Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/usb/mixer_quirks.c
52067 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* USB Audio Driver for ALSA
4
*
5
* Quirks and vendor-specific extensions for mixer interfaces
6
*
7
* Copyright (c) 2002 by Takashi Iwai <[email protected]>
8
*
9
* Many codes borrowed from audio.c by
10
* Alan Cox ([email protected])
11
* Thomas Sailer ([email protected])
12
*
13
* Audio Advantage Micro II support added by:
14
* Przemek Rudy ([email protected])
15
*/
16
17
#include <linux/bitfield.h>
18
#include <linux/hid.h>
19
#include <linux/init.h>
20
#include <linux/input.h>
21
#include <linux/math64.h>
22
#include <linux/slab.h>
23
#include <linux/usb.h>
24
#include <linux/usb/audio.h>
25
26
#include <sound/asoundef.h>
27
#include <sound/core.h>
28
#include <sound/control.h>
29
#include <sound/hda_verbs.h>
30
#include <sound/hwdep.h>
31
#include <sound/info.h>
32
#include <sound/tlv.h>
33
34
#include "usbaudio.h"
35
#include "mixer.h"
36
#include "mixer_quirks.h"
37
#include "mixer_scarlett.h"
38
#include "mixer_scarlett2.h"
39
#include "mixer_us16x08.h"
40
#include "mixer_s1810c.h"
41
#include "helper.h"
42
#include "fcp.h"
43
44
struct std_mono_table {
45
unsigned int unitid, control, cmask;
46
int val_type;
47
const char *name;
48
snd_kcontrol_tlv_rw_t *tlv_callback;
49
};
50
51
/* This function allows for the creation of standard UAC controls.
52
* See the quirks for M-Audio FTUs or Ebox-44.
53
* If you don't want to set a TLV callback pass NULL.
54
*
55
* Since there doesn't seem to be a devices that needs a multichannel
56
* version, we keep it mono for simplicity.
57
*/
58
static int snd_create_std_mono_ctl_offset(struct usb_mixer_interface *mixer,
59
unsigned int unitid,
60
unsigned int control,
61
unsigned int cmask,
62
int val_type,
63
unsigned int idx_off,
64
const char *name,
65
snd_kcontrol_tlv_rw_t *tlv_callback)
66
{
67
struct usb_mixer_elem_info *cval;
68
struct snd_kcontrol *kctl;
69
70
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
71
if (!cval)
72
return -ENOMEM;
73
74
snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid);
75
cval->val_type = val_type;
76
cval->channels = 1;
77
cval->control = control;
78
cval->cmask = cmask;
79
cval->idx_off = idx_off;
80
81
/* get_min_max() is called only for integer volumes later,
82
* so provide a short-cut for booleans
83
*/
84
cval->min = 0;
85
cval->max = 1;
86
cval->res = 0;
87
cval->dBmin = 0;
88
cval->dBmax = 0;
89
90
/* Create control */
91
kctl = snd_ctl_new1(snd_usb_feature_unit_ctl, cval);
92
if (!kctl) {
93
kfree(cval);
94
return -ENOMEM;
95
}
96
97
/* Set name */
98
snprintf(kctl->id.name, sizeof(kctl->id.name), name);
99
kctl->private_free = snd_usb_mixer_elem_free;
100
101
/* set TLV */
102
if (tlv_callback) {
103
kctl->tlv.c = tlv_callback;
104
kctl->vd[0].access |=
105
SNDRV_CTL_ELEM_ACCESS_TLV_READ |
106
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
107
}
108
/* Add control to mixer */
109
return snd_usb_mixer_add_control(&cval->head, kctl);
110
}
111
112
static int snd_create_std_mono_ctl(struct usb_mixer_interface *mixer,
113
unsigned int unitid,
114
unsigned int control,
115
unsigned int cmask,
116
int val_type,
117
const char *name,
118
snd_kcontrol_tlv_rw_t *tlv_callback)
119
{
120
return snd_create_std_mono_ctl_offset(mixer, unitid, control, cmask,
121
val_type, 0 /* Offset */,
122
name, tlv_callback);
123
}
124
125
/*
126
* Create a set of standard UAC controls from a table
127
*/
128
static int snd_create_std_mono_table(struct usb_mixer_interface *mixer,
129
const struct std_mono_table *t)
130
{
131
int err;
132
133
while (t->name) {
134
err = snd_create_std_mono_ctl(mixer, t->unitid, t->control,
135
t->cmask, t->val_type, t->name,
136
t->tlv_callback);
137
if (err < 0)
138
return err;
139
t++;
140
}
141
142
return 0;
143
}
144
145
static int add_single_ctl_with_resume(struct usb_mixer_interface *mixer,
146
int id,
147
usb_mixer_elem_resume_func_t resume,
148
const struct snd_kcontrol_new *knew,
149
struct usb_mixer_elem_list **listp)
150
{
151
struct usb_mixer_elem_list *list;
152
struct snd_kcontrol *kctl;
153
154
list = kzalloc(sizeof(*list), GFP_KERNEL);
155
if (!list)
156
return -ENOMEM;
157
if (listp)
158
*listp = list;
159
list->mixer = mixer;
160
list->id = id;
161
list->resume = resume;
162
kctl = snd_ctl_new1(knew, list);
163
if (!kctl) {
164
kfree(list);
165
return -ENOMEM;
166
}
167
kctl->private_free = snd_usb_mixer_elem_free;
168
/* don't use snd_usb_mixer_add_control() here, this is a special list element */
169
return snd_usb_mixer_add_list(list, kctl, false);
170
}
171
172
/*
173
* Sound Blaster remote control configuration
174
*
175
* format of remote control data:
176
* Extigy: xx 00
177
* Audigy 2 NX: 06 80 xx 00 00 00
178
* Live! 24-bit: 06 80 xx yy 22 83
179
*/
180
static const struct rc_config {
181
u32 usb_id;
182
u8 offset;
183
u8 length;
184
u8 packet_length;
185
u8 min_packet_length; /* minimum accepted length of the URB result */
186
u8 mute_mixer_id;
187
u32 mute_code;
188
} rc_configs[] = {
189
{ USB_ID(0x041e, 0x3000), 0, 1, 2, 1, 18, 0x0013 }, /* Extigy */
190
{ USB_ID(0x041e, 0x3020), 2, 1, 6, 6, 18, 0x0013 }, /* Audigy 2 NX */
191
{ USB_ID(0x041e, 0x3040), 2, 2, 6, 6, 2, 0x6e91 }, /* Live! 24-bit */
192
{ USB_ID(0x041e, 0x3042), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 */
193
{ USB_ID(0x041e, 0x30df), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
194
{ USB_ID(0x041e, 0x3237), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
195
{ USB_ID(0x041e, 0x3263), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
196
{ USB_ID(0x041e, 0x3048), 2, 2, 6, 6, 2, 0x6e91 }, /* Toshiba SB0500 */
197
};
198
199
static void snd_usb_soundblaster_remote_complete(struct urb *urb)
200
{
201
struct usb_mixer_interface *mixer = urb->context;
202
const struct rc_config *rc = mixer->rc_cfg;
203
u32 code;
204
205
if (urb->status < 0 || urb->actual_length < rc->min_packet_length)
206
return;
207
208
code = mixer->rc_buffer[rc->offset];
209
if (rc->length == 2)
210
code |= mixer->rc_buffer[rc->offset + 1] << 8;
211
212
/* the Mute button actually changes the mixer control */
213
if (code == rc->mute_code)
214
snd_usb_mixer_notify_id(mixer, rc->mute_mixer_id);
215
mixer->rc_code = code;
216
wake_up(&mixer->rc_waitq);
217
}
218
219
static long snd_usb_sbrc_hwdep_read(struct snd_hwdep *hw, char __user *buf,
220
long count, loff_t *offset)
221
{
222
struct usb_mixer_interface *mixer = hw->private_data;
223
int err;
224
u32 rc_code;
225
226
if (count != 1 && count != 4)
227
return -EINVAL;
228
err = wait_event_interruptible(mixer->rc_waitq,
229
(rc_code = xchg(&mixer->rc_code, 0)) != 0);
230
if (err == 0) {
231
if (count == 1)
232
err = put_user(rc_code, buf);
233
else
234
err = put_user(rc_code, (u32 __user *)buf);
235
}
236
return err < 0 ? err : count;
237
}
238
239
static __poll_t snd_usb_sbrc_hwdep_poll(struct snd_hwdep *hw, struct file *file,
240
poll_table *wait)
241
{
242
struct usb_mixer_interface *mixer = hw->private_data;
243
244
poll_wait(file, &mixer->rc_waitq, wait);
245
return mixer->rc_code ? EPOLLIN | EPOLLRDNORM : 0;
246
}
247
248
static int snd_usb_soundblaster_remote_init(struct usb_mixer_interface *mixer)
249
{
250
struct snd_hwdep *hwdep;
251
int err, len, i;
252
253
for (i = 0; i < ARRAY_SIZE(rc_configs); ++i)
254
if (rc_configs[i].usb_id == mixer->chip->usb_id)
255
break;
256
if (i >= ARRAY_SIZE(rc_configs))
257
return 0;
258
mixer->rc_cfg = &rc_configs[i];
259
260
len = mixer->rc_cfg->packet_length;
261
262
init_waitqueue_head(&mixer->rc_waitq);
263
err = snd_hwdep_new(mixer->chip->card, "SB remote control", 0, &hwdep);
264
if (err < 0)
265
return err;
266
snprintf(hwdep->name, sizeof(hwdep->name),
267
"%s remote control", mixer->chip->card->shortname);
268
hwdep->iface = SNDRV_HWDEP_IFACE_SB_RC;
269
hwdep->private_data = mixer;
270
hwdep->ops.read = snd_usb_sbrc_hwdep_read;
271
hwdep->ops.poll = snd_usb_sbrc_hwdep_poll;
272
hwdep->exclusive = 1;
273
274
mixer->rc_urb = usb_alloc_urb(0, GFP_KERNEL);
275
if (!mixer->rc_urb)
276
return -ENOMEM;
277
