1408
}
1409
1410
return 0;
1411
1412
error_pcm:
1413
if (!ssi->has_ipg_clk_name)
1414
clk_disable_unprepare(ssi->clk);
1415
1416
return ret;
1417
}
1418
1419
static void fsl_ssi_imx_clean(struct platform_device *pdev, struct fsl_ssi *ssi)
1420
{
1421
if (!ssi->use_dma)
1422
imx_pcm_fiq_exit(pdev);
1423
if (!ssi->has_ipg_clk_name)
1424
clk_disable_unprepare(ssi->clk);
1425
}
1426
1427
static int fsl_ssi_probe_from_dt(struct fsl_ssi *ssi)
1428
{
1429
struct device *dev = ssi->dev;
1430
struct device_node *np = dev->of_node;
1431
const char *p, *sprop;
1432
const __be32 *iprop;
1433
u32 dmas[4];
1434
int ret;
1435
1436
ret = of_property_match_string(np, "clock-names", "ipg");
1437
/* Get error code if not found */
1438
ssi->has_ipg_clk_name = ret >= 0;
1439
1440
/* Check if being used in AC97 mode */
1441
sprop = of_get_property(np, "fsl,mode", NULL);
1442
if (sprop && !strcmp(sprop, "ac97-slave")) {
1443
ssi->dai_fmt = FSLSSI_AC97_DAIFMT;
1444
1445
ret = of_property_read_u32(np, "cell-index", &ssi->card_idx);
1446
if (ret) {
1447
dev_err(dev, "failed to get SSI index property\n");
1448
return -EINVAL;
1449
}
1450
strcpy(ssi->card_name, "ac97-codec");
1451
} else if (!of_property_read_bool(np, "fsl,ssi-asynchronous")) {
1452
/*
1453
* In synchronous mode, STCK and STFS ports are used by RX
1454
* as well. So the software should limit the sample rates,
1455
* sample bits and channels to be symmetric.
1456
*
1457
* This is exclusive with FSLSSI_AC97_FORMATS as AC97 runs
1458
* in the SSI synchronous mode however it does not have to
1459
* limit symmetric sample rates and sample bits.
1460
*/
1461
ssi->synchronous = true;
1462
}
1463
1464
/* Select DMA or FIQ */
1465
ssi->use_dma = !of_property_read_bool(np, "fsl,fiq-stream-filter");
1466
1467
/* Fetch FIFO depth; Set to 8 for older DT without this property */
1468
iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1469
if (iprop)
1470
ssi->fifo_depth = be32_to_cpup(iprop);
1471
else
1472
ssi->fifo_depth = 8;
1473
1474
/* Use dual FIFO mode depending on the support from SDMA script */
1475
ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1476
if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL)
1477
ssi->use_dual_fifo = true;
1478
1479
if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1480
ssi->use_dyna_fifo = true;
1481
/*
1482
* Backward compatible for older bindings by manually triggering the
1483
* machine driver's probe(). Use /compatible property, including the
1484
* address of CPU DAI driver structure, as the name of machine driver
1485
*
1486
* If card_name is set by AC97 earlier, bypass here since it uses a
1487
* different name to register the device.
1488
*/
1489
if (!ssi->card_name[0] && of_get_property(np, "codec-handle", NULL)) {
1490
struct device_node *root = of_find_node_by_path("/");
1491
1492
sprop = of_get_property(root, "compatible", NULL);
1493
of_node_put(root);
1494
/* Strip "fsl," in the compatible name if applicable */
1495
p = strrchr(sprop, ',');
1496
if (p)
1497
sprop = p + 1;
1498
snprintf(ssi->card_name, sizeof(ssi->card_name),
1499
"snd-soc-%s", sprop);
1500
make_lowercase(ssi->card_name);
1501
ssi->card_idx = 0;
1502
}
1503
1504
return 0;
1505
}
1506
1507
static int fsl_ssi_probe(struct platform_device *pdev)
1508
{
1509
struct regmap_config regconfig = fsl_ssi_regconfig;
1510
struct device *dev = &pdev->dev;
1511
struct fsl_ssi *ssi;
1512
struct resource *res;
1513
void __iomem *iomem;
1514
int ret = 0;
1515
1516
ssi = devm_kzalloc(dev, sizeof(*ssi), GFP_KERNEL);
1517
if (!ssi)
1518
return -ENOMEM;
1519
1520
ssi->dev = dev;
1521
ssi->soc = of_device_get_match_data(&pdev->dev);
1522
1523
/* Probe from DT */
1524
ret = fsl_ssi_probe_from_dt(ssi);
