Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/soc/intel/atom/sst-atom-controls.c
26493 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* sst-atom-controls.c - Intel MID Platform driver DPCM ALSA controls for Mrfld
4
*
5
* Copyright (C) 2013-14 Intel Corp
6
* Author: Omair Mohammed Abdullah <[email protected]>
7
* Vinod Koul <[email protected]>
8
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9
*
10
* In the dpcm driver modelling when a particular FE/BE/Mixer/Pipe is active
11
* we forward the settings and parameters, rest we keep the values in
12
* driver and forward when DAPM enables them
13
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14
*/
15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17
#include <linux/slab.h>
18
#include <sound/soc.h>
19
#include <sound/tlv.h>
20
#include "sst-mfld-platform.h"
21
#include "sst-atom-controls.h"
22
23
static int sst_fill_byte_control(struct sst_data *drv,
24
u8 ipc_msg, u8 block,
25
u8 task_id, u8 pipe_id,
26
u16 len, void *cmd_data)
27
{
28
struct snd_sst_bytes_v2 *byte_data = drv->byte_stream;
29
30
byte_data->type = SST_CMD_BYTES_SET;
31
byte_data->ipc_msg = ipc_msg;
32
byte_data->block = block;
33
byte_data->task_id = task_id;
34
byte_data->pipe_id = pipe_id;
35
36
if (len > SST_MAX_BIN_BYTES - sizeof(*byte_data)) {
37
dev_err(&drv->pdev->dev, "command length too big (%u)", len);
38
return -EINVAL;
39
}
40
byte_data->len = len;
41
memcpy(byte_data->bytes, cmd_data, len);
42
print_hex_dump_bytes("writing to lpe: ", DUMP_PREFIX_OFFSET,
43
byte_data, len + sizeof(*byte_data));
44
return 0;
45
}
46
47
static int sst_fill_and_send_cmd_unlocked(struct sst_data *drv,
48
u8 ipc_msg, u8 block, u8 task_id, u8 pipe_id,
49
void *cmd_data, u16 len)
50
{
51
int ret = 0;
52
53
WARN_ON(!mutex_is_locked(&drv->lock));
54
55
ret = sst_fill_byte_control(drv, ipc_msg,
56
block, task_id, pipe_id, len, cmd_data);
57
if (ret < 0)
58
return ret;
59
return sst->ops->send_byte_stream(sst->dev, drv->byte_stream);
60
}
61
62
/**
63
* sst_fill_and_send_cmd - generate the IPC message and send it to the FW
64
* @drv: sst_data
65
* @ipc_msg: type of IPC (CMD, SET_PARAMS, GET_PARAMS)
66
* @block: block index
67
* @task_id: task index
68
* @pipe_id: pipe index
69
* @cmd_data: the IPC payload
70
* @len: length of data to be sent
71
*/
72
static int sst_fill_and_send_cmd(struct sst_data *drv,
73
u8 ipc_msg, u8 block, u8 task_id, u8 pipe_id,
74
void *cmd_data, u16 len)
75
{
76
int ret;
77
78
mutex_lock(&drv->lock);
79
ret = sst_fill_and_send_cmd_unlocked(drv, ipc_msg, block,
80
task_id, pipe_id, cmd_data, len);
81
mutex_unlock(&drv->lock);
82
83
return ret;
84
}
85
86
/*
87
* tx map value is a bitfield where each bit represents a FW channel
88
*
89
* 3 2 1 0 # 0 = codec0, 1 = codec1
90
* RLRLRLRL # 3, 4 = reserved
91
*
92
* e.g. slot 0 rx map = 00001100b -> data from slot 0 goes into codec_in1 L,R
93
*/
94
static u8 sst_ssp_tx_map[SST_MAX_TDM_SLOTS] = {
95
0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, /* default rx map */
96
};
97
98
/*
99
* rx map value is a bitfield where each bit represents a slot
100
*
101
* 76543210 # 0 = slot 0, 1 = slot 1
102
*
103
* e.g. codec1_0 tx map = 00000101b -> data from codec_out1_0 goes into slot 0, 2
104
*/
105
static u8 sst_ssp_rx_map[SST_MAX_TDM_SLOTS] = {
106
0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, /* default tx map */
107
};
108
109
/*
110
* NOTE: this is invoked with lock held
111
*/
112
static int sst_send_slot_map(struct sst_data *drv)
113
{
114
struct sst_param_sba_ssp_slot_map cmd;
115
116
SST_FILL_DEFAULT_DESTINATION(cmd.header.dst);
117
cmd.header.command_id = SBA_SET_SSP_SLOT_MAP;
118
cmd.header.length = sizeof(struct sst_param_sba_ssp_slot_map)
119
- sizeof(struct sst_dsp_header);
120
121
cmd.param_id = SBA_SET_SSP_SLOT_MAP;
122
cmd.param_len = sizeof(cmd.rx_slot_map) + sizeof(cmd.tx_slot_map)
123
+ sizeof(cmd.ssp_index);
124
cmd.ssp_index = SSP_CODEC;
125
126
memcpy(cmd.rx_slot_map, &sst_ssp_tx_map[0], sizeof(cmd.rx_slot_map));
127
memcpy(cmd.tx_slot_map, &sst_ssp_rx_map[0], sizeof(cmd.tx_slot_map));
128
129
return sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS,
130
SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &cmd,
131
sizeof(cmd.header) + cmd.header.length);
132
}
133
134
static int sst_slot_enum_info(struct snd_kcontrol *kcontrol,
135
struct snd_ctl_elem_info *uinfo)
136
{
137
struct sst_enum *e = (struct sst_enum *)kcontrol->private_value;
138
139
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
140
uinfo->count = 1;
141
uinfo->value.enumerated.items = e->max;
142
143
if (uinfo->value.enumerated.item > e->max - 1)
144
uinfo->value.enumerated.item = e->max - 1;
145
strcpy(uinfo->value.enumerated.name,
146
e->texts[uinfo->value.enumerated.item]);
147
148
return 0;
149
}
150
151
/**
152
* sst_slot_get - get the status of the interleaver/deinterleaver control
153
* @kcontrol: control pointer
154
* @ucontrol: User data
155
* Searches the map where the control status is stored, and gets the
156
* channel/slot which is currently set for this enumerated control. Since it is
157
* an enumerated control, there is only one possible value.
158
*/
159
static int sst_slot_get(struct snd_kcontrol *kcontrol,
160
struct snd_ctl_elem_value *ucontrol)
161
{
162
struct sst_enum *e = (void *)kcontrol->private_value;
163
struct snd_soc_component *c = snd_kcontrol_chip(kcontrol);
164
struct sst_data *drv = snd_soc_component_get_drvdata(c);
165
unsigned int ctl_no = e->reg;
166
unsigned int is_tx = e->tx;
167
unsigned int val, mux;
168
u8 *map = is_tx ? sst_ssp_rx_map : sst_ssp_tx_map;
169
170
mutex_lock(&drv->lock);
171
val = 1 << ctl_no;
172
/* search which slot/channel has this bit set - there should be only one */
173
for (mux = e->max; mux > 0; mux--)
174
if (map[mux - 1] & val)
175
break;
176
177
ucontrol->value.enumerated.item[0] = mux;
178
mutex_unlock(&drv->lock);
179
180
dev_dbg(c->dev, "%s - %s map = %#x\n",
181
is_tx ? "tx channel" : "rx slot",
182
e->texts[mux], mux ? map[mux - 1] : -1);
183
return 0;
184
}
185
186
/* sst_check_and_send_slot_map - helper for checking power state and sending
187
* slot map cmd
188
*
189
* called with lock held
190
*/
191
static int sst_check_and_send_slot_map(struct sst_data *drv, struct snd_kcontrol *kcontrol)
192
{
193
struct sst_enum *e = (void *)kcontrol->private_value;
194
int ret = 0;
195
196
if (e->w && e->w->power)
197
ret = sst_send_slot_map(drv);
198
else if (!e->w)
199
dev_err(&drv->pdev->dev, "Slot control: %s doesn't have DAPM widget!!!\n",
200
kcontrol->id.name);
201
return ret;
202
}
203
204
/**
205
* sst_slot_put - set the status of interleaver/deinterleaver control
206
* @kcontrol: control pointer
207
* @ucontrol: User data
208
* (de)interleaver controls are defined in opposite sense to be user-friendly
209
*
210
* Instead of the enum value being the value written to the register, it is the
211
* register address; and the kcontrol number (register num) is the value written
212
* to the register. This is so that there can be only one value for each
213
* slot/channel since there is only one control for each slot/channel.
