Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/sparc/dbri.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Driver for DBRI sound chip found on Sparcs.
4
* Copyright (C) 2004, 2005 Martin Habets ([email protected])
5
*
6
* Converted to ring buffered version by Krzysztof Helt ([email protected])
7
*
8
* Based entirely upon drivers/sbus/audio/dbri.c which is:
9
* Copyright (C) 1997 Rudolf Koenig ([email protected])
10
* Copyright (C) 1998, 1999 Brent Baccala ([email protected])
11
*
12
* This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
13
* on Sun SPARCStation 10, 20, LX and Voyager models.
14
*
15
* - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
16
* data time multiplexer with ISDN support (aka T7259)
17
* Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
18
* CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
19
* Documentation:
20
* - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
21
* Sparc Technology Business (courtesy of Sun Support)
22
* - Data sheet of the T7903, a newer but very similar ISA bus equivalent
23
* available from the Lucent (formerly AT&T microelectronics) home
24
* page.
25
* - https://www.freesoft.org/Linux/DBRI/
26
* - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
27
* Interfaces: CHI, Audio In & Out, 2 bits parallel
28
* Documentation: from the Crystal Semiconductor home page.
29
*
30
* The DBRI is a 32 pipe machine, each pipe can transfer some bits between
31
* memory and a serial device (long pipes, no. 0-15) or between two serial
32
* devices (short pipes, no. 16-31), or simply send a fixed data to a serial
33
* device (short pipes).
34
* A timeslot defines the bit-offset and no. of bits read from a serial device.
35
* The timeslots are linked to 6 circular lists, one for each direction for
36
* each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
37
* (the second one is a monitor/tee pipe, valid only for serial input).
38
*
39
* The mmcodec is connected via the CHI bus and needs the data & some
40
* parameters (volume, output selection) time multiplexed in 8 byte
41
* chunks. It also has a control mode, which serves for audio format setting.
42
*
43
* Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
44
* the same CHI bus, so I thought perhaps it is possible to use the on-board
45
* & the speakerbox codec simultaneously, giving 2 (not very independent :-)
46
* audio devices. But the SUN HW group decided against it, at least on my
47
* LX the speakerbox connector has at least 1 pin missing and 1 wrongly
48
* connected.
49
*
50
* I've tried to stick to the following function naming conventions:
51
* snd_* ALSA stuff
52
* cs4215_* CS4215 codec specific stuff
53
* dbri_* DBRI high-level stuff
54
* other DBRI low-level stuff
55
*/
56
57
#include <linux/interrupt.h>
58
#include <linux/delay.h>
59
#include <linux/irq.h>
60
#include <linux/io.h>
61
#include <linux/dma-mapping.h>
62
#include <linux/gfp.h>
63
#include <linux/string.h>
64
65
#include <sound/core.h>
66
#include <sound/pcm.h>
67
#include <sound/pcm_params.h>
68
#include <sound/info.h>
69
#include <sound/control.h>
70
#include <sound/initval.h>
71
72
#include <linux/of.h>
73
#include <linux/platform_device.h>
74
#include <linux/atomic.h>
75
#include <linux/module.h>
76
77
MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
78
MODULE_DESCRIPTION("Sun DBRI");
79
MODULE_LICENSE("GPL");
80
81
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
82
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
83
/* Enable this card */
84
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
85
86
module_param_array(index, int, NULL, 0444);
87
MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
88
module_param_array(id, charp, NULL, 0444);
89
MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
90
module_param_array(enable, bool, NULL, 0444);
91
MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
92
93
#undef DBRI_DEBUG
94
95
#define D_INT (1<<0)
96
#define D_GEN (1<<1)
97
#define D_CMD (1<<2)
98
#define D_MM (1<<3)
99
#define D_USR (1<<4)
100
#define D_DESC (1<<5)
101
102
static int dbri_debug;
103
module_param(dbri_debug, int, 0644);
104
MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
105
106
#ifdef DBRI_DEBUG
107
static const char * const cmds[] = {
108
"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
109
"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
110
};
111
112
#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
113
114
#else
115
#define dprintk(a, x...) do { } while (0)
116
117
#endif /* DBRI_DEBUG */
118
119
#define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
120
(intr << 27) | \
121
value)
122
123
/***************************************************************************
124
CS4215 specific definitions and structures
125
****************************************************************************/
126
127
struct cs4215 {
128
__u8 data[4]; /* Data mode: Time slots 5-8 */
129
__u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
130
__u8 onboard;
131
__u8 offset; /* Bit offset from frame sync to time slot 1 */
132
volatile __u32 status;
133
volatile __u32 version;
134
__u8 precision; /* In bits, either 8 or 16 */
135
__u8 channels; /* 1 or 2 */
136
};
137
138
/*
139
* Control mode first
140
*/
141
142
/* Time Slot 1, Status register */
143
#define CS4215_CLB (1<<2) /* Control Latch Bit */
144
#define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
145
/* 0: line: 2.8V, speaker 8V */
146
#define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
147
#define CS4215_RSRVD_1 (1<<5)
148
149
/* Time Slot 2, Data Format Register */
150
#define CS4215_DFR_LINEAR16 0
151
#define CS4215_DFR_ULAW 1
152
#define CS4215_DFR_ALAW 2
153
#define CS4215_DFR_LINEAR8 3
154
#define CS4215_DFR_STEREO (1<<2)
155
static struct {
156
unsigned short freq;
157
unsigned char xtal;
158
unsigned char csval;
159
} CS4215_FREQ[] = {
160
{ 8000, (1 << 4), (0 << 3) },
161
{ 16000, (1 << 4), (1 << 3) },
162
{ 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
163
{ 32000, (1 << 4), (3 << 3) },
164
/* { NA, (1 << 4), (4 << 3) }, */
165
/* { NA, (1 << 4), (5 << 3) }, */
166
{ 48000, (1 << 4), (6 << 3) },
167
{ 9600, (1 << 4), (7 << 3) },
168
{ 5512, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
169
{ 11025, (2 << 4), (1 << 3) },
170
{ 18900, (2 << 4), (2 << 3) },
171
{ 22050, (2 << 4), (3 << 3) },
172
{ 37800, (2 << 4), (4 << 3) },
173
{ 44100, (2 << 4), (5 << 3) },
174
{ 33075, (2 << 4), (6 << 3) },
175
{ 6615, (2 << 4), (7 << 3) },
176
{ 0, 0, 0}
177
};
178
179
#define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
180
181
#define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
182
183
/* Time Slot 3, Serial Port Control register */
184
#define CS4215_XEN (1<<0) /* 0: Enable serial output */
185
#define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
186
#define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
187
#define CS4215_BSEL_128 (1<<2)
188
#define CS4215_BSEL_256 (2<<2)
189
#define CS4215_MCK_MAST (0<<4) /* Master clock */
190
#define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
191
#define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
192
#define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
193
#define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
194
195
/* Time Slot 4, Test Register */
196
#define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
197
#define CS4215_ENL (1<<1) /* Enable Loopback Testing */
198
199
/* Time Slot 5, Parallel Port Register */
200
/* Read only here and the same as the in data mode */
201
202
/* Time Slot 6, Reserved */
203
204
/* Time Slot 7, Version Register */
205
#define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
206
207
/* Time Slot 8, Reserved */
208
209
/*
210
* Data mode
211
*/
212
/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
213
214
/* Time Slot 5, Output Setting */
215
#define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
216
#define CS4215_LE (1<<6) /* Line Out Enable */
217
#define CS4215_HE (1<<7) /* Headphone Enable */
218
219
/* Time Slot 6, Output Setting */
220
#define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
221
#define CS4215_SE (1<<6) /* Speaker Enable */
222
#define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
223
224
/* Time Slot 7, Input Setting */
225
#define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
226
#define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
227
#define CS4215_OVR (1<<5) /* 1: Over range condition occurred */
228
#define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
229
#define CS4215_PIO1 (1<<7)
230
231
/* Time Slot 8, Input Setting */
232
#define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
233
#define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
234
235
/***************************************************************************
236
DBRI specific definitions and structures
237
****************************************************************************/
238
239
/* DBRI main registers */
240
#define REG0 0x00 /* Status and Control */
241
#define REG1 0x04 /* Mode and Interrupt */
242
#define REG2 0x08 /* Parallel IO */
243
#define REG3 0x0c /* Test */
244
#define REG8 0x20 /* Command Queue Pointer */
245
#define REG9 0x24 /* Interrupt Queue Pointer */
246
247
#define DBRI_NO_CMDS 64
248
#define DBRI_INT_BLK 64
249
#define DBRI_NO_DESCS 64
250
#define DBRI_NO_PIPES 32
251
#define DBRI_MAX_PIPE (DBRI_NO_PIPES - 1)
252
253
#define DBRI_REC 0
254
#define DBRI_PLAY 1
255
#define DBRI_NO_STREAMS 2
256
257
/* One transmit/receive descriptor */
258
/* When ba != 0 descriptor is used */
259
struct dbri_mem {
260
volatile __u32 word1;
261
__u32 ba; /* Transmit/Receive Buffer Address */
262
__u32 nda; /* Next Descriptor Address */
263
volatile __u32 word4;
264
};
265
266
/* This structure is in a DMA region where it can accessed by both
267
* the CPU and the DBRI
268
*/
269
struct dbri_dma {
270
s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
271
volatile s32 intr[DBRI_INT_BLK]; /* Interrupt field */
272
struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
273
};
274
275
#define dbri_dma_off(member, elem) \
276
((u32)(unsigned long) \
277
(&(((struct dbri_dma *)0)->member[elem])))
278
279
enum in_or_out { PIPEinput, PIPEoutput };
280
281
struct dbri_pipe {
282
u32 sdp; /* SDP command word */
283
int nextpipe; /* Next pipe in linked list */
284
int length; /* Length of timeslot (bits) */
285
int first_desc; /* Index of first descriptor */
286
int desc; /* Index of active descriptor */
287
volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
288
};
289
290
/* Per stream (playback or record) information */
291
struct dbri_streaminfo {
292
struct snd_pcm_substream *substream;
293
u32 dvma_buffer; /* Device view of ALSA DMA buffer */
294
int size; /* Size of DMA buffer */
295
size_t offset; /* offset in user buffer */
296
int pipe; /* Data pipe used */
297
int left_gain; /* mixer elements */
298
int right_gain;
299
};
300
301
/* This structure holds the information for both chips (DBRI & CS4215) */
302
struct snd_dbri {
303
int regs_size, irq; /* Needed for unload */
304
struct platform_device *op; /* OF device info */
305
spinlock_t lock;
306
307
struct dbri_dma *dma; /* Pointer to our DMA block */
308
dma_addr_t dma_dvma; /* DBRI visible DMA address */
309
310
void __iomem *regs; /* dbri HW regs */
311
int dbri_irqp; /* intr queue pointer */
312
313
struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
314
int next_desc[DBRI_NO_DESCS]; /* Index of next desc, or -1 */
315
spinlock_t cmdlock; /* Protects cmd queue accesses */
316
s32 *cmdptr; /* Pointer to the last queued cmd */
317
318
int chi_bpf;
319
320
struct cs4215 mm; /* mmcodec special info */
321
/* per stream (playback/record) info */
322
struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
323
};
324
325
#define DBRI_MAX_VOLUME 63 /* Output volume */
326
#define DBRI_MAX_GAIN 15 /* Input gain */
327
328
/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
329
#define D_P (1<<15) /* Program command & queue pointer valid */
330
#define D_G (1<<14) /* Allow 4-Word SBus Burst */
331
#define D_S (1<<13) /* Allow 16-Word SBus Burst */
332
#define D_E (1<<12) /* Allow 8-Word SBus Burst */
333
#define D_X (1<<7) /* Sanity Timer Disable */