mixer->rc_setup_packet = kmalloc(sizeof(*mixer->rc_setup_packet), GFP_KERNEL);
278
if (!mixer->rc_setup_packet) {
279
usb_free_urb(mixer->rc_urb);
280
mixer->rc_urb = NULL;
281
return -ENOMEM;
282
}
283
mixer->rc_setup_packet->bRequestType =
284
USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE;
285
mixer->rc_setup_packet->bRequest = UAC_GET_MEM;
286
mixer->rc_setup_packet->wValue = cpu_to_le16(0);
287
mixer->rc_setup_packet->wIndex = cpu_to_le16(0);
288
mixer->rc_setup_packet->wLength = cpu_to_le16(len);
289
usb_fill_control_urb(mixer->rc_urb, mixer->chip->dev,
290
usb_rcvctrlpipe(mixer->chip->dev, 0),
291
(u8 *)mixer->rc_setup_packet, mixer->rc_buffer, len,
292
snd_usb_soundblaster_remote_complete, mixer);
293
return 0;
294
}
295
296
#define snd_audigy2nx_led_info snd_ctl_boolean_mono_info
297
298
static int snd_audigy2nx_led_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
299
{
300
ucontrol->value.integer.value[0] = kcontrol->private_value >> 8;
301
return 0;
302
}
303
304
static int snd_audigy2nx_led_update(struct usb_mixer_interface *mixer,
305
int value, int index)
306
{
307
struct snd_usb_audio *chip = mixer->chip;
308
int err;
309
310
CLASS(snd_usb_lock, pm)(chip);
311
if (pm.err < 0)
312
return pm.err;
313
314
if (chip->usb_id == USB_ID(0x041e, 0x3042) || /* USB X-Fi S51 */
315
chip->usb_id == USB_ID(0x041e, 0x30df)) /* USB X-Fi S51 Pro */
316
err = snd_usb_ctl_msg(chip->dev,
317
usb_sndctrlpipe(chip->dev, 0), 0x24,
318
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
319
!value, 0, NULL, 0);
320
else
321
err = snd_usb_ctl_msg(chip->dev,
322
usb_sndctrlpipe(chip->dev, 0), 0x24,
323
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
324
value, index + 2, NULL, 0);
325
return err;
326
}
327
328
static int snd_audigy2nx_led_put(struct snd_kcontrol *kcontrol,
329
struct snd_ctl_elem_value *ucontrol)
330
{
331
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
332
struct usb_mixer_interface *mixer = list->mixer;
333
int index = kcontrol->private_value & 0xff;
334
unsigned int value = ucontrol->value.integer.value[0];
335
int old_value = kcontrol->private_value >> 8;
336
int err;
337
338
if (value > 1)
339
return -EINVAL;
340
if (value == old_value)
341
return 0;
342
kcontrol->private_value = (value << 8) | index;
343
err = snd_audigy2nx_led_update(mixer, value, index);
344
return err < 0 ? err : 1;
345
}
346
347
static int snd_audigy2nx_led_resume(struct usb_mixer_elem_list *list)
348
{
349
int priv_value = list->kctl->private_value;
350
351
return snd_audigy2nx_led_update(list->mixer, priv_value >> 8,
352
priv_value & 0xff);
353
}
354
355
/* name and private_value are set dynamically */
356
static const struct snd_kcontrol_new snd_audigy2nx_control = {
357
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
358
.info = snd_audigy2nx_led_info,
359
.get = snd_audigy2nx_led_get,
360
.put = snd_audigy2nx_led_put,
361
};
362
363
static const char * const snd_audigy2nx_led_names[] = {
364
"CMSS LED Switch",
365
"Power LED Switch",
366
"Dolby Digital LED Switch",
367
};
368
369
static int snd_audigy2nx_controls_create(struct usb_mixer_interface *mixer)
370
{
371
int i, err;
372
373
for (i = 0; i < ARRAY_SIZE(snd_audigy2nx_led_names); ++i) {
374
struct snd_kcontrol_new knew;
375
376
/* USB X-Fi S51 doesn't have a CMSS LED */
377
if (mixer->chip->usb_id == USB_ID(0x041e, 0x3042) && i == 0)
378
continue;
379
/* USB X-Fi S51 Pro doesn't have one either */
380
if (mixer->chip->usb_id == USB_ID(0x041e, 0x30df) && i == 0)
381
continue;
382
if (i > 1 && /* Live24ext has 2 LEDs only */
383
(mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
384
mixer->chip->usb_id == USB_ID(0x041e, 0x3042) ||
385
mixer->chip->usb_id == USB_ID(0x041e, 0x30df) ||
386
mixer->chip->usb_id == USB_ID(0x041e, 0x3048)))
387
break;
388
389
knew = snd_audigy2nx_control;
390
knew.name = snd_audigy2nx_led_names[i];
391
knew.private_value = (1 << 8) | i; /* LED on as default */
392
err = add_single_ctl_with_resume(mixer, 0,
393
snd_audigy2nx_led_resume,
394
&knew, NULL);
395
if (err < 0)
396
return err;
397
}
398
return 0;
399
}
400
401
static void snd_audigy2nx_proc_read(struct snd_info_entry *entry,
402
struct snd_info_buffer *buffer)
403
{
404
static const struct sb_jack {
405
int unitid;
406
const char *name;
407
} jacks_audigy2nx[] = {
408
{4, "dig in "},
409
{7, "line in"},
410
{19, "spk out"},
411
{20, "hph out"},
412
{-1, NULL}
413
}, jacks_live24ext[] = {
414
{4, "line in"}, /* &1=Line, &2=Mic*/
415
{3, "hph out"}, /* headphones */
416
{0, "RC "}, /* last command, 6 bytes see rc_config above */
417
{-1, NULL}
418
};
419
const struct sb_jack *jacks;
420
struct usb_mixer_interface *mixer = entry->private_data;
421
int i, err;
422
u8 buf[3];
423
424
snd_iprintf(buffer, "%s jacks\n\n", mixer->chip->card->shortname);
425
if (mixer->chip->usb_id == USB_ID(0x041e, 0x3020))
426
jacks = jacks_audigy2nx;
427
else if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
428
mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
429
jacks = jacks_live24ext;
430
else
431
return;
432
433
for (i = 0; jacks[i].name; ++i) {
434
snd_iprintf(buffer, "%s: ", jacks[i].name);
435
CLASS(snd_usb_lock, pm)(mixer->chip);
436
if (pm.err < 0)
437
return;
438
err = snd_usb_ctl_msg(mixer->chip->dev,
439
usb_rcvctrlpipe(mixer->chip->dev, 0),
440
UAC_GET_MEM, USB_DIR_IN | USB_TYPE_CLASS |
441
USB_RECIP_INTERFACE, 0,
442
jacks[i].unitid << 8, buf, 3);
443
if (err == 3 && (buf[0] == 3 || buf[0] == 6))
444
snd_iprintf(buffer, "%02x %02x\n", buf[1], buf[2]);
445
else
446
snd_iprintf(buffer, "?\n");
447
}
448
}
449
450
/* EMU0204 */
451
static int snd_emu0204_ch_switch_info(struct snd_kcontrol *kcontrol,
452
struct snd_ctl_elem_info *uinfo)
453
{
454
static const char * const texts[2] = {"1/2", "3/4"};
455
456
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
457
}
458
459
static int snd_emu0204_ch_switch_get(struct snd_kcontrol *kcontrol,
460
struct snd_ctl_elem_value *ucontrol)
461
{
462
ucontrol->value.enumerated.item[0] = kcontrol->private_value;
463
return 0;
464
}
465
466
static int snd_emu0204_ch_switch_update(struct usb_mixer_interface *mixer,
467
int value)
468
{
469
struct snd_usb_audio *chip = mixer->chip;
470
unsigned char buf[2];
471
472
CLASS(snd_usb_lock, pm)(chip);
473
if (pm.err < 0)
474
return pm.err;
475
476
buf[0] = 0x01;
477
buf[1] = value ? 0x02 : 0x01;
478
return snd_usb_ctl_msg(chip->dev,
479
usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
480
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
481
0x0400, 0x0e00, buf, 2);
482
}
483
484
static int snd_emu0204_ch_switch_put(struct snd_kcontrol *kcontrol,
485
struct snd_ctl_elem_value *ucontrol)
486
{
487
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
488
struct usb_mixer_interface *mixer = list->mixer;
489
unsigned int value = ucontrol->value.enumerated.item[0];
490
int err;
491
492
if (value > 1)
493
return -EINVAL;
494
495
if (value == kcontrol->private_value)
496
return 0;
497
498
kcontrol->private_value = value;
499
err = snd_emu0204_ch_switch_update(mixer, value);
500
return err < 0 ? err : 1;
501
}
502
503
static int snd_emu0204_ch_switch_resume(struct usb_mixer_elem_list *list)
504
{
505
return snd_emu0204_ch_switch_update(list->mixer,
506
list->kctl->private_value);
507
}
508
509
static const struct snd_kcontrol_new snd_emu0204_control = {
510
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
511
.name = "Front Jack Channels",
512
.info = snd_emu0204_ch_switch_info,
513
.get = snd_emu0204_ch_switch_get,
514
.put = snd_emu0204_ch_switch_put,
515
.private_value = 0,
516
};
517
518
static int snd_emu0204_controls_create(struct usb_mixer_interface *mixer)
519
{
520
return add_single_ctl_with_resume(mixer, 0,
521
snd_emu0204_ch_switch_resume,
522
&snd_emu0204_control, NULL);
523
}
524
525
#if IS_REACHABLE(CONFIG_INPUT)
526
/*
527
* Sony DualSense controller (PS5) jack detection
528
*
529
* Since this is an UAC 1 device, it doesn't support jack detection.
530
* However, the controller hid-playstation driver reports HP & MIC
531
* insert events through a dedicated input device.
