Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/usb/endpoint.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
*/
4
5
#include <linux/gfp.h>
6
#include <linux/init.h>
7
#include <linux/ratelimit.h>
8
#include <linux/usb.h>
9
#include <linux/usb/audio.h>
10
#include <linux/slab.h>
11
12
#include <sound/core.h>
13
#include <sound/pcm.h>
14
#include <sound/pcm_params.h>
15
16
#include "usbaudio.h"
17
#include "helper.h"
18
#include "card.h"
19
#include "endpoint.h"
20
#include "pcm.h"
21
#include "clock.h"
22
#include "quirks.h"
23
24
enum {
25
EP_STATE_STOPPED,
26
EP_STATE_RUNNING,
27
EP_STATE_STOPPING,
28
};
29
30
/* interface refcounting */
31
struct snd_usb_iface_ref {
32
unsigned char iface;
33
bool need_setup;
34
int opened;
35
int altset;
36
struct list_head list;
37
};
38
39
/* clock refcounting */
40
struct snd_usb_clock_ref {
41
unsigned char clock;
42
atomic_t locked;
43
int opened;
44
int rate;
45
bool need_setup;
46
struct list_head list;
47
};
48
49
/*
50
* snd_usb_endpoint is a model that abstracts everything related to an
51
* USB endpoint and its streaming.
52
*
53
* There are functions to activate and deactivate the streaming URBs and
54
* optional callbacks to let the pcm logic handle the actual content of the
55
* packets for playback and record. Thus, the bus streaming and the audio
56
* handlers are fully decoupled.
57
*
58
* There are two different types of endpoints in audio applications.
59
*
60
* SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
61
* inbound and outbound traffic.
62
*
63
* SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
64
* expect the payload to carry Q10.14 / Q16.16 formatted sync information
65
* (3 or 4 bytes).
66
*
67
* Each endpoint has to be configured prior to being used by calling
68
* snd_usb_endpoint_set_params().
69
*
70
* The model incorporates a reference counting, so that multiple users
71
* can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
72
* only the first user will effectively start the URBs, and only the last
73
* one to stop it will tear the URBs down again.
74
*/
75
76
/*
77
* convert a sampling rate into our full speed format (fs/1000 in Q16.16)
78
* this will overflow at approx 524 kHz
79
*/
80
static inline unsigned get_usb_full_speed_rate(unsigned int rate)
81
{
82
return ((rate << 13) + 62) / 125;
83
}
84
85
/*
86
* convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
87
* this will overflow at approx 4 MHz
88
*/
89
static inline unsigned get_usb_high_speed_rate(unsigned int rate)
90
{
91
return ((rate << 10) + 62) / 125;
92
}
93
94
/*
95
* release a urb data
96
*/
97
static void release_urb_ctx(struct snd_urb_ctx *u)
98
{
99
if (u->urb && u->buffer_size)
100
usb_free_coherent(u->ep->chip->dev, u->buffer_size,
101
u->urb->transfer_buffer,
102
u->urb->transfer_dma);
103
usb_free_urb(u->urb);
104
u->urb = NULL;
105
u->buffer_size = 0;
106
}
107
108
static const char *usb_error_string(int err)
109
{
110
switch (err) {
111
case -ENODEV:
112
return "no device";
113
case -ENOENT:
114
return "endpoint not enabled";
115
case -EPIPE:
116
return "endpoint stalled";
117
case -ENOSPC:
118
return "not enough bandwidth";
119
case -ESHUTDOWN:
120
return "device disabled";
121
case -EHOSTUNREACH:
122
return "device suspended";
123
case -EINVAL:
124
case -EAGAIN:
125
case -EFBIG:
126
case -EMSGSIZE:
127
return "internal error";
128
default:
129
return "unknown error";
130
}
131
}
132
133
static inline bool ep_state_running(struct snd_usb_endpoint *ep)
134
{
135
return atomic_read(&ep->state) == EP_STATE_RUNNING;
136
}
137
138
static inline bool ep_state_update(struct snd_usb_endpoint *ep, int old, int new)
139
{
140
return atomic_try_cmpxchg(&ep->state, &old, new);
141
}
142
143
/**
144
* snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
145
*
146
* @ep: The snd_usb_endpoint
147
*
148
* Determine whether an endpoint is driven by an implicit feedback
149
* data endpoint source.
150
*/
151
int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep)
152
{
153
return ep->implicit_fb_sync && usb_pipeout(ep->pipe);
154
}
155
156
/*
157
* Return the number of samples to be sent in the next packet
158
* for streaming based on information derived from sync endpoints
159
*
160
* This won't be used for implicit feedback which takes the packet size
161
* returned from the sync source
162
*/
163
static int slave_next_packet_size(struct snd_usb_endpoint *ep,
164
unsigned int avail)
165
{
166
unsigned long flags;
167
unsigned int phase;
168
int ret;
169
170
if (ep->fill_max)
171
return ep->maxframesize;
172
173
spin_lock_irqsave(&ep->lock, flags);
174
phase = (ep->phase & 0xffff) + (ep->freqm << ep->datainterval);
175
ret = min(phase >> 16, ep->maxframesize);
176
if (avail && ret >= avail)
177
ret = -EAGAIN;
178
else
179
ep->phase = phase;
180
spin_unlock_irqrestore(&ep->lock, flags);
181
182
return ret;
183
}
184
185
/*
186
* Return the number of samples to be sent in the next packet
187
* for adaptive and synchronous endpoints
188
*/
189
static int next_packet_size(struct snd_usb_endpoint *ep, unsigned int avail)
190
{
191
unsigned int sample_accum;
192
int ret;
193
194
if (ep->fill_max)
195
return ep->maxframesize;
196
197
sample_accum = ep->sample_accum + ep->sample_rem;
198
if (sample_accum >= ep->pps) {
199
sample_accum -= ep->pps;
200
ret = ep->packsize[1];
201
} else {
202
ret = ep->packsize[0];
203
}
204
if (avail && ret >= avail)
205
ret = -EAGAIN;
206
else
207
ep->sample_accum = sample_accum;
208
209
return ret;
210
}
211
212
/*
213
* snd_usb_endpoint_next_packet_size: Return the number of samples to be sent
214
* in the next packet
215
*
216
* If the size is equal or exceeds @avail, don't proceed but return -EAGAIN
217
* Exception: @avail = 0 for skipping the check.
218
*/
219
int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep,
220
struct snd_urb_ctx *ctx, int idx,
221
unsigned int avail)
222
{
223
unsigned int packet;
224
225
packet = ctx->packet_size[idx];
226
if (packet) {
227
if (avail && packet >= avail)
228
return -EAGAIN;
229
return packet;
230
}
231
232
if (ep->sync_source)
233
return slave_next_packet_size(ep, avail);
234
else
235
return next_packet_size(ep, avail);
236
}
237
238
static void call_retire_callback(struct snd_usb_endpoint *ep,
239
struct urb *urb)
240
{
241
struct snd_usb_substream *data_subs;
242
243
data_subs = READ_ONCE(ep->data_subs);
244
if (data_subs && ep->retire_data_urb)
245
ep->retire_data_urb(data_subs, urb);
246
}
247
248
static void retire_outbound_urb(struct snd_usb_endpoint *ep,
249
struct snd_urb_ctx *urb_ctx)
250
{
251
call_retire_callback(ep, urb_ctx->urb);
252
}
253
254
static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
255
struct snd_usb_endpoint *sender,
256
const struct urb *urb);
257
258
static void retire_inbound_urb(struct snd_usb_endpoint *ep,
259
struct snd_urb_ctx *urb_ctx)
260
{
261
struct urb *urb = urb_ctx->urb;
262
struct snd_usb_endpoint *sync_sink;
263
264
if (unlikely(ep->skip_packets > 0)) {
265
ep->skip_packets--;
266
return;
267
}
268
269
sync_sink = READ_ONCE(ep->sync_sink);
270
if (sync_sink)
271
snd_usb_handle_sync_urb(sync_sink, ep, urb);
272
273
call_retire_callback(ep, urb);
274
}
275
276
static inline bool has_tx_length_quirk(struct snd_usb_audio *chip)
277
{
278
return chip->quirk_flags & QUIRK_FLAG_TX_LENGTH;
279
}
280
281
static void prepare_silent_urb(struct snd_usb_endpoint *ep,
282
struct snd_urb_ctx *ctx)
283
{
284
struct urb *urb = ctx->urb;
285
unsigned int offs = 0;
286
unsigned int extra = 0;
287
__le32 packet_length;
288
int i;
289
290
/* For tx_length_quirk, put packet length at start of packet */
291
if (has_tx_length_quirk(ep->chip))
292
extra = sizeof(packet_length);
293
294
for (i = 0; i < ctx->packets; ++i) {
295
unsigned int offset;
296
unsigned int length;
297
int counts;
298
299
counts = snd_usb_endpoint_next_packet_size(ep, ctx, i, 0);
300
length = counts * ep->stride; /* number of silent bytes */
301
offset = offs * ep->stride + extra * i;
302
urb->iso_frame_desc[i].offset = offset;
303
urb->iso_frame_desc[i].length = length + extra;
304
if (extra) {
305
packet_length = cpu_to_le32(length);
306
memcpy(urb->transfer_buffer + offset,
307
&packet_length, sizeof(packet_length));
308
}
309
memset(urb->transfer_buffer + offset + extra,
310
ep->silence_value, length);
311
offs += counts;
312
}
313
314
urb->number_of_packets = ctx->packets;
315
urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra;
316
ctx->queued = 0;
317
}
318
319
/*
320
* Prepare a PLAYBACK urb for submission to the bus.