214
*
215
* This means that whenever an enum is set, we need to clear the bit
216
* for that kcontrol_no for all the interleaver OR deinterleaver registers
217
*/
218
static int sst_slot_put(struct snd_kcontrol *kcontrol,
219
struct snd_ctl_elem_value *ucontrol)
220
{
221
struct snd_soc_component *c = snd_soc_kcontrol_component(kcontrol);
222
struct sst_data *drv = snd_soc_component_get_drvdata(c);
223
struct sst_enum *e = (void *)kcontrol->private_value;
224
int i, ret = 0;
225
unsigned int ctl_no = e->reg;
226
unsigned int is_tx = e->tx;
227
unsigned int slot_channel_no;
228
unsigned int val, mux;
229
u8 *map;
230
231
map = is_tx ? sst_ssp_rx_map : sst_ssp_tx_map;
232
233
val = 1 << ctl_no;
234
mux = ucontrol->value.enumerated.item[0];
235
if (mux > e->max - 1)
236
return -EINVAL;
237
238
mutex_lock(&drv->lock);
239
/* first clear all registers of this bit */
240
for (i = 0; i < e->max; i++)
241
map[i] &= ~val;
242
243
if (mux == 0) {
244
/* kctl set to 'none' and we reset the bits so send IPC */
245
ret = sst_check_and_send_slot_map(drv, kcontrol);
246
247
mutex_unlock(&drv->lock);
248
return ret;
249
}
250
251
/* offset by one to take "None" into account */
252
slot_channel_no = mux - 1;
253
map[slot_channel_no] |= val;
254
255
dev_dbg(c->dev, "%s %s map = %#x\n",
256
is_tx ? "tx channel" : "rx slot",
257
e->texts[mux], map[slot_channel_no]);
258
259
ret = sst_check_and_send_slot_map(drv, kcontrol);
260
261
mutex_unlock(&drv->lock);
262
return ret;
263
}
264
265
static int sst_send_algo_cmd(struct sst_data *drv,
266
struct sst_algo_control *bc)
267
{
268
int len, ret = 0;
269
struct sst_cmd_set_params *cmd;
270
271
/*bc->max includes sizeof algos + length field*/
272
len = sizeof(cmd->dst) + sizeof(cmd->command_id) + bc->max;
273
274
cmd = kzalloc(len, GFP_KERNEL);
275
if (cmd == NULL)
276
return -ENOMEM;
277
278
SST_FILL_DESTINATION(2, cmd->dst, bc->pipe_id, bc->module_id);
279
cmd->command_id = bc->cmd_id;
280
memcpy(cmd->params, bc->params, bc->max);
281
282
ret = sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS,
283
SST_FLAG_BLOCKED, bc->task_id, 0, cmd, len);
284
kfree(cmd);
285
return ret;
286
}
287
288
/**
289
* sst_find_and_send_pipe_algo - send all the algo parameters for a pipe
290
* @drv: sst_data
291
* @pipe: string identifier
292
* @ids: list of algorithms
293
* The algos which are in each pipeline are sent to the firmware one by one
294
*
295
* Called with lock held
296
*/
297
static int sst_find_and_send_pipe_algo(struct sst_data *drv,
298
const char *pipe, struct sst_ids *ids)
299
{
300
int ret = 0;
301
struct sst_algo_control *bc;
302
struct sst_module *algo;
303
304
dev_dbg(&drv->pdev->dev, "Enter: widget=%s\n", pipe);
305
306
list_for_each_entry(algo, &ids->algo_list, node) {
307
bc = (void *)algo->kctl->private_value;
308
309
dev_dbg(&drv->pdev->dev, "Found algo control name=%s pipe=%s\n",
310
algo->kctl->id.name, pipe);
311
ret = sst_send_algo_cmd(drv, bc);
312
if (ret)
313
return ret;
314
}
315
return ret;
316
}
317
318
static int sst_algo_bytes_ctl_info(struct snd_kcontrol *kcontrol,
319
struct snd_ctl_elem_info *uinfo)
320
{
321
struct sst_algo_control *bc = (void *)kcontrol->private_value;
322
323
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
324
uinfo->count = bc->max;
325
326
return 0;
327
}
328
329
static int sst_algo_control_get(struct snd_kcontrol *kcontrol,
330
struct snd_ctl_elem_value *ucontrol)
331
{
332
struct sst_algo_control *bc = (void *)kcontrol->private_value;
333
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
334
335
switch (bc->type) {
336
case SST_ALGO_PARAMS:
337
memcpy(ucontrol->value.bytes.data, bc->params, bc->max);
338
break;
339
default:
340
dev_err(component->dev, "Invalid Input- algo type:%d\n",
341
bc->type);
342
return -EINVAL;
343
344
}
345
return 0;
346
}
347
348
static int sst_algo_control_set(struct snd_kcontrol *kcontrol,
349
struct snd_ctl_elem_value *ucontrol)
350
{
351
int ret = 0;
352
struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
353
struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt);
354
struct sst_algo_control *bc = (void *)kcontrol->private_value;
355
356
dev_dbg(cmpnt->dev, "control_name=%s\n", kcontrol->id.name);
357
mutex_lock(&drv->lock);
358
switch (bc->type) {
359
case SST_ALGO_PARAMS:
360
memcpy(bc->params, ucontrol->value.bytes.data, bc->max);
361
break;
362
default:
363
mutex_unlock(&drv->lock);
364
dev_err(cmpnt->dev, "Invalid Input- algo type:%d\n",
365
bc->type);
366
return -EINVAL;
367
}
368
/*if pipe is enabled, need to send the algo params from here*/
369
if (bc->w && bc->w->power)
370
ret = sst_send_algo_cmd(drv, bc);
371
mutex_unlock(&drv->lock);
372
373
return ret;
374
}
375
376
static int sst_gain_ctl_info(struct snd_kcontrol *kcontrol,
377
struct snd_ctl_elem_info *uinfo)
378
{
379
struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value;
380
381
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
382
uinfo->count = mc->stereo ? 2 : 1;
383
uinfo->value.integer.min = mc->min;
384
uinfo->value.integer.max = mc->max;
385
386
return 0;
387
}
388
389
/**
390
* sst_send_gain_cmd - send the gain algorithm IPC to the FW
391
* @drv: sst_data
392
* @gv:the stored value of gain (also contains rampduration)
393
* @task_id: task index
394
* @loc_id: location/position index
395
* @module_id: module index
396
* @mute: flag that indicates whether this was called from the
397
* digital_mute callback or directly. If called from the
398
* digital_mute callback, module will be muted/unmuted based on this
399
* flag. The flag is always 0 if called directly.
400
*
401
* Called with sst_data.lock held
402
*
403
* The user-set gain value is sent only if the user-controllable 'mute' control
404
* is OFF (indicated by gv->mute). Otherwise, the mute value (MIN value) is
405
* sent.
406
*/
407
static int sst_send_gain_cmd(struct sst_data *drv, struct sst_gain_value *gv,
408
u16 task_id, u16 loc_id, u16 module_id, int mute)
409
{
410
struct sst_cmd_set_gain_dual cmd;
411
412
dev_dbg(&drv->pdev->dev, "Enter\n");
413
414
cmd.header.command_id = MMX_SET_GAIN;
415
SST_FILL_DEFAULT_DESTINATION(cmd.header.dst);
416
cmd.gain_cell_num = 1;
417
418
if (mute || gv->mute) {
419
cmd.cell_gains[0].cell_gain_left = SST_GAIN_MIN_VALUE;
420
cmd.cell_gains[0].cell_gain_right = SST_GAIN_MIN_VALUE;
421
} else {
422
cmd.cell_gains[0].cell_gain_left = gv->l_gain;
423
cmd.cell_gains[0].cell_gain_right = gv->r_gain;
424
}
425
426