334
#define D_T (1<<6) /* Permit activation of the TE interface */
335
#define D_N (1<<5) /* Permit activation of the NT interface */
336
#define D_C (1<<4) /* Permit activation of the CHI interface */
337
#define D_F (1<<3) /* Force Sanity Timer Time-Out */
338
#define D_D (1<<2) /* Disable Master Mode */
339
#define D_H (1<<1) /* Halt for Analysis */
340
#define D_R (1<<0) /* Soft Reset */
341
342
/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
343
#define D_LITTLE_END (1<<8) /* Byte Order */
344
#define D_BIG_END (0<<8) /* Byte Order */
345
#define D_MRR (1<<4) /* Multiple Error Ack on SBus (read only) */
346
#define D_MLE (1<<3) /* Multiple Late Error on SBus (read only) */
347
#define D_LBG (1<<2) /* Lost Bus Grant on SBus (read only) */
348
#define D_MBE (1<<1) /* Burst Error on SBus (read only) */
349
#define D_IR (1<<0) /* Interrupt Indicator (read only) */
350
351
/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
352
#define D_ENPIO3 (1<<7) /* Enable Pin 3 */
353
#define D_ENPIO2 (1<<6) /* Enable Pin 2 */
354
#define D_ENPIO1 (1<<5) /* Enable Pin 1 */
355
#define D_ENPIO0 (1<<4) /* Enable Pin 0 */
356
#define D_ENPIO (0xf0) /* Enable all the pins */
357
#define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
358
#define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
359
#define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
360
#define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
361
362
/* DBRI Commands (Page 20) */
363
#define D_WAIT 0x0 /* Stop execution */
364
#define D_PAUSE 0x1 /* Flush long pipes */
365
#define D_JUMP 0x2 /* New command queue */
366
#define D_IIQ 0x3 /* Initialize Interrupt Queue */
367
#define D_REX 0x4 /* Report command execution via interrupt */
368
#define D_SDP 0x5 /* Setup Data Pipe */
369
#define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
370
#define D_DTS 0x7 /* Define Time Slot */
371
#define D_SSP 0x8 /* Set short Data Pipe */
372
#define D_CHI 0x9 /* Set CHI Global Mode */
373
#define D_NT 0xa /* NT Command */
374
#define D_TE 0xb /* TE Command */
375
#define D_CDEC 0xc /* Codec setup */
376
#define D_TEST 0xd /* No comment */
377
#define D_CDM 0xe /* CHI Data mode command */
378
379
/* Special bits for some commands */
380
#define D_PIPE(v) ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
381
382
/* Setup Data Pipe */
383
/* IRM */
384
#define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value received */
385
#define D_SDP_CHANGE (2<<18) /* Report any changes */
386
#define D_SDP_EVERY (3<<18) /* Report any changes */
387
#define D_SDP_EOL (1<<17) /* EOL interrupt enable */
388
#define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
389
390
/* Pipe data MODE */
391
#define D_SDP_MEM (0<<13) /* To/from memory */
392
#define D_SDP_HDLC (2<<13)
393
#define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
394
#define D_SDP_SER (4<<13) /* Serial to serial */
395
#define D_SDP_FIXED (6<<13) /* Short only */
396
#define D_SDP_MODE(v) ((v)&(7<<13))
397
398
#define D_SDP_TO_SER (1<<12) /* Direction */
399
#define D_SDP_FROM_SER (0<<12) /* Direction */
400
#define D_SDP_MSB (1<<11) /* Bit order within Byte */
401
#define D_SDP_LSB (0<<11) /* Bit order within Byte */
402
#define D_SDP_P (1<<10) /* Pointer Valid */
403
#define D_SDP_A (1<<8) /* Abort */
404
#define D_SDP_C (1<<7) /* Clear */
405
406
/* Define Time Slot */
407
#define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
408
#define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
409
#define D_DTS_INS (1<<15) /* Insert Time Slot */
410
#define D_DTS_DEL (0<<15) /* Delete Time Slot */
411
#define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
412
#define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
413
414
/* Time Slot defines */
415
#define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
416
#define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
417
#define D_TS_DI (1<<13) /* Data Invert */
418
#define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
419
#define D_TS_MONITOR (2<<10) /* Monitor pipe */
420
#define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
421
#define D_TS_ANCHOR (7<<10) /* Starting short pipes */
422
#define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
423
#define D_TS_NEXT(v) ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
424
425
/* Concentration Highway Interface Modes */
426
#define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
427
#define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
428
#define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
429
#define D_CHI_OD (1<<13) /* Open Drain Enable */
430
#define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
431
#define D_CHI_FD (1<<11) /* Frame Drive */
432
#define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
433
434
/* NT: These are here for completeness */
435
#define D_NT_FBIT (1<<17) /* Frame Bit */
436
#define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
437
#define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
438
#define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
439
#define D_NT_ISNT (1<<13) /* Configure interface as NT */
440
#define D_NT_FT (1<<12) /* Fixed Timing */
441
#define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
442
#define D_NT_IFA (1<<10) /* Inhibit Final Activation */
443
#define D_NT_ACT (1<<9) /* Activate Interface */
444
#define D_NT_MFE (1<<8) /* Multiframe Enable */
445
#define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
446
#define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
447
#define D_NT_FACT (1<<1) /* Force Activation */
448
#define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
449
450
/* Codec Setup */
451
#define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
452
#define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
453
#define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
454
455
/* Test */
456
#define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
457
#define D_TEST_SIZE(v) ((v)<<11) /* */
458
#define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
459
#define D_TEST_PROC 0x6 /* Microprocessor test */
460
#define D_TEST_SER 0x7 /* Serial-Controller test */
461
#define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
462
#define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
463
#define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
464
#define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
465
#define D_TEST_DUMP 0xe /* ROM Dump */
466
467
/* CHI Data Mode */
468
#define D_CDM_THI (1 << 8) /* Transmit Data on CHIDR Pin */
469
#define D_CDM_RHI (1 << 7) /* Receive Data on CHIDX Pin */
470
#define D_CDM_RCE (1 << 6) /* Receive on Rising Edge of CHICK */
471
#define D_CDM_XCE (1 << 2) /* Transmit Data on Rising Edge of CHICK */
472
#define D_CDM_XEN (1 << 1) /* Transmit Highway Enable */
473
#define D_CDM_REN (1 << 0) /* Receive Highway Enable */
474
475
/* The Interrupts */
476
#define D_INTR_BRDY 1 /* Buffer Ready for processing */
477
#define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
478
#define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
479
#define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
480
#define D_INTR_EOL 5 /* End of List */
481
#define D_INTR_CMDI 6 /* Command has bean read */
482
#define D_INTR_XCMP 8 /* Transmission of frame complete */
483
#define D_INTR_SBRI 9 /* BRI status change info */
484
#define D_INTR_FXDT 10 /* Fixed data change */
485
#define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
486
#define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
487
#define D_INTR_DBYT 12 /* Dropped by frame slip */
488
#define D_INTR_RBYT 13 /* Repeated by frame slip */
489
#define D_INTR_LINT 14 /* Lost Interrupt */
490
#define D_INTR_UNDR 15 /* DMA underrun */
491
492
#define D_INTR_TE 32
493
#define D_INTR_NT 34
494
#define D_INTR_CHI 36
495
#define D_INTR_CMD 38
496
497
#define D_INTR_GETCHAN(v) (((v) >> 24) & 0x3f)
498
#define D_INTR_GETCODE(v) (((v) >> 20) & 0xf)
499
#define D_INTR_GETCMD(v) (((v) >> 16) & 0xf)
500
#define D_INTR_GETVAL(v) ((v) & 0xffff)
501
#define D_INTR_GETRVAL(v) ((v) & 0xfffff)
502
503
#define D_P_0 0 /* TE receive anchor */
504
#define D_P_1 1 /* TE transmit anchor */
505
#define D_P_2 2 /* NT transmit anchor */
506
#define D_P_3 3 /* NT receive anchor */
507
#define D_P_4 4 /* CHI send data */
508
#define D_P_5 5 /* CHI receive data */
509
#define D_P_6 6 /* */
510
#define D_P_7 7 /* */
511
#define D_P_8 8 /* */
512
#define D_P_9 9 /* */
513
#define D_P_10 10 /* */
514
#define D_P_11 11 /* */
515
#define D_P_12 12 /* */
516
#define D_P_13 13 /* */
517
#define D_P_14 14 /* */
518
#define D_P_15 15 /* */
519
#define D_P_16 16 /* CHI anchor pipe */
520
#define D_P_17 17 /* CHI send */
521
#define D_P_18 18 /* CHI receive */
522
#define D_P_19 19 /* CHI receive */
523
#define D_P_20 20 /* CHI receive */
524
#define D_P_21 21 /* */
525
#define D_P_22 22 /* */
526
#define D_P_23 23 /* */
527
#define D_P_24 24 /* */
528
#define D_P_25 25 /* */
529
#define D_P_26 26 /* */
530
#define D_P_27 27 /* */
531
#define D_P_28 28 /* */
532
#define D_P_29 29 /* */
533
#define D_P_30 30 /* */
534
#define D_P_31 31 /* */
535
536
/* Transmit descriptor defines */
537
#define DBRI_TD_F (1 << 31) /* End of Frame */
538
#define DBRI_TD_D (1 << 30) /* Do not append CRC */
539
#define DBRI_TD_CNT(v) ((v) << 16) /* Number of valid bytes in the buffer */
540
#define DBRI_TD_B (1 << 15) /* Final interrupt */
541
#define DBRI_TD_M (1 << 14) /* Marker interrupt */
542
#define DBRI_TD_I (1 << 13) /* Transmit Idle Characters */
543
#define DBRI_TD_FCNT(v) (v) /* Flag Count */
544
#define DBRI_TD_UNR (1 << 3) /* Underrun: transmitter is out of data */
545
#define DBRI_TD_ABT (1 << 2) /* Abort: frame aborted */
546
#define DBRI_TD_TBC (1 << 0) /* Transmit buffer Complete */
547
#define DBRI_TD_STATUS(v) ((v) & 0xff) /* Transmit status */
548
/* Maximum buffer size per TD: almost 8KB */
549
#define DBRI_TD_MAXCNT ((1 << 13) - 4)
550
551
/* Receive descriptor defines */
552
#define DBRI_RD_F (1 << 31) /* End of Frame */
553
#define DBRI_RD_C (1 << 30) /* Completed buffer */
554
#define DBRI_RD_B (1 << 15) /* Final interrupt */
555
#define DBRI_RD_M (1 << 14) /* Marker interrupt */
556
#define DBRI_RD_BCNT(v) (v) /* Buffer size */
557
#define DBRI_RD_CRC (1 << 7) /* 0: CRC is correct */
558
#define DBRI_RD_BBC (1 << 6) /* 1: Bad Byte received */
559
#define DBRI_RD_ABT (1 << 5) /* Abort: frame aborted */
560
#define DBRI_RD_OVRN (1 << 3) /* Overrun: data lost */
561
#define DBRI_RD_STATUS(v) ((v) & 0xff) /* Receive status */
562
#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff) /* Valid bytes in the buffer */
563
564
/* stream_info[] access */
565
/* Translate the ALSA direction into the array index */
566
#define DBRI_STREAMNO(substream) \
567
(substream->stream == \
568
SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
569
570
/* Return a pointer to dbri_streaminfo */
571
#define DBRI_STREAM(dbri, substream) \
572
&dbri->stream_info[DBRI_STREAMNO(substream)]
573
574
/*
575
* Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
576
* So we have to reverse the bits. Note: not all bit lengths are supported
577
*/
578
static __u32 reverse_bytes(__u32 b, int len)
579
{
580
switch (len) {
581
case 32:
582
b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
583
fallthrough;
584
case 16:
585
b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
586
fallthrough;
587
case 8:
588
b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
589
fallthrough;
590
case 4:
591
b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
592
fallthrough;
593
case 2:
594
b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
595
case 1:
596
case 0:
597
break;
598
default:
599
printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
600
}
601
602
return b;
603
}
604
605
/*
606
****************************************************************************
607
************** DBRI initialization and command synchronization *************
608
****************************************************************************
609
610
Commands are sent to the DBRI by building a list of them in memory,
611
then writing the address of the first list item to DBRI register 8.