532
*/
533
534
#define SND_DUALSENSE_JACK_OUT_TERM_ID 3
535
#define SND_DUALSENSE_JACK_IN_TERM_ID 4
536
537
struct dualsense_mixer_elem_info {
538
struct usb_mixer_elem_info info;
539
struct input_handler ih;
540
struct input_device_id id_table[2];
541
bool connected;
542
};
543
544
static void snd_dualsense_ih_event(struct input_handle *handle,
545
unsigned int type, unsigned int code,
546
int value)
547
{
548
struct dualsense_mixer_elem_info *mei;
549
struct usb_mixer_elem_list *me;
550
551
if (type != EV_SW)
552
return;
553
554
mei = container_of(handle->handler, struct dualsense_mixer_elem_info, ih);
555
me = &mei->info.head;
556
557
if ((me->id == SND_DUALSENSE_JACK_OUT_TERM_ID && code == SW_HEADPHONE_INSERT) ||
558
(me->id == SND_DUALSENSE_JACK_IN_TERM_ID && code == SW_MICROPHONE_INSERT)) {
559
mei->connected = !!value;
560
snd_ctl_notify(me->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
561
&me->kctl->id);
562
}
563
}
564
565
static bool snd_dualsense_ih_match(struct input_handler *handler,
566
struct input_dev *dev)
567
{
568
struct dualsense_mixer_elem_info *mei;
569
struct usb_device *snd_dev;
570
char *input_dev_path, *usb_dev_path;
571
size_t usb_dev_path_len;
572
bool match = false;
573
574
mei = container_of(handler, struct dualsense_mixer_elem_info, ih);
575
snd_dev = mei->info.head.mixer->chip->dev;
576
577
input_dev_path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
578
if (!input_dev_path) {
579
dev_warn(&snd_dev->dev, "Failed to get input dev path\n");
580
return false;
581
}
582
583
usb_dev_path = kobject_get_path(&snd_dev->dev.kobj, GFP_KERNEL);
584
if (!usb_dev_path) {
585
dev_warn(&snd_dev->dev, "Failed to get USB dev path\n");
586
goto free_paths;
587
}
588
589
/*
590
* Ensure the VID:PID matched input device supposedly owned by the
591
* hid-playstation driver belongs to the actual hardware handled by
592
* the current USB audio device, which implies input_dev_path being
593
* a subpath of usb_dev_path.
594
*
595
* This verification is necessary when there is more than one identical
596
* controller attached to the host system.
597
*/
598
usb_dev_path_len = strlen(usb_dev_path);
599
if (usb_dev_path_len >= strlen(input_dev_path))
600
goto free_paths;
601
602
usb_dev_path[usb_dev_path_len] = '/';
603
match = !memcmp(input_dev_path, usb_dev_path, usb_dev_path_len + 1);
604
605
free_paths:
606
kfree(input_dev_path);
607
kfree(usb_dev_path);
608
609
return match;
610
}
611
612
static int snd_dualsense_ih_connect(struct input_handler *handler,
613
struct input_dev *dev,
614
const struct input_device_id *id)
615
{
616
struct input_handle *handle;
617
int err;
618
619
handle = kzalloc(sizeof(*handle), GFP_KERNEL);
620
if (!handle)
621
return -ENOMEM;
622
623
handle->dev = dev;
624
handle->handler = handler;
625
handle->name = handler->name;
626
627
err = input_register_handle(handle);
628
if (err)
629
goto err_free;
630
631
err = input_open_device(handle);
632
if (err)
633
goto err_unregister;
634
635
return 0;
636
637
err_unregister:
638
input_unregister_handle(handle);
639
err_free:
640
kfree(handle);
641
return err;
642
}
643
644
static void snd_dualsense_ih_disconnect(struct input_handle *handle)
645
{
646
input_close_device(handle);
647
input_unregister_handle(handle);
648
kfree(handle);
649
}
650
651
static void snd_dualsense_ih_start(struct input_handle *handle)
652
{
653
struct dualsense_mixer_elem_info *mei;
654
struct usb_mixer_elem_list *me;
655
int status = -1;
656
657
mei = container_of(handle->handler, struct dualsense_mixer_elem_info, ih);
658
me = &mei->info.head;
659
660
if (me->id == SND_DUALSENSE_JACK_OUT_TERM_ID &&
661
test_bit(SW_HEADPHONE_INSERT, handle->dev->swbit))
662
status = test_bit(SW_HEADPHONE_INSERT, handle->dev->sw);
663
else if (me->id == SND_DUALSENSE_JACK_IN_TERM_ID &&
664
test_bit(SW_MICROPHONE_INSERT, handle->dev->swbit))
665
status = test_bit(SW_MICROPHONE_INSERT, handle->dev->sw);
666
667
if (status >= 0) {
668
mei->connected = !!status;
669
snd_ctl_notify(me->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
670
&me->kctl->id);
671
}
672
}
673
674
static int snd_dualsense_jack_get(struct snd_kcontrol *kctl,
675
struct snd_ctl_elem_value *ucontrol)
676
{
677
struct dualsense_mixer_elem_info *mei = snd_kcontrol_chip(kctl);
678
679
ucontrol->value.integer.value[0] = mei->connected;
680
681
return 0;
682
}
683
684
static const struct snd_kcontrol_new snd_dualsense_jack_control = {
685
.iface = SNDRV_CTL_ELEM_IFACE_CARD,
686
.access = SNDRV_CTL_ELEM_ACCESS_READ,
687
.info = snd_ctl_boolean_mono_info,
688
.get = snd_dualsense_jack_get,
689
};
690
691
static int snd_dualsense_resume_jack(struct usb_mixer_elem_list *list)
692
{
693
snd_ctl_notify(list->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
694
&list->kctl->id);
695
return 0;
696
}
697
698
static void snd_dualsense_mixer_elem_free(struct snd_kcontrol *kctl)
699
{
700
struct dualsense_mixer_elem_info *mei = snd_kcontrol_chip(kctl);
701
702
if (mei->ih.event)
703
input_unregister_handler(&mei->ih);
704
705
snd_usb_mixer_elem_free(kctl);
706
}
707
708
static int snd_dualsense_jack_create(struct usb_mixer_interface *mixer,
709
const char *name, bool is_output)
710
{
711
struct dualsense_mixer_elem_info *mei;
712
struct input_device_id *idev_id;
713
struct snd_kcontrol *kctl;
714
int err;
715
716
mei = kzalloc(sizeof(*mei), GFP_KERNEL);
717
if (!mei)
718
return -ENOMEM;
719
720
snd_usb_mixer_elem_init_std(&mei->info.head, mixer,
721
is_output ? SND_DUALSENSE_JACK_OUT_TERM_ID :
722
SND_DUALSENSE_JACK_IN_TERM_ID);
723
724
mei->info.head.resume = snd_dualsense_resume_jack;
725
mei->info.val_type = USB_MIXER_BOOLEAN;
726
mei->info.channels = 1;
727
mei->info.min = 0;
728
mei->info.max = 1;
729
730
kctl = snd_ctl_new1(&snd_dualsense_jack_control, mei);
731
if (!kctl) {
732
kfree(mei);
733
return -ENOMEM;
734
}
735
736
strscpy(kctl->id.name, name, sizeof(kctl->id.name));
737
kctl->private_free = snd_dualsense_mixer_elem_free;
738
739
err = snd_usb_mixer_add_control(&mei->info.head, kctl);
740
if (err)
741
return err;
742
743
idev_id = &mei->id_table[0];
744
idev_id->flags = INPUT_DEVICE_ID_MATCH_VENDOR | INPUT_DEVICE_ID_MATCH_PRODUCT |
745
INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_SWBIT;
746
idev_id->vendor = USB_ID_VENDOR(mixer->chip->usb_id);
747
idev_id->product = USB_ID_PRODUCT(mixer->chip->usb_id);
748
idev_id->evbit[BIT_WORD(EV_SW)] = BIT_MASK(EV_SW);
749
if (is_output)
750
idev_id->swbit[BIT_WORD(SW_HEADPHONE_INSERT)] = BIT_MASK(SW_HEADPHONE_INSERT);
751
else
752
idev_id->swbit[BIT_WORD(SW_MICROPHONE_INSERT)] = BIT_MASK(SW_MICROPHONE_INSERT);
753
754
mei->ih.event = snd_dualsense_ih_event;
755
mei->ih.match = snd_dualsense_ih_match;
756
mei->ih.connect = snd_dualsense_ih_connect;
757
mei->ih.disconnect = snd_dualsense_ih_disconnect;
758
mei->ih.start = snd_dualsense_ih_start;
759
mei->ih.name = name;
760
mei->ih.id_table = mei->id_table;
761
762
err = input_register_handler(&mei->ih);
763
if (err) {
764
dev_warn(&mixer->chip->dev->dev,
765
"Could not register input handler: %d\n", err);
766
mei->ih.event = NULL;
767
}
768
769
return 0;
770
}
771
772
static int snd_dualsense_controls_create(struct usb_mixer_interface *mixer)
773
{
774
int err;
775
776
err = snd_dualsense_jack_create(mixer, "Headphone Jack", true);
777
if (err < 0)
778
return err;
779
780
return snd_dualsense_jack_create(mixer, "Headset Mic Jack", false);
781
}
782
#endif /* IS_REACHABLE(CONFIG_INPUT) */
783
784
/* ASUS Xonar U1 / U3 controls */
785
786
static int snd_xonar_u1_switch_get(struct snd_kcontrol *kcontrol,
787
struct snd_ctl_elem_value *ucontrol)
788
{
789
ucontrol->value.integer.value[0] = !!(kcontrol->private_value & 0x02);
790
return 0;
791
}
792
793
static int snd_xonar_u1_switch_update(struct usb_mixer_interface *mixer,
794
unsigned char status)
795
{
796
struct snd_usb_audio *chip = mixer->chip;
797
798
CLASS(snd_usb_lock, pm)(chip);
799
if (pm.err < 0)
800
return pm.err;
801
return snd_usb_ctl_msg(chip->dev,
802
usb_sndctrlpipe(chip->dev, 0), 0x08,
803
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
804
50, 0, &status, 1);
805
}
806
807
static int snd_xonar_u1_switch_put(struct snd_kcontrol *kcontrol,
808
struct snd_ctl_elem_value *ucontrol)
809
{
810
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
811
u8 old_status, new_status;
812
int err;
813
814
old_status = kcontrol->private_value;
815
if (ucontrol->value.integer.value[0])
816
new_status = old_status | 0x02;
817
else
818
new_status = old_status & ~0x02;
819
if (new_status == old_status)
820
return 0;
821
822
kcontrol->private_value = new_status;
823
err = snd_xonar_u1_switch_update(list->mixer, new_status);
824
return err < 0 ? err : 1;
825
}
826
827
static int snd_xonar_u1_switch_resume(struct usb_mixer_elem_list *list)
828
{
829