SST_FILL_DESTINATION(2, cmd.cell_gains[0].dest,
427
loc_id, module_id);
428
cmd.cell_gains[0].gain_time_constant = gv->ramp_duration;
429
430
cmd.header.length = sizeof(struct sst_cmd_set_gain_dual)
431
- sizeof(struct sst_dsp_header);
432
433
/* we are with lock held, so call the unlocked api to send */
434
return sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_SET_PARAMS,
435
SST_FLAG_BLOCKED, task_id, 0, &cmd,
436
sizeof(cmd.header) + cmd.header.length);
437
}
438
439
static int sst_gain_get(struct snd_kcontrol *kcontrol,
440
struct snd_ctl_elem_value *ucontrol)
441
{
442
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
443
struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value;
444
struct sst_gain_value *gv = mc->gain_val;
445
446
switch (mc->type) {
447
case SST_GAIN_TLV:
448
ucontrol->value.integer.value[0] = gv->l_gain;
449
ucontrol->value.integer.value[1] = gv->r_gain;
450
break;
451
452
case SST_GAIN_MUTE:
453
ucontrol->value.integer.value[0] = gv->mute ? 0 : 1;
454
break;
455
456
case SST_GAIN_RAMP_DURATION:
457
ucontrol->value.integer.value[0] = gv->ramp_duration;
458
break;
459
460
default:
461
dev_err(component->dev, "Invalid Input- gain type:%d\n",
462
mc->type);
463
return -EINVAL;
464
}
465
466
return 0;
467
}
468
469
static int sst_gain_put(struct snd_kcontrol *kcontrol,
470
struct snd_ctl_elem_value *ucontrol)
471
{
472
int ret = 0;
473
struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol);
474
struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt);
475
struct sst_gain_mixer_control *mc = (void *)kcontrol->private_value;
476
struct sst_gain_value *gv = mc->gain_val;
477
478
mutex_lock(&drv->lock);
479
480
switch (mc->type) {
481
case SST_GAIN_TLV:
482
gv->l_gain = ucontrol->value.integer.value[0];
483
gv->r_gain = ucontrol->value.integer.value[1];
484
dev_dbg(cmpnt->dev, "%s: Volume %d, %d\n",
485
mc->pname, gv->l_gain, gv->r_gain);
486
break;
487
488
case SST_GAIN_MUTE:
489
gv->mute = !ucontrol->value.integer.value[0];
490
dev_dbg(cmpnt->dev, "%s: Mute %d\n", mc->pname, gv->mute);
491
break;
492
493
case SST_GAIN_RAMP_DURATION:
494
gv->ramp_duration = ucontrol->value.integer.value[0];
495
dev_dbg(cmpnt->dev, "%s: Ramp Delay%d\n",
496
mc->pname, gv->ramp_duration);
497
break;
498
499
default:
500
mutex_unlock(&drv->lock);
501
dev_err(cmpnt->dev, "Invalid Input- gain type:%d\n",
502
mc->type);
503
return -EINVAL;
504
}
505
506
if (mc->w && mc->w->power)
507
ret = sst_send_gain_cmd(drv, gv, mc->task_id,
508
mc->pipe_id | mc->instance_id, mc->module_id, 0);
509
mutex_unlock(&drv->lock);
510
511
return ret;
512
}
513
514
static int sst_set_pipe_gain(struct sst_ids *ids,
515
struct sst_data *drv, int mute);
516
517
static int sst_send_pipe_module_params(struct snd_soc_dapm_widget *w,
518
struct snd_kcontrol *kcontrol)
519
{
520
struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
521
struct sst_data *drv = snd_soc_component_get_drvdata(c);
522
struct sst_ids *ids = w->priv;
523
524
mutex_lock(&drv->lock);
525
sst_find_and_send_pipe_algo(drv, w->name, ids);
526
sst_set_pipe_gain(ids, drv, 0);
527
mutex_unlock(&drv->lock);
528
529
return 0;
530
}
531
532
static int sst_generic_modules_event(struct snd_soc_dapm_widget *w,
533
struct snd_kcontrol *k, int event)
534
{
535
if (SND_SOC_DAPM_EVENT_ON(event))
536
return sst_send_pipe_module_params(w, k);
537
return 0;
538
}
539
540
static const DECLARE_TLV_DB_SCALE(sst_gain_tlv_common, SST_GAIN_MIN_VALUE * 10, 10, 0);
541
542
/* Look up table to convert MIXER SW bit regs to SWM inputs */
543
static const uint swm_mixer_input_ids[SST_SWM_INPUT_COUNT] = {
544
[SST_IP_MODEM] = SST_SWM_IN_MODEM,
545
[SST_IP_CODEC0] = SST_SWM_IN_CODEC0,
546
[SST_IP_CODEC1] = SST_SWM_IN_CODEC1,
547
[SST_IP_LOOP0] = SST_SWM_IN_SPROT_LOOP,
548
[SST_IP_LOOP1] = SST_SWM_IN_MEDIA_LOOP1,
549
[SST_IP_LOOP2] = SST_SWM_IN_MEDIA_LOOP2,
550
[SST_IP_PCM0] = SST_SWM_IN_PCM0,
551
[SST_IP_PCM1] = SST_SWM_IN_PCM1,
552
[SST_IP_MEDIA0] = SST_SWM_IN_MEDIA0,
553
[SST_IP_MEDIA1] = SST_SWM_IN_MEDIA1,
554
[SST_IP_MEDIA2] = SST_SWM_IN_MEDIA2,
555
[SST_IP_MEDIA3] = SST_SWM_IN_MEDIA3,
556
};
557
558
/**
559
* fill_swm_input - fill in the SWM input ids given the register
560
* @cmpnt: ASoC component
561
* @swm_input: array of swm_input_ids
562
* @reg: the register value is a bit-field inicated which mixer inputs are ON.
563
*
564
* Use the lookup table to get the input-id and fill it in the
565
* structure.
566
*/
567
static int fill_swm_input(struct snd_soc_component *cmpnt,
568
struct swm_input_ids *swm_input, unsigned int reg)
569
{
570
uint i, is_set, nb_inputs = 0;
571
u16 input_loc_id;
572
573
dev_dbg(cmpnt->dev, "reg: %#x\n", reg);
574
for (i = 0; i < SST_SWM_INPUT_COUNT; i++) {
575
is_set = reg & BIT(i);
576
if (!is_set)
577
continue;
578
579
input_loc_id = swm_mixer_input_ids[i];
580
SST_FILL_DESTINATION(2, swm_input->input_id,
581
input_loc_id, SST_DEFAULT_MODULE_ID);
582
nb_inputs++;
583
swm_input++;
584
dev_dbg(cmpnt->dev, "input id: %#x, nb_inputs: %d\n",
585
input_loc_id, nb_inputs);
586
587
if (nb_inputs == SST_CMD_SWM_MAX_INPUTS) {
588
dev_warn(cmpnt->dev, "SET_SWM cmd max inputs reached");
589
break;
590
}
591
}
592
return nb_inputs;
593
}
594
595
596
/*
597
* called with lock held
598
*/
599
static int sst_set_pipe_gain(struct sst_ids *ids,
600
struct sst_data *drv, int mute)
601
{
602
int ret = 0;
603
struct sst_gain_mixer_control *mc;
604
struct sst_gain_value *gv;
605
struct sst_module *gain;
606
607
list_for_each_entry(gain, &ids->gain_list, node) {
608
struct snd_kcontrol *kctl = gain->kctl;
609
610
dev_dbg(&drv->pdev->dev, "control name=%s\n", kctl->id.name);
611
mc = (void *)kctl->private_value;
612
gv = mc->gain_val;
613
614
ret = sst_send_gain_cmd(drv, gv, mc->task_id,
615
mc->pipe_id | mc->instance_id, mc->module_id, mute);
616
if (ret)
617
return ret;
618
}
619
return ret;
620
}
621
622
static int sst_swm_mixer_event(struct snd_soc_dapm_widget *w,
623
struct snd_kcontrol *k, int event)
624
{
625
struct sst_cmd_set_swm cmd;
626
struct snd_soc_component *cmpnt = snd_soc_dapm_to_component(w->dapm);
627
struct sst_data *drv = snd_soc_component_get_drvdata(cmpnt);
628
struct sst_ids *ids = w->priv;
629
bool set_mixer = false;
630
struct soc_mixer_control *mc;
631
int val = 0;
632
int i = 0;
633
634
dev_dbg(cmpnt->dev, "widget = %s\n", w->name);
635
/*
636
* Identify which mixer input is on and send the bitmap of the
637
* inputs as an IPC to the DSP.