612
The list is terminated with a WAIT command, which generates a
613
CPU interrupt to signal completion.
614
615
Since the DBRI can run in parallel with the CPU, several means of
616
synchronization present themselves. The method implemented here uses
617
the dbri_cmdwait() to wait for execution of batch of sent commands.
618
619
A circular command buffer is used here. A new command is being added
620
while another can be executed. The scheme works by adding two WAIT commands
621
after each sent batch of commands. When the next batch is prepared it is
622
added after the WAIT commands then the WAITs are replaced with single JUMP
623
command to the new batch. Then the DBRI is forced to reread the last WAIT
624
command (replaced by the JUMP by then). If the DBRI is still executing
625
previous commands the request to reread the WAIT command is ignored.
626
627
Every time a routine wants to write commands to the DBRI, it must
628
first call dbri_cmdlock() and get pointer to a free space in
629
dbri->dma->cmd buffer. After this, the commands can be written to
630
the buffer, and dbri_cmdsend() is called with the final pointer value
631
to send them to the DBRI.
632
633
*/
634
635
#define MAXLOOPS 20
636
/*
637
* Wait for the current command string to execute
638
*/
639
static void dbri_cmdwait(struct snd_dbri *dbri)
640
{
641
int maxloops = MAXLOOPS;
642
unsigned long flags;
643
644
/* Delay if previous commands are still being processed */
645
spin_lock_irqsave(&dbri->lock, flags);
646
while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
647
spin_unlock_irqrestore(&dbri->lock, flags);
648
msleep_interruptible(1);
649
spin_lock_irqsave(&dbri->lock, flags);
650
}
651
spin_unlock_irqrestore(&dbri->lock, flags);
652
653
if (maxloops == 0)
654
printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
655
else
656
dprintk(D_CMD, "Chip completed command buffer (%d)\n",
657
MAXLOOPS - maxloops - 1);
658
}
659
/*
660
* Lock the command queue and return pointer to space for len cmd words
661
* It locks the cmdlock spinlock.
662
*/
663
static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
664
{
665
u32 dvma_addr = (u32)dbri->dma_dvma;
666
667
/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
668
len += 2;
669
spin_lock(&dbri->cmdlock);
670
if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
671
return dbri->cmdptr + 2;
672
else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
673
return dbri->dma->cmd;
674
else
675
printk(KERN_ERR "DBRI: no space for commands.");
676
677
return NULL;
678
}
679
680
/*
681
* Send prepared cmd string. It works by writing a JUMP cmd into
682
* the last WAIT cmd and force DBRI to reread the cmd.
683
* The JUMP cmd points to the new cmd string.
684
* It also releases the cmdlock spinlock.
685
*
686
* Lock must be held before calling this.
687
*/
688
static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
689
{
690
u32 dvma_addr = (u32)dbri->dma_dvma;
691
s32 tmp, addr;
692
static int wait_id;
693
694
wait_id++;
695
wait_id &= 0xffff; /* restrict it to a 16 bit counter. */
696
*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
697
*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
698
699
/* Replace the last command with JUMP */
700
addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
701
*(dbri->cmdptr+1) = addr;
702
*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
703
704
#ifdef DBRI_DEBUG
705
if (cmd > dbri->cmdptr) {
706
s32 *ptr;
707
708
for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
709
dprintk(D_CMD, "cmd: %lx:%08x\n",
710
(unsigned long)ptr, *ptr);
711
} else {
712
s32 *ptr = dbri->cmdptr;
713
714
dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
715
ptr++;
716
dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
717
for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
718
dprintk(D_CMD, "cmd: %lx:%08x\n",
719
(unsigned long)ptr, *ptr);
720
}
721
#endif
722
723
/* Reread the last command */
724
tmp = sbus_readl(dbri->regs + REG0);
725
tmp |= D_P;
726
sbus_writel(tmp, dbri->regs + REG0);
727
728
dbri->cmdptr = cmd;
729
spin_unlock(&dbri->cmdlock);
730
}
731
732
/* Lock must be held when calling this */
733
static void dbri_reset(struct snd_dbri *dbri)
734
{
735
int i;
736
u32 tmp;
737
738
dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
739
sbus_readl(dbri->regs + REG0),
740
sbus_readl(dbri->regs + REG2),
741
sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
742
743
sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
744
for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
745
udelay(10);
746
747
/* A brute approach - DBRI falls back to working burst size by itself
748
* On SS20 D_S does not work, so do not try so high. */
749
tmp = sbus_readl(dbri->regs + REG0);
750
tmp |= D_G | D_E;
751
tmp &= ~D_S;
752
sbus_writel(tmp, dbri->regs + REG0);
753
}
754
755
/* Lock must not be held before calling this */
756
static void dbri_initialize(struct snd_dbri *dbri)
757
{
758
u32 dvma_addr = (u32)dbri->dma_dvma;
759
s32 *cmd;
760
u32 dma_addr;
761
unsigned long flags;
762
int n;
763
764
spin_lock_irqsave(&dbri->lock, flags);
765
766
dbri_reset(dbri);
767
768
/* Initialize pipes */
769
for (n = 0; n < DBRI_NO_PIPES; n++)
770
dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
771
772
spin_lock_init(&dbri->cmdlock);
773
/*
774
* Initialize the interrupt ring buffer.
775
*/
776
dma_addr = dvma_addr + dbri_dma_off(intr, 0);
777
dbri->dma->intr[0] = dma_addr;
778
dbri->dbri_irqp = 1;
779
/*
780
* Set up the interrupt queue
781
*/
782
spin_lock(&dbri->cmdlock);
783
cmd = dbri->cmdptr = dbri->dma->cmd;
784
*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
785
*(cmd++) = dma_addr;
786
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
787
dbri->cmdptr = cmd;
788
*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
789
*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
790
dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
791
sbus_writel(dma_addr, dbri->regs + REG8);
792
spin_unlock(&dbri->cmdlock);
793
794
spin_unlock_irqrestore(&dbri->lock, flags);
795
dbri_cmdwait(dbri);
796
}
797
798
/*
799
****************************************************************************
800
************************** DBRI data pipe management ***********************
801
****************************************************************************
802
803
While DBRI control functions use the command and interrupt buffers, the
804
main data path takes the form of data pipes, which can be short (command
805
and interrupt driven), or long (attached to DMA buffers). These functions
806
provide a rudimentary means of setting up and managing the DBRI's pipes,
807
but the calling functions have to make sure they respect the pipes' linked
808
list ordering, among other things. The transmit and receive functions
809
here interface closely with the transmit and receive interrupt code.
810
811
*/
812
static inline int pipe_active(struct snd_dbri *dbri, int pipe)
813
{
814
return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
815
}
816
817
/* reset_pipe(dbri, pipe)
818
*
819
* Called on an in-use pipe to clear anything being transmitted or received
820
* Lock must be held before calling this.
821
*/
822
static void reset_pipe(struct snd_dbri *dbri, int pipe)
823
{
824
int sdp;
825
int desc;
826
s32 *cmd;
827
828
if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
829
printk(KERN_ERR "DBRI: reset_pipe called with "
830
"illegal pipe number\n");
831
return;
832
}
833
834
sdp = dbri->pipes[pipe].sdp;
835
if (sdp == 0) {
836
printk(KERN_ERR "DBRI: reset_pipe called "
837
"on uninitialized pipe\n");
838
return;
839
}
840
841
cmd = dbri_cmdlock(dbri, 3);
842
*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
843
*(cmd++) = 0;
844
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
845
dbri_cmdsend(dbri, cmd, 3);
846
847
desc = dbri->pipes[pipe].first_desc;
848
if (desc >= 0)
849
do {
850
dbri->dma->desc[desc].ba = 0;
851
dbri->dma->desc[desc].nda = 0;
852
desc = dbri->next_desc[desc];
853
} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
854
855
dbri->pipes[pipe].desc = -1;
856
dbri->pipes[pipe].first_desc = -1;
857
}
858
859
/*
860
* Lock must be held before calling this.
861
*/
862
static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
863
{
864
if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
865
printk(KERN_ERR "DBRI: setup_pipe called "
866
"with illegal pipe number\n");
867
return;
868
}
869
870
if ((sdp & 0xf800) != sdp) {
871
printk(KERN_ERR "DBRI: setup_pipe called "
872
"with strange SDP value\n");
873
/* sdp &= 0xf800; */
874
}
875
876
/* If this is a fixed receive pipe, arrange for an interrupt
877
* every time its data changes
878
*/
879
if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
880
sdp |= D_SDP_CHANGE;
881
882
sdp |= D_PIPE(pipe);
883
dbri->pipes[pipe].sdp = sdp;
884
dbri->pipes[pipe].desc = -1;
885
dbri->pipes[pipe].first_desc = -1;
886
887
reset_pipe(dbri, pipe);
888
}
889
890
/*
891
* Lock must be held before calling this.