321
*/
322
static int prepare_outbound_urb(struct snd_usb_endpoint *ep,
323
struct snd_urb_ctx *ctx,
324
bool in_stream_lock)
325
{
326
struct urb *urb = ctx->urb;
327
unsigned char *cp = urb->transfer_buffer;
328
struct snd_usb_substream *data_subs;
329
330
urb->dev = ep->chip->dev; /* we need to set this at each time */
331
332
switch (ep->type) {
333
case SND_USB_ENDPOINT_TYPE_DATA:
334
data_subs = READ_ONCE(ep->data_subs);
335
if (data_subs && ep->prepare_data_urb)
336
return ep->prepare_data_urb(data_subs, urb, in_stream_lock);
337
/* no data provider, so send silence */
338
prepare_silent_urb(ep, ctx);
339
break;
340
341
case SND_USB_ENDPOINT_TYPE_SYNC:
342
if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
343
/*
344
* fill the length and offset of each urb descriptor.
345
* the fixed 12.13 frequency is passed as 16.16 through the pipe.
346
*/
347
urb->iso_frame_desc[0].length = 4;
348
urb->iso_frame_desc[0].offset = 0;
349
cp[0] = ep->freqn;
350
cp[1] = ep->freqn >> 8;
351
cp[2] = ep->freqn >> 16;
352
cp[3] = ep->freqn >> 24;
353
} else {
354
/*
355
* fill the length and offset of each urb descriptor.
356
* the fixed 10.14 frequency is passed through the pipe.
357
*/
358
urb->iso_frame_desc[0].length = 3;
359
urb->iso_frame_desc[0].offset = 0;
360
cp[0] = ep->freqn >> 2;
361
cp[1] = ep->freqn >> 10;
362
cp[2] = ep->freqn >> 18;
363
}
364
365
break;
366
}
367
return 0;
368
}
369
370
/*
371
* Prepare a CAPTURE or SYNC urb for submission to the bus.
372
*/
373
static int prepare_inbound_urb(struct snd_usb_endpoint *ep,
374
struct snd_urb_ctx *urb_ctx)
375
{
376
int i, offs;
377
struct urb *urb = urb_ctx->urb;
378
379
urb->dev = ep->chip->dev; /* we need to set this at each time */
380
381
switch (ep->type) {
382
case SND_USB_ENDPOINT_TYPE_DATA:
383
offs = 0;
384
for (i = 0; i < urb_ctx->packets; i++) {
385
urb->iso_frame_desc[i].offset = offs;
386
urb->iso_frame_desc[i].length = ep->curpacksize;
387
offs += ep->curpacksize;
388
}
389
390
urb->transfer_buffer_length = offs;
391
urb->number_of_packets = urb_ctx->packets;
392
break;
393
394
case SND_USB_ENDPOINT_TYPE_SYNC:
395
urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
396
urb->iso_frame_desc[0].offset = 0;
397
break;
398
}
399
return 0;
400
}
401
402
/* notify an error as XRUN to the assigned PCM data substream */
403
static void notify_xrun(struct snd_usb_endpoint *ep)
404
{
405
struct snd_usb_substream *data_subs;
406
struct snd_pcm_substream *psubs;
407
408
data_subs = READ_ONCE(ep->data_subs);
409
if (!data_subs)
410
return;
411
psubs = data_subs->pcm_substream;
412
if (psubs && psubs->runtime &&
413
psubs->runtime->state == SNDRV_PCM_STATE_RUNNING)
414
snd_pcm_stop_xrun(psubs);
415
}
416
417
static struct snd_usb_packet_info *
418
next_packet_fifo_enqueue(struct snd_usb_endpoint *ep)
419
{
420
struct snd_usb_packet_info *p;
421
422
p = ep->next_packet + (ep->next_packet_head + ep->next_packet_queued) %
423
ARRAY_SIZE(ep->next_packet);
424
ep->next_packet_queued++;
425
return p;
426
}
427
428
static struct snd_usb_packet_info *
429
next_packet_fifo_dequeue(struct snd_usb_endpoint *ep)
430
{
431
struct snd_usb_packet_info *p;
432
433
p = ep->next_packet + ep->next_packet_head;
434
ep->next_packet_head++;
435
ep->next_packet_head %= ARRAY_SIZE(ep->next_packet);
436
ep->next_packet_queued--;
437
return p;
438
}
439
440
static void push_back_to_ready_list(struct snd_usb_endpoint *ep,
441
struct snd_urb_ctx *ctx)
442
{
443
unsigned long flags;
444
445
spin_lock_irqsave(&ep->lock, flags);
446
list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
447
spin_unlock_irqrestore(&ep->lock, flags);
448
}
449
450
/*
451
* Send output urbs that have been prepared previously. URBs are dequeued
452
* from ep->ready_playback_urbs and in case there aren't any available
453
* or there are no packets that have been prepared, this function does
454
* nothing.
455
*
456
* The reason why the functionality of sending and preparing URBs is separated
457
* is that host controllers don't guarantee the order in which they return
458
* inbound and outbound packets to their submitters.
459
*
460
* This function is used both for implicit feedback endpoints and in low-
461
* latency playback mode.