638
*/
639
for (i = 0; i < w->num_kcontrols; i++) {
640
if (dapm_kcontrol_get_value(w->kcontrols[i])) {
641
mc = (struct soc_mixer_control *)(w->kcontrols[i])->private_value;
642
val |= 1 << mc->shift;
643
}
644
}
645
dev_dbg(cmpnt->dev, "val = %#x\n", val);
646
647
switch (event) {
648
case SND_SOC_DAPM_PRE_PMU:
649
case SND_SOC_DAPM_POST_PMD:
650
set_mixer = true;
651
break;
652
case SND_SOC_DAPM_POST_REG:
653
if (w->power)
654
set_mixer = true;
655
break;
656
default:
657
set_mixer = false;
658
}
659
660
if (!set_mixer)
661
return 0;
662
663
if (SND_SOC_DAPM_EVENT_ON(event) ||
664
event == SND_SOC_DAPM_POST_REG)
665
cmd.switch_state = SST_SWM_ON;
666
else
667
cmd.switch_state = SST_SWM_OFF;
668
669
SST_FILL_DEFAULT_DESTINATION(cmd.header.dst);
670
/* MMX_SET_SWM == SBA_SET_SWM */
671
cmd.header.command_id = SBA_SET_SWM;
672
673
SST_FILL_DESTINATION(2, cmd.output_id,
674
ids->location_id, SST_DEFAULT_MODULE_ID);
675
cmd.nb_inputs = fill_swm_input(cmpnt, &cmd.input[0], val);
676
cmd.header.length = offsetof(struct sst_cmd_set_swm, input)
677
- sizeof(struct sst_dsp_header)
678
+ (cmd.nb_inputs * sizeof(cmd.input[0]));
679
680
return sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED,
681
ids->task_id, 0, &cmd,
682
sizeof(cmd.header) + cmd.header.length);
683
}
684
685
/* SBA mixers - 16 inputs */
686
#define SST_SBA_DECLARE_MIX_CONTROLS(kctl_name) \
687
static const struct snd_kcontrol_new kctl_name[] = { \
688
SOC_DAPM_SINGLE("modem_in Switch", SND_SOC_NOPM, SST_IP_MODEM, 1, 0), \
689
SOC_DAPM_SINGLE("codec_in0 Switch", SND_SOC_NOPM, SST_IP_CODEC0, 1, 0), \
690
SOC_DAPM_SINGLE("codec_in1 Switch", SND_SOC_NOPM, SST_IP_CODEC1, 1, 0), \
691
SOC_DAPM_SINGLE("sprot_loop_in Switch", SND_SOC_NOPM, SST_IP_LOOP0, 1, 0), \
692
SOC_DAPM_SINGLE("media_loop1_in Switch", SND_SOC_NOPM, SST_IP_LOOP1, 1, 0), \
693
SOC_DAPM_SINGLE("media_loop2_in Switch", SND_SOC_NOPM, SST_IP_LOOP2, 1, 0), \
694
SOC_DAPM_SINGLE("pcm0_in Switch", SND_SOC_NOPM, SST_IP_PCM0, 1, 0), \
695
SOC_DAPM_SINGLE("pcm1_in Switch", SND_SOC_NOPM, SST_IP_PCM1, 1, 0), \
696
}
697
698
#define SST_SBA_MIXER_GRAPH_MAP(mix_name) \
699
{ mix_name, "modem_in Switch", "modem_in" }, \
700
{ mix_name, "codec_in0 Switch", "codec_in0" }, \
701
{ mix_name, "codec_in1 Switch", "codec_in1" }, \
702
{ mix_name, "sprot_loop_in Switch", "sprot_loop_in" }, \
703
{ mix_name, "media_loop1_in Switch", "media_loop1_in" }, \
704
{ mix_name, "media_loop2_in Switch", "media_loop2_in" }, \
705
{ mix_name, "pcm0_in Switch", "pcm0_in" }, \
706
{ mix_name, "pcm1_in Switch", "pcm1_in" }
707
708
#define SST_MMX_DECLARE_MIX_CONTROLS(kctl_name) \
709
static const struct snd_kcontrol_new kctl_name[] = { \
710
SOC_DAPM_SINGLE("media0_in Switch", SND_SOC_NOPM, SST_IP_MEDIA0, 1, 0), \
711
SOC_DAPM_SINGLE("media1_in Switch", SND_SOC_NOPM, SST_IP_MEDIA1, 1, 0), \
712
SOC_DAPM_SINGLE("media2_in Switch", SND_SOC_NOPM, SST_IP_MEDIA2, 1, 0), \
713
SOC_DAPM_SINGLE("media3_in Switch", SND_SOC_NOPM, SST_IP_MEDIA3, 1, 0), \
714
}
715
716
SST_MMX_DECLARE_MIX_CONTROLS(sst_mix_media0_controls);
717
SST_MMX_DECLARE_MIX_CONTROLS(sst_mix_media1_controls);
718
719
/* 18 SBA mixers */
720
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm0_controls);
721
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm1_controls);
722
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_pcm2_controls);
723
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_sprot_l0_controls);
724
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_media_l1_controls);
725
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_media_l2_controls);
726
SST_SBA_DECLARE_MIX_CONTROLS(__maybe_unused sst_mix_voip_controls);
727
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_codec0_controls);
728
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_codec1_controls);
729
SST_SBA_DECLARE_MIX_CONTROLS(sst_mix_modem_controls);
730
731
/*
732
* sst_handle_vb_timer - Start/Stop the DSP scheduler
733
*
734
* The DSP expects first cmd to be SBA_VB_START, so at first startup send
735
* that.
736
* DSP expects last cmd to be SBA_VB_IDLE, so at last shutdown send that.
737
*
738
* Do refcount internally so that we send command only at first start
739
* and last end. Since SST driver does its own ref count, invoke sst's
740
* power ops always!
741
*/
742
int sst_handle_vb_timer(struct snd_soc_dai *dai, bool enable)
743
{
744
int ret = 0;
745
struct sst_cmd_generic cmd;
746
struct sst_data *drv = snd_soc_dai_get_drvdata(dai);
747
static int timer_usage;
748
749
if (enable)
750
cmd.header.command_id = SBA_VB_START;
751
else
752
cmd.header.command_id = SBA_IDLE;
753
dev_dbg(dai->dev, "enable=%u, usage=%d\n", enable, timer_usage);
754
755
SST_FILL_DEFAULT_DESTINATION(cmd.header.dst);
756
cmd.header.length = 0;
757
758
if (enable) {
759
ret = sst->ops->power(sst->dev, true);
760
if (ret < 0)
761
return ret;
762
}
763
764
mutex_lock(&drv->lock);
765
if (enable)
766
timer_usage++;
767
else
768
timer_usage--;
769
770
/*
771
* Send the command only if this call is the first enable or last
772
* disable
773
*/
774
if ((enable && (timer_usage == 1)) ||
775
(!enable && (timer_usage == 0))) {
776
ret = sst_fill_and_send_cmd_unlocked(drv, SST_IPC_IA_CMD,
777
SST_FLAG_BLOCKED, SST_TASK_SBA, 0, &cmd,
778
sizeof(cmd.header) + cmd.header.length);
779
if (ret && enable) {
780
timer_usage--;
781
enable = false;
782
}
783
}
784
mutex_unlock(&drv->lock);
785
786
if (!enable)
787
sst->ops->power(sst->dev, false);
788
return ret;
789
}
790
791
int sst_fill_ssp_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
792
unsigned int rx_mask, int slots, int slot_width)
793
{
794
struct sst_data *ctx = snd_soc_dai_get_drvdata(dai);
795
796
ctx->ssp_cmd.nb_slots = slots;
797
ctx->ssp_cmd.active_tx_slot_map = tx_mask;
798
ctx->ssp_cmd.active_rx_slot_map = rx_mask;
799
ctx->ssp_cmd.nb_bits_per_slots = slot_width;
800
801
return 0;
802
}
803
804
static int sst_get_frame_sync_polarity(struct snd_soc_dai *dai,
805
unsigned int fmt)
806
{
807
int format;
808
809
format = fmt & SND_SOC_DAIFMT_INV_MASK;
810
dev_dbg(dai->dev, "Enter:%s, format=%x\n", __func__, format);
811
812
switch (format) {
813
case SND_SOC_DAIFMT_NB_NF:
814
case SND_SOC_DAIFMT_IB_NF:
815
return SSP_FS_ACTIVE_HIGH;
816
case SND_SOC_DAIFMT_NB_IF:
817
case SND_SOC_DAIFMT_IB_IF:
818
return SSP_FS_ACTIVE_LOW;
819
default:
820
dev_err(dai->dev, "Invalid frame sync polarity %d\n", format);
821
}
822
823
return -EINVAL;
824
}
825
826
static int sst_get_ssp_mode(struct snd_soc_dai *dai, unsigned int fmt)
827
{
828
int format;
829
830
format = (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK);
831
dev_dbg(dai->dev, "Enter:%s, format=%x\n", __func__, format);
832
833
switch (format) {
834
case SND_SOC_DAIFMT_BP_FP:
835
return SSP_MODE_PROVIDER;
836