892
*/
893
static void link_time_slot(struct snd_dbri *dbri, int pipe,
894
int prevpipe, int nextpipe,
895
int length, int cycle)
896
{
897
s32 *cmd;
898
int val;
899
900
if (pipe < 0 || pipe > DBRI_MAX_PIPE
901
|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
902
|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
903
printk(KERN_ERR
904
"DBRI: link_time_slot called with illegal pipe number\n");
905
return;
906
}
907
908
if (dbri->pipes[pipe].sdp == 0
909
|| dbri->pipes[prevpipe].sdp == 0
910
|| dbri->pipes[nextpipe].sdp == 0) {
911
printk(KERN_ERR "DBRI: link_time_slot called "
912
"on uninitialized pipe\n");
913
return;
914
}
915
916
dbri->pipes[prevpipe].nextpipe = pipe;
917
dbri->pipes[pipe].nextpipe = nextpipe;
918
dbri->pipes[pipe].length = length;
919
920
cmd = dbri_cmdlock(dbri, 4);
921
922
if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
923
/* Deal with CHI special case:
924
* "If transmission on edges 0 or 1 is desired, then cycle n
925
* (where n = # of bit times per frame...) must be used."
926
* - DBRI data sheet, page 11
927
*/
928
if (prevpipe == 16 && cycle == 0)
929
cycle = dbri->chi_bpf;
930
931
val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
932
*(cmd++) = DBRI_CMD(D_DTS, 0, val);
933
*(cmd++) = 0;
934
*(cmd++) =
935
D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
936
} else {
937
val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
938
*(cmd++) = DBRI_CMD(D_DTS, 0, val);
939
*(cmd++) =
940
D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
941
*(cmd++) = 0;
942
}
943
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
944
945
dbri_cmdsend(dbri, cmd, 4);
946
}
947
948
#if 0
949
/*
950
* Lock must be held before calling this.
951
*/
952
static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
953
enum in_or_out direction, int prevpipe,
954
int nextpipe)
955
{
956
s32 *cmd;
957
int val;
958
959
if (pipe < 0 || pipe > DBRI_MAX_PIPE
960
|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
961
|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
962
printk(KERN_ERR
963
"DBRI: unlink_time_slot called with illegal pipe number\n");
964
return;
965
}
966
967
cmd = dbri_cmdlock(dbri, 4);
968
969
if (direction == PIPEinput) {
970
val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
971
*(cmd++) = DBRI_CMD(D_DTS, 0, val);
972
*(cmd++) = D_TS_NEXT(nextpipe);
973
*(cmd++) = 0;
974
} else {
975
val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
976
*(cmd++) = DBRI_CMD(D_DTS, 0, val);
977
*(cmd++) = 0;
978
*(cmd++) = D_TS_NEXT(nextpipe);
979
}
980
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
981
982
dbri_cmdsend(dbri, cmd, 4);
983
}
984
#endif
985
986
/* xmit_fixed() / recv_fixed()
987
*
988
* Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
989
* expected to change much, and which we don't need to buffer.
990
* The DBRI only interrupts us when the data changes (receive pipes),
991
* or only changes the data when this function is called (transmit pipes).
992
* Only short pipes (numbers 16-31) can be used in fixed data mode.
993
*
994
* These function operate on a 32-bit field, no matter how large
995
* the actual time slot is. The interrupt handler takes care of bit
996
* ordering and alignment. An 8-bit time slot will always end up
997
* in the low-order 8 bits, filled either MSB-first or LSB-first,
998
* depending on the settings passed to setup_pipe().
999
*
1000
* Lock must not be held before calling it.
1001
*/
1002
static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1003
{
1004
s32 *cmd;
1005
unsigned long flags;
1006
1007
if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1008
printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1009
return;
1010
}
1011
1012
if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1013
printk(KERN_ERR "DBRI: xmit_fixed: "
1014
"Uninitialized pipe %d\n", pipe);
1015
return;
1016
}
1017
1018
if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1019
printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1020
return;
1021
}
1022
1023
if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1024
printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1025
pipe);
1026
return;
1027
}
1028
1029
/* DBRI short pipes always transmit LSB first */
1030
1031
if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1032
data = reverse_bytes(data, dbri->pipes[pipe].length);
1033
1034
cmd = dbri_cmdlock(dbri, 3);
1035
1036
*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1037
*(cmd++) = data;
1038
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1039
1040
spin_lock_irqsave(&dbri->lock, flags);
1041
dbri_cmdsend(dbri, cmd, 3);
1042
spin_unlock_irqrestore(&dbri->lock, flags);
1043
dbri_cmdwait(dbri);
1044
1045
}
1046
1047
static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1048
{
1049
if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1050
printk(KERN_ERR "DBRI: recv_fixed called with "
1051
"illegal pipe number\n");
1052
return;
1053
}
1054
1055
if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1056
printk(KERN_ERR "DBRI: recv_fixed called on "
1057
"non-fixed pipe %d\n", pipe);
1058
return;
1059
}
1060
1061
if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1062
printk(KERN_ERR "DBRI: recv_fixed called on "
1063
"transmit pipe %d\n", pipe);
1064
return;
1065
}
1066
1067
dbri->pipes[pipe].recv_fixed_ptr = ptr;
1068
}
1069
1070
/* setup_descs()
1071
*
1072
* Setup transmit/receive data on a "long" pipe - i.e, one associated
1073
* with a DMA buffer.
1074
*
1075
* Only pipe numbers 0-15 can be used in this mode.
1076
*
1077
* This function takes a stream number pointing to a data buffer,
1078
* and work by building chains of descriptors which identify the
1079
* data buffers. Buffers too large for a single descriptor will
1080
* be spread across multiple descriptors.
1081
*
1082
* All descriptors create a ring buffer.
1083
*
1084
* Lock must be held before calling this.
1085
*/
1086
static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1087
{
1088
struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1089
u32 dvma_addr = (u32)dbri->dma_dvma;
1090
__u32 dvma_buffer;
1091
int desc;
1092
int len;
1093
int first_desc = -1;
1094
int last_desc = -1;
1095
1096
if (info->pipe < 0 || info->pipe > 15) {
1097
printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1098
return -2;
1099
}
1100
1101
if (dbri->pipes[info->pipe].sdp == 0) {
1102
printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1103
info->pipe);
1104
return -2;
1105
}
1106
1107
dvma_buffer = info->dvma_buffer;
1108
len = info->size;
1109
1110
if (streamno == DBRI_PLAY) {
1111
if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1112
printk(KERN_ERR "DBRI: setup_descs: "
1113
"Called on receive pipe %d\n", info->pipe);
1114
return -2;
1115
}
1116
} else {
1117
if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1118
printk(KERN_ERR
1119
"DBRI: setup_descs: Called on transmit pipe %d\n",
1120
info->pipe);
1121
return -2;
1122
}
1123
/* Should be able to queue multiple buffers
1124
* to receive on a pipe
1125
*/
1126
if (pipe_active(dbri, info->pipe)) {
1127
printk(KERN_ERR "DBRI: recv_on_pipe: "
1128
"Called on active pipe %d\n", info->pipe);
1129
return -2;
1130
}
1131
1132
/* Make sure buffer size is multiple of four */
1133
len &= ~3;
1134
}
1135
1136
/* Free descriptors if pipe has any */
1137
desc = dbri->pipes[info->pipe].first_desc;
1138
if (desc >= 0)
1139
do {
1140
dbri->dma->desc[desc].ba = 0;
1141
dbri->dma->desc[desc].nda = 0;
1142
desc = dbri->next_desc[desc];
1143
} while (desc != -1 &&
1144
desc != dbri->pipes[info->pipe].first_desc);
1145
1146
dbri->pipes[info->pipe].desc = -1;
1147
dbri->pipes[info->pipe].first_desc = -1;
1148
1149
desc = 0;
1150
while (len > 0) {
1151
int mylen;
1152
1153
for (; desc < DBRI_NO_DESCS; desc++) {
1154
if (!dbri->dma->desc[desc].ba)
1155
break;
1156
}
1157
1158
if (desc == DBRI_NO_DESCS) {
1159
printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1160
return -1;
1161
}
1162
1163
if (len > DBRI_TD_MAXCNT)
1164
mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1165
else
1166
mylen = len;
1167
1168
if (mylen > period)
1169
mylen = period;
1170
1171
dbri->next_desc[desc] = -1;
1172
dbri->dma->desc[desc].ba = dvma_buffer;
1173
dbri->dma->desc[desc].nda = 0;
1174
1175
if (streamno == DBRI_PLAY) {
1176
dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1177
dbri->dma->desc[desc].word4 = 0;
1178
dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1179
} else {
1180
dbri->dma->desc[desc].word1 = 0;
1181
dbri->dma->desc[desc].word4 =
1182
DBRI_RD_B | DBRI_RD_BCNT(mylen);
1183
}
1184
1185
if (first_desc == -1)
1186
first_desc = desc;
1187
else {
1188
dbri->next_desc[last_desc] = desc;
1189
dbri->dma->desc[last_desc].nda =
1190
dvma_addr + dbri_dma_off(desc, desc);
1191
}
1192
1193
last_desc = desc;
1194
dvma_buffer += mylen;
1195
len -= mylen;
1196
}
1197
1198
if (first_desc == -1 || last_desc == -1) {
1199
printk(KERN_ERR "DBRI: setup_descs: "
1200
" Not enough descriptors available\n");
1201
return -1;
1202
}
1203
1204
dbri->dma->desc[last_desc].nda =
1205
dvma_addr + dbri_dma_off(desc, first_desc);
1206
dbri->next_desc[last_desc] = first_desc;
1207
dbri->pipes[info->pipe].first_desc = first_desc;
1208
dbri->pipes[info->pipe].desc = first_desc;
1209
1210
#ifdef DBRI_DEBUG
1211
for (desc = first_desc; desc != -1;) {
1212
dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1213
desc,
1214
dbri->dma->desc[desc].word1,
1215
dbri->dma->desc[desc].ba,
1216
dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1217
desc = dbri->next_desc[desc];
1218
if (desc == first_desc)
1219
break;
1220
}
1221
#endif
1222
return 0;
1223
}
1224
1225
/*
1226
****************************************************************************
1227
************************** DBRI - CHI interface ****************************
1228
****************************************************************************
1229
1230
The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1231
multiplexed serial interface which the DBRI can operate in either master
1232
(give clock/frame sync) or slave (take clock/frame sync) mode.
1233
1234
*/
1235
1236
enum master_or_slave { CHImaster, CHIslave };
1237
1238
/*
1239
* Lock must not be held before calling it.