return snd_xonar_u1_switch_update(list->mixer,
830
list->kctl->private_value);
831
}
832
833
static const struct snd_kcontrol_new snd_xonar_u1_output_switch = {
834
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
835
.name = "Digital Playback Switch",
836
.info = snd_ctl_boolean_mono_info,
837
.get = snd_xonar_u1_switch_get,
838
.put = snd_xonar_u1_switch_put,
839
.private_value = 0x05,
840
};
841
842
static int snd_xonar_u1_controls_create(struct usb_mixer_interface *mixer)
843
{
844
return add_single_ctl_with_resume(mixer, 0,
845
snd_xonar_u1_switch_resume,
846
&snd_xonar_u1_output_switch, NULL);
847
}
848
849
/* Digidesign Mbox 1 helper functions */
850
851
static int snd_mbox1_is_spdif_synced(struct snd_usb_audio *chip)
852
{
853
unsigned char buff[3];
854
int err;
855
int is_spdif_synced;
856
857
/* Read clock source */
858
err = snd_usb_ctl_msg(chip->dev,
859
usb_rcvctrlpipe(chip->dev, 0), 0x81,
860
USB_DIR_IN |
861
USB_TYPE_CLASS |
862
USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
863
if (err < 0)
864
return err;
865
866
/* spdif sync: buff is all zeroes */
867
is_spdif_synced = !(buff[0] | buff[1] | buff[2]);
868
return is_spdif_synced;
869
}
870
871
static int snd_mbox1_set_clk_source(struct snd_usb_audio *chip, int rate_or_zero)
872
{
873
/* 2 possibilities: Internal -> expects sample rate
874
* S/PDIF sync -> expects rate = 0
875
*/
876
unsigned char buff[3];
877
878
buff[0] = (rate_or_zero >> 0) & 0xff;
879
buff[1] = (rate_or_zero >> 8) & 0xff;
880
buff[2] = (rate_or_zero >> 16) & 0xff;
881
882
/* Set clock source */
883
return snd_usb_ctl_msg(chip->dev,
884
usb_sndctrlpipe(chip->dev, 0), 0x1,
885
USB_TYPE_CLASS |
886
USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
887
}
888
889
static int snd_mbox1_is_spdif_input(struct snd_usb_audio *chip)
890
{
891
/* Hardware gives 2 possibilities: ANALOG Source -> 0x01
892
* S/PDIF Source -> 0x02
893
*/
894
int err;
895
unsigned char source[1];
896
897
/* Read input source */
898
err = snd_usb_ctl_msg(chip->dev,
899
usb_rcvctrlpipe(chip->dev, 0), 0x81,
900
USB_DIR_IN |
901
USB_TYPE_CLASS |
902
USB_RECIP_INTERFACE, 0x00, 0x500, source, 1);
903
if (err < 0)
904
return err;
905
906
return (source[0] == 2);
907
}
908
909
static int snd_mbox1_set_input_source(struct snd_usb_audio *chip, int is_spdif)
910
{
911
/* NB: Setting the input source to S/PDIF resets the clock source to S/PDIF
912
* Hardware expects 2 possibilities: ANALOG Source -> 0x01
913
* S/PDIF Source -> 0x02
914
*/
915
unsigned char buff[1];
916
917
buff[0] = (is_spdif & 1) + 1;
918
919
/* Set input source */
920
return snd_usb_ctl_msg(chip->dev,
921
usb_sndctrlpipe(chip->dev, 0), 0x1,
922
USB_TYPE_CLASS |
923
USB_RECIP_INTERFACE, 0x00, 0x500, buff, 1);
924
}
925
926
/* Digidesign Mbox 1 clock source switch (internal/spdif) */
927
928
static int snd_mbox1_clk_switch_get(struct snd_kcontrol *kctl,
929
struct snd_ctl_elem_value *ucontrol)
930
{
931
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
932
struct snd_usb_audio *chip = list->mixer->chip;
933
int err;
934
935
CLASS(snd_usb_lock, pm)(chip);
936
if (pm.err < 0)
937
return pm.err;
938
939
err = snd_mbox1_is_spdif_synced(chip);
940
if (err < 0)
941
return err;
942
943
kctl->private_value = err;
944
ucontrol->value.enumerated.item[0] = kctl->private_value;
945
return 0;
946
}
947
948
static int snd_mbox1_clk_switch_update(struct usb_mixer_interface *mixer, int is_spdif_sync)
949
{
950
struct snd_usb_audio *chip = mixer->chip;
951
int err;
952
953
CLASS(snd_usb_lock, pm)(chip);
954
if (pm.err < 0)
955
return pm.err;
956
957
err = snd_mbox1_is_spdif_input(chip);
958
if (err < 0)
959
return err;
960
961
err = snd_mbox1_is_spdif_synced(chip);
962
if (err < 0)
963
return err;
964
965
/* FIXME: hardcoded sample rate */
966
err = snd_mbox1_set_clk_source(chip, is_spdif_sync ? 0 : 48000);
967
if (err < 0)
968
return err;
969
970
return snd_mbox1_is_spdif_synced(chip);
971
}
972
973
static int snd_mbox1_clk_switch_put(struct snd_kcontrol *kctl,
974
struct snd_ctl_elem_value *ucontrol)
975
{
976
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
977
struct usb_mixer_interface *mixer = list->mixer;
978
int err;
979
bool cur_val, new_val;
980
981
cur_val = kctl->private_value;
982
new_val = ucontrol->value.enumerated.item[0];
983
if (cur_val == new_val)
984
return 0;
985
986
kctl->private_value = new_val;
987
err = snd_mbox1_clk_switch_update(mixer, new_val);
988
return err < 0 ? err : 1;
989
}
990
991
static int snd_mbox1_clk_switch_info(struct snd_kcontrol *kcontrol,
992
struct snd_ctl_elem_info *uinfo)
993
{
994
static const char *const texts[2] = {
995
"Internal",
996
"S/PDIF"
997
};
998
999
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
1000
}
1001
1002
static int snd_mbox1_clk_switch_resume(struct usb_mixer_elem_list *list)
1003
{
1004
return snd_mbox1_clk_switch_update(list->mixer, list->kctl->private_value);
1005
}
1006
1007
/* Digidesign Mbox 1 input source switch (analog/spdif) */
1008
1009
static int snd_mbox1_src_switch_get(struct snd_kcontrol *kctl,
1010
struct snd_ctl_elem_value *ucontrol)
1011
{
1012
ucontrol->value.enumerated.item[0] = kctl->private_value;
1013
return 0;
1014
}
1015
1016
static int snd_mbox1_src_switch_update(struct usb_mixer_interface *mixer, int is_spdif_input)
1017
{
1018
struct snd_usb_audio *chip = mixer->chip;
1019
int err;
1020
1021
CLASS(snd_usb_lock, pm)(chip);
1022
if (pm.err < 0)
1023
return pm.err;
1024
1025
err = snd_mbox1_is_spdif_input(chip);
1026
if (err < 0)
1027
return err;
1028
1029
err = snd_mbox1_set_input_source(chip, is_spdif_input);
1030
if (err < 0)
1031
return err;
1032
1033
err = snd_mbox1_is_spdif_input(chip);
1034
if (err < 0)
1035
return err;
1036
1037
return snd_mbox1_is_spdif_synced(chip);
1038
}
1039
1040
static int snd_mbox1_src_switch_put(struct snd_kcontrol *kctl,
1041
struct snd_ctl_elem_value *ucontrol)
1042
{
1043
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
1044
struct usb_mixer_interface *mixer = list->mixer;
1045
int err;
1046
bool cur_val, new_val;
1047
1048
cur_val = kctl->private_value;
1049
new_val = ucontrol->value.enumerated.item[0];
1050
if (cur_val == new_val)
1051
return 0;
1052
1053
kctl->private_value = new_val;
1054
err = snd_mbox1_src_switch_update(mixer, new_val);
1055
return err < 0 ? err : 1;
1056
}
1057
1058
static int snd_mbox1_src_switch_info(struct snd_kcontrol *kcontrol,
1059
struct snd_ctl_elem_info *uinfo)
1060
{
1061
static const char *const texts[2] = {
1062
"Analog",
1063
"S/PDIF"
1064
};
1065
1066
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
1067
}
1068
1069
static int snd_mbox1_src_switch_resume(struct usb_mixer_elem_list *list)
1070
{
1071
return snd_mbox1_src_switch_update(list->mixer, list->kctl->private_value);
1072
}
1073
1074
static const struct snd_kcontrol_new snd_mbox1_clk_switch = {
1075
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1076
.name = "Clock Source",
1077
.index = 0,
1078
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1079
.info = snd_mbox1_clk_switch_info,
1080
.get = snd_mbox1_clk_switch_get,
1081
.put = snd_mbox1_clk_switch_put,
1082
.private_value = 0
1083
};
1084
1085
static const struct snd_kcontrol_new snd_mbox1_src_switch = {
1086
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1087
.name = "Input Source",
1088
.index = 1,
1089
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1090
.info = snd_mbox1_src_switch_info,
1091
.get = snd_mbox1_src_switch_get,
1092
.put = snd_mbox1_src_switch_put,
1093
.private_value = 0
1094
};
1095
1096
static int snd_mbox1_controls_create(struct usb_mixer_interface *mixer)
1097
{
1098
int err;
1099
1100
err = add_single_ctl_with_resume(mixer, 0,
1101
snd_mbox1_clk_switch_resume,
1102
&snd_mbox1_clk_switch, NULL);
1103
if (err < 0)
1104
return err;
1105
1106
return add_single_ctl_with_resume(mixer, 1,
1107
snd_mbox1_src_switch_resume,
1108
&snd_mbox1_src_switch, NULL);
1109
}
1110
1111
/* Native Instruments device quirks */
1112
1113
#define _MAKE_NI_CONTROL(bRequest, wIndex) ((bRequest) << 16 | (wIndex))
1114
1115
static int snd_ni_control_init_val(struct usb_mixer_interface *mixer,
1116
struct snd_kcontrol *kctl)
1117
{
1118
struct usb_device *dev = mixer->chip->dev;
1119
unsigned int pval = kctl->private_value;
1120
u8 value;
1121
int err;
1122
1123
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
1124
(pval >> 16) & 0xff,
1125
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
1126
0, pval & 0xffff, &value, 1);
1127
if (err < 0) {
1128
dev_err(&dev->dev,
1129
"unable to issue vendor read request (ret = %d)", err);
1130
return err;
1131
}
1132
1133
kctl->private_value |= ((unsigned int)value << 24);
1134
return 0;
1135
}
1136
1137
static int snd_nativeinstruments_control_get(struct snd_kcontrol *kcontrol,
1138
struct snd_ctl_elem_value *ucontrol)