462
*/
463
int snd_usb_queue_pending_output_urbs(struct snd_usb_endpoint *ep,
464
bool in_stream_lock)
465
{
466
bool implicit_fb = snd_usb_endpoint_implicit_feedback_sink(ep);
467
468
while (ep_state_running(ep)) {
469
470
unsigned long flags;
471
struct snd_usb_packet_info *packet;
472
struct snd_urb_ctx *ctx = NULL;
473
int err, i;
474
475
spin_lock_irqsave(&ep->lock, flags);
476
if ((!implicit_fb || ep->next_packet_queued > 0) &&
477
!list_empty(&ep->ready_playback_urbs)) {
478
/* take URB out of FIFO */
479
ctx = list_first_entry(&ep->ready_playback_urbs,
480
struct snd_urb_ctx, ready_list);
481
list_del_init(&ctx->ready_list);
482
if (implicit_fb)
483
packet = next_packet_fifo_dequeue(ep);
484
}
485
spin_unlock_irqrestore(&ep->lock, flags);
486
487
if (ctx == NULL)
488
break;
489
490
/* copy over the length information */
491
if (implicit_fb) {
492
for (i = 0; i < packet->packets; i++)
493
ctx->packet_size[i] = packet->packet_size[i];
494
}
495
496
/* call the data handler to fill in playback data */
497
err = prepare_outbound_urb(ep, ctx, in_stream_lock);
498
/* can be stopped during prepare callback */
499
if (unlikely(!ep_state_running(ep)))
500
break;
501
if (err < 0) {
502
/* push back to ready list again for -EAGAIN */
503
if (err == -EAGAIN) {
504
push_back_to_ready_list(ep, ctx);
505
break;
506
}
507
508
if (!in_stream_lock)
509
notify_xrun(ep);
510
return -EPIPE;
511
}
512
513
if (!atomic_read(&ep->chip->shutdown))
514
err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
515
else
516
err = -ENODEV;
517
if (err < 0) {
518
if (!atomic_read(&ep->chip->shutdown)) {
519
usb_audio_err(ep->chip,
520
"Unable to submit urb #%d: %d at %s\n",
521
ctx->index, err, __func__);
522
if (!in_stream_lock)
523
notify_xrun(ep);
524
}
525
return -EPIPE;
526
}
527
528
set_bit(ctx->index, &ep->active_mask);
529
atomic_inc(&ep->submitted_urbs);
530
}
531
532
return 0;
533
}
534
535
/*
536
* complete callback for urbs
537
*/
538
static void snd_complete_urb(struct urb *urb)
539
{
540
struct snd_urb_ctx *ctx = urb->context;
541
struct snd_usb_endpoint *ep = ctx->ep;
542
int err;
543
544
if (unlikely(urb->status == -ENOENT || /* unlinked */
545
urb->status == -ENODEV || /* device removed */
546
urb->status == -ECONNRESET || /* unlinked */
547
urb->status == -ESHUTDOWN)) /* device disabled */
548
goto exit_clear;
549
/* device disconnected */
550
if (unlikely(atomic_read(&ep->chip->shutdown)))
551
goto exit_clear;
552
553
if (unlikely(!ep_state_running(ep)))
554
goto exit_clear;
555
556
if (usb_pipeout(ep->pipe)) {
557
retire_outbound_urb(ep, ctx);
558
/* can be stopped during retire callback */
559
if (unlikely(!ep_state_running(ep)))
560
goto exit_clear;
561
562
/* in low-latency and implicit-feedback modes, push back the
563
* URB to ready list at first, then process as much as possible
564
*/
565
if (ep->lowlatency_playback ||
566
snd_usb_endpoint_implicit_feedback_sink(ep)) {
567
push_back_to_ready_list(ep, ctx);
568
clear_bit(ctx->index, &ep->active_mask);
569
snd_usb_queue_pending_output_urbs(ep, false);
570
/* decrement at last, and check xrun */
571
if (atomic_dec_and_test(&ep->submitted_urbs) &&
572
!snd_usb_endpoint_implicit_feedback_sink(ep))
573
notify_xrun(ep);
574
return;
575
}
576
577
/* in non-lowlatency mode, no error handling for prepare */
578
prepare_outbound_urb(ep, ctx, false);
579
/* can be stopped during prepare callback */
580
if (unlikely(!ep_state_running(ep)))
581
goto exit_clear;
582
} else {
583
retire_inbound_urb(ep, ctx);
584
/* can be stopped during retire callback */
585
if (unlikely(!ep_state_running(ep)))
586
goto exit_clear;
587
588
prepare_inbound_urb(ep, ctx);
589
}
590
591
if (!atomic_read(&ep->chip->shutdown))
592
err = usb_submit_urb(urb, GFP_ATOMIC);
593
else
594
err = -ENODEV;
595
if (err == 0)
596
return;
597
598
if (!atomic_read(&ep->chip->shutdown)) {
599
usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err);
600
notify_xrun(ep);
601
}
602
603
exit_clear:
604
clear_bit(ctx->index, &ep->active_mask);
605
atomic_dec(&ep->submitted_urbs);
606
}
607
608
/*
609
* Find or create a refcount object for the given interface
610
*
611
* The objects are released altogether in snd_usb_endpoint_free_all()
612
*/
613
static struct snd_usb_iface_ref *
614
iface_ref_find(struct snd_usb_audio *chip, int iface)
615
{
616
struct snd_usb_iface_ref *ip;
617
618
list_for_each_entry(ip, &chip->iface_ref_list, list)
619
if (ip->iface == iface)
620
return ip;
621
622
ip = kzalloc(sizeof(*ip), GFP_KERNEL);
623
if (!ip)
624
return NULL;
625
ip->iface = iface;
626
list_add_tail(&ip->list, &chip->iface_ref_list);
627
return ip;
628
}
629
630
/* Similarly, a refcount object for clock */
631
static struct snd_usb_clock_ref *
632
clock_ref_find(struct snd_usb_audio *chip, int clock)
633
{
634
struct snd_usb_clock_ref *ref;
635
636
list_for_each_entry(ref, &chip->clock_ref_list, list)
637
if (ref->clock == clock)
638
return ref;
639
640
ref = kzalloc(sizeof(*ref), GFP_KERNEL);
641
if (!ref)
642
return NULL;
643
ref->clock = clock;
644
atomic_set(&ref->locked, 0);
645
list_add_tail(&ref->list, &chip->clock_ref_list);
646
return ref;
647
}
648
649
/*
650
* Get the existing endpoint object corresponding EP
651
* Returns NULL if not present.
652
*/
653
struct snd_usb_endpoint *
654
snd_usb_get_endpoint(struct snd_usb_audio *chip, int ep_num)
655
{
656
struct snd_usb_endpoint *ep;
657
658
list_for_each_entry(ep, &chip->ep_list, list) {
659
if (ep->ep_num == ep_num)
660
return ep;
661
}
662
663
return NULL;
664
}
665
666
#define ep_type_name(type) \
667
(type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync")
668
669
/**
670
* snd_usb_add_endpoint: Add an endpoint to an USB audio chip
671
*
672
* @chip: The chip
673
* @ep_num: The number of the endpoint to use
674
* @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
675
*
676
* If the requested endpoint has not been added to the given chip before,
677
* a new instance is created.
678
*
679
* Returns zero on success or a negative error code.
680
*
681
* New endpoints will be added to chip->ep_list and freed by
682
* calling snd_usb_endpoint_free_all().
683
*
684
* For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that
685
* bNumEndpoints > 1 beforehand.
686
*/
687
int snd_usb_add_endpoint(struct snd_usb_audio *chip, int ep_num, int type)
688
{
689
struct snd_usb_endpoint *ep;
690
bool is_playback;
691
692
ep = snd_usb_get_endpoint(chip, ep_num);
693
if (ep)
694
return 0;
695
696
usb_audio_dbg(chip, "Creating new %s endpoint #%x\n",
697
ep_type_name(type),
698
ep_num);
699
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
700
if (!ep)
701
return -ENOMEM;
702
703
ep->chip = chip;
704
spin_lock_init(&ep->lock);
705
ep->type = type;
706
ep->ep_num = ep_num;
707
INIT_LIST_HEAD(&ep->ready_playback_urbs);
708
atomic_set(&ep->submitted_urbs, 0);
709
710
is_playback = ((ep_num & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
711
ep_num &= USB_ENDPOINT_NUMBER_MASK;
712
if (is_playback)
713
ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
714
else
715
ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);
716
717
list_add_tail(&ep->list, &chip->ep_list);
718
return 0;
719
}
720
721
/* Set up syncinterval and maxsyncsize for a sync EP */
722
static void endpoint_set_syncinterval(struct snd_usb_audio *chip,
723
struct snd_usb_endpoint *ep)
724
{
725
struct usb_host_interface *alts;
726
struct usb_endpoint_descriptor *desc;
727
728
alts = snd_usb_get_host_interface(chip, ep->iface, ep->altsetting);
729
if (!alts)
730
return;
731
732
desc = get_endpoint(alts, ep->ep_idx);
733
if (desc->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
734
desc->bRefresh >= 1 && desc->bRefresh <= 9)
735
ep->syncinterval = desc->bRefresh;
736
else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
737
ep->syncinterval = 1;
738
else if (desc->bInterval >= 1 && desc->bInterval <= 16)
739
ep->syncinterval = desc->bInterval - 1;
740
else
741
ep->syncinterval = 3;
742
743
ep->syncmaxsize = le16_to_cpu(desc->wMaxPacketSize);
744
}
745
746
static bool endpoint_compatible(struct snd_usb_endpoint *ep,
747
const struct audioformat *fp,
748
const struct snd_pcm_hw_params *params)
749
{
750
if (!ep->opened)
751
return false;
752
if (ep->cur_audiofmt != fp)
753
return false;
754
if (ep->cur_rate != params_rate(params) ||
755
ep->cur_format != params_format(params) ||
756
ep->cur_period_frames != params_period_size(params) ||
757
ep->cur_buffer_periods != params_periods(params))
758
return false;
759
return true;
760
}
761
762
/*
763
* Check whether the given fp and hw params are compatible with the current
764
* setup of the target EP for implicit feedback sync
765
*/
766
bool snd_usb_endpoint_compatible(struct snd_usb_audio *chip,
767
struct snd_usb_endpoint *ep,
768
const struct audioformat *fp,
769
const struct snd_pcm_hw_params *params)
770
{
771
bool ret;
772
773
mutex_lock(&chip->mutex);
774
ret = endpoint_compatible(ep, fp, params);
775
mutex_unlock(&chip->mutex);
776
return ret;
777
}
778
779
/*
780
* snd_usb_endpoint_open: Open the endpoint
781
*
782
* Called from hw_params to assign the endpoint to the substream.