case SND_SOC_DAIFMT_BC_FC:
837
return SSP_MODE_CONSUMER;
838
default:
839
dev_err(dai->dev, "Invalid ssp protocol: %d\n", format);
840
}
841
842
return -EINVAL;
843
}
844
845
846
int sst_fill_ssp_config(struct snd_soc_dai *dai, unsigned int fmt)
847
{
848
unsigned int mode;
849
int fs_polarity;
850
struct sst_data *ctx = snd_soc_dai_get_drvdata(dai);
851
852
mode = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
853
854
switch (mode) {
855
case SND_SOC_DAIFMT_DSP_B:
856
ctx->ssp_cmd.ssp_protocol = SSP_MODE_PCM;
857
ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NETWORK << 1);
858
ctx->ssp_cmd.start_delay = 0;
859
ctx->ssp_cmd.data_polarity = 1;
860
ctx->ssp_cmd.frame_sync_width = 1;
861
break;
862
863
case SND_SOC_DAIFMT_DSP_A:
864
ctx->ssp_cmd.ssp_protocol = SSP_MODE_PCM;
865
ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NETWORK << 1);
866
ctx->ssp_cmd.start_delay = 1;
867
ctx->ssp_cmd.data_polarity = 1;
868
ctx->ssp_cmd.frame_sync_width = 1;
869
break;
870
871
case SND_SOC_DAIFMT_I2S:
872
ctx->ssp_cmd.ssp_protocol = SSP_MODE_I2S;
873
ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NORMAL << 1);
874
ctx->ssp_cmd.start_delay = 1;
875
ctx->ssp_cmd.data_polarity = 0;
876
ctx->ssp_cmd.frame_sync_width = ctx->ssp_cmd.nb_bits_per_slots;
877
break;
878
879
case SND_SOC_DAIFMT_LEFT_J:
880
ctx->ssp_cmd.ssp_protocol = SSP_MODE_I2S;
881
ctx->ssp_cmd.mode = sst_get_ssp_mode(dai, fmt) | (SSP_PCM_MODE_NORMAL << 1);
882
ctx->ssp_cmd.start_delay = 0;
883
ctx->ssp_cmd.data_polarity = 0;
884
ctx->ssp_cmd.frame_sync_width = ctx->ssp_cmd.nb_bits_per_slots;
885
break;
886
887
default:
888
dev_dbg(dai->dev, "using default ssp configs\n");
889
}
890
891
fs_polarity = sst_get_frame_sync_polarity(dai, fmt);
892
if (fs_polarity < 0)
893
return fs_polarity;
894
895
ctx->ssp_cmd.frame_sync_polarity = fs_polarity;
896
897
return 0;
898
}
899
900
/*
901
* sst_ssp_config - contains SSP configuration for media UC
902
* this can be overwritten by set_dai_xxx APIs
903
*/
904
static const struct sst_ssp_config sst_ssp_configs = {
905
.ssp_id = SSP_CODEC,
906
.bits_per_slot = 24,
907
.slots = 4,
908
.ssp_mode = SSP_MODE_PROVIDER,
909
.pcm_mode = SSP_PCM_MODE_NETWORK,
910
.duplex = SSP_DUPLEX,
911
.ssp_protocol = SSP_MODE_PCM,
912
.fs_width = 1,
913
.fs_frequency = SSP_FS_48_KHZ,
914
.active_slot_map = 0xF,
915
.start_delay = 0,
916
.frame_sync_polarity = SSP_FS_ACTIVE_HIGH,
917
.data_polarity = 1,
918
};
919
920
void sst_fill_ssp_defaults(struct snd_soc_dai *dai)
921
{
922
const struct sst_ssp_config *config;
923
struct sst_data *ctx = snd_soc_dai_get_drvdata(dai);
924
925
config = &sst_ssp_configs;
926
927
ctx->ssp_cmd.selection = config->ssp_id;
928
ctx->ssp_cmd.nb_bits_per_slots = config->bits_per_slot;
929
ctx->ssp_cmd.nb_slots = config->slots;
930
ctx->ssp_cmd.mode = config->ssp_mode | (config->pcm_mode << 1);
931
ctx->ssp_cmd.duplex = config->duplex;
932
ctx->ssp_cmd.active_tx_slot_map = config->active_slot_map;
933
ctx->ssp_cmd.active_rx_slot_map = config->active_slot_map;
934
ctx->ssp_cmd.frame_sync_frequency = config->fs_frequency;
935
ctx->ssp_cmd.frame_sync_polarity = config->frame_sync_polarity;
936
ctx->ssp_cmd.data_polarity = config->data_polarity;
937
ctx->ssp_cmd.frame_sync_width = config->fs_width;
938
ctx->ssp_cmd.ssp_protocol = config->ssp_protocol;
939
ctx->ssp_cmd.start_delay = config->start_delay;
940
ctx->ssp_cmd.reserved1 = ctx->ssp_cmd.reserved2 = 0xFF;
941
}
942
943
int send_ssp_cmd(struct snd_soc_dai *dai, const char *id, bool enable)
944
{
945
struct sst_data *drv = snd_soc_dai_get_drvdata(dai);
946
int ssp_id;
947
948
dev_dbg(dai->dev, "Enter: enable=%d port_name=%s\n", enable, id);
949
950
if (strcmp(id, "ssp0-port") == 0)
951
ssp_id = SSP_MODEM;
952
else if (strcmp(id, "ssp2-port") == 0)
953
ssp_id = SSP_CODEC;
954
else {
955
dev_dbg(dai->dev, "port %s is not supported\n", id);
956
return -1;
957
}
958
959
SST_FILL_DEFAULT_DESTINATION(drv->ssp_cmd.header.dst);
960
drv->ssp_cmd.header.command_id = SBA_HW_SET_SSP;
961
drv->ssp_cmd.header.length = sizeof(struct sst_cmd_sba_hw_set_ssp)
962
- sizeof(struct sst_dsp_header);
963
964
drv->ssp_cmd.selection = ssp_id;
965
dev_dbg(dai->dev, "ssp_id: %u\n", ssp_id);
966
967
if (enable)
968
drv->ssp_cmd.switch_state = SST_SWITCH_ON;
969
else
970
drv->ssp_cmd.switch_state = SST_SWITCH_OFF;
971
972
return sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED,
973
SST_TASK_SBA, 0, &drv->ssp_cmd,
974
sizeof(drv->ssp_cmd.header) + drv->ssp_cmd.header.length);
975
}
976
977
static int sst_set_be_modules(struct snd_soc_dapm_widget *w,
978
struct snd_kcontrol *k, int event)
979
{
980
int ret = 0;
981
struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
982
struct sst_data *drv = snd_soc_component_get_drvdata(c);
983
984
dev_dbg(c->dev, "Enter: widget=%s\n", w->name);
985
986
if (SND_SOC_DAPM_EVENT_ON(event)) {
987
mutex_lock(&drv->lock);
988
ret = sst_send_slot_map(drv);
989
mutex_unlock(&drv->lock);
990
if (ret)
991
return ret;
992
ret = sst_send_pipe_module_params(w, k);
993
}
994
return ret;
995
}
996
997
static int sst_set_media_path(struct snd_soc_dapm_widget *w,
998
struct snd_kcontrol *k, int event)
999
{
1000
int ret = 0;
1001
struct sst_cmd_set_media_path cmd;
1002
struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
1003
struct sst_data *drv = snd_soc_component_get_drvdata(c);
1004
struct sst_ids *ids = w->priv;
1005
1006
dev_dbg(c->dev, "widget=%s\n", w->name);
1007
dev_dbg(c->dev, "task=%u, location=%#x\n",
1008
ids->task_id, ids->location_id);
1009
1010
if (SND_SOC_DAPM_EVENT_ON(event))
1011
cmd.switch_state = SST_PATH_ON;
1012
else
1013
cmd.switch_state = SST_PATH_OFF;
1014
1015
SST_FILL_DESTINATION(2, cmd.header.dst,
1016
ids->location_id, SST_DEFAULT_MODULE_ID);
1017
1018
/* MMX_SET_MEDIA_PATH == SBA_SET_MEDIA_PATH */
1019
cmd.header.command_id = MMX_SET_MEDIA_PATH;
1020
cmd.header.length = sizeof(struct sst_cmd_set_media_path)
1021
- sizeof(struct sst_dsp_header);
1022
1023
ret = sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED,
1024
ids->task_id, 0, &cmd,
1025
sizeof(cmd.header) + cmd.header.length);
1026
if (ret)
1027
return ret;
1028
1029
if (SND_SOC_DAPM_EVENT_ON(event))
1030
ret = sst_send_pipe_module_params(w, k);
1031
return ret;
1032
}
1033
1034
static int sst_set_media_loop(struct snd_soc_dapm_widget *w,
1035
struct snd_kcontrol *k, int event)
1036
{
1037
int ret = 0;
1038
struct sst_cmd_sba_set_media_loop_map cmd;
1039
struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
1040
struct sst_data *drv = snd_soc_component_get_drvdata(c);
1041
struct sst_ids *ids = w->priv;
1042
1043
dev_dbg(c->dev, "Enter:widget=%s\n", w->name);
1044
if (SND_SOC_DAPM_EVENT_ON(event))
1045
cmd.switch_state = SST_SWITCH_ON;
1046
else
1047
cmd.switch_state = SST_SWITCH_OFF;
1048
1049