1139
{
1140
ucontrol->value.integer.value[0] = kcontrol->private_value >> 24;
1141
return 0;
1142
}
1143
1144
static int snd_ni_update_cur_val(struct usb_mixer_elem_list *list)
1145
{
1146
struct snd_usb_audio *chip = list->mixer->chip;
1147
unsigned int pval = list->kctl->private_value;
1148
1149
CLASS(snd_usb_lock, pm)(chip);
1150
if (pm.err < 0)
1151
return pm.err;
1152
return usb_control_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0),
1153
(pval >> 16) & 0xff,
1154
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
1155
pval >> 24, pval & 0xffff, NULL, 0, 1000);
1156
}
1157
1158
static int snd_nativeinstruments_control_put(struct snd_kcontrol *kcontrol,
1159
struct snd_ctl_elem_value *ucontrol)
1160
{
1161
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
1162
u8 oldval = (kcontrol->private_value >> 24) & 0xff;
1163
u8 newval = ucontrol->value.integer.value[0];
1164
int err;
1165
1166
if (oldval == newval)
1167
return 0;
1168
1169
kcontrol->private_value &= ~(0xff << 24);
1170
kcontrol->private_value |= (unsigned int)newval << 24;
1171
err = snd_ni_update_cur_val(list);
1172
return err < 0 ? err : 1;
1173
}
1174
1175
static const struct snd_kcontrol_new snd_nativeinstruments_ta6_mixers[] = {
1176
{
1177
.name = "Direct Thru Channel A",
1178
.private_value = _MAKE_NI_CONTROL(0x01, 0x03),
1179
},
1180
{
1181
.name = "Direct Thru Channel B",
1182
.private_value = _MAKE_NI_CONTROL(0x01, 0x05),
1183
},
1184
{
1185
.name = "Phono Input Channel A",
1186
.private_value = _MAKE_NI_CONTROL(0x02, 0x03),
1187
},
1188
{
1189
.name = "Phono Input Channel B",
1190
.private_value = _MAKE_NI_CONTROL(0x02, 0x05),
1191
},
1192
};
1193
1194
static const struct snd_kcontrol_new snd_nativeinstruments_ta10_mixers[] = {
1195
{
1196
.name = "Direct Thru Channel A",
1197
.private_value = _MAKE_NI_CONTROL(0x01, 0x03),
1198
},
1199
{
1200
.name = "Direct Thru Channel B",
1201
.private_value = _MAKE_NI_CONTROL(0x01, 0x05),
1202
},
1203
{
1204
.name = "Direct Thru Channel C",
1205
.private_value = _MAKE_NI_CONTROL(0x01, 0x07),
1206
},
1207
{
1208
.name = "Direct Thru Channel D",
1209
.private_value = _MAKE_NI_CONTROL(0x01, 0x09),
1210
},
1211
{
1212
.name = "Phono Input Channel A",
1213
.private_value = _MAKE_NI_CONTROL(0x02, 0x03),
1214
},
1215
{
1216
.name = "Phono Input Channel B",
1217
.private_value = _MAKE_NI_CONTROL(0x02, 0x05),
1218
},
1219
{
1220
.name = "Phono Input Channel C",
1221
.private_value = _MAKE_NI_CONTROL(0x02, 0x07),
1222
},
1223
{
1224
.name = "Phono Input Channel D",
1225
.private_value = _MAKE_NI_CONTROL(0x02, 0x09),
1226
},
1227
};
1228
1229
static int snd_nativeinstruments_create_mixer(struct usb_mixer_interface *mixer,
1230
const struct snd_kcontrol_new *kc,
1231
unsigned int count)
1232
{
1233
int i, err = 0;
1234
struct snd_kcontrol_new template = {
1235
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1236
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1237
.get = snd_nativeinstruments_control_get,
1238
.put = snd_nativeinstruments_control_put,
1239
.info = snd_ctl_boolean_mono_info,
1240
};
1241
1242
for (i = 0; i < count; i++) {
1243
struct usb_mixer_elem_list *list;
1244
1245
template.name = kc[i].name;
1246
template.private_value = kc[i].private_value;
1247
1248
err = add_single_ctl_with_resume(mixer, 0,
1249
snd_ni_update_cur_val,
1250
&template, &list);
1251
if (err < 0)
1252
break;
1253
snd_ni_control_init_val(mixer, list->kctl);
1254
}
1255
1256
return err;
1257
}
1258
1259
/* M-Audio FastTrack Ultra quirks */
1260
/* FTU Effect switch (also used by C400/C600) */
1261
static int snd_ftu_eff_switch_info(struct snd_kcontrol *kcontrol,
1262
struct snd_ctl_elem_info *uinfo)
1263
{
1264
static const char *const texts[8] = {
1265
"Room 1", "Room 2", "Room 3", "Hall 1",
1266
"Hall 2", "Plate", "Delay", "Echo"
1267
};
1268
1269
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
1270
}
1271
1272
static int snd_ftu_eff_switch_init(struct usb_mixer_interface *mixer,
1273
struct snd_kcontrol *kctl)
1274
{
1275
struct usb_device *dev = mixer->chip->dev;
1276
unsigned int pval = kctl->private_value;
1277
int err;
1278
unsigned char value[2];
1279
1280
value[0] = 0x00;
1281
value[1] = 0x00;
1282
1283
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), UAC_GET_CUR,
1284
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
1285
pval & 0xff00,
1286
snd_usb_ctrl_intf(mixer->hostif) | ((pval & 0xff) << 8),
1287
value, 2);
1288
if (err < 0)
1289
return err;
1290
1291
kctl->private_value |= (unsigned int)value[0] << 24;
1292
return 0;
1293
}
1294
1295
static int snd_ftu_eff_switch_get(struct snd_kcontrol *kctl,
1296
struct snd_ctl_elem_value *ucontrol)
1297
{
1298
ucontrol->value.enumerated.item[0] = kctl->private_value >> 24;
1299
return 0;
1300
}
1301
1302
static int snd_ftu_eff_switch_update(struct usb_mixer_elem_list *list)
1303
{
1304
struct snd_usb_audio *chip = list->mixer->chip;
1305
unsigned int pval = list->kctl->private_value;
1306
unsigned char value[2];
1307
1308
value[0] = pval >> 24;
1309
value[1] = 0;
1310
1311
CLASS(snd_usb_lock, pm)(chip);
1312
if (pm.err < 0)
1313
return pm.err;
1314
return snd_usb_ctl_msg(chip->dev,
1315
usb_sndctrlpipe(chip->dev, 0),
1316
UAC_SET_CUR,
1317
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
1318
pval & 0xff00,
1319
snd_usb_ctrl_intf(list->mixer->hostif) | ((pval & 0xff) << 8),
1320
value, 2);
1321
}
1322
1323
static int snd_ftu_eff_switch_put(struct snd_kcontrol *kctl,
1324
struct snd_ctl_elem_value *ucontrol)
1325
{
1326
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
1327
unsigned int pval = list->kctl->private_value;
1328
int cur_val, err, new_val;
1329
1330
cur_val = pval >> 24;
1331
new_val = ucontrol->value.enumerated.item[0];
1332
if (cur_val == new_val)
1333
return 0;
1334
1335
kctl->private_value &= ~(0xff << 24);
1336
kctl->private_value |= new_val << 24;
1337
err = snd_ftu_eff_switch_update(list);
1338
return err < 0 ? err : 1;
1339
}
1340
1341
static int snd_ftu_create_effect_switch(struct usb_mixer_interface *mixer,
1342
int validx, int bUnitID)
1343
{
1344
static struct snd_kcontrol_new template = {
1345
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1346
.name = "Effect Program Switch",
1347
.index = 0,
1348
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1349
.info = snd_ftu_eff_switch_info,
1350
.get = snd_ftu_eff_switch_get,
1351
.put = snd_ftu_eff_switch_put
1352
};
1353
struct usb_mixer_elem_list *list;
1354
int err;
1355
1356
err = add_single_ctl_with_resume(mixer, bUnitID,
1357
snd_ftu_eff_switch_update,
1358
&template, &list);
1359
if (err < 0)
1360
return err;
1361
list->kctl->private_value = (validx << 8) | bUnitID;
1362
snd_ftu_eff_switch_init(mixer, list->kctl);
1363
return 0;
1364
}
1365
1366
/* Create volume controls for FTU devices*/
1367
static int snd_ftu_create_volume_ctls(struct usb_mixer_interface *mixer)
1368
{
1369
char name[64];
1370
unsigned int control, cmask;
1371
int in, out, err;
1372
1373
const unsigned int id = 5;
1374
const int val_type = USB_MIXER_S16;
1375
1376
for (out = 0; out < 8; out++) {
1377
control = out + 1;
1378
for (in = 0; in < 8; in++) {
1379
cmask = BIT(in);
1380
snprintf(name, sizeof(name),
1381
"AIn%d - Out%d Capture Volume",
1382
in + 1, out + 1);
1383
err = snd_create_std_mono_ctl(mixer, id, control,
1384
cmask, val_type, name,
1385
&snd_usb_mixer_vol_tlv);
1386
if (err < 0)
1387
return err;
1388
}
1389
for (in = 8; in < 16; in++) {
1390
cmask = BIT(in);
1391
snprintf(name, sizeof(name),
1392
"DIn%d - Out%d Playback Volume",
1393
in - 7, out + 1);
1394
err = snd_create_std_mono_ctl(mixer, id, control,
1395
cmask, val_type, name,
1396
&snd_usb_mixer_vol_tlv);
1397
if (err < 0)
1398
return err;
1399
}
1400
}
1401
1402
return 0;
1403
}
1404
1405
/* This control needs a volume quirk, see mixer.c */
1406
static int snd_ftu_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
1407
{
1408
static const char name[] = "Effect Volume";
1409
const unsigned int id = 6;
1410
const int val_type = USB_MIXER_U8;
1411
const unsigned int control = 2;
1412
const unsigned int cmask = 0;
1413
1414
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1415
name, snd_usb_mixer_vol_tlv);
1416
}
1417
1418
/* This control needs a volume quirk, see mixer.c */
1419
static int snd_ftu_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
1420
{
1421
static const char name[] = "Effect Duration";
1422
const unsigned int id = 6;
1423
const int val_type = USB_MIXER_S16;
1424
const unsigned int control = 3;
1425
const unsigned int cmask = 0;
1426
1427
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1428
name, snd_usb_mixer_vol_tlv);
1429
}
1430
1431
/* This control needs a volume quirk, see mixer.c */
1432
static int snd_ftu_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
1433
{
1434