783
* It's reference-counted, and only the first opener is allowed to set up
784
* arbitrary parameters. The later opener must be compatible with the
785
* former opened parameters.
786
* The endpoint needs to be closed via snd_usb_endpoint_close() later.
787
*
788
* Note that this function doesn't configure the endpoint. The substream
789
* needs to set it up later via snd_usb_endpoint_set_params() and
790
* snd_usb_endpoint_prepare().
791
*/
792
struct snd_usb_endpoint *
793
snd_usb_endpoint_open(struct snd_usb_audio *chip,
794
const struct audioformat *fp,
795
const struct snd_pcm_hw_params *params,
796
bool is_sync_ep,
797
bool fixed_rate)
798
{
799
struct snd_usb_endpoint *ep;
800
int ep_num = is_sync_ep ? fp->sync_ep : fp->endpoint;
801
802
mutex_lock(&chip->mutex);
803
ep = snd_usb_get_endpoint(chip, ep_num);
804
if (!ep) {
805
usb_audio_err(chip, "Cannot find EP 0x%x to open\n", ep_num);
806
goto unlock;
807
}
808
809
if (!ep->opened) {
810
if (is_sync_ep) {
811
ep->iface = fp->sync_iface;
812
ep->altsetting = fp->sync_altsetting;
813
ep->ep_idx = fp->sync_ep_idx;
814
} else {
815
ep->iface = fp->iface;
816
ep->altsetting = fp->altsetting;
817
ep->ep_idx = fp->ep_idx;
818
}
819
usb_audio_dbg(chip, "Open EP 0x%x, iface=%d:%d, idx=%d\n",
820
ep_num, ep->iface, ep->altsetting, ep->ep_idx);
821
822
ep->iface_ref = iface_ref_find(chip, ep->iface);
823
if (!ep->iface_ref) {
824
ep = NULL;
825
goto unlock;
826
}
827
828
if (fp->protocol != UAC_VERSION_1) {
829
ep->clock_ref = clock_ref_find(chip, fp->clock);
830
if (!ep->clock_ref) {
831
ep = NULL;
832
goto unlock;
833
}
834
ep->clock_ref->opened++;
835
}
836
837
ep->cur_audiofmt = fp;
838
ep->cur_channels = fp->channels;
839
ep->cur_rate = params_rate(params);
840
ep->cur_format = params_format(params);
841
ep->cur_frame_bytes = snd_pcm_format_physical_width(ep->cur_format) *
842
ep->cur_channels / 8;
843
ep->cur_period_frames = params_period_size(params);
844
ep->cur_period_bytes = ep->cur_period_frames * ep->cur_frame_bytes;
845
ep->cur_buffer_periods = params_periods(params);
846
847
if (ep->type == SND_USB_ENDPOINT_TYPE_SYNC)
848
endpoint_set_syncinterval(chip, ep);
849
850
ep->implicit_fb_sync = fp->implicit_fb;
851
ep->need_setup = true;
852
ep->need_prepare = true;
853
ep->fixed_rate = fixed_rate;
854
855
usb_audio_dbg(chip, " channels=%d, rate=%d, format=%s, period_bytes=%d, periods=%d, implicit_fb=%d\n",
856
ep->cur_channels, ep->cur_rate,
857
snd_pcm_format_name(ep->cur_format),
858
ep->cur_period_bytes, ep->cur_buffer_periods,
859
ep->implicit_fb_sync);
860
861
} else {
862
if (WARN_ON(!ep->iface_ref)) {
863
ep = NULL;
864
goto unlock;
865
}
866
867
if (!endpoint_compatible(ep, fp, params)) {
868
usb_audio_err(chip, "Incompatible EP setup for 0x%x\n",
869
ep_num);
870
ep = NULL;
871
goto unlock;
872
}
873
874
usb_audio_dbg(chip, "Reopened EP 0x%x (count %d)\n",
875
ep_num, ep->opened);
876
}
877
878
if (!ep->iface_ref->opened++)
879
ep->iface_ref->need_setup = true;
880
881
ep->opened++;
882
883
unlock:
884
mutex_unlock(&chip->mutex);
885
return ep;
886
}
887
888
/*
889
* snd_usb_endpoint_set_sync: Link data and sync endpoints
890
*
891
* Pass NULL to sync_ep to unlink again
892
*/
893
void snd_usb_endpoint_set_sync(struct snd_usb_audio *chip,
894
struct snd_usb_endpoint *data_ep,
895
struct snd_usb_endpoint *sync_ep)
896
{
897
data_ep->sync_source = sync_ep;
898
}
899
900
/*
901
* Set data endpoint callbacks and the assigned data stream
902
*
903
* Called at PCM trigger and cleanups.
904
* Pass NULL to deactivate each callback.
905
*/
906
void snd_usb_endpoint_set_callback(struct snd_usb_endpoint *ep,
907
int (*prepare)(struct snd_usb_substream *subs,
908
struct urb *urb,
909
bool in_stream_lock),
910
void (*retire)(struct snd_usb_substream *subs,
911
struct urb *urb),
912
struct snd_usb_substream *data_subs)
913
{
914
ep->prepare_data_urb = prepare;
915
ep->retire_data_urb = retire;
916
if (data_subs)
917
ep->lowlatency_playback = data_subs->lowlatency_playback;
918
else
919
ep->lowlatency_playback = false;
920
WRITE_ONCE(ep->data_subs, data_subs);
921
}
922
923
static int endpoint_set_interface(struct snd_usb_audio *chip,
924
struct snd_usb_endpoint *ep,
925
bool set)
926
{
927
int altset = set ? ep->altsetting : 0;
928
int err;
929
int retries = 0;
930
const int max_retries = 5;
931
932
if (ep->iface_ref->altset == altset)
933
return 0;
934
/* already disconnected? */
935
if (unlikely(atomic_read(&chip->shutdown)))
936
return -ENODEV;
937
938
usb_audio_dbg(chip, "Setting usb interface %d:%d for EP 0x%x\n",
939
ep->iface, altset, ep->ep_num);
940
retry:
941
err = usb_set_interface(chip->dev, ep->iface, altset);
942
if (err < 0) {
943
if (err == -EPROTO && ++retries <= max_retries) {
944
msleep(5 * (1 << (retries - 1)));
945
goto retry;
946
}
947
usb_audio_err_ratelimited(
948
chip, "%d:%d: usb_set_interface failed (%d)\n",
949
ep->iface, altset, err);
950
return err;
951
}
952
953
if (chip->quirk_flags & QUIRK_FLAG_IFACE_DELAY)
954
msleep(50);
955
ep->iface_ref->altset = altset;
956
return 0;
957
}
958
959
/*
960
* snd_usb_endpoint_close: Close the endpoint
961
*
962
* Unreference the already opened endpoint via snd_usb_endpoint_open().
963
*/
964
void snd_usb_endpoint_close(struct snd_usb_audio *chip,
965
struct snd_usb_endpoint *ep)
966
{
967
mutex_lock(&chip->mutex);
968
usb_audio_dbg(chip, "Closing EP 0x%x (count %d)\n",
969
ep->ep_num, ep->opened);
970
971
if (!--ep->iface_ref->opened &&
972
!(chip->quirk_flags & QUIRK_FLAG_IFACE_SKIP_CLOSE))
973
endpoint_set_interface(chip, ep, false);
974
975
if (!--ep->opened) {
976
if (ep->clock_ref) {
977
if (!--ep->clock_ref->opened)
978
ep->clock_ref->rate = 0;
979
}
980
ep->iface = 0;
981
ep->altsetting = 0;
982
ep->cur_audiofmt = NULL;
983
ep->cur_rate = 0;
984
ep->iface_ref = NULL;
985
ep->clock_ref = NULL;
986
usb_audio_dbg(chip, "EP 0x%x closed\n", ep->ep_num);
987
}
988
mutex_unlock(&chip->mutex);
989
}
990
991
/* Prepare for suspening EP, called from the main suspend handler */
992
void snd_usb_endpoint_suspend(struct snd_usb_endpoint *ep)
993
{
994
ep->need_prepare = true;
995
if (ep->iface_ref)
996
ep->iface_ref->need_setup = true;
997
if (ep->clock_ref)
998
ep->clock_ref->rate = 0;
999
}
1000
1001
/*
1002
* wait until all urbs are processed.