SST_FILL_DESTINATION(2, cmd.header.dst,
1050
ids->location_id, SST_DEFAULT_MODULE_ID);
1051
1052
cmd.header.command_id = SBA_SET_MEDIA_LOOP_MAP;
1053
cmd.header.length = sizeof(struct sst_cmd_sba_set_media_loop_map)
1054
- sizeof(struct sst_dsp_header);
1055
cmd.param.part.cfg.rate = 2; /* 48khz */
1056
1057
cmd.param.part.cfg.format = ids->format; /* stereo/Mono */
1058
cmd.param.part.cfg.s_length = 1; /* 24bit left justified */
1059
cmd.map = 0; /* Algo sequence: Gain - DRP - FIR - IIR */
1060
1061
ret = sst_fill_and_send_cmd(drv, SST_IPC_IA_CMD, SST_FLAG_BLOCKED,
1062
SST_TASK_SBA, 0, &cmd,
1063
sizeof(cmd.header) + cmd.header.length);
1064
if (ret)
1065
return ret;
1066
1067
if (SND_SOC_DAPM_EVENT_ON(event))
1068
ret = sst_send_pipe_module_params(w, k);
1069
return ret;
1070
}
1071
1072
static const struct snd_soc_dapm_widget sst_dapm_widgets[] = {
1073
SST_AIF_IN("modem_in", sst_set_be_modules),
1074
SST_AIF_IN("codec_in0", sst_set_be_modules),
1075
SST_AIF_IN("codec_in1", sst_set_be_modules),
1076
SST_AIF_OUT("modem_out", sst_set_be_modules),
1077
SST_AIF_OUT("codec_out0", sst_set_be_modules),
1078
SST_AIF_OUT("codec_out1", sst_set_be_modules),
1079
1080
/* Media Paths */
1081
/* MediaX IN paths are set via ALLOC, so no SET_MEDIA_PATH command */
1082
SST_PATH_INPUT("media0_in", SST_TASK_MMX, SST_SWM_IN_MEDIA0, sst_generic_modules_event),
1083
SST_PATH_INPUT("media1_in", SST_TASK_MMX, SST_SWM_IN_MEDIA1, NULL),
1084
SST_PATH_INPUT("media2_in", SST_TASK_MMX, SST_SWM_IN_MEDIA2, sst_set_media_path),
1085
SST_PATH_INPUT("media3_in", SST_TASK_MMX, SST_SWM_IN_MEDIA3, NULL),
1086
SST_PATH_OUTPUT("media0_out", SST_TASK_MMX, SST_SWM_OUT_MEDIA0, sst_set_media_path),
1087
SST_PATH_OUTPUT("media1_out", SST_TASK_MMX, SST_SWM_OUT_MEDIA1, sst_set_media_path),
1088
1089
/* SBA PCM Paths */
1090
SST_PATH_INPUT("pcm0_in", SST_TASK_SBA, SST_SWM_IN_PCM0, sst_set_media_path),
1091
SST_PATH_INPUT("pcm1_in", SST_TASK_SBA, SST_SWM_IN_PCM1, sst_set_media_path),
1092
SST_PATH_OUTPUT("pcm0_out", SST_TASK_SBA, SST_SWM_OUT_PCM0, sst_set_media_path),
1093
SST_PATH_OUTPUT("pcm1_out", SST_TASK_SBA, SST_SWM_OUT_PCM1, sst_set_media_path),
1094
SST_PATH_OUTPUT("pcm2_out", SST_TASK_SBA, SST_SWM_OUT_PCM2, sst_set_media_path),
1095
1096
/* SBA Loops */
1097
SST_PATH_INPUT("sprot_loop_in", SST_TASK_SBA, SST_SWM_IN_SPROT_LOOP, NULL),
1098
SST_PATH_INPUT("media_loop1_in", SST_TASK_SBA, SST_SWM_IN_MEDIA_LOOP1, NULL),
1099
SST_PATH_INPUT("media_loop2_in", SST_TASK_SBA, SST_SWM_IN_MEDIA_LOOP2, NULL),
1100
SST_PATH_MEDIA_LOOP_OUTPUT("sprot_loop_out", SST_TASK_SBA, SST_SWM_OUT_SPROT_LOOP, SST_FMT_STEREO, sst_set_media_loop),
1101
SST_PATH_MEDIA_LOOP_OUTPUT("media_loop1_out", SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP1, SST_FMT_STEREO, sst_set_media_loop),
1102
SST_PATH_MEDIA_LOOP_OUTPUT("media_loop2_out", SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP2, SST_FMT_STEREO, sst_set_media_loop),
1103
1104
/* Media Mixers */
1105
SST_SWM_MIXER("media0_out mix 0", SND_SOC_NOPM, SST_TASK_MMX, SST_SWM_OUT_MEDIA0,
1106
sst_mix_media0_controls, sst_swm_mixer_event),
1107
SST_SWM_MIXER("media1_out mix 0", SND_SOC_NOPM, SST_TASK_MMX, SST_SWM_OUT_MEDIA1,
1108
sst_mix_media1_controls, sst_swm_mixer_event),
1109
1110
/* SBA PCM mixers */
1111
SST_SWM_MIXER("pcm0_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM0,
1112
sst_mix_pcm0_controls, sst_swm_mixer_event),
1113
SST_SWM_MIXER("pcm1_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM1,
1114
sst_mix_pcm1_controls, sst_swm_mixer_event),
1115
SST_SWM_MIXER("pcm2_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_PCM2,
1116
sst_mix_pcm2_controls, sst_swm_mixer_event),
1117
1118
/* SBA Loop mixers */
1119
SST_SWM_MIXER("sprot_loop_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_SPROT_LOOP,
1120
sst_mix_sprot_l0_controls, sst_swm_mixer_event),
1121
SST_SWM_MIXER("media_loop1_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP1,
1122
sst_mix_media_l1_controls, sst_swm_mixer_event),
1123
SST_SWM_MIXER("media_loop2_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MEDIA_LOOP2,
1124
sst_mix_media_l2_controls, sst_swm_mixer_event),
1125
1126
/* SBA Backend mixers */
1127
SST_SWM_MIXER("codec_out0 mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_CODEC0,
1128
sst_mix_codec0_controls, sst_swm_mixer_event),
1129
SST_SWM_MIXER("codec_out1 mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_CODEC1,
1130
sst_mix_codec1_controls, sst_swm_mixer_event),
1131
SST_SWM_MIXER("modem_out mix 0", SND_SOC_NOPM, SST_TASK_SBA, SST_SWM_OUT_MODEM,
1132
sst_mix_modem_controls, sst_swm_mixer_event),
1133
1134
};
1135
1136
static const struct snd_soc_dapm_route intercon[] = {
1137
{"media0_in", NULL, "Compress Playback"},
1138
{"media1_in", NULL, "Headset Playback"},
1139
{"media2_in", NULL, "pcm0_out"},
1140
{"media3_in", NULL, "Deepbuffer Playback"},
1141
1142
{"media0_out mix 0", "media0_in Switch", "media0_in"},
1143
{"media0_out mix 0", "media1_in Switch", "media1_in"},
1144
{"media0_out mix 0", "media2_in Switch", "media2_in"},
1145
{"media0_out mix 0", "media3_in Switch", "media3_in"},
1146
{"media1_out mix 0", "media0_in Switch", "media0_in"},
1147
{"media1_out mix 0", "media1_in Switch", "media1_in"},
1148
{"media1_out mix 0", "media2_in Switch", "media2_in"},
1149
{"media1_out mix 0", "media3_in Switch", "media3_in"},
1150
1151
{"media0_out", NULL, "media0_out mix 0"},
1152
{"media1_out", NULL, "media1_out mix 0"},
1153
{"pcm0_in", NULL, "media0_out"},
1154
{"pcm1_in", NULL, "media1_out"},
1155
1156
{"Headset Capture", NULL, "pcm1_out"},
1157
{"Headset Capture", NULL, "pcm2_out"},
1158
{"pcm0_out", NULL, "pcm0_out mix 0"},
1159
SST_SBA_MIXER_GRAPH_MAP("pcm0_out mix 0"),
1160
{"pcm1_out", NULL, "pcm1_out mix 0"},
1161
SST_SBA_MIXER_GRAPH_MAP("pcm1_out mix 0"),
1162
{"pcm2_out", NULL, "pcm2_out mix 0"},
1163
SST_SBA_MIXER_GRAPH_MAP("pcm2_out mix 0"),
1164
1165
{"media_loop1_in", NULL, "media_loop1_out"},
1166
{"media_loop1_out", NULL, "media_loop1_out mix 0"},
1167
SST_SBA_MIXER_GRAPH_MAP("media_loop1_out mix 0"),
1168
{"media_loop2_in", NULL, "media_loop2_out"},
1169
{"media_loop2_out", NULL, "media_loop2_out mix 0"},
1170
SST_SBA_MIXER_GRAPH_MAP("media_loop2_out mix 0"),
1171
{"sprot_loop_in", NULL, "sprot_loop_out"},
1172
{"sprot_loop_out", NULL, "sprot_loop_out mix 0"},
1173
SST_SBA_MIXER_GRAPH_MAP("sprot_loop_out mix 0"),
1174
1175
{"codec_out0", NULL, "codec_out0 mix 0"},
1176
SST_SBA_MIXER_GRAPH_MAP("codec_out0 mix 0"),
1177
{"codec_out1", NULL, "codec_out1 mix 0"},
1178
SST_SBA_MIXER_GRAPH_MAP("codec_out1 mix 0"),
1179
{"modem_out", NULL, "modem_out mix 0"},
1180
SST_SBA_MIXER_GRAPH_MAP("modem_out mix 0"),
1181
1182
1183
};
1184
static const char * const slot_names[] = {
1185
"none",
1186
"slot 0", "slot 1", "slot 2", "slot 3",