static const char name[] = "Effect Feedback Volume";
1435
const unsigned int id = 6;
1436
const int val_type = USB_MIXER_U8;
1437
const unsigned int control = 4;
1438
const unsigned int cmask = 0;
1439
1440
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1441
name, NULL);
1442
}
1443
1444
static int snd_ftu_create_effect_return_ctls(struct usb_mixer_interface *mixer)
1445
{
1446
unsigned int cmask;
1447
int err, ch;
1448
char name[48];
1449
1450
const unsigned int id = 7;
1451
const int val_type = USB_MIXER_S16;
1452
const unsigned int control = 7;
1453
1454
for (ch = 0; ch < 4; ++ch) {
1455
cmask = BIT(ch);
1456
snprintf(name, sizeof(name),
1457
"Effect Return %d Volume", ch + 1);
1458
err = snd_create_std_mono_ctl(mixer, id, control,
1459
cmask, val_type, name,
1460
snd_usb_mixer_vol_tlv);
1461
if (err < 0)
1462
return err;
1463
}
1464
1465
return 0;
1466
}
1467
1468
static int snd_ftu_create_effect_send_ctls(struct usb_mixer_interface *mixer)
1469
{
1470
unsigned int cmask;
1471
int err, ch;
1472
char name[48];
1473
1474
const unsigned int id = 5;
1475
const int val_type = USB_MIXER_S16;
1476
const unsigned int control = 9;
1477
1478
for (ch = 0; ch < 8; ++ch) {
1479
cmask = BIT(ch);
1480
snprintf(name, sizeof(name),
1481
"Effect Send AIn%d Volume", ch + 1);
1482
err = snd_create_std_mono_ctl(mixer, id, control, cmask,
1483
val_type, name,
1484
snd_usb_mixer_vol_tlv);
1485
if (err < 0)
1486
return err;
1487
}
1488
for (ch = 8; ch < 16; ++ch) {
1489
cmask = BIT(ch);
1490
snprintf(name, sizeof(name),
1491
"Effect Send DIn%d Volume", ch - 7);
1492
err = snd_create_std_mono_ctl(mixer, id, control, cmask,
1493
val_type, name,
1494
snd_usb_mixer_vol_tlv);
1495
if (err < 0)
1496
return err;
1497
}
1498
return 0;
1499
}
1500
1501
static int snd_ftu_create_mixer(struct usb_mixer_interface *mixer)
1502
{
1503
int err;
1504
1505
err = snd_ftu_create_volume_ctls(mixer);
1506
if (err < 0)
1507
return err;
1508
1509
err = snd_ftu_create_effect_switch(mixer, 1, 6);
1510
if (err < 0)
1511
return err;
1512
1513
err = snd_ftu_create_effect_volume_ctl(mixer);
1514
if (err < 0)
1515
return err;
1516
1517
err = snd_ftu_create_effect_duration_ctl(mixer);
1518
if (err < 0)
1519
return err;
1520
1521
err = snd_ftu_create_effect_feedback_ctl(mixer);
1522
if (err < 0)
1523
return err;
1524
1525
err = snd_ftu_create_effect_return_ctls(mixer);
1526
if (err < 0)
1527
return err;
1528
1529
err = snd_ftu_create_effect_send_ctls(mixer);
1530
if (err < 0)
1531
return err;
1532
1533
return 0;
1534
}
1535
1536
void snd_emuusb_set_samplerate(struct snd_usb_audio *chip,
1537
unsigned char samplerate_id)
1538
{
1539
struct usb_mixer_interface *mixer;
1540
struct usb_mixer_elem_info *cval;
1541
int unitid = 12; /* SampleRate ExtensionUnit ID */
1542
1543
list_for_each_entry(mixer, &chip->mixer_list, list) {
1544
if (mixer->id_elems[unitid]) {
1545
cval = mixer_elem_list_to_info(mixer->id_elems[unitid]);
1546
snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR,
1547
cval->control << 8,
1548
samplerate_id);
1549
snd_usb_mixer_notify_id(mixer, unitid);
1550
break;
1551
}
1552
}
1553
}
1554
1555
/* M-Audio Fast Track C400/C600 */
1556
/* C400/C600 volume controls, this control needs a volume quirk, see mixer.c */
1557
static int snd_c400_create_vol_ctls(struct usb_mixer_interface *mixer)
1558
{
1559
char name[64];
1560
unsigned int cmask, offset;
1561
int out, chan, err;
1562
int num_outs = 0;
1563
int num_ins = 0;
1564
1565
const unsigned int id = 0x40;
1566
const int val_type = USB_MIXER_S16;
1567
const int control = 1;
1568
1569
switch (mixer->chip->usb_id) {
1570
case USB_ID(0x0763, 0x2030):
1571
num_outs = 6;
1572
num_ins = 4;
1573
break;
1574
case USB_ID(0x0763, 0x2031):
1575
num_outs = 8;
1576
num_ins = 6;
1577
break;
1578
}
1579
1580
for (chan = 0; chan < num_outs + num_ins; chan++) {
1581
for (out = 0; out < num_outs; out++) {
1582
if (chan < num_outs) {
1583
snprintf(name, sizeof(name),
1584
"PCM%d-Out%d Playback Volume",
1585
chan + 1, out + 1);
1586
} else {
1587
snprintf(name, sizeof(name),
1588
"In%d-Out%d Playback Volume",
1589
chan - num_outs + 1, out + 1);
1590
}
1591
1592
cmask = (out == 0) ? 0 : BIT(out - 1);
1593
offset = chan * num_outs;
1594
err = snd_create_std_mono_ctl_offset(mixer, id, control,
1595
cmask, val_type, offset, name,
1596
&snd_usb_mixer_vol_tlv);
1597
if (err < 0)
1598
return err;
1599
}
1600
}
1601
1602
return 0;
1603
}
1604
1605
/* This control needs a volume quirk, see mixer.c */
1606
static int snd_c400_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
1607
{
1608
static const char name[] = "Effect Volume";
1609
const unsigned int id = 0x43;
1610
const int val_type = USB_MIXER_U8;
1611
const unsigned int control = 3;
1612
const unsigned int cmask = 0;
1613
1614
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1615
name, snd_usb_mixer_vol_tlv);
1616
}
1617
1618
/* This control needs a volume quirk, see mixer.c */
1619
static int snd_c400_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
1620
{
1621
static const char name[] = "Effect Duration";
1622
const unsigned int id = 0x43;
1623
const int val_type = USB_MIXER_S16;
1624
const unsigned int control = 4;
1625
const unsigned int cmask = 0;
1626
1627
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1628
name, snd_usb_mixer_vol_tlv);
1629
}
1630
1631
/* This control needs a volume quirk, see mixer.c */
1632
static int snd_c400_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
1633
{
1634
static const char name[] = "Effect Feedback Volume";
1635
const unsigned int id = 0x43;
1636
const int val_type = USB_MIXER_U8;
1637
const unsigned int control = 5;
1638
const unsigned int cmask = 0;
1639
1640
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1641
name, NULL);
1642
}
1643
1644
static int snd_c400_create_effect_vol_ctls(struct usb_mixer_interface *mixer)
1645
{
1646
char name[64];
1647
unsigned int cmask;
1648
int chan, err;
1649
int num_outs = 0;
1650
int num_ins = 0;
1651
1652
const unsigned int id = 0x42;
1653
const int val_type = USB_MIXER_S16;
1654
const int control = 1;
1655
1656
switch (mixer->chip->usb_id) {
1657
case USB_ID(0x0763, 0x2030):
1658
num_outs = 6;
1659
num_ins = 4;
1660
break;
1661
case USB_ID(0x0763, 0x2031):
1662
num_outs = 8;
1663
num_ins = 6;
1664
break;
1665
}
1666
1667
for (chan = 0; chan < num_outs + num_ins; chan++) {
1668
if (chan < num_outs) {
1669
snprintf(name, sizeof(name),
1670
"Effect Send DOut%d",
1671
chan + 1);
1672
} else {
1673
snprintf(name, sizeof(name),
1674
"Effect Send AIn%d",
1675
chan - num_outs + 1);
1676
}
1677
1678
cmask = (chan == 0) ? 0 : BIT(chan - 1);
1679
err = snd_create_std_mono_ctl(mixer, id, control,
1680
cmask, val_type, name,
1681
&snd_usb_mixer_vol_tlv);
1682
if (err < 0)
1683
return err;
1684
}
1685
1686
return 0;
1687
}
1688
1689
static int snd_c400_create_effect_ret_vol_ctls(struct usb_mixer_interface *mixer)
1690
{
1691
char name[64];
1692
unsigned int cmask;
1693
int chan, err;
1694
int num_outs = 0;
1695
int offset = 0;
1696
1697
const unsigned int id = 0x40;
1698
const int val_type = USB_MIXER_S16;
1699
const int control = 1;
1700
1701
switch (mixer->chip->usb_id) {
1702
case USB_ID(0x0763, 0x2030):
1703
num_outs = 6;
1704
offset = 0x3c;
1705
/* { 0x3c, 0x43, 0x3e, 0x45, 0x40, 0x47 } */
1706
break;
1707
case USB_ID(0x0763, 0x2031):
1708
num_outs = 8;
1709
offset = 0x70;
1710
/* { 0x70, 0x79, 0x72, 0x7b, 0x74, 0x7d, 0x76, 0x7f } */
1711
break;
1712
}
1713
1714
for (chan = 0; chan < num_outs; chan++) {
1715
snprintf(name, sizeof(name),
1716
"Effect Return %d",
1717
chan + 1);
1718
1719
cmask = (chan == 0) ? 0 :
1720
BIT(chan + (chan % 2) * num_outs - 1);
1721
err = snd_create_std_mono_ctl_offset(mixer, id, control,
1722
cmask, val_type, offset, name,
1723
&snd_usb_mixer_vol_tlv);
1724
if (err < 0)
1725
return err;
1726
}
1727
1728
return 0;
1729
}
1730
1731
static int snd_c400_create_mixer(struct usb_mixer_interface *mixer)
1732
{
1733
int err;
1734
1735
err = snd_c400_create_vol_ctls(mixer);
1736
if (err < 0)
1737
return err;
1738
1739
err = snd_c400_create_effect_vol_ctls(mixer);
1740
if (err < 0)
1741
return err;
1742
1743
err = snd_c400_create_effect_ret_vol_ctls(mixer);
1744
if (err < 0)
1745
return err;
1746
1747
err = snd_ftu_create_effect_switch(mixer, 2, 0x43);
1748
if (err < 0)
1749
return err;
1750
1751
err = snd_c400_create_effect_volume_ctl(mixer);
1752
if (err < 0)
1753
return err;
1754
1755
err = snd_c400_create_effect_duration_ctl(mixer);
1756
if (err < 0)
1757
return err;
1758
1759
err = snd_c400_create_effect_feedback_ctl(mixer);
1760
if (err < 0)
1761
return err;
1762
1763
return 0;
1764
}
1765
1766
/*
1767
* The mixer units for Ebox-44 are corrupt, and even where they
1768
* are valid they presents mono controls as L and R channels of
1769
* stereo. So we provide a good mixer here.