1003
*/
1004
static int wait_clear_urbs(struct snd_usb_endpoint *ep)
1005
{
1006
unsigned long end_time = jiffies + msecs_to_jiffies(1000);
1007
int alive;
1008
1009
if (atomic_read(&ep->state) != EP_STATE_STOPPING)
1010
return 0;
1011
1012
do {
1013
alive = atomic_read(&ep->submitted_urbs);
1014
if (!alive)
1015
break;
1016
1017
schedule_timeout_uninterruptible(1);
1018
} while (time_before(jiffies, end_time));
1019
1020
if (alive)
1021
usb_audio_err(ep->chip,
1022
"timeout: still %d active urbs on EP #%x\n",
1023
alive, ep->ep_num);
1024
1025
if (ep_state_update(ep, EP_STATE_STOPPING, EP_STATE_STOPPED)) {
1026
ep->sync_sink = NULL;
1027
snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL);
1028
}
1029
1030
return 0;
1031
}
1032
1033
/* sync the pending stop operation;
1034
* this function itself doesn't trigger the stop operation
1035
*/
1036
void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep)
1037
{
1038
if (ep)
1039
wait_clear_urbs(ep);
1040
}
1041
1042
/*
1043
* Stop active urbs
1044
*
1045
* This function moves the EP to STOPPING state if it's being RUNNING.
1046
*/
1047
static int stop_urbs(struct snd_usb_endpoint *ep, bool force, bool keep_pending)
1048
{
1049
unsigned int i;
1050
unsigned long flags;
1051
1052
if (!force && atomic_read(&ep->running))
1053
return -EBUSY;
1054
1055
if (!ep_state_update(ep, EP_STATE_RUNNING, EP_STATE_STOPPING))
1056
return 0;
1057
1058
spin_lock_irqsave(&ep->lock, flags);
1059
INIT_LIST_HEAD(&ep->ready_playback_urbs);
1060
ep->next_packet_head = 0;
1061
ep->next_packet_queued = 0;
1062
spin_unlock_irqrestore(&ep->lock, flags);
1063
1064
if (keep_pending)
1065
return 0;
1066
1067
for (i = 0; i < ep->nurbs; i++) {
1068
if (test_bit(i, &ep->active_mask)) {
1069
if (!test_and_set_bit(i, &ep->unlink_mask)) {
1070
struct urb *u = ep->urb[i].urb;
1071
usb_unlink_urb(u);
1072
}
1073
}
1074
}
1075
1076
return 0;
1077
}
1078
1079
/*
1080
* release an endpoint's urbs
1081
*/
1082
static int release_urbs(struct snd_usb_endpoint *ep, bool force)
1083
{
1084
int i, err;
1085
1086
/* route incoming urbs to nirvana */
1087
snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL);
1088
1089
/* stop and unlink urbs */
1090
err = stop_urbs(ep, force, false);
1091
if (err)
1092
return err;
1093
1094
wait_clear_urbs(ep);
1095
1096
for (i = 0; i < ep->nurbs; i++)
1097
release_urb_ctx(&ep->urb[i]);
1098
1099
usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
1100
ep->syncbuf, ep->sync_dma);
1101
1102
ep->syncbuf = NULL;
1103
ep->nurbs = 0;
1104
return 0;
1105
}
1106
1107
/*
1108
* configure a data endpoint
1109
*/
1110
static int data_ep_set_params(struct snd_usb_endpoint *ep)
1111
{
1112
struct snd_usb_audio *chip = ep->chip;
1113
unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
1114
unsigned int max_packs_per_period, urbs_per_period, urb_packs;
1115
unsigned int max_urbs, i;
1116
const struct audioformat *fmt = ep->cur_audiofmt;
1117
int frame_bits = ep->cur_frame_bytes * 8;
1118
int tx_length_quirk = (has_tx_length_quirk(chip) &&
1119
usb_pipeout(ep->pipe));
1120
1121
usb_audio_dbg(chip, "Setting params for data EP 0x%x, pipe 0x%x\n",
1122
ep->ep_num, ep->pipe);
1123
1124
if (ep->cur_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
1125
/*
1126
* When operating in DSD DOP mode, the size of a sample frame
1127
* in hardware differs from the actual physical format width
1128
* because we need to make room for the DOP markers.
1129
*/
1130
frame_bits += ep->cur_channels << 3;
1131
}
1132
1133
ep->datainterval = fmt->datainterval;
1134
ep->stride = frame_bits >> 3;
1135
1136
switch (ep->cur_format) {
1137
case SNDRV_PCM_FORMAT_U8:
1138
ep->silence_value = 0x80;
1139
break;
1140
case SNDRV_PCM_FORMAT_DSD_U8:
1141
case SNDRV_PCM_FORMAT_DSD_U16_LE:
1142
case SNDRV_PCM_FORMAT_DSD_U32_LE:
1143
case SNDRV_PCM_FORMAT_DSD_U16_BE:
1144
case SNDRV_PCM_FORMAT_DSD_U32_BE:
1145
ep->silence_value = 0x69;
1146
break;
1147
default:
1148
ep->silence_value = 0;
1149
}
1150
1151
/* assume max. frequency is 50% higher than nominal */
1152
ep->freqmax = ep->freqn + (ep->freqn >> 1);
1153
/* Round up freqmax to nearest integer in order to calculate maximum
1154
* packet size, which must represent a whole number of frames.
1155
* This is accomplished by adding 0x0.ffff before converting the
1156
* Q16.16 format into integer.
1157
* In order to accurately calculate the maximum packet size when
1158
* the data interval is more than 1 (i.e. ep->datainterval > 0),
1159
* multiply by the data interval prior to rounding. For instance,
1160
* a freqmax of 41 kHz will result in a max packet size of 6 (5.125)
1161
* frames with a data interval of 1, but 11 (10.25) frames with a
1162
* data interval of 2.
1163
* (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the
1164
* maximum datainterval value of 3, at USB full speed, higher for
1165
* USB high speed, noting that ep->freqmax is in units of
1166
* frames per packet in Q16.16 format.)
1167
*/
1168
maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) *
1169
(frame_bits >> 3);
1170
if (tx_length_quirk)
1171
maxsize += sizeof(__le32); /* Space for length descriptor */
1172
/* but wMaxPacketSize might reduce this */
1173
if (ep->maxpacksize && ep->maxpacksize < maxsize) {
1174
/* whatever fits into a max. size packet */
1175
unsigned int data_maxsize = maxsize = ep->maxpacksize;
1176
1177
if (tx_length_quirk)
1178
/* Need to remove the length descriptor to calc freq */
1179
data_maxsize -= sizeof(__le32);
1180
ep->freqmax = (data_maxsize / (frame_bits >> 3))
1181
<< (16 - ep->datainterval);
1182
}
1183
1184
if (ep->fill_max)
1185
ep->curpacksize = ep->maxpacksize;
1186
else
1187
ep->curpacksize = maxsize;
1188
1189
if (snd_usb_get_speed(chip->dev) != USB_SPEED_FULL) {
1190
packs_per_ms = 8 >> ep->datainterval;
1191
max_packs_per_urb = MAX_PACKS_HS;
1192
} else {
1193
packs_per_ms = 1;
1194
max_packs_per_urb = MAX_PACKS;
1195
}
1196
if (ep->sync_source && !ep->implicit_fb_sync)
1197
max_packs_per_urb = min(max_packs_per_urb,
1198
1U << ep->sync_source->syncinterval);
1199
max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);
1200
1201
/*
1202
* Capture endpoints need to use small URBs because there's no way
1203
* to tell in advance where the next period will end, and we don't
1204
* want the next URB to complete much after the period ends.
1205
*
1206
* Playback endpoints with implicit sync much use the same parameters
1207
* as their corresponding capture endpoint.