1187
"slot 4", "slot 5", "slot 6", "slot 7", /* not supported by FW */
1188
};
1189
1190
static const char * const channel_names[] = {
1191
"none",
1192
"codec_out0_0", "codec_out0_1", "codec_out1_0", "codec_out1_1",
1193
"codec_out2_0", "codec_out2_1", "codec_out3_0", "codec_out3_1", /* not supported by FW */
1194
};
1195
1196
#define SST_INTERLEAVER(xpname, slot_name, slotno) \
1197
SST_SSP_SLOT_CTL(xpname, "tx interleaver", slot_name, slotno, true, \
1198
channel_names, sst_slot_get, sst_slot_put)
1199
1200
#define SST_DEINTERLEAVER(xpname, channel_name, channel_no) \
1201
SST_SSP_SLOT_CTL(xpname, "rx deinterleaver", channel_name, channel_no, false, \
1202
slot_names, sst_slot_get, sst_slot_put)
1203
1204
static const struct snd_kcontrol_new sst_slot_controls[] = {
1205
SST_INTERLEAVER("codec_out", "slot 0", 0),
1206
SST_INTERLEAVER("codec_out", "slot 1", 1),
1207
SST_INTERLEAVER("codec_out", "slot 2", 2),
1208
SST_INTERLEAVER("codec_out", "slot 3", 3),
1209
SST_DEINTERLEAVER("codec_in", "codec_in0_0", 0),
1210
SST_DEINTERLEAVER("codec_in", "codec_in0_1", 1),
1211
SST_DEINTERLEAVER("codec_in", "codec_in1_0", 2),
1212
SST_DEINTERLEAVER("codec_in", "codec_in1_1", 3),
1213
};
1214
1215
/* Gain helper with min/max set */
1216
#define SST_GAIN(name, path_id, task_id, instance, gain_var) \
1217
SST_GAIN_KCONTROLS(name, "Gain", SST_GAIN_MIN_VALUE, SST_GAIN_MAX_VALUE, \
1218
SST_GAIN_TC_MIN, SST_GAIN_TC_MAX, \
1219
sst_gain_get, sst_gain_put, \
1220
SST_MODULE_ID_GAIN_CELL, path_id, instance, task_id, \
1221
sst_gain_tlv_common, gain_var)
1222
1223
#define SST_VOLUME(name, path_id, task_id, instance, gain_var) \
1224
SST_GAIN_KCONTROLS(name, "Volume", SST_GAIN_MIN_VALUE, SST_GAIN_MAX_VALUE, \
1225
SST_GAIN_TC_MIN, SST_GAIN_TC_MAX, \
1226
sst_gain_get, sst_gain_put, \
1227
SST_MODULE_ID_VOLUME, path_id, instance, task_id, \
1228
sst_gain_tlv_common, gain_var)
1229
1230
static struct sst_gain_value sst_gains[];
1231
1232
static const struct snd_kcontrol_new sst_gain_controls[] = {
1233
SST_GAIN("media0_in", SST_PATH_INDEX_MEDIA0_IN, SST_TASK_MMX, 0, &sst_gains[0]),
1234
SST_GAIN("media1_in", SST_PATH_INDEX_MEDIA1_IN, SST_TASK_MMX, 0, &sst_gains[1]),
1235
SST_GAIN("media2_in", SST_PATH_INDEX_MEDIA2_IN, SST_TASK_MMX, 0, &sst_gains[2]),
1236
SST_GAIN("media3_in", SST_PATH_INDEX_MEDIA3_IN, SST_TASK_MMX, 0, &sst_gains[3]),
1237
1238
SST_GAIN("pcm0_in", SST_PATH_INDEX_PCM0_IN, SST_TASK_SBA, 0, &sst_gains[4]),
1239
SST_GAIN("pcm1_in", SST_PATH_INDEX_PCM1_IN, SST_TASK_SBA, 0, &sst_gains[5]),
1240
SST_GAIN("pcm1_out", SST_PATH_INDEX_PCM1_OUT, SST_TASK_SBA, 0, &sst_gains[6]),
1241
SST_GAIN("pcm2_out", SST_PATH_INDEX_PCM2_OUT, SST_TASK_SBA, 0, &sst_gains[7]),
1242
1243
SST_GAIN("codec_in0", SST_PATH_INDEX_CODEC_IN0, SST_TASK_SBA, 0, &sst_gains[8]),
1244
SST_GAIN("codec_in1", SST_PATH_INDEX_CODEC_IN1, SST_TASK_SBA, 0, &sst_gains[9]),
1245
SST_GAIN("codec_out0", SST_PATH_INDEX_CODEC_OUT0, SST_TASK_SBA, 0, &sst_gains[10]),
1246
SST_GAIN("codec_out1", SST_PATH_INDEX_CODEC_OUT1, SST_TASK_SBA, 0, &sst_gains[11]),
1247
SST_GAIN("media_loop1_out", SST_PATH_INDEX_MEDIA_LOOP1_OUT, SST_TASK_SBA, 0, &sst_gains[12]),
1248
SST_GAIN("media_loop2_out", SST_PATH_INDEX_MEDIA_LOOP2_OUT, SST_TASK_SBA, 0, &sst_gains[13]),
1249
SST_GAIN("sprot_loop_out", SST_PATH_INDEX_SPROT_LOOP_OUT, SST_TASK_SBA, 0, &sst_gains[14]),
1250
SST_VOLUME("media0_in", SST_PATH_INDEX_MEDIA0_IN, SST_TASK_MMX, 0, &sst_gains[15]),
1251
SST_GAIN("modem_in", SST_PATH_INDEX_MODEM_IN, SST_TASK_SBA, 0, &sst_gains[16]),
1252
SST_GAIN("modem_out", SST_PATH_INDEX_MODEM_OUT, SST_TASK_SBA, 0, &sst_gains[17]),
1253
1254
};
1255
1256
#define SST_GAIN_NUM_CONTROLS 3
1257
/* the SST_GAIN macro above will create three alsa controls for each
1258
* instance invoked, gain, mute and ramp duration, which use the same gain
1259
* cell sst_gain to keep track of data
1260
* To calculate number of gain cell instances we need to device by 3 in
1261
* below caulcation for gain cell memory.
1262
* This gets rid of static number and issues while adding new controls
1263
*/
1264
static struct sst_gain_value sst_gains[ARRAY_SIZE(sst_gain_controls)/SST_GAIN_NUM_CONTROLS];
1265
1266
static const struct snd_kcontrol_new sst_algo_controls[] = {
1267
SST_ALGO_KCONTROL_BYTES("media_loop1_out", "fir", 272, SST_MODULE_ID_FIR_24,
1268
SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_VB_SET_FIR),
1269
SST_ALGO_KCONTROL_BYTES("media_loop1_out", "iir", 300, SST_MODULE_ID_IIR_24,
1270
SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_VB_SET_IIR),
1271
SST_ALGO_KCONTROL_BYTES("media_loop1_out", "mdrp", 286, SST_MODULE_ID_MDRP,
1272
SST_PATH_INDEX_MEDIA_LOOP1_OUT, 0, SST_TASK_SBA, SBA_SET_MDRP),
1273
SST_ALGO_KCONTROL_BYTES("media_loop2_out", "fir", 272, SST_MODULE_ID_FIR_24,
1274
SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_VB_SET_FIR),
1275
SST_ALGO_KCONTROL_BYTES("media_loop2_out", "iir", 300, SST_MODULE_ID_IIR_24,
1276
SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_VB_SET_IIR),
1277
SST_ALGO_KCONTROL_BYTES("media_loop2_out", "mdrp", 286, SST_MODULE_ID_MDRP,
1278
SST_PATH_INDEX_MEDIA_LOOP2_OUT, 0, SST_TASK_SBA, SBA_SET_MDRP),
1279
SST_ALGO_KCONTROL_BYTES("sprot_loop_out", "lpro", 192, SST_MODULE_ID_SPROT,
1280
SST_PATH_INDEX_SPROT_LOOP_OUT, 0, SST_TASK_SBA, SBA_VB_LPRO),
1281
SST_ALGO_KCONTROL_BYTES("codec_in0", "dcr", 52, SST_MODULE_ID_FILT_DCR,
1282
SST_PATH_INDEX_CODEC_IN0, 0, SST_TASK_SBA, SBA_VB_SET_IIR),
1283
SST_ALGO_KCONTROL_BYTES("codec_in1", "dcr", 52, SST_MODULE_ID_FILT_DCR,
1284
SST_PATH_INDEX_CODEC_IN1, 0, SST_TASK_SBA, SBA_VB_SET_IIR),
1285
1286
};
1287
1288
static int sst_algo_control_init(struct device *dev)
1289
{
1290
int i = 0;
1291
struct sst_algo_control *bc;
1292
/*allocate space to cache the algo parameters in the driver*/
1293
for (i = 0; i < ARRAY_SIZE(sst_algo_controls); i++) {
1294
bc = (struct sst_algo_control *)sst_algo_controls[i].private_value;
1295
bc->params = devm_kzalloc(dev, bc->max, GFP_KERNEL);
1296
if (bc->params == NULL)
1297
return -ENOMEM;
1298
}
1299
return 0;
1300
}
1301
1302
static bool is_sst_dapm_widget(struct snd_soc_dapm_widget *w)
1303
{
1304
switch (w->id) {
1305
case snd_soc_dapm_pga:
1306
case snd_soc_dapm_aif_in:
1307
case snd_soc_dapm_aif_out:
1308
case snd_soc_dapm_input:
1309
case snd_soc_dapm_output:
1310
case snd_soc_dapm_mixer:
1311
return true;
1312
default:
1313
return false;
1314
}
1315
}
1316
1317
/**
1318
* sst_send_pipe_gains - send gains for the front-end DAIs
1319
* @dai: front-end dai
1320
* @stream: direction
1321
* @mute: boolean indicating mute status
1322
*
1323
* The gains in the pipes connected to the front-ends are muted/unmuted
1324
* automatically via the digital_mute() DAPM callback. This function sends the
1325
* gains for the front-end pipes.