1240
*/
1241
static void reset_chi(struct snd_dbri *dbri,
1242
enum master_or_slave master_or_slave,
1243
int bits_per_frame)
1244
{
1245
s32 *cmd;
1246
int val;
1247
1248
/* Set CHI Anchor: Pipe 16 */
1249
1250
cmd = dbri_cmdlock(dbri, 4);
1251
val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1252
| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1253
*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1254
*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1255
*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1256
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1257
dbri_cmdsend(dbri, cmd, 4);
1258
1259
dbri->pipes[16].sdp = 1;
1260
dbri->pipes[16].nextpipe = 16;
1261
1262
cmd = dbri_cmdlock(dbri, 4);
1263
1264
if (master_or_slave == CHIslave) {
1265
/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1266
*
1267
* CHICM = 0 (slave mode, 8 kHz frame rate)
1268
* IR = give immediate CHI status interrupt
1269
* EN = give CHI status interrupt upon change
1270
*/
1271
*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1272
} else {
1273
/* Setup DBRI for CHI Master - generate clock, FS
1274
*
1275
* BPF = bits per 8 kHz frame
1276
* 12.288 MHz / CHICM_divisor = clock rate
1277
* FD = 1 - drive CHIFS on rising edge of CHICK
1278
*/
1279
int clockrate = bits_per_frame * 8;
1280
int divisor = 12288 / clockrate;
1281
1282
if (divisor > 255 || divisor * clockrate != 12288)
1283
printk(KERN_ERR "DBRI: illegal bits_per_frame "
1284
"in setup_chi\n");
1285
1286
*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1287
| D_CHI_BPF(bits_per_frame));
1288
}
1289
1290
dbri->chi_bpf = bits_per_frame;
1291
1292
/* CHI Data Mode
1293
*
1294
* RCE = 0 - receive on falling edge of CHICK
1295
* XCE = 1 - transmit on rising edge of CHICK
1296
* XEN = 1 - enable transmitter
1297
* REN = 1 - enable receiver
1298
*/
1299
1300
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1301
*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1302
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1303
1304
dbri_cmdsend(dbri, cmd, 4);
1305
}
1306
1307
/*
1308
****************************************************************************
1309
*********************** CS4215 audio codec management **********************
1310
****************************************************************************
1311
1312
In the standard SPARC audio configuration, the CS4215 codec is attached
1313
to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1314
1315
* Lock must not be held before calling it.
1316
1317
*/
1318
static void cs4215_setup_pipes(struct snd_dbri *dbri)
1319
{
1320
unsigned long flags;
1321
1322
spin_lock_irqsave(&dbri->lock, flags);
1323
/*
1324
* Data mode:
1325
* Pipe 4: Send timeslots 1-4 (audio data)
1326
* Pipe 20: Send timeslots 5-8 (part of ctrl data)
1327
* Pipe 6: Receive timeslots 1-4 (audio data)
1328
* Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1329
* interrupt, and the rest of the data (slot 5 and 8) is
1330
* not relevant for us (only for doublechecking).
1331
*
1332
* Control mode:
1333
* Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1334
* Pipe 18: Receive timeslot 1 (clb).
1335
* Pipe 19: Receive timeslot 7 (version).
1336
*/
1337
1338
setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1339
setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1340
setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1341
setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1342
1343
setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1344
setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1345
setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1346
spin_unlock_irqrestore(&dbri->lock, flags);
1347
1348
dbri_cmdwait(dbri);
1349
}
1350
1351
static int cs4215_init_data(struct cs4215 *mm)
1352
{
1353
/*
1354
* No action, memory resetting only.
1355
*
1356
* Data Time Slot 5-8
1357
* Speaker,Line and Headphone enable. Gain set to the half.
1358
* Input is mike.
1359
*/
1360
mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1361
mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1362
mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1363
mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1364
1365
/*
1366
* Control Time Slot 1-4
1367
* 0: Default I/O voltage scale
1368
* 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1369
* 2: Serial enable, CHI master, 128 bits per frame, clock 1
1370
* 3: Tests disabled
1371
*/
1372
mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1373
mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1374
mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1375
mm->ctrl[3] = 0;
1376
1377
mm->status = 0;
1378
mm->version = 0xff;
1379
mm->precision = 8; /* For ULAW */
1380
mm->channels = 1;
1381
1382
return 0;
1383
}
1384
1385
static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1386
{
1387
if (muted) {
1388
dbri->mm.data[0] |= 63;
1389
dbri->mm.data[1] |= 63;
1390
dbri->mm.data[2] &= ~15;
1391
dbri->mm.data[3] &= ~15;
1392
} else {
1393
/* Start by setting the playback attenuation. */
1394
struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1395
int left_gain = info->left_gain & 0x3f;
1396
int right_gain = info->right_gain & 0x3f;
1397
1398
dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1399
dbri->mm.data[1] &= ~0x3f;
1400
dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1401
dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1402
1403
/* Now set the recording gain. */
1404
info = &dbri->stream_info[DBRI_REC];
1405
left_gain = info->left_gain & 0xf;
1406
right_gain = info->right_gain & 0xf;
1407
dbri->mm.data[2] |= CS4215_LG(left_gain);
1408
dbri->mm.data[3] |= CS4215_RG(right_gain);
1409
}
1410
1411
xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1412
}
1413
1414
/*
1415
* Set the CS4215 to data mode.
1416
*/
1417
static void cs4215_open(struct snd_dbri *dbri)
1418
{
1419
int data_width;
1420
u32 tmp;
1421
unsigned long flags;
1422
1423
dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1424
dbri->mm.channels, dbri->mm.precision);
1425
1426
/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1427
* to make sure this takes. This avoids clicking noises.
1428
*/
1429
1430
cs4215_setdata(dbri, 1);
1431
udelay(125);
1432
1433
/*
1434
* Data mode:
1435
* Pipe 4: Send timeslots 1-4 (audio data)
1436
* Pipe 20: Send timeslots 5-8 (part of ctrl data)
1437
* Pipe 6: Receive timeslots 1-4 (audio data)
1438
* Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1439
* interrupt, and the rest of the data (slot 5 and 8) is
1440
* not relevant for us (only for doublechecking).
1441
*
1442
* Just like in control mode, the time slots are all offset by eight
1443
* bits. The CS4215, it seems, observes TSIN (the delayed signal)
1444
* even if it's the CHI master. Don't ask me...
1445
*/
1446
spin_lock_irqsave(&dbri->lock, flags);
1447
tmp = sbus_readl(dbri->regs + REG0);
1448
tmp &= ~(D_C); /* Disable CHI */
1449
sbus_writel(tmp, dbri->regs + REG0);
1450
1451
/* Switch CS4215 to data mode - set PIO3 to 1 */
1452
sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1453
(dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1454
1455
reset_chi(dbri, CHIslave, 128);
1456
1457
/* Note: this next doesn't work for 8-bit stereo, because the two
1458
* channels would be on timeslots 1 and 3, with 2 and 4 idle.
1459
* (See CS4215 datasheet Fig 15)
1460
*
1461
* DBRI non-contiguous mode would be required to make this work.
1462
*/
1463
data_width = dbri->mm.channels * dbri->mm.precision;
1464
1465
link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1466
link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1467
link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1468
link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1469
1470
/* FIXME: enable CHI after _setdata? */
1471
tmp = sbus_readl(dbri->regs + REG0);
1472
tmp |= D_C; /* Enable CHI */
1473
sbus_writel(tmp, dbri->regs + REG0);
1474
spin_unlock_irqrestore(&dbri->lock, flags);
1475
1476
cs4215_setdata(dbri, 0);
1477
}
1478
1479
/*
1480
* Send the control information (i.e. audio format)
1481
*/
1482
static int cs4215_setctrl(struct snd_dbri *dbri)
1483
{
1484
int i, val;
1485
u32 tmp;
1486
unsigned long flags;
1487
1488
/* FIXME - let the CPU do something useful during these delays */
1489
1490
/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1491
* to make sure this takes. This avoids clicking noises.
1492
*/
1493
cs4215_setdata(dbri, 1);
1494
udelay(125);
1495
1496
/*
1497
* Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1498
* 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1499
*/
1500
val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1501
sbus_writel(val, dbri->regs + REG2);
1502
dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1503
udelay(34);
1504
1505
/* In Control mode, the CS4215 is a slave device, so the DBRI must
1506
* operate as CHI master, supplying clocking and frame synchronization.
1507
*
1508
* In Data mode, however, the CS4215 must be CHI master to insure
1509
* that its data stream is synchronous with its codec.
1510
*
1511
* The upshot of all this? We start by putting the DBRI into master
1512
* mode, program the CS4215 in Control mode, then switch the CS4215
1513
* into Data mode and put the DBRI into slave mode. Various timing
1514
* requirements must be observed along the way.
1515
*
1516
* Oh, and one more thing, on a SPARCStation 20 (and maybe
1517
* others?), the addressing of the CS4215's time slots is
1518
* offset by eight bits, so we add eight to all the "cycle"
1519
* values in the Define Time Slot (DTS) commands. This is
1520
* done in hardware by a TI 248 that delays the DBRI->4215
1521
* frame sync signal by eight clock cycles. Anybody know why?
1522
*/
1523
spin_lock_irqsave(&dbri->lock, flags);
1524
tmp = sbus_readl(dbri->regs + REG0);
1525
tmp &= ~D_C; /* Disable CHI */
1526
sbus_writel(tmp, dbri->regs + REG0);
1527
1528
reset_chi(dbri, CHImaster, 128);
1529
1530
/*
1531
* Control mode:
1532
* Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1533
* Pipe 18: Receive timeslot 1 (clb).
1534
* Pipe 19: Receive timeslot 7 (version).
1535
*/
1536
1537
link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1538
link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1539
link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1540
spin_unlock_irqrestore(&dbri->lock, flags);
1541
1542
/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1543
dbri->mm.ctrl[0] &= ~CS4215_CLB;
1544
xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1545
1546
spin_lock_irqsave(&dbri->lock, flags);
1547
tmp = sbus_readl(dbri->regs + REG0);
1548
tmp |= D_C; /* Enable CHI */
1549
sbus_writel(tmp, dbri->regs + REG0);
1550
spin_unlock_irqrestore(&dbri->lock, flags);
1551
1552
for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1553
msleep_interruptible(1);
1554
1555
if (i == 0) {
1556
dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1557
dbri->mm.status);
1558
return -1;
1559
}
1560
1561
/* Disable changes to our copy of the version number, as we are about
1562
* to leave control mode.
1563
*/
1564
recv_fixed(dbri, 19, NULL);
1565
1566
/* Terminate CS4215 control mode - data sheet says
1567
* "Set CLB=1 and send two more frames of valid control info"
1568
*/
1569
dbri->mm.ctrl[0] |= CS4215_CLB;
1570
xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1571
1572
/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1573
udelay(250);
1574
1575
cs4215_setdata(dbri, 0);
1576
1577
return 0;
1578
}
1579
1580
/*
1581
* Setup the codec with the sampling rate, audio format and number of
1582
* channels.
1583
* As part of the process we resend the settings for the data
1584
* timeslots as well.