1770
*/
1771
static const struct std_mono_table ebox44_table[] = {
1772
{
1773
.unitid = 4,
1774
.control = 1,
1775
.cmask = 0x0,
1776
.val_type = USB_MIXER_INV_BOOLEAN,
1777
.name = "Headphone Playback Switch"
1778
},
1779
{
1780
.unitid = 4,
1781
.control = 2,
1782
.cmask = 0x1,
1783
.val_type = USB_MIXER_S16,
1784
.name = "Headphone A Mix Playback Volume"
1785
},
1786
{
1787
.unitid = 4,
1788
.control = 2,
1789
.cmask = 0x2,
1790
.val_type = USB_MIXER_S16,
1791
.name = "Headphone B Mix Playback Volume"
1792
},
1793
1794
{
1795
.unitid = 7,
1796
.control = 1,
1797
.cmask = 0x0,
1798
.val_type = USB_MIXER_INV_BOOLEAN,
1799
.name = "Output Playback Switch"
1800
},
1801
{
1802
.unitid = 7,
1803
.control = 2,
1804
.cmask = 0x1,
1805
.val_type = USB_MIXER_S16,
1806
.name = "Output A Playback Volume"
1807
},
1808
{
1809
.unitid = 7,
1810
.control = 2,
1811
.cmask = 0x2,
1812
.val_type = USB_MIXER_S16,
1813
.name = "Output B Playback Volume"
1814
},
1815
1816
{
1817
.unitid = 10,
1818
.control = 1,
1819
.cmask = 0x0,
1820
.val_type = USB_MIXER_INV_BOOLEAN,
1821
.name = "Input Capture Switch"
1822
},
1823
{
1824
.unitid = 10,
1825
.control = 2,
1826
.cmask = 0x1,
1827
.val_type = USB_MIXER_S16,
1828
.name = "Input A Capture Volume"
1829
},
1830
{
1831
.unitid = 10,
1832
.control = 2,
1833
.cmask = 0x2,
1834
.val_type = USB_MIXER_S16,
1835
.name = "Input B Capture Volume"
1836
},
1837
1838
{}
1839
};
1840
1841
/* Audio Advantage Micro II findings:
1842
*
1843
* Mapping spdif AES bits to vendor register.bit:
1844
* AES0: [0 0 0 0 2.3 2.2 2.1 2.0] - default 0x00
1845
* AES1: [3.3 3.2.3.1.3.0 2.7 2.6 2.5 2.4] - default: 0x01
1846
* AES2: [0 0 0 0 0 0 0 0]
1847
* AES3: [0 0 0 0 0 0 x 0] - 'x' bit is set basing on standard usb request
1848
* (UAC_EP_CS_ATTR_SAMPLE_RATE) for Audio Devices
1849
*
1850
* power on values:
1851
* r2: 0x10
1852
* r3: 0x20 (b7 is zeroed just before playback (except IEC61937) and set
1853
* just after it to 0xa0, presumably it disables/mutes some analog
1854
* parts when there is no audio.)
1855
* r9: 0x28
1856
*
1857
* Optical transmitter on/off:
1858
* vendor register.bit: 9.1
1859
* 0 - on (0x28 register value)
1860
* 1 - off (0x2a register value)
1861
*
1862
*/
1863
static int snd_microii_spdif_info(struct snd_kcontrol *kcontrol,
1864
struct snd_ctl_elem_info *uinfo)
1865
{
1866
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1867
uinfo->count = 1;
1868
return 0;
1869
}
1870
1871
static int snd_microii_spdif_default_get(struct snd_kcontrol *kcontrol,
1872
struct snd_ctl_elem_value *ucontrol)
1873
{
1874
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
1875
struct snd_usb_audio *chip = list->mixer->chip;
1876
int err;
1877
struct usb_interface *iface;
1878
struct usb_host_interface *alts;
1879
unsigned int ep;
1880
unsigned char data[3];
1881
int rate;
1882
1883
CLASS(snd_usb_lock, pm)(chip);
1884
if (pm.err < 0)
1885
return pm.err;
1886
1887
ucontrol->value.iec958.status[0] = kcontrol->private_value & 0xff;
1888
ucontrol->value.iec958.status[1] = (kcontrol->private_value >> 8) & 0xff;
1889
ucontrol->value.iec958.status[2] = 0x00;
1890
1891
/* use known values for that card: interface#1 altsetting#1 */
1892
iface = usb_ifnum_to_if(chip->dev, 1);
1893
if (!iface || iface->num_altsetting < 2)
1894
return -EINVAL;
1895
alts = &iface->altsetting[1];
1896
if (get_iface_desc(alts)->bNumEndpoints < 1)
1897
return -EINVAL;
1898
ep = get_endpoint(alts, 0)->bEndpointAddress;
1899
1900
err = snd_usb_ctl_msg(chip->dev,
1901
usb_rcvctrlpipe(chip->dev, 0),
1902
UAC_GET_CUR,
1903
USB_TYPE_CLASS | USB_RECIP_ENDPOINT | USB_DIR_IN,
1904
UAC_EP_CS_ATTR_SAMPLE_RATE << 8,
1905
ep,
1906
data,
1907
sizeof(data));
1908
if (err < 0)
1909
return err;
1910
1911
rate = data[0] | (data[1] << 8) | (data[2] << 16);
1912
ucontrol->value.iec958.status[3] = (rate == 48000) ?