1208
*/
1209
if (usb_pipein(ep->pipe) || ep->implicit_fb_sync) {
1210
1211
/* make capture URBs <= 1 ms and smaller than a period */
1212
urb_packs = min(max_packs_per_urb, packs_per_ms);
1213
while (urb_packs > 1 && urb_packs * maxsize >= ep->cur_period_bytes)
1214
urb_packs >>= 1;
1215
ep->nurbs = MAX_URBS;
1216
1217
/*
1218
* Playback endpoints without implicit sync are adjusted so that
1219
* a period fits as evenly as possible in the smallest number of
1220
* URBs. The total number of URBs is adjusted to the size of the
1221
* ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
1222
*/
1223
} else {
1224
/* determine how small a packet can be */
1225
minsize = (ep->freqn >> (16 - ep->datainterval)) *
1226
(frame_bits >> 3);
1227
/* with sync from device, assume it can be 12% lower */
1228
if (ep->sync_source)
1229
minsize -= minsize >> 3;
1230
minsize = max(minsize, 1u);
1231
1232
/* how many packets will contain an entire ALSA period? */
1233
max_packs_per_period = DIV_ROUND_UP(ep->cur_period_bytes, minsize);
1234
1235
/* how many URBs will contain a period? */
1236
urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
1237
max_packs_per_urb);
1238
/* how many packets are needed in each URB? */
1239
urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);
1240
1241
/* limit the number of frames in a single URB */
1242
ep->max_urb_frames = DIV_ROUND_UP(ep->cur_period_frames,
1243
urbs_per_period);
1244
1245
/* try to use enough URBs to contain an entire ALSA buffer */
1246
max_urbs = min((unsigned) MAX_URBS,
1247
MAX_QUEUE * packs_per_ms / urb_packs);
1248
ep->nurbs = min(max_urbs, urbs_per_period * ep->cur_buffer_periods);
1249
}
1250
1251
/* allocate and initialize data urbs */
1252
for (i = 0; i < ep->nurbs; i++) {
1253
struct snd_urb_ctx *u = &ep->urb[i];
1254
u->index = i;
1255
u->ep = ep;
1256
u->packets = urb_packs;
1257
u->buffer_size = maxsize * u->packets;
1258
1259
if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
1260
u->packets++; /* for transfer delimiter */
1261
u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
1262
if (!u->urb)
1263
goto out_of_memory;
1264
1265
u->urb->transfer_buffer =
1266
usb_alloc_coherent(chip->dev, u->buffer_size,
1267
GFP_KERNEL, &u->urb->transfer_dma);
1268
if (!u->urb->transfer_buffer)
1269
goto out_of_memory;
1270
u->urb->pipe = ep->pipe;
1271
u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1272
u->urb->interval = 1 << ep->datainterval;
1273
u->urb->context = u;
1274
u->urb->complete = snd_complete_urb;
1275
INIT_LIST_HEAD(&u->ready_list);
1276
}
1277
1278
return 0;
1279
1280
out_of_memory:
1281
release_urbs(ep, false);
1282
return -ENOMEM;
1283
}
1284
1285
/*
1286
* configure a sync endpoint
1287
*/
1288
static int sync_ep_set_params(struct snd_usb_endpoint *ep)
1289
{
1290
struct snd_usb_audio *chip = ep->chip;
1291
int i;
1292
1293
usb_audio_dbg(chip, "Setting params for sync EP 0x%x, pipe 0x%x\n",
1294
ep->ep_num, ep->pipe);
1295
1296
ep->syncbuf = usb_alloc_coherent(chip->dev, SYNC_URBS * 4,
1297
GFP_KERNEL, &ep->sync_dma);
1298
if (!ep->syncbuf)
1299
return -ENOMEM;
1300
1301
ep->nurbs = SYNC_URBS;
1302
for (i = 0; i < SYNC_URBS; i++) {
1303
struct snd_urb_ctx *u = &ep->urb[i];
1304
u->index = i;
1305
u->ep = ep;
1306
u->packets = 1;
1307
u->urb = usb_alloc_urb(1, GFP_KERNEL);
1308
if (!u->urb)
1309
goto out_of_memory;
1310
u->urb->transfer_buffer = ep->syncbuf + i * 4;
1311
u->urb->transfer_dma = ep->sync_dma + i * 4;
1312
u->urb->transfer_buffer_length = 4;
1313
u->urb->pipe = ep->pipe;
1314
u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1315
u->urb->number_of_packets = 1;
1316
u->urb->interval = 1 << ep->syncinterval;
1317
u->urb->context = u;
1318
u->urb->complete = snd_complete_urb;
1319
}
1320
1321
return 0;
1322
1323
out_of_memory:
1324
release_urbs(ep, false);
1325
return -ENOMEM;
1326
}
1327
1328
/* update the rate of the referred clock; return the actual rate */
1329
static int update_clock_ref_rate(struct snd_usb_audio *chip,
1330
struct snd_usb_endpoint *ep)
1331
{
1332
struct snd_usb_clock_ref *clock = ep->clock_ref;
1333
int rate = ep->cur_rate;
1334
1335
if (!clock || clock->rate == rate)
1336
return rate;
1337
if (clock->rate) {
1338
if (atomic_read(&clock->locked))
1339
return clock->rate;
1340
if (clock->rate != rate) {
1341
usb_audio_err(chip, "Mismatched sample rate %d vs %d for EP 0x%x\n",
1342
clock->rate, rate, ep->ep_num);
1343
return clock->rate;
1344
}
1345
}
1346
clock->rate = rate;
1347
clock->need_setup = true;
1348
return rate;
1349
}
1350
1351
/*
1352
* snd_usb_endpoint_set_params: configure an snd_usb_endpoint
1353
*
1354
* It's called either from hw_params callback.
1355
* Determine the number of URBs to be used on this endpoint.
1356
* An endpoint must be configured before it can be started.
1357
* An endpoint that is already running can not be reconfigured.
1358
*/
1359
int snd_usb_endpoint_set_params(struct snd_usb_audio *chip,
1360
struct snd_usb_endpoint *ep)
1361
{
1362
const struct audioformat *fmt = ep->cur_audiofmt;
1363
int err = 0;
1364
1365
mutex_lock(&chip->mutex);
1366
if (!ep->need_setup)
1367
goto unlock;
1368
1369
/* release old buffers, if any */
1370
err = release_urbs(ep, false);
1371
if (err < 0)
1372
goto unlock;
1373
1374
ep->datainterval = fmt->datainterval;
1375
ep->maxpacksize = fmt->maxpacksize;
1376
ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
1377
1378
if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) {
1379
ep->freqn = get_usb_full_speed_rate(ep->cur_rate);
1380
ep->pps = 1000 >> ep->datainterval;
1381
} else {
1382
ep->freqn = get_usb_high_speed_rate(ep->cur_rate);
1383
ep->pps = 8000 >> ep->datainterval;
1384
}
1385
1386
ep->sample_rem = ep->cur_rate % ep->pps;
1387
ep->packsize[0] = ep->cur_rate / ep->pps;
1388
ep->packsize[1] = (ep->cur_rate + (ep->pps - 1)) / ep->pps;
1389
1390
/* calculate the frequency in 16.16 format */
1391
ep->freqm = ep->freqn;
1392
ep->freqshift = INT_MIN;
1393
1394
ep->phase = 0;
1395
1396
switch (ep->type) {
1397
case SND_USB_ENDPOINT_TYPE_DATA:
1398
err = data_ep_set_params(ep);
1399
break;
1400
case SND_USB_ENDPOINT_TYPE_SYNC:
1401
err = sync_ep_set_params(ep);
1402
break;
1403
default:
1404
err = -EINVAL;
1405
}
1406
1407
usb_audio_dbg(chip, "Set up %d URBS, ret=%d\n", ep->nurbs, err);
1408
1409
if (err < 0)
1410
goto unlock;
1411
1412
/* some unit conversions in runtime */
1413
ep->maxframesize = ep->maxpacksize / ep->cur_frame_bytes;
1414
ep->curframesize = ep->curpacksize / ep->cur_frame_bytes;
1415
1416
err = update_clock_ref_rate(chip, ep);
1417
if (err >= 0) {
1418
ep->need_setup = false;
1419
err = 0;
1420
}
1421
1422
unlock:
1423
mutex_unlock(&chip->mutex);
1424
return err;
1425
}
1426
1427
static int init_sample_rate(struct snd_usb_audio *chip,
1428
struct snd_usb_endpoint *ep)
1429
{
1430
struct snd_usb_clock_ref *clock = ep->clock_ref;
1431
int rate, err;
1432
1433
rate = update_clock_ref_rate(chip, ep);
1434
if (rate < 0)
1435
return rate;
1436
if (clock && !clock->need_setup)
1437
return 0;
1438
1439
if (!ep->fixed_rate) {
1440
err = snd_usb_init_sample_rate(chip, ep->cur_audiofmt, rate);
1441
if (err < 0) {
1442
if (clock)
1443
clock->rate = 0; /* reset rate */
1444
return err;
1445
}
1446
}
1447
1448
if (clock)
1449
clock->need_setup = false;
1450
return 0;
1451
}
1452
1453
/*
1454
* snd_usb_endpoint_prepare: Prepare the endpoint
1455
*
1456
* This function sets up the EP to be fully usable state.