1585
*/
1586
static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1587
snd_pcm_format_t format, unsigned int channels)
1588
{
1589
int freq_idx;
1590
int ret = 0;
1591
1592
/* Lookup index for this rate */
1593
for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1594
if (CS4215_FREQ[freq_idx].freq == rate)
1595
break;
1596
}
1597
if (CS4215_FREQ[freq_idx].freq != rate) {
1598
printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1599
return -1;
1600
}
1601
1602
switch (format) {
1603
case SNDRV_PCM_FORMAT_MU_LAW:
1604
dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1605
dbri->mm.precision = 8;
1606
break;
1607
case SNDRV_PCM_FORMAT_A_LAW:
1608
dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1609
dbri->mm.precision = 8;
1610
break;
1611
case SNDRV_PCM_FORMAT_U8:
1612
dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1613
dbri->mm.precision = 8;
1614
break;
1615
case SNDRV_PCM_FORMAT_S16_BE:
1616
dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1617
dbri->mm.precision = 16;
1618
break;
1619
default:
1620
printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1621
return -1;
1622
}
1623
1624
/* Add rate parameters */
1625
dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1626
dbri->mm.ctrl[2] = CS4215_XCLK |
1627
CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1628
1629
dbri->mm.channels = channels;
1630
if (channels == 2)
1631
dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1632
1633
ret = cs4215_setctrl(dbri);
1634
if (ret == 0)
1635
cs4215_open(dbri); /* set codec to data mode */
1636
1637
return ret;
1638
}
1639
1640
/*
1641
*
1642
*/
1643
static int cs4215_init(struct snd_dbri *dbri)
1644
{
1645
u32 reg2 = sbus_readl(dbri->regs + REG2);
1646
dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1647
1648
/* Look for the cs4215 chips */
1649
if (reg2 & D_PIO2) {
1650
dprintk(D_MM, "Onboard CS4215 detected\n");
1651
dbri->mm.onboard = 1;
1652
}
1653
if (reg2 & D_PIO0) {
1654
dprintk(D_MM, "Speakerbox detected\n");
1655
dbri->mm.onboard = 0;
1656
1657
if (reg2 & D_PIO2) {
1658
printk(KERN_INFO "DBRI: Using speakerbox / "
1659
"ignoring onboard mmcodec.\n");
1660
sbus_writel(D_ENPIO2, dbri->regs + REG2);
1661
}
1662
}
1663
1664
if (!(reg2 & (D_PIO0 | D_PIO2))) {
1665
printk(KERN_ERR "DBRI: no mmcodec found.\n");
1666
return -EIO;
1667
}
1668
1669
cs4215_setup_pipes(dbri);
1670
cs4215_init_data(&dbri->mm);
1671
1672
/* Enable capture of the status & version timeslots. */
1673
recv_fixed(dbri, 18, &dbri->mm.status);
1674
recv_fixed(dbri, 19, &dbri->mm.version);
1675
1676
dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1677
if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1678
dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1679
dbri->mm.offset);
1680
return -EIO;
1681
}
1682
dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1683
1684
return 0;
1685
}
1686
1687
/*
1688
****************************************************************************
1689
*************************** DBRI interrupt handler *************************
1690
****************************************************************************
1691
1692
The DBRI communicates with the CPU mainly via a circular interrupt
1693
buffer. When an interrupt is signaled, the CPU walks through the
1694
buffer and calls dbri_process_one_interrupt() for each interrupt word.
1695
Complicated interrupts are handled by dedicated functions (which
1696
appear first in this file). Any pending interrupts can be serviced by
1697
calling dbri_process_interrupt_buffer(), which works even if the CPU's
1698
interrupts are disabled.
1699
1700
*/
1701
1702
/* xmit_descs()
1703
*
1704
* Starts transmitting the current TD's for recording/playing.
1705
* For playback, ALSA has filled the DMA memory with new data (we hope).
1706
*/
1707
static void xmit_descs(struct snd_dbri *dbri)
1708
{
1709
struct dbri_streaminfo *info;
1710
u32 dvma_addr;
1711
s32 *cmd;
1712
unsigned long flags;
1713
int first_td;
1714
1715
if (dbri == NULL)
1716
return; /* Disabled */
1717
1718
dvma_addr = (u32)dbri->dma_dvma;
1719
info = &dbri->stream_info[DBRI_REC];
1720
spin_lock_irqsave(&dbri->lock, flags);
1721
1722
if (info->pipe >= 0) {
1723
first_td = dbri->pipes[info->pipe].first_desc;
1724
1725
dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1726
1727
/* Stream could be closed by the time we run. */
1728
if (first_td >= 0) {
1729
cmd = dbri_cmdlock(dbri, 2);
1730
*(cmd++) = DBRI_CMD(D_SDP, 0,
1731
dbri->pipes[info->pipe].sdp
1732
| D_SDP_P | D_SDP_EVERY | D_SDP_C);
1733
*(cmd++) = dvma_addr +
1734
dbri_dma_off(desc, first_td);
1735
dbri_cmdsend(dbri, cmd, 2);
1736
1737
/* Reset our admin of the pipe. */
1738
dbri->pipes[info->pipe].desc = first_td;
1739
}
1740
}
1741
1742
info = &dbri->stream_info[DBRI_PLAY];
1743
1744
if (info->pipe >= 0) {
1745
first_td = dbri->pipes[info->pipe].first_desc;
1746
1747
dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1748
1749
/* Stream could be closed by the time we run. */
1750
if (first_td >= 0) {
1751
cmd = dbri_cmdlock(dbri, 2);
1752
*(cmd++) = DBRI_CMD(D_SDP, 0,
1753
dbri->pipes[info->pipe].sdp
1754
| D_SDP_P | D_SDP_EVERY | D_SDP_C);
1755
*(cmd++) = dvma_addr +
1756
dbri_dma_off(desc, first_td);
1757
dbri_cmdsend(dbri, cmd, 2);
1758
1759
/* Reset our admin of the pipe. */
1760
dbri->pipes[info->pipe].desc = first_td;
1761
}
1762
}
1763
1764
spin_unlock_irqrestore(&dbri->lock, flags);
1765
}
1766
1767
/* transmission_complete_intr()
1768
*
1769
* Called by main interrupt handler when DBRI signals transmission complete
1770
* on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1771
*
1772
* Walks through the pipe's list of transmit buffer descriptors and marks
1773
* them as available. Stops when the first descriptor is found without
1774
* TBC (Transmit Buffer Complete) set, or we've run through them all.
1775
*
1776
* The DMA buffers are not released. They form a ring buffer and
1777
* they are filled by ALSA while others are transmitted by DMA.
1778
*
1779
*/
1780
1781
static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1782
{
1783
struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1784
int td = dbri->pipes[pipe].desc;
1785
int status;
1786
1787
while (td >= 0) {
1788
if (td >= DBRI_NO_DESCS) {
1789
printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1790
return;
1791
}
1792
1793
status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1794
if (!(status & DBRI_TD_TBC))
1795
break;
1796
1797
dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1798
1799
dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
1800
info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1801
1802
td = dbri->next_desc[td];
1803
dbri->pipes[pipe].desc = td;
1804
}
1805
1806
/* Notify ALSA */
1807
spin_unlock(&dbri->lock);
1808
snd_pcm_period_elapsed(info->substream);
1809
spin_lock(&dbri->lock);
1810
}
1811
1812
static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1813
{
1814
struct dbri_streaminfo *info;
1815
int rd = dbri->pipes[pipe].desc;
1816
s32 status;
1817
1818
if (rd < 0 || rd >= DBRI_NO_DESCS) {
1819
printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1820
return;
1821
}
1822
1823
dbri->pipes[pipe].desc = dbri->next_desc[rd];
1824
status = dbri->dma->desc[rd].word1;
1825
dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1826
1827
info = &dbri->stream_info[DBRI_REC];
1828
info->offset += DBRI_RD_CNT(status);
1829
1830
/* FIXME: Check status */
1831
1832
dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1833
rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1834
1835
/* Notify ALSA */
1836
spin_unlock(&dbri->lock);
1837
snd_pcm_period_elapsed(info->substream);
1838
spin_lock(&dbri->lock);
1839
}
1840
1841
static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1842
{
1843
int val = D_INTR_GETVAL(x);
1844
int channel = D_INTR_GETCHAN(x);
1845
int command = D_INTR_GETCMD(x);
1846
int code = D_INTR_GETCODE(x);
1847
#ifdef DBRI_DEBUG
1848
int rval = D_INTR_GETRVAL(x);
1849
#endif
1850
1851
if (channel == D_INTR_CMD) {
1852
dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1853
cmds[command], val);
1854
} else {
1855
dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1856
channel, code, rval);
1857
}
1858
1859
switch (code) {
1860
case D_INTR_CMDI:
1861
if (command != D_WAIT)
1862
printk(KERN_ERR "DBRI: Command read interrupt\n");
1863
break;
1864
case D_INTR_BRDY:
1865
reception_complete_intr(dbri, channel);
1866
break;
1867
case D_INTR_XCMP:
1868
case D_INTR_MINT:
1869
transmission_complete_intr(dbri, channel);
1870
break;
1871
case D_INTR_UNDR:
1872
/* UNDR - Transmission underrun
1873
* resend SDP command with clear pipe bit (C) set
1874
*/
1875
{
1876
/* FIXME: do something useful in case of underrun */
1877
printk(KERN_ERR "DBRI: Underrun error\n");
1878
#if 0
1879
s32 *cmd;
1880
int pipe = channel;
1881
int td = dbri->pipes[pipe].desc;
1882
1883
dbri->dma->desc[td].word4 = 0;
1884
cmd = dbri_cmdlock(dbri, NoGetLock);
1885
*(cmd++) = DBRI_CMD(D_SDP, 0,
1886
dbri->pipes[pipe].sdp
1887
| D_SDP_P | D_SDP_C | D_SDP_2SAME);
1888
*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1889
dbri_cmdsend(dbri, cmd);
1890
#endif
1891
}
1892
break;
1893
case D_INTR_FXDT:
1894
/* FXDT - Fixed data change */
1895
if (dbri->pipes[channel].sdp & D_SDP_MSB)
1896
val = reverse_bytes(val, dbri->pipes[channel].length);
1897
1898
if (dbri->pipes[channel].recv_fixed_ptr)
1899
*(dbri->pipes[channel].recv_fixed_ptr) = val;
1900
break;
1901
default:
1902
if (channel != D_INTR_CMD)
1903
printk(KERN_WARNING
1904
"DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1905
}
1906
}
1907
1908
/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1909
* buffer until it finds a zero word (indicating nothing more to do
1910
* right now). Non-zero words require processing and are handed off
1911
* to dbri_process_one_interrupt AFTER advancing the pointer.
1912
*/
1913
static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1914
{
1915
s32 x;
1916
1917
while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1918
dbri->dma->intr[dbri->dbri_irqp] = 0;
1919
dbri->dbri_irqp++;
1920
if (dbri->dbri_irqp == DBRI_INT_BLK)
1921
dbri->dbri_irqp = 1;
1922
1923
dbri_process_one_interrupt(dbri, x);
1924
}
1925
}
1926
1927
static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1928
{
1929
struct snd_dbri *dbri = dev_id;
1930
static int errcnt;
1931
int x;
1932
1933
if (dbri == NULL)
1934
return IRQ_NONE;
1935
spin_lock(&dbri->lock);
1936
1937
/*
1938
* Read it, so the interrupt goes away.
1939
*/
1940
x = sbus_readl(dbri->regs + REG1);
1941
1942
if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1943
u32 tmp;
1944
1945
if (x & D_MRR)
1946
printk(KERN_ERR
1947
"DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1948
x);
1949
if (x & D_MLE)
1950
printk(KERN_ERR
1951
"DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1952
x);
1953
if (x & D_LBG)
1954
printk(KERN_ERR
1955
"DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1956
if (x & D_MBE)
1957
printk(KERN_ERR
1958
"DBRI: Burst Error on SBus reg1=0x%x\n", x);
1959
1960
/* Some of these SBus errors cause the chip's SBus circuitry
1961
* to be disabled, so just re-enable and try to keep going.