1525
if (ret)
1526
return ret;
1527
1528
if (fsl_ssi_is_ac97(ssi)) {
1529
memcpy(&ssi->cpu_dai_drv, &fsl_ssi_ac97_dai,
1530
sizeof(fsl_ssi_ac97_dai));
1531
fsl_ac97_data = ssi;
1532
} else {
1533
memcpy(&ssi->cpu_dai_drv, &fsl_ssi_dai_template,
1534
sizeof(fsl_ssi_dai_template));
1535
}
1536
ssi->cpu_dai_drv.name = dev_name(dev);
1537
1538
iomem = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1539
if (IS_ERR(iomem))
1540
return PTR_ERR(iomem);
1541
ssi->ssi_phys = res->start;
1542
1543
if (ssi->soc->imx21regs) {
1544
/* No SACC{ST,EN,DIS} regs in imx21-class SSI */
1545
regconfig.max_register = REG_SSI_SRMSK;
1546
regconfig.num_reg_defaults_raw =
1547
REG_SSI_SRMSK / sizeof(uint32_t) + 1;
1548
}
1549
1550
if (ssi->has_ipg_clk_name)
1551
ssi->regs = devm_regmap_init_mmio_clk(dev, "ipg", iomem,
1552
&regconfig);
1553
else
1554
ssi->regs = devm_regmap_init_mmio(dev, iomem, &regconfig);
1555
if (IS_ERR(ssi->regs)) {
1556
dev_err(dev, "failed to init register map\n");
1557
return PTR_ERR(ssi->regs);
1558
}
1559
1560
ssi->irq = platform_get_irq(pdev, 0);
1561
if (ssi->irq < 0)
1562
return ssi->irq;
1563
1564
/* Set software limitations for synchronous mode except AC97 */
1565
if (ssi->synchronous && !fsl_ssi_is_ac97(ssi)) {
1566
ssi->cpu_dai_drv.symmetric_rate = 1;
1567
ssi->cpu_dai_drv.symmetric_channels = 1;
1568
ssi->cpu_dai_drv.symmetric_sample_bits = 1;
1569
}
1570
1571
/*
1572
* Configure TX and RX DMA watermarks -- when to send a DMA request
1573
*
1574
* Values should be tested to avoid FIFO under/over run. Set maxburst
1575
* to fifo_watermark to maxiumize DMA transaction to reduce overhead.
1576
*/
1577
switch (ssi->fifo_depth) {
1578
case 15:
1579
/*
1580
* Set to 8 as a balanced configuration -- When TX FIFO has 8
1581
* empty slots, send a DMA request to fill these 8 slots. The
1582
* remaining 7 slots should be able to allow DMA to finish the
1583
* transaction before TX FIFO underruns; Same applies to RX.
1584
*
1585
* Tested with cases running at 48kHz @ 16 bits x 16 channels
1586
*/
1587
ssi->fifo_watermark = 8;
1588
ssi->dma_maxburst = 8;
1589
break;
1590
case 8:
1591
default:
1592
/* Safely use old watermark configurations for older chips */
1593
ssi->fifo_watermark = ssi->fifo_depth - 2;
1594
ssi->dma_maxburst = ssi->fifo_depth - 2;
1595
break;
1596
}
1597
1598
dev_set_drvdata(dev, ssi);
1599
1600
if (ssi->soc->imx) {
1601
ret = fsl_ssi_imx_probe(pdev, ssi, iomem);
1602
if (ret)
1603
return ret;
1604
}
1605
1606
if (fsl_ssi_is_ac97(ssi)) {
1607
mutex_init(&ssi->ac97_reg_lock);
1608
ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1609
if (ret) {
1610
dev_err(dev, "failed to set AC'97 ops\n");
1611
goto error_ac97_ops;
1612
}
1613
}
1614
1615
ret = devm_snd_soc_register_component(dev, &fsl_ssi_component,
1616
&ssi->cpu_dai_drv, 1);
1617
if (ret) {
1618
dev_err(dev, "failed to register DAI: %d\n", ret);
1619
goto error_asoc_register;
1620
}
1621
1622
if (ssi->use_dma) {
1623
ret = devm_request_irq(dev, ssi->irq, fsl_ssi_isr, 0,
1624
dev_name(dev), ssi);
1625
if (ret < 0) {
1626
dev_err(dev, "failed to claim irq %u\n", ssi->irq);
1627
goto error_asoc_register;
1628
}
1629
}
1630
1631
fsl_ssi_debugfs_create(&ssi->dbg_stats, dev);
1632
1633
/* Initially configures SSI registers */
1634
fsl_ssi_hw_init(ssi);
1635
1636
/* Register a platform device for older bindings or AC97 */
1637
if (ssi->card_name[0]) {
1638
struct device *parent = dev;
1639
/*
1640
* Do not set SSI dev as the parent of AC97 CODEC device since
1641
* it does not have a DT node. Otherwise ASoC core will assume
1642
* CODEC has the same DT node as the SSI, so it may bypass the
1643
* dai_probe() of SSI and then cause NULL DMA data pointers.