1457
* It's called either from prepare callback.
1458
* The function checks need_setup flag, and performs nothing unless needed,
1459
* so it's safe to call this multiple times.
1460
*
1461
* This returns zero if unchanged, 1 if the configuration has changed,
1462
* or a negative error code.
1463
*/
1464
int snd_usb_endpoint_prepare(struct snd_usb_audio *chip,
1465
struct snd_usb_endpoint *ep)
1466
{
1467
bool iface_first;
1468
int err = 0;
1469
1470
mutex_lock(&chip->mutex);
1471
if (WARN_ON(!ep->iface_ref))
1472
goto unlock;
1473
if (!ep->need_prepare)
1474
goto unlock;
1475
1476
/* If the interface has been already set up, just set EP parameters */
1477
if (!ep->iface_ref->need_setup) {
1478
/* sample rate setup of UAC1 is per endpoint, and we need
1479
* to update at each EP configuration
1480
*/
1481
if (ep->cur_audiofmt->protocol == UAC_VERSION_1) {
1482
err = init_sample_rate(chip, ep);
1483
if (err < 0)
1484
goto unlock;
1485
}
1486
goto done;
1487
}
1488
1489
/* Need to deselect altsetting at first */
1490
endpoint_set_interface(chip, ep, false);
1491
1492
/* Some UAC1 devices (e.g. Yamaha THR10) need the host interface
1493
* to be set up before parameter setups
1494
*/
1495
iface_first = ep->cur_audiofmt->protocol == UAC_VERSION_1;
1496
/* Workaround for devices that require the interface setup at first like UAC1 */
1497
if (chip->quirk_flags & QUIRK_FLAG_SET_IFACE_FIRST)
1498
iface_first = true;
1499
if (iface_first) {
1500
err = endpoint_set_interface(chip, ep, true);
1501
if (err < 0)
1502
goto unlock;
1503
}
1504
1505
err = snd_usb_init_pitch(chip, ep->cur_audiofmt);
1506
if (err < 0)
1507
goto unlock;
1508
1509
err = init_sample_rate(chip, ep);
1510
if (err < 0)
1511
goto unlock;
1512
1513
err = snd_usb_select_mode_quirk(chip, ep->cur_audiofmt);
1514
if (err < 0)
1515
goto unlock;
1516
1517
/* for UAC2/3, enable the interface altset here at last */
1518
if (!iface_first) {
1519
err = endpoint_set_interface(chip, ep, true);
1520
if (err < 0)
1521
goto unlock;
1522
}
1523
1524
ep->iface_ref->need_setup = false;
1525
1526
done:
1527
ep->need_prepare = false;
1528
err = 1;
1529
1530
unlock:
1531
mutex_unlock(&chip->mutex);
1532
return err;
1533
}
1534
EXPORT_SYMBOL_GPL(snd_usb_endpoint_prepare);
1535
1536
/* get the current rate set to the given clock by any endpoint */
1537
int snd_usb_endpoint_get_clock_rate(struct snd_usb_audio *chip, int clock)
1538
{
1539
struct snd_usb_clock_ref *ref;
1540
int rate = 0;
1541
1542
if (!clock)
1543
return 0;
1544
mutex_lock(&chip->mutex);
1545
list_for_each_entry(ref, &chip->clock_ref_list, list) {
1546
if (ref->clock == clock) {
1547
rate = ref->rate;
1548
break;
1549
}
1550
}
1551
mutex_unlock(&chip->mutex);
1552
return rate;
1553
}
1554
1555
/**
1556
* snd_usb_endpoint_start: start an snd_usb_endpoint
1557
*
1558
* @ep: the endpoint to start
1559
*
1560
* A call to this function will increment the running count of the endpoint.
1561
* In case it is not already running, the URBs for this endpoint will be
1562
* submitted. Otherwise, this function does nothing.
1563
*
1564
* Must be balanced to calls of snd_usb_endpoint_stop().
1565
*
1566
* Returns an error if the URB submission failed, 0 in all other cases.
1567
*/
1568
int snd_usb_endpoint_start(struct snd_usb_endpoint *ep)
1569
{
1570
bool is_playback = usb_pipeout(ep->pipe);
1571
int err;
1572
unsigned int i;
1573
1574
if (atomic_read(&ep->chip->shutdown))
1575
return -EBADFD;
1576
1577
if (ep->sync_source)
1578
WRITE_ONCE(ep->sync_source->sync_sink, ep);
1579
1580
usb_audio_dbg(ep->chip, "Starting %s EP 0x%x (running %d)\n",
1581
ep_type_name(ep->type), ep->ep_num,
1582
atomic_read(&ep->running));
1583
1584
/* already running? */
1585
if (atomic_inc_return(&ep->running) != 1)
1586
return 0;
1587
1588
if (ep->clock_ref)
1589
atomic_inc(&ep->clock_ref->locked);
1590
1591
ep->active_mask = 0;
1592
ep->unlink_mask = 0;
1593
ep->phase = 0;
1594
ep->sample_accum = 0;
1595
1596
snd_usb_endpoint_start_quirk(ep);
1597
1598
/*
1599
* If this endpoint has a data endpoint as implicit feedback source,
1600
* don't start the urbs here. Instead, mark them all as available,
1601
* wait for the record urbs to return and queue the playback urbs
1602
* from that context.
1603
*/
1604
1605
if (!ep_state_update(ep, EP_STATE_STOPPED, EP_STATE_RUNNING))
1606
goto __error;
1607
1608
if (snd_usb_endpoint_implicit_feedback_sink(ep) &&
1609
!(ep->chip->quirk_flags & QUIRK_FLAG_PLAYBACK_FIRST)) {
1610
usb_audio_dbg(ep->chip, "No URB submission due to implicit fb sync\n");
1611
i = 0;
1612
goto fill_rest;
1613
}
1614
1615
for (i = 0; i < ep->nurbs; i++) {
1616
struct urb *urb = ep->urb[i].urb;
1617
1618
if (snd_BUG_ON(!urb))
1619
goto __error;
1620
1621
if (is_playback)
1622
err = prepare_outbound_urb(ep, urb->context, true);
1623
else
1624
err = prepare_inbound_urb(ep, urb->context);
1625
if (err < 0) {
1626
/* stop filling at applptr */
1627
if (err == -EAGAIN)
1628
break;
1629
usb_audio_dbg(ep->chip,
1630
"EP 0x%x: failed to prepare urb: %d\n",
1631
ep->ep_num, err);
1632
goto __error;
1633
}
1634
1635
if (!atomic_read(&ep->chip->shutdown))
1636
err = usb_submit_urb(urb, GFP_ATOMIC);
1637
else
1638
err = -ENODEV;
1639
if (err < 0) {
1640
if (!atomic_read(&ep->chip->shutdown))
1641
usb_audio_err(ep->chip,
1642
"cannot submit urb %d, error %d: %s\n",
1643
i, err, usb_error_string(err));
1644
goto __error;
1645
}
1646
set_bit(i, &ep->active_mask);
1647
atomic_inc(&ep->submitted_urbs);
1648
}
1649
1650
if (!i) {
1651
usb_audio_dbg(ep->chip, "XRUN at starting EP 0x%x\n",
1652
ep->ep_num);
1653
goto __error;
1654
}
1655
1656
usb_audio_dbg(ep->chip, "%d URBs submitted for EP 0x%x\n",
1657
i, ep->ep_num);
1658
1659
fill_rest:
1660
/* put the remaining URBs to ready list */
1661
if (is_playback) {
1662
for (; i < ep->nurbs; i++)
1663
push_back_to_ready_list(ep, ep->urb + i);
1664
}
1665
1666
return 0;
1667
1668
__error:
1669
snd_usb_endpoint_stop(ep, false);
1670
return -EPIPE;
1671
}
1672
1673
/**
1674
* snd_usb_endpoint_stop: stop an snd_usb_endpoint
1675
*
1676
* @ep: the endpoint to stop (may be NULL)
1677
* @keep_pending: keep in-flight URBs
1678
*
1679
* A call to this function will decrement the running count of the endpoint.
1680
* In case the last user has requested the endpoint stop, the URBs will
1681
* actually be deactivated.