1962
*
1963
* The only one I've seen is MRR, which will be triggered
1964
* if you let a transmit pipe underrun, then try to CDP it.
1965
*
1966
* If these things persist, we reset the chip.
1967
*/
1968
if ((++errcnt) % 10 == 0) {
1969
dprintk(D_INT, "Interrupt errors exceeded.\n");
1970
dbri_reset(dbri);
1971
} else {
1972
tmp = sbus_readl(dbri->regs + REG0);
1973
tmp &= ~(D_D);
1974
sbus_writel(tmp, dbri->regs + REG0);
1975
}
1976
}
1977
1978
dbri_process_interrupt_buffer(dbri);
1979
1980
spin_unlock(&dbri->lock);
1981
1982
return IRQ_HANDLED;
1983
}
1984
1985
/****************************************************************************
1986
PCM Interface
1987
****************************************************************************/
1988
static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1989
.info = SNDRV_PCM_INFO_MMAP |
1990
SNDRV_PCM_INFO_INTERLEAVED |
1991
SNDRV_PCM_INFO_BLOCK_TRANSFER |
1992
SNDRV_PCM_INFO_MMAP_VALID |
1993
SNDRV_PCM_INFO_BATCH,
1994
.formats = SNDRV_PCM_FMTBIT_MU_LAW |
1995
SNDRV_PCM_FMTBIT_A_LAW |
1996
SNDRV_PCM_FMTBIT_U8 |
1997
SNDRV_PCM_FMTBIT_S16_BE,
1998
.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1999
.rate_min = 5512,
2000
.rate_max = 48000,
2001
.channels_min = 1,
2002
.channels_max = 2,
2003
.buffer_bytes_max = 64 * 1024,
2004
.period_bytes_min = 1,
2005
.period_bytes_max = DBRI_TD_MAXCNT,
2006
.periods_min = 1,
2007
.periods_max = 1024,
2008
};
2009
2010
static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2011
struct snd_pcm_hw_rule *rule)
2012
{
2013
struct snd_interval *c = hw_param_interval(params,
2014
SNDRV_PCM_HW_PARAM_CHANNELS);
2015
struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2016
struct snd_mask fmt;
2017
2018
snd_mask_any(&fmt);
2019
if (c->min > 1) {
2020
fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2021
return snd_mask_refine(f, &fmt);
2022
}
2023
return 0;
2024
}
2025
2026
static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2027
struct snd_pcm_hw_rule *rule)
2028
{
2029
struct snd_interval *c = hw_param_interval(params,
2030
SNDRV_PCM_HW_PARAM_CHANNELS);
2031
struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2032
struct snd_interval ch;
2033
2034
snd_interval_any(&ch);
2035
if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2036
ch.min = 1;
2037
ch.max = 1;
2038
ch.integer = 1;
2039
return snd_interval_refine(c, &ch);
2040
}
2041
return 0;
2042
}
2043
2044
static int snd_dbri_open(struct snd_pcm_substream *substream)
2045
{
2046
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2047
struct snd_pcm_runtime *runtime = substream->runtime;
2048
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2049
unsigned long flags;
2050
2051
dprintk(D_USR, "open audio output.\n");
2052
runtime->hw = snd_dbri_pcm_hw;
2053
2054
spin_lock_irqsave(&dbri->lock, flags);
2055
info->substream = substream;
2056
info->offset = 0;
2057
info->dvma_buffer = 0;
2058
info->pipe = -1;
2059
spin_unlock_irqrestore(&dbri->lock, flags);
2060
2061
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2062
snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2063
-1);
2064
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2065
snd_hw_rule_channels, NULL,
2066
SNDRV_PCM_HW_PARAM_CHANNELS,
2067
-1);
2068
2069
cs4215_open(dbri);
2070
2071
return 0;
2072
}
2073
2074
static int snd_dbri_close(struct snd_pcm_substream *substream)
2075
{
2076
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2077
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2078
2079
dprintk(D_USR, "close audio output.\n");
2080
info->substream = NULL;
2081
info->offset = 0;
2082
2083
return 0;
2084
}
2085
2086
static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2087
struct snd_pcm_hw_params *hw_params)
2088
{
2089
struct snd_pcm_runtime *runtime = substream->runtime;
2090
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2091
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2092
int direction;
2093
int ret;
2094
2095
/* set sampling rate, audio format and number of channels */
2096
ret = cs4215_prepare(dbri, params_rate(hw_params),
2097
params_format(hw_params),
2098
params_channels(hw_params));
2099
if (ret != 0)
2100
return ret;
2101
2102
/* hw_params can get called multiple times. Only map the DMA once.
2103
*/
2104
if (info->dvma_buffer == 0) {
2105
if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2106
direction = DMA_TO_DEVICE;
2107
else
2108
direction = DMA_FROM_DEVICE;
2109
2110
info->dvma_buffer =
2111
dma_map_single(&dbri->op->dev,
2112
runtime->dma_area,
2113
params_buffer_bytes(hw_params),
2114
direction);
2115
}
2116
2117
direction = params_buffer_bytes(hw_params);
2118
dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2119
direction, info->dvma_buffer);
2120
return 0;
2121
}
2122
2123
static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2124
{
2125
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2126
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2127
int direction;
2128
2129
dprintk(D_USR, "hw_free.\n");
2130
2131
/* hw_free can get called multiple times. Only unmap the DMA once.
2132
*/
2133
if (info->dvma_buffer) {
2134
if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2135
direction = DMA_TO_DEVICE;
2136
else
2137
direction = DMA_FROM_DEVICE;
2138
2139
dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2140
substream->runtime->buffer_size, direction);
2141
info->dvma_buffer = 0;
2142
}
2143
if (info->pipe != -1) {
2144
reset_pipe(dbri, info->pipe);
2145
info->pipe = -1;
2146
}
2147
2148
return 0;
2149
}
2150
2151
static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2152
{
2153
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2154
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2155
int ret;
2156
2157
info->size = snd_pcm_lib_buffer_bytes(substream);
2158
if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2159
info->pipe = 4; /* Send pipe */
2160
else
2161
info->pipe = 6; /* Receive pipe */
2162
2163
spin_lock_irq(&dbri->lock);
2164
info->offset = 0;
2165
2166
/* Setup the all the transmit/receive descriptors to cover the
2167
* whole DMA buffer.
2168
*/
2169
ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2170
snd_pcm_lib_period_bytes(substream));
2171
2172
spin_unlock_irq(&dbri->lock);
2173
2174
dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2175
return ret;
2176
}
2177
2178
static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2179
{
2180
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2181
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2182
int ret = 0;
2183
2184
switch (cmd) {
2185
case SNDRV_PCM_TRIGGER_START:
2186
dprintk(D_USR, "start audio, period is %d bytes\n",
2187
(int)snd_pcm_lib_period_bytes(substream));
2188
/* Re-submit the TDs. */
2189
xmit_descs(dbri);
2190
break;
2191
case SNDRV_PCM_TRIGGER_STOP:
2192
dprintk(D_USR, "stop audio.\n");
2193
reset_pipe(dbri, info->pipe);
2194
break;
2195
default:
2196
ret = -EINVAL;
2197
}
2198
2199
return ret;
2200
}
2201
2202
static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2203
{
2204
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2205
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2206
snd_pcm_uframes_t ret;
2207
2208
ret = bytes_to_frames(substream->runtime, info->offset)
2209
% substream->runtime->buffer_size;
2210
dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2211
ret, substream->runtime->buffer_size);
2212
return ret;
2213
}
2214
2215
static const struct snd_pcm_ops snd_dbri_ops = {
2216
.open = snd_dbri_open,
2217
.close = snd_dbri_close,
2218
.hw_params = snd_dbri_hw_params,
2219
.hw_free = snd_dbri_hw_free,
2220
.prepare = snd_dbri_prepare,
2221
.trigger = snd_dbri_trigger,
2222
.pointer = snd_dbri_pointer,
2223
};
2224
2225
static int snd_dbri_pcm(struct snd_card *card)
2226
{
2227
struct snd_pcm *pcm;
2228
int err;
2229
2230
err = snd_pcm_new(card,
2231
/* ID */ "sun_dbri",
2232
/* device */ 0,
2233
/* playback count */ 1,
2234
/* capture count */ 1, &pcm);
2235
if (err < 0)
2236
return err;
2237
2238
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2239
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2240
2241
pcm->private_data = card->private_data;
2242
pcm->info_flags = 0;
2243
strscpy(pcm->name, card->shortname);
2244
2245
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2246
NULL, 64 * 1024, 64 * 1024);
2247
return 0;
2248
}
2249
2250
/*****************************************************************************
2251
Mixer interface
2252
*****************************************************************************/
2253
2254
static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2255
struct snd_ctl_elem_info *uinfo)
2256
{
2257
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2258
uinfo->count = 2;
2259
uinfo->value.integer.min = 0;
2260
if (kcontrol->private_value == DBRI_PLAY)
2261
uinfo->value.integer.max = DBRI_MAX_VOLUME;
2262
else
2263
uinfo->value.integer.max = DBRI_MAX_GAIN;
2264
return 0;
2265
}
2266
2267
static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2268
struct snd_ctl_elem_value *ucontrol)
2269
{
2270
struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2271
struct dbri_streaminfo *info;
2272
2273
if (snd_BUG_ON(!dbri))
2274
return -EINVAL;
2275
info = &dbri->stream_info[kcontrol->private_value];
2276
2277
ucontrol->value.integer.value[0] = info->left_gain;
2278
ucontrol->value.integer.value[1] = info->right_gain;
2279
return 0;
2280
}
2281
2282
static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2283
struct snd_ctl_elem_value *ucontrol)
2284
{
2285
struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2286
struct dbri_streaminfo *info =
2287
&dbri->stream_info[kcontrol->private_value];
2288
unsigned int vol[2];
2289
int changed = 0;
2290
2291
vol[0] = ucontrol->value.integer.value[0];
2292
vol[1] = ucontrol->value.integer.value[1];
2293
if (kcontrol->private_value == DBRI_PLAY) {
2294
if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2295
return -EINVAL;
2296
} else {
2297
if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2298
return -EINVAL;
2299
}
2300
2301
if (info->left_gain != vol[0]) {
2302
info->left_gain = vol[0];
2303
changed = 1;
2304
}
2305
if (info->right_gain != vol[1]) {
2306
info->right_gain = vol[1];
2307
changed = 1;
2308
}
2309
if (changed) {
2310
/* First mute outputs, and wait 1/8000 sec (125 us)
2311
* to make sure this takes. This avoids clicking noises.
2312
*/
2313
cs4215_setdata(dbri, 1);
2314
udelay(125);
2315
cs4215_setdata(dbri, 0);
2316
}
2317
return changed;
2318
}
2319
2320
static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2321
struct snd_ctl_elem_info *uinfo)
2322
{
2323
int mask = (kcontrol->private_value >> 16) & 0xff;
2324
2325
uinfo->type = (mask == 1) ?