1644
*/
1645
if (fsl_ssi_is_ac97(ssi))
1646
parent = NULL;
1647
1648
ssi->card_pdev = platform_device_register_data(parent,
1649
ssi->card_name, ssi->card_idx, NULL, 0);
1650
if (IS_ERR(ssi->card_pdev)) {
1651
ret = PTR_ERR(ssi->card_pdev);
1652
dev_err(dev, "failed to register %s: %d\n",
1653
ssi->card_name, ret);
1654
goto error_sound_card;
1655
}
1656
}
1657
1658
return 0;
1659
1660
error_sound_card:
1661
fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1662
error_asoc_register:
1663
if (fsl_ssi_is_ac97(ssi))
1664
snd_soc_set_ac97_ops(NULL);
1665
error_ac97_ops:
1666
if (fsl_ssi_is_ac97(ssi))
1667
mutex_destroy(&ssi->ac97_reg_lock);
1668
1669
if (ssi->soc->imx)
1670
fsl_ssi_imx_clean(pdev, ssi);
1671
1672
return ret;
1673
}
1674
1675
static void fsl_ssi_remove(struct platform_device *pdev)
1676
{
1677
struct fsl_ssi *ssi = dev_get_drvdata(&pdev->dev);
1678
1679
fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1680
1681
if (ssi->card_pdev)
1682
platform_device_unregister(ssi->card_pdev);
1683
1684
/* Clean up SSI registers */
1685
fsl_ssi_hw_clean(ssi);
1686
1687
if (ssi->soc->imx)
1688
fsl_ssi_imx_clean(pdev, ssi);
1689
1690
if (fsl_ssi_is_ac97(ssi)) {
1691
snd_soc_set_ac97_ops(NULL);
1692
mutex_destroy(&ssi->ac97_reg_lock);
1693
}
1694
}
1695
1696
static int fsl_ssi_suspend(struct device *dev)
1697
{
1698
struct fsl_ssi *ssi = dev_get_drvdata(dev);
1699
struct regmap *regs = ssi->regs;
1700
1701
regmap_read(regs, REG_SSI_SFCSR, &ssi->regcache_sfcsr);
1702
regmap_read(regs, REG_SSI_SACNT, &ssi->regcache_sacnt);
1703
1704
regcache_cache_only(regs, true);
1705
regcache_mark_dirty(regs);
1706
1707
return 0;
1708
}
1709
1710
static int fsl_ssi_resume(struct device *dev)
1711
{
1712
struct fsl_ssi *ssi = dev_get_drvdata(dev);
1713
struct regmap *regs = ssi->regs;
1714
1715
regcache_cache_only(regs, false);
1716
1717
regmap_update_bits(regs, REG_SSI_SFCSR,
1718
SSI_SFCSR_RFWM1_MASK | SSI_SFCSR_TFWM1_MASK |
1719
SSI_SFCSR_RFWM0_MASK | SSI_SFCSR_TFWM0_MASK,
1720
ssi->regcache_sfcsr);
1721
regmap_write(regs, REG_SSI_SACNT, ssi->regcache_sacnt);
1722
1723
return regcache_sync(regs);
1724
}
1725
1726
static const struct dev_pm_ops fsl_ssi_pm = {
1727
SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
1728
};
1729
1730
static struct platform_driver fsl_ssi_driver = {
1731
.driver = {
1732
.name = "fsl-ssi-dai",
1733
.of_match_table = fsl_ssi_ids,
1734
.pm = pm_sleep_ptr(&fsl_ssi_pm),
1735
},
1736
.probe = fsl_ssi_probe,
1737
.remove = fsl_ssi_remove,
1738
};
1739
1740
module_platform_driver(fsl_ssi_driver);
1741
1742
MODULE_ALIAS("platform:fsl-ssi-dai");
1743
MODULE_AUTHOR("Timur Tabi <[email protected]>");
1744
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1745
MODULE_LICENSE("GPL v2");
1746
1747