1682
*
1683
* Must be balanced to calls of snd_usb_endpoint_start().
1684
*
1685
* The caller needs to synchronize the pending stop operation via
1686
* snd_usb_endpoint_sync_pending_stop().
1687
*/
1688
void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep, bool keep_pending)
1689
{
1690
if (!ep)
1691
return;
1692
1693
usb_audio_dbg(ep->chip, "Stopping %s EP 0x%x (running %d)\n",
1694
ep_type_name(ep->type), ep->ep_num,
1695
atomic_read(&ep->running));
1696
1697
if (snd_BUG_ON(!atomic_read(&ep->running)))
1698
return;
1699
1700
if (!atomic_dec_return(&ep->running)) {
1701
if (ep->sync_source)
1702
WRITE_ONCE(ep->sync_source->sync_sink, NULL);
1703
stop_urbs(ep, false, keep_pending);
1704
if (ep->clock_ref)
1705
atomic_dec(&ep->clock_ref->locked);
1706
1707
if (ep->chip->quirk_flags & QUIRK_FLAG_FORCE_IFACE_RESET &&
1708
usb_pipeout(ep->pipe)) {
1709
ep->need_prepare = true;
1710
if (ep->iface_ref)
1711
ep->iface_ref->need_setup = true;
1712
}
1713
}
1714
}
1715
1716
/**
1717
* snd_usb_endpoint_release: Tear down an snd_usb_endpoint
1718
*
1719
* @ep: the endpoint to release
1720
*
1721
* This function does not care for the endpoint's running count but will tear
1722
* down all the streaming URBs immediately.
1723
*/
1724
void snd_usb_endpoint_release(struct snd_usb_endpoint *ep)
1725
{
1726
release_urbs(ep, true);
1727
}
1728
1729
/**
1730
* snd_usb_endpoint_free_all: Free the resources of an snd_usb_endpoint
1731
* @chip: The chip
1732
*
1733
* This free all endpoints and those resources
1734
*/
1735
void snd_usb_endpoint_free_all(struct snd_usb_audio *chip)
1736
{
1737
struct snd_usb_endpoint *ep, *en;
1738
struct snd_usb_iface_ref *ip, *in;
1739
struct snd_usb_clock_ref *cp, *cn;
1740
1741
list_for_each_entry_safe(ep, en, &chip->ep_list, list)
1742
kfree(ep);
1743
1744
list_for_each_entry_safe(ip, in, &chip->iface_ref_list, list)
1745
kfree(ip);
1746
1747
list_for_each_entry_safe(cp, cn, &chip->clock_ref_list, list)
1748
kfree(cp);
1749
}
1750
1751
/*
1752
* snd_usb_handle_sync_urb: parse an USB sync packet
1753
*
1754
* @ep: the endpoint to handle the packet
1755
* @sender: the sending endpoint
1756
* @urb: the received packet
1757
*
1758
* This function is called from the context of an endpoint that received
1759
* the packet and is used to let another endpoint object handle the payload.
1760
*/
1761
static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
1762
struct snd_usb_endpoint *sender,
1763
const struct urb *urb)
1764
{
1765
int shift;
1766
unsigned int f;
1767
unsigned long flags;
1768
1769
snd_BUG_ON(ep == sender);
1770
1771
/*
1772
* In case the endpoint is operating in implicit feedback mode, prepare
1773
* a new outbound URB that has the same layout as the received packet
1774
* and add it to the list of pending urbs. queue_pending_output_urbs()
1775
* will take care of them later.
1776
*/
1777
if (snd_usb_endpoint_implicit_feedback_sink(ep) &&
1778
atomic_read(&ep->running)) {
1779
1780
/* implicit feedback case */
1781
int i, bytes = 0;
1782
struct snd_urb_ctx *in_ctx;
1783
struct snd_usb_packet_info *out_packet;
1784
1785
in_ctx = urb->context;
1786
1787
/* Count overall packet size */
1788
for (i = 0; i < in_ctx->packets; i++)
1789
if (urb->iso_frame_desc[i].status == 0)
1790
bytes += urb->iso_frame_desc[i].actual_length;
1791
1792
/*
1793
* skip empty packets. At least M-Audio's Fast Track Ultra stops
1794
* streaming once it received a 0-byte OUT URB
1795
*/
1796
if (bytes == 0)
1797
return;
1798
1799
spin_lock_irqsave(&ep->lock, flags);
1800
if (ep->next_packet_queued >= ARRAY_SIZE(ep->next_packet)) {
1801
spin_unlock_irqrestore(&ep->lock, flags);
1802
usb_audio_err(ep->chip,
1803
"next package FIFO overflow EP 0x%x\n",
1804
ep->ep_num);
1805
notify_xrun(ep);
1806
return;
1807
}
1808
1809
out_packet = next_packet_fifo_enqueue(ep);
1810
1811
/*
1812
* Iterate through the inbound packet and prepare the lengths
1813
* for the output packet. The OUT packet we are about to send
1814
* will have the same amount of payload bytes per stride as the
1815
* IN packet we just received. Since the actual size is scaled
1816
* by the stride, use the sender stride to calculate the length
1817
* in case the number of channels differ between the implicitly
1818
* fed-back endpoint and the synchronizing endpoint.
1819
*/
1820
1821
out_packet->packets = in_ctx->packets;
1822
for (i = 0; i < in_ctx->packets; i++) {
1823
if (urb->iso_frame_desc[i].status == 0)
1824
out_packet->packet_size[i] =
1825
urb->iso_frame_desc[i].actual_length / sender->stride;
1826
else
1827
out_packet->packet_size[i] = 0;
1828
}
1829
1830
spin_unlock_irqrestore(&ep->lock, flags);
1831
snd_usb_queue_pending_output_urbs(ep, false);
1832
1833
return;
1834
}
1835
1836
/*
1837
* process after playback sync complete
1838
*
1839
* Full speed devices report feedback values in 10.14 format as samples
1840
* per frame, high speed devices in 16.16 format as samples per
1841
* microframe.
1842
*
1843
* Because the Audio Class 1 spec was written before USB 2.0, many high
1844
* speed devices use a wrong interpretation, some others use an
1845
* entirely different format.
1846
*
1847
* Therefore, we cannot predict what format any particular device uses
1848
* and must detect it automatically.
1849
*/
1850
1851
if (urb->iso_frame_desc[0].status != 0 ||
1852
urb->iso_frame_desc[0].actual_length < 3)
1853
return;
1854
1855
f = le32_to_cpup(urb->transfer_buffer);
1856
if (urb->iso_frame_desc[0].actual_length == 3)
1857
f &= 0x00ffffff;
1858
else
1859
f &= 0x0fffffff;
1860
1861
if (f == 0)
1862
return;
1863
1864
if (unlikely(sender->tenor_fb_quirk)) {
1865
/*
1866
* Devices based on Tenor 8802 chipsets (TEAC UD-H01
1867
* and others) sometimes change the feedback value
1868
* by +/- 0x1.0000.
1869
*/
1870
if (f < ep->freqn - 0x8000)
1871
f += 0xf000;
1872
else if (f > ep->freqn + 0x8000)
1873
f -= 0xf000;
1874
} else if (unlikely(ep->freqshift == INT_MIN)) {
1875
/*
1876
* The first time we see a feedback value, determine its format
1877
* by shifting it left or right until it matches the nominal
1878
* frequency value. This assumes that the feedback does not
1879
* differ from the nominal value more than +50% or -25%.
1880
*/
1881
shift = 0;
1882
while (f < ep->freqn - ep->freqn / 4) {
1883
f <<= 1;
1884
shift++;
1885
}
1886
while (f > ep->freqn + ep->freqn / 2) {
1887
f >>= 1;
1888
shift--;
1889
}
1890
ep->freqshift = shift;
1891
} else if (ep->freqshift >= 0)
1892
f <<= ep->freqshift;
1893
else
1894
f >>= -ep->freqshift;
1895
1896
if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) {
1897
/*
1898
* If the frequency looks valid, set it.
1899
* This value is referred to in prepare_playback_urb().
1900
*/
1901
spin_lock_irqsave(&ep->lock, flags);
1902
ep->freqm = f;
1903
spin_unlock_irqrestore(&ep->lock, flags);
1904
} else {
1905
/*
1906
* Out of range; maybe the shift value is wrong.
1907
* Reset it so that we autodetect again the next time.
1908
*/
1909
ep->freqshift = INT_MIN;
1910
}
1911
}
1912
1913
1914