1326
*/
1327
int sst_send_pipe_gains(struct snd_soc_dai *dai, int stream, int mute)
1328
{
1329
struct sst_data *drv = snd_soc_dai_get_drvdata(dai);
1330
struct snd_soc_dapm_widget *w = snd_soc_dai_get_widget(dai, stream);
1331
struct snd_soc_dapm_path *p;
1332
1333
dev_dbg(dai->dev, "enter, dai-name=%s dir=%d\n", dai->name, stream);
1334
dev_dbg(dai->dev, "Stream name=%s\n", w->name);
1335
1336
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1337
snd_soc_dapm_widget_for_each_sink_path(w, p) {
1338
if (p->connected && !p->connected(w, p->sink))
1339
continue;
1340
1341
if (p->connect && p->sink->power &&
1342
is_sst_dapm_widget(p->sink)) {
1343
struct sst_ids *ids = p->sink->priv;
1344
1345
dev_dbg(dai->dev, "send gains for widget=%s\n",
1346
p->sink->name);
1347
mutex_lock(&drv->lock);
1348
sst_set_pipe_gain(ids, drv, mute);
1349
mutex_unlock(&drv->lock);
1350
}
1351
}
1352
} else {
1353
snd_soc_dapm_widget_for_each_source_path(w, p) {
1354
if (p->connected && !p->connected(w, p->source))
1355
continue;
1356
1357
if (p->connect && p->source->power &&
1358
is_sst_dapm_widget(p->source)) {
1359
struct sst_ids *ids = p->source->priv;
1360
1361
dev_dbg(dai->dev, "send gain for widget=%s\n",
1362
p->source->name);
1363
mutex_lock(&drv->lock);
1364
sst_set_pipe_gain(ids, drv, mute);
1365
mutex_unlock(&drv->lock);
1366
}
1367
}
1368
}
1369
return 0;
1370
}
1371
1372
/**
1373
* sst_fill_module_list - populate the list of modules/gains for a pipe
1374
* @kctl: kcontrol pointer
1375
* @w: dapm widget
1376
* @type: widget type
1377
*
1378
* Fills the widget pointer in the kcontrol private data, and also fills the
1379
* kcontrol pointer in the widget private data.
1380
*
1381
* Widget pointer is used to send the algo/gain in the .put() handler if the
1382
* widget is powerd on.
1383
*
1384
* Kcontrol pointer is used to send the algo/gain in the widget power ON/OFF
1385
* event handler. Each widget (pipe) has multiple algos stored in the algo_list.
1386
*/
1387
static int sst_fill_module_list(struct snd_kcontrol *kctl,
1388
struct snd_soc_dapm_widget *w, int type)
1389
{
1390
struct sst_module *module;
1391
struct snd_soc_component *c = snd_soc_dapm_to_component(w->dapm);
1392
struct sst_ids *ids = w->priv;
1393
int ret = 0;
1394
1395
module = devm_kzalloc(c->dev, sizeof(*module), GFP_KERNEL);
1396
if (!module)
1397
return -ENOMEM;
1398
1399
if (type == SST_MODULE_GAIN) {
1400
struct sst_gain_mixer_control *mc = (void *)kctl->private_value;
1401
1402
mc->w = w;
1403
module->kctl = kctl;
1404
list_add_tail(&module->node, &ids->gain_list);
1405
} else if (type == SST_MODULE_ALGO) {
1406
struct sst_algo_control *bc = (void *)kctl->private_value;
1407
1408
bc->w = w;
1409
module->kctl = kctl;
1410
list_add_tail(&module->node, &ids->algo_list);
1411
} else {
1412
dev_err(c->dev, "invoked for unknown type %d module %s",
1413
type, kctl->id.name);
1414
ret = -EINVAL;
1415
}
1416
1417
return ret;
1418
}
1419
1420
/**
1421
* sst_fill_widget_module_info - fill list of gains/algos for the pipe
1422
* @w: pipe modeled as a DAPM widget
1423
* @component: ASoC component
1424
*
1425
* Fill the list of gains/algos for the widget by looking at all the card
1426
* controls and comparing the name of the widget with the first part of control
1427
* name. First part of control name contains the pipe name (widget name).
1428
*/
1429
static int sst_fill_widget_module_info(struct snd_soc_dapm_widget *w,
1430
struct snd_soc_component *component)
1431
{
1432
struct snd_kcontrol *kctl;
1433
int index, ret = 0;
1434
struct snd_card *card = component->card->snd_card;
1435
char *idx;
1436
1437
down_read(&card->controls_rwsem);
1438
1439
list_for_each_entry(kctl, &card->controls, list) {
1440
idx = strchr(kctl->id.name, ' ');
1441
if (idx == NULL)
1442
continue;
1443
index = idx - (char*)kctl->id.name;
1444
if (strncmp(kctl->id.name, w->name, index))
1445
continue;
1446
1447
if (strstr(kctl->id.name, "Volume"))
1448
ret = sst_fill_module_list(kctl, w, SST_MODULE_GAIN);
1449
1450
else if (strstr(kctl->id.name, "params"))
1451
ret = sst_fill_module_list(kctl, w, SST_MODULE_ALGO);
1452
1453
else if (strstr(kctl->id.name, "Switch") &&
1454
strstr(kctl->id.name, "Gain")) {
1455
struct sst_gain_mixer_control *mc =
1456
(void *)kctl->private_value;
1457
1458
mc->w = w;
1459
1460
} else if (strstr(kctl->id.name, "interleaver")) {
1461
struct sst_enum *e = (void *)kctl->private_value;
1462
1463
e->w = w;
1464
1465
} else if (strstr(kctl->id.name, "deinterleaver")) {
1466
struct sst_enum *e = (void *)kctl->private_value;
1467
1468
e->w = w;
1469
}
1470
1471
if (ret < 0) {
1472
up_read(&card->controls_rwsem);
1473
return ret;
1474
}
1475
}
1476
1477
up_read(&card->controls_rwsem);
1478
return 0;
1479
}
1480
1481
/**
1482
* sst_fill_linked_widgets - fill the parent pointer for the linked widget
1483
* @component: ASoC component
1484
* @ids: sst_ids array
1485
*/
1486
static void sst_fill_linked_widgets(struct snd_soc_component *component,
1487
struct sst_ids *ids)
1488
{
1489
struct snd_soc_dapm_widget *w;
1490
unsigned int len = strlen(ids->parent_wname);
1491
1492
list_for_each_entry(w, &component->card->widgets, list) {
1493
if (!strncmp(ids->parent_wname, w->name, len)) {
1494
ids->parent_w = w;
1495
break;
1496
}
1497
}
1498
}
1499
1500
/**
1501
* sst_map_modules_to_pipe - fill algo/gains list for all pipes
1502
* @component: ASoC component
1503
*/
1504
static int sst_map_modules_to_pipe(struct snd_soc_component *component)
1505
{
1506
struct snd_soc_dapm_widget *w;
1507
int ret = 0;
1508
1509
list_for_each_entry(w, &component->card->widgets, list) {
1510
if (is_sst_dapm_widget(w) && (w->priv)) {
1511
struct sst_ids *ids = w->priv;
1512
1513
dev_dbg(component->dev, "widget type=%d name=%s\n",
1514
w->id, w->name);
1515
INIT_LIST_HEAD(&ids->algo_list);
1516
INIT_LIST_HEAD(&ids->gain_list);
1517
ret = sst_fill_widget_module_info(w, component);
1518
1519
if (ret < 0)
1520
return ret;
1521
1522
/* fill linked widgets */
1523
if (ids->parent_wname != NULL)
1524
sst_fill_linked_widgets(component, ids);
1525
}
1526
}
1527
return 0;
1528
}
1529
1530
int sst_dsp_init_v2_dpcm(struct snd_soc_component *component)
1531
{
1532
int i, ret = 0;
1533
struct snd_soc_dapm_context *dapm =
1534
snd_soc_component_get_dapm(component);
1535
struct sst_data *drv = snd_soc_component_get_drvdata(component);
1536
unsigned int gains = ARRAY_SIZE(sst_gain_controls)/3;
1537
1538
drv->byte_stream = devm_kzalloc(component->dev,
1539
SST_MAX_BIN_BYTES, GFP_KERNEL);
1540
if (!drv->byte_stream)
1541
return -ENOMEM;
1542
1543
snd_soc_dapm_new_controls(dapm, sst_dapm_widgets,
1544
ARRAY_SIZE(sst_dapm_widgets));
1545
snd_soc_dapm_add_routes(dapm, intercon,
1546
ARRAY_SIZE(intercon));
1547
snd_soc_dapm_new_widgets(dapm->card);
1548
1549
for (i = 0; i < gains; i++) {
1550
sst_gains[i].mute = SST_GAIN_MUTE_DEFAULT;
1551
sst_gains[i].l_gain = SST_GAIN_VOLUME_DEFAULT;
1552
sst_gains[i].r_gain = SST_GAIN_VOLUME_DEFAULT;
1553
sst_gains[i].ramp_duration = SST_GAIN_RAMP_DURATION_DEFAULT;
1554
}
1555
1556
ret = snd_soc_add_component_controls(component, sst_gain_controls,
1557
ARRAY_SIZE(sst_gain_controls));
1558
if (ret)
1559
return ret;
1560
1561
/* Initialize algo control params */
1562
ret = sst_algo_control_init(component->dev);
1563
if (ret)
1564
return ret;
1565
ret = snd_soc_add_component_controls(component, sst_algo_controls,
1566
ARRAY_SIZE(sst_algo_controls));
1567
if (ret)
1568
return ret;
1569
1570
ret = snd_soc_add_component_controls(component, sst_slot_controls,
1571
ARRAY_SIZE(sst_slot_controls));
1572
if (ret)
1573
return ret;
1574
1575
ret = sst_map_modules_to_pipe(component);
1576
1577
return ret;
1578
}
1579
1580