2326
SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2327
uinfo->count = 1;
2328
uinfo->value.integer.min = 0;
2329
uinfo->value.integer.max = mask;
2330
return 0;
2331
}
2332
2333
static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2334
struct snd_ctl_elem_value *ucontrol)
2335
{
2336
struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2337
int elem = kcontrol->private_value & 0xff;
2338
int shift = (kcontrol->private_value >> 8) & 0xff;
2339
int mask = (kcontrol->private_value >> 16) & 0xff;
2340
int invert = (kcontrol->private_value >> 24) & 1;
2341
2342
if (snd_BUG_ON(!dbri))
2343
return -EINVAL;
2344
2345
if (elem < 4)
2346
ucontrol->value.integer.value[0] =
2347
(dbri->mm.data[elem] >> shift) & mask;
2348
else
2349
ucontrol->value.integer.value[0] =
2350
(dbri->mm.ctrl[elem - 4] >> shift) & mask;
2351
2352
if (invert == 1)
2353
ucontrol->value.integer.value[0] =
2354
mask - ucontrol->value.integer.value[0];
2355
return 0;
2356
}
2357
2358
static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2359
struct snd_ctl_elem_value *ucontrol)
2360
{
2361
struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2362
int elem = kcontrol->private_value & 0xff;
2363
int shift = (kcontrol->private_value >> 8) & 0xff;
2364
int mask = (kcontrol->private_value >> 16) & 0xff;
2365
int invert = (kcontrol->private_value >> 24) & 1;
2366
int changed = 0;
2367
unsigned short val;
2368
2369
if (snd_BUG_ON(!dbri))
2370
return -EINVAL;
2371
2372
val = (ucontrol->value.integer.value[0] & mask);
2373
if (invert == 1)
2374
val = mask - val;
2375
val <<= shift;
2376
2377
if (elem < 4) {
2378
dbri->mm.data[elem] = (dbri->mm.data[elem] &
2379
~(mask << shift)) | val;
2380
changed = (val != dbri->mm.data[elem]);
2381
} else {
2382
dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2383
~(mask << shift)) | val;
2384
changed = (val != dbri->mm.ctrl[elem - 4]);
2385
}
2386
2387
dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2388
"mixer-value=%ld, mm-value=0x%x\n",
2389
mask, changed, ucontrol->value.integer.value[0],
2390
dbri->mm.data[elem & 3]);
2391
2392
if (changed) {
2393
/* First mute outputs, and wait 1/8000 sec (125 us)
2394
* to make sure this takes. This avoids clicking noises.
2395
*/
2396
cs4215_setdata(dbri, 1);
2397
udelay(125);
2398
cs4215_setdata(dbri, 0);
2399
}
2400
return changed;
2401
}
2402
2403
/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2404
timeslots. Shift is the bit offset in the timeslot, mask defines the
2405
number of bits. invert is a boolean for use with attenuation.
2406
*/
2407
#define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2408
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
2409
.info = snd_cs4215_info_single, \
2410
.get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2411
.private_value = (entry) | ((shift) << 8) | ((mask) << 16) | \
2412
((invert) << 24) },
2413
2414
static const struct snd_kcontrol_new dbri_controls[] = {
2415
{
2416
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2417
.name = "Playback Volume",
2418
.info = snd_cs4215_info_volume,
2419
.get = snd_cs4215_get_volume,
2420
.put = snd_cs4215_put_volume,
2421
.private_value = DBRI_PLAY,
2422
},
2423
CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2424
CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2425
CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2426
{
2427
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2428
.name = "Capture Volume",
2429
.info = snd_cs4215_info_volume,
2430
.get = snd_cs4215_get_volume,
2431
.put = snd_cs4215_put_volume,
2432
.private_value = DBRI_REC,
2433
},
2434
/* FIXME: mic/line switch */
2435
CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2436
CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2437
CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2438
CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2439
};
2440
2441
static int snd_dbri_mixer(struct snd_card *card)
2442
{
2443
int idx, err;
2444
struct snd_dbri *dbri;
2445
2446
if (snd_BUG_ON(!card || !card->private_data))
2447
return -EINVAL;
2448
dbri = card->private_data;
2449
2450
strscpy(card->mixername, card->shortname);
2451
2452
for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2453
err = snd_ctl_add(card,
2454
snd_ctl_new1(&dbri_controls[idx], dbri));
2455
if (err < 0)
2456
return err;
2457
}
2458
2459
for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2460
dbri->stream_info[idx].left_gain = 0;
2461
dbri->stream_info[idx].right_gain = 0;
2462
}
2463
2464
return 0;
2465
}
2466
2467
/****************************************************************************
2468
/proc interface
2469
****************************************************************************/
2470
static void dbri_regs_read(struct snd_info_entry *entry,
2471
struct snd_info_buffer *buffer)
2472
{
2473
struct snd_dbri *dbri = entry->private_data;
2474
2475
snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2476
snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2477
snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2478
snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2479
}
2480
2481
#ifdef DBRI_DEBUG
2482
static void dbri_debug_read(struct snd_info_entry *entry,
2483
struct snd_info_buffer *buffer)
2484
{
2485
struct snd_dbri *dbri = entry->private_data;
2486
int pipe;
2487
snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2488
2489
for (pipe = 0; pipe < 32; pipe++) {
2490
if (pipe_active(dbri, pipe)) {
2491
struct dbri_pipe *pptr = &dbri->pipes[pipe];
2492
snd_iprintf(buffer,
2493
"Pipe %d: %s SDP=0x%x desc=%d, "
2494
"len=%d next %d\n",
2495
pipe,
2496
(pptr->sdp & D_SDP_TO_SER) ? "output" :
2497
"input",
2498
pptr->sdp, pptr->desc,
2499
pptr->length, pptr->nextpipe);
2500
}
2501
}
2502
}
2503
#endif
2504
2505
static void snd_dbri_proc(struct snd_card *card)
2506
{
2507
struct snd_dbri *dbri = card->private_data;
2508
2509
snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2510
#ifdef DBRI_DEBUG
2511
snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
2512
#endif
2513
}
2514
2515
/*
2516
****************************************************************************
2517
**************************** Initialization ********************************
2518
****************************************************************************
2519
*/
2520
static void snd_dbri_free(struct snd_dbri *dbri);
2521
2522
static int snd_dbri_create(struct snd_card *card,
2523
struct platform_device *op,
2524
int irq, int dev)
2525
{
2526
struct snd_dbri *dbri = card->private_data;
2527
int err;
2528
2529
spin_lock_init(&dbri->lock);
2530
dbri->op = op;
2531
dbri->irq = irq;
2532
2533
dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2534
&dbri->dma_dvma, GFP_KERNEL);
2535
if (!dbri->dma)
2536
return -ENOMEM;
2537
2538
dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2539
dbri->dma, dbri->dma_dvma);
2540
2541
/* Map the registers into memory. */
2542
dbri->regs_size = resource_size(&op->resource[0]);
2543
dbri->regs = of_ioremap(&op->resource[0], 0,
2544
dbri->regs_size, "DBRI Registers");
2545
if (!dbri->regs) {
2546
printk(KERN_ERR "DBRI: could not allocate registers\n");
2547
dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2548
(void *)dbri->dma, dbri->dma_dvma);
2549
return -EIO;
2550
}
2551
2552
err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2553
"DBRI audio", dbri);
2554
if (err) {
2555
printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2556
of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2557
dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2558
(void *)dbri->dma, dbri->dma_dvma);
2559
return err;
2560
}
2561
2562
/* Do low level initialization of the DBRI and CS4215 chips */
2563
dbri_initialize(dbri);
2564
err = cs4215_init(dbri);
2565
if (err) {
2566
snd_dbri_free(dbri);
2567
return err;
2568
}
2569
2570
return 0;
2571
}
2572
2573
static void snd_dbri_free(struct snd_dbri *dbri)
2574
{
2575
dprintk(D_GEN, "snd_dbri_free\n");
2576
dbri_reset(dbri);
2577
2578
if (dbri->irq)
2579
free_irq(dbri->irq, dbri);
2580
2581
if (dbri->regs)
2582
of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2583
2584
if (dbri->dma)
2585
dma_free_coherent(&dbri->op->dev,
2586
sizeof(struct dbri_dma),
2587
(void *)dbri->dma, dbri->dma_dvma);
2588
}
2589
2590
static int dbri_probe(struct platform_device *op)
2591
{
2592
struct snd_dbri *dbri;
2593
struct resource *rp;
2594
struct snd_card *card;
2595
static int dev;
2596
int irq;
2597
int err;
2598
2599
if (dev >= SNDRV_CARDS)
2600
return -ENODEV;
2601
if (!enable[dev]) {
2602
dev++;
2603
return -ENOENT;
2604
}
2605
2606
irq = op->archdata.irqs[0];
2607
if (irq <= 0) {
2608
printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2609
return -ENODEV;
2610
}
2611
2612
err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2613
sizeof(struct snd_dbri), &card);
2614
if (err < 0)
2615
return err;
2616
2617
strscpy(card->driver, "DBRI");
2618
strscpy(card->shortname, "Sun DBRI");
2619
rp = &op->resource[0];
2620
sprintf(card->longname, "%s at 0x%02lx:0x%016llx, irq %d",
2621
card->shortname,
2622
rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2623
2624
err = snd_dbri_create(card, op, irq, dev);
2625
if (err < 0) {
2626
snd_card_free(card);
2627
return err;
2628
}
2629
2630
dbri = card->private_data;
2631
err = snd_dbri_pcm(card);
2632
if (err < 0)
2633
goto _err;
2634
2635
err = snd_dbri_mixer(card);
2636
if (err < 0)
2637
goto _err;
2638
2639
/* /proc file handling */
2640
snd_dbri_proc(card);
2641
dev_set_drvdata(&op->dev, card);
2642
2643
err = snd_card_register(card);
2644
if (err < 0)
2645
goto _err;
2646
2647
printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2648
dev, dbri->regs,
2649
dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2650
dev++;
2651
2652
return 0;
2653
2654
_err:
2655
snd_dbri_free(dbri);
2656
snd_card_free(card);
2657
return err;
2658
}
2659
2660
static void dbri_remove(struct platform_device *op)
2661
{
2662
struct snd_card *card = dev_get_drvdata(&op->dev);
2663
2664
snd_dbri_free(card->private_data);
2665
snd_card_free(card);
2666
}
2667
2668
static const struct of_device_id dbri_match[] = {
2669
{
2670
.name = "SUNW,DBRIe",
2671
},
2672
{
2673
.name = "SUNW,DBRIf",
2674
},
2675
{},
2676
};
2677
2678
MODULE_DEVICE_TABLE(of, dbri_match);
2679
2680
static struct platform_driver dbri_sbus_driver = {
2681
.driver = {
2682
.name = "dbri",
2683
.of_match_table = dbri_match,
2684
},
2685
.probe = dbri_probe,
2686
.remove = dbri_remove,
2687
};
2688
2689
module_platform_driver(dbri_sbus_driver);
2690
2691