1913
IEC958_AES3_CON_FS_48000 : IEC958_AES3_CON_FS_44100;
1914
1915
return 0;
1916
}
1917
1918
static int snd_microii_spdif_default_update(struct usb_mixer_elem_list *list)
1919
{
1920
struct snd_usb_audio *chip = list->mixer->chip;
1921
unsigned int pval = list->kctl->private_value;
1922
u8 reg;
1923
int err;
1924
1925
CLASS(snd_usb_lock, pm)(chip);
1926
if (pm.err < 0)
1927
return pm.err;
1928
1929
reg = ((pval >> 4) & 0xf0) | (pval & 0x0f);
1930
err = snd_usb_ctl_msg(chip->dev,
1931
usb_sndctrlpipe(chip->dev, 0),
1932
UAC_SET_CUR,
1933
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
1934
reg,
1935
2,
1936
NULL,
1937
0);
1938
if (err < 0)
1939
return err;
1940
1941
reg = (pval & IEC958_AES0_NONAUDIO) ? 0xa0 : 0x20;
1942
reg |= (pval >> 12) & 0x0f;
1943
err = snd_usb_ctl_msg(chip->dev,
1944
usb_sndctrlpipe(chip->dev, 0),
1945
UAC_SET_CUR,
1946
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
1947
reg,
1948
3,
1949
NULL,
1950
0);
1951
return err;
1952
}
1953
1954
static int snd_microii_spdif_default_put(struct snd_kcontrol *kcontrol,
1955
struct snd_ctl_elem_value *ucontrol)
1956
{
1957
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
1958
unsigned int pval, pval_old;
1959
int err;
1960
1961
pval = kcontrol->private_value;
1962
pval_old = pval;
1963
pval &= 0xfffff0f0;
1964
pval |= (ucontrol->value.iec958.status[1] & 0x0f) << 8;
1965
pval |= (ucontrol->value.iec958.status[0] & 0x0f);
1966
1967
pval &= 0xffff0fff;
1968
pval |= (ucontrol->value.iec958.status[1] & 0xf0) << 8;
1969
1970
/* The frequency bits in AES3 cannot be set via register access. */
1971
1972
/* Silently ignore any bits from the request that cannot be set. */
1973
1974
if (pval == pval_old)
1975
return 0;
1976
1977
kcontrol->private_value = pval;
1978
err = snd_microii_spdif_default_update(list);
1979
return err < 0 ? err : 1;
1980
}
1981
1982
static int snd_microii_spdif_mask_get(struct snd_kcontrol *kcontrol,
1983
struct snd_ctl_elem_value *ucontrol)
1984
{
1985
ucontrol->value.iec958.status[0] = 0x0f;
1986
ucontrol->value.iec958.status[1] = 0xff;
1987
ucontrol->value.iec958.status[2] = 0x00;
1988
ucontrol->value.iec958.status[3] = 0x00;
1989
1990
return 0;
1991
}
1992
1993
static int snd_microii_spdif_switch_get(struct snd_kcontrol *kcontrol,
1994
struct snd_ctl_elem_value *ucontrol)
1995
{
1996
ucontrol->value.integer.value[0] = !(kcontrol->private_value & 0x02);
1997
1998
return 0;
1999
}
2000
2001
static int snd_microii_spdif_switch_update(struct usb_mixer_elem_list *list)
2002
{
2003
struct snd_usb_audio *chip = list->mixer->chip;
2004
u8 reg = list->kctl->private_value;
2005
2006
CLASS(snd_usb_lock, pm)(chip);
2007
if (pm.err < 0)
2008
return pm.err;
2009
2010
return snd_usb_ctl_msg(chip->dev,
2011
usb_sndctrlpipe(chip->dev, 0),
2012
UAC_SET_CUR,
2013
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
2014
reg,
2015
9,
2016
NULL,
2017
0);
2018
}
2019
2020
static int snd_microii_spdif_switch_put(struct snd_kcontrol *kcontrol,
2021
struct snd_ctl_elem_value *ucontrol)
2022
{
2023
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2024
u8 reg;
2025
int err;
2026
2027
reg = ucontrol->value.integer.value[0] ? 0x28 : 0x2a;
2028
if (reg != list->kctl->private_value)
2029
return 0;
2030
2031
kcontrol->private_value = reg;
2032
err = snd_microii_spdif_switch_update(list);
2033
return err < 0 ? err : 1;
2034
}
2035
2036
static const struct snd_kcontrol_new snd_microii_mixer_spdif[] = {
2037
{
2038
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2039
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
2040
.info = snd_microii_spdif_info,
2041
.get = snd_microii_spdif_default_get,
2042
.put = snd_microii_spdif_default_put,
2043
.private_value = 0x00000100UL,/* reset value */
2044
},
2045
{
2046
.access = SNDRV_CTL_ELEM_ACCESS_READ,
2047
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2048
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
2049
.info = snd_microii_spdif_info,
2050
.get = snd_microii_spdif_mask_get,
2051
},
2052
{
2053
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2054
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
2055
.info = snd_ctl_boolean_mono_info,
2056
.get = snd_microii_spdif_switch_get,
2057
.put = snd_microii_spdif_switch_put,
2058
.private_value = 0x00000028UL,/* reset value */
2059
}
2060
};
2061
2062
static int snd_microii_controls_create(struct usb_mixer_interface *mixer)
2063
{
2064
int err, i;
2065
static const usb_mixer_elem_resume_func_t resume_funcs[] = {
2066
snd_microii_spdif_default_update,
2067
NULL,
2068
snd_microii_spdif_switch_update
2069
};
2070
2071
for (i = 0; i < ARRAY_SIZE(snd_microii_mixer_spdif); ++i) {
2072
err = add_single_ctl_with_resume(mixer, 0,
2073
resume_funcs[i],
2074
&snd_microii_mixer_spdif[i],
2075
NULL);
2076
if (err < 0)
2077
return err;
2078
}
2079
2080
return 0;
2081
}
2082
2083
/* Creative Sound Blaster E1 */
2084
2085
static int snd_soundblaster_e1_switch_get(struct snd_kcontrol *kcontrol,
2086
struct snd_ctl_elem_value *ucontrol)
2087
{
2088
ucontrol->value.integer.value[0] = kcontrol->private_value;
2089
return 0;
2090
}
2091
2092
static int snd_soundblaster_e1_switch_update(struct usb_mixer_interface *mixer,
2093
unsigned char state)
2094
{
2095
struct snd_usb_audio *chip = mixer->chip;
2096
unsigned char buff[2];
2097
2098
buff[0] = 0x02;
2099
buff[1] = state ? 0x02 : 0x00;
2100
2101
CLASS(snd_usb_lock, pm)(chip);
2102
if (pm.err < 0)
2103
return pm.err;
2104
return snd_usb_ctl_msg(chip->dev,
2105
usb_sndctrlpipe(chip->dev, 0), HID_REQ_SET_REPORT,
2106
USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT,
2107
0x0202, 3, buff, 2);
2108
}
2109
2110
static int snd_soundblaster_e1_switch_put(struct snd_kcontrol *kcontrol,
2111
struct snd_ctl_elem_value *ucontrol)
2112
{
2113
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2114
unsigned char value = !!ucontrol->value.integer.value[0];
2115
int err;
2116
2117
if (kcontrol->private_value == value)
2118
return 0;
2119
kcontrol->private_value = value;
2120
err = snd_soundblaster_e1_switch_update(list->mixer, value);
2121
return err < 0 ? err : 1;
2122
}
2123
2124
static int snd_soundblaster_e1_switch_resume(struct usb_mixer_elem_list *list)
2125
{
2126
return snd_soundblaster_e1_switch_update(list->mixer,
2127
list->kctl->private_value);
2128
}
2129
2130
static int snd_soundblaster_e1_switch_info(struct snd_kcontrol *kcontrol,
2131
struct snd_ctl_elem_info *uinfo)
2132
{
2133
static const char *const texts[2] = {
2134
"Mic", "Aux"
2135
};
2136
2137
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
2138
}
2139
2140
static const struct snd_kcontrol_new snd_soundblaster_e1_input_switch = {
2141
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2142
.name = "Input Source",
2143
.info = snd_soundblaster_e1_switch_info,
2144
.get = snd_soundblaster_e1_switch_get,
2145
.put = snd_soundblaster_e1_switch_put,
2146
.private_value = 0,
2147
};
2148
2149
static int snd_soundblaster_e1_switch_create(struct usb_mixer_interface *mixer)
2150
{
2151
return add_single_ctl_with_resume(mixer, 0,
2152
snd_soundblaster_e1_switch_resume,
2153
&snd_soundblaster_e1_input_switch,
2154
NULL);
2155
}
2156
2157
/*
2158
* Dell WD15 dock jack detection
2159
*
2160
* The WD15 contains an ALC4020 USB audio controller and ALC3263 audio codec
2161
* from Realtek. It is a UAC 1 device, and UAC 1 does not support jack
2162
* detection. Instead, jack detection works by sending HD Audio commands over
2163
* vendor-type USB messages.
2164
*/
2165
2166
#define HDA_VERB_CMD(V, N, D) (((N) << 20) | ((V) << 8) | (D))
2167
2168
#define REALTEK_HDA_VALUE 0x0038
2169
2170
#define REALTEK_HDA_SET 62
2171
#define REALTEK_MANUAL_MODE 72
2172
#define REALTEK_HDA_GET_OUT 88
2173
#define REALTEK_HDA_GET_IN 89
2174
2175
#define REALTEK_AUDIO_FUNCTION_GROUP 0x01
2176
#define REALTEK_LINE1 0x1a
2177
#define REALTEK_VENDOR_REGISTERS 0x20
2178
#define REALTEK_HP_OUT 0x21
2179
2180
#define REALTEK_CBJ_CTRL2 0x50
2181
2182
#define REALTEK_JACK_INTERRUPT_NODE 5
2183
2184
#define REALTEK_MIC_FLAG 0x100
2185
2186
static int realtek_hda_set(struct snd_usb_audio *chip, u32 cmd)
2187
{
2188
struct usb_device *dev = chip->dev;
2189
__be32 buf = cpu_to_be32(cmd);
2190
2191
return snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_SET,
2192
USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
2193
REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
2194
}
2195
2196
static int realtek_hda_get(struct snd_usb_audio *chip, u32 cmd, u32 *value)
2197
{
2198
struct usb_device *dev = chip->dev;
2199
int err;
2200
__be32 buf = cpu_to_be32(cmd);
2201
2202
err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_GET_OUT,
2203
USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
2204
REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
2205
if (err < 0)
2206
return err;
2207
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), REALTEK_HDA_GET_IN,
2208
USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_IN,
2209
REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
2210
if (err < 0)
2211
return err;
2212
2213
*value = be32_to_cpu(buf);
2214
return 0;
2215
}
2216
2217
static int realtek_ctl_connector_get(struct snd_kcontrol *kcontrol,
2218
struct snd_ctl_elem_value *ucontrol)
2219
{
2220
struct usb_mixer_elem_info *cval = snd_kcontrol_chip(kcontrol);
2221
struct snd_usb_audio *chip = cval->head.mixer->chip;
2222
u32 pv = kcontrol->private_value;
2223
u32 node_id = pv & 0xff;
2224
u32 sense;
2225
u32 cbj_ctrl2;
2226
bool presence;
2227
int err;
2228
2229
CLASS(snd_usb_lock, pm)(chip);
2230
if (pm.err < 0)
2231
return pm.err;
2232
err = realtek_hda_get(chip,
2233
HDA_VERB_CMD(AC_VERB_GET_PIN_SENSE, node_id, 0),
2234
&sense);
2235
if (err < 0)
2236
return err;
2237
if (pv & REALTEK_MIC_FLAG) {
2238
err = realtek_hda_set(chip,
2239
HDA_VERB_CMD(AC_VERB_SET_COEF_INDEX,
2240
REALTEK_VENDOR_REGISTERS,
2241
REALTEK_CBJ_CTRL2));
2242
if (err < 0)
2243
return err;
2244
err = realtek_hda_get(chip,
2245
HDA_VERB_CMD(AC_VERB_GET_PROC_COEF,
2246
REALTEK_VENDOR_REGISTERS, 0),
2247
&cbj_ctrl2);
2248
if (err < 0)
2249
return err;
2250
}
2251
2252
presence = sense & AC_PINSENSE_PRESENCE;
2253
if (pv & REALTEK_MIC_FLAG)
2254
presence = presence && (cbj_ctrl2 & 0x0070) == 0x0070;
2255
ucontrol->value.integer.value[0] = presence;
2256
return 0;
2257
}
2258
2259
static const struct snd_kcontrol_new realtek_connector_ctl_ro = {
2260
.iface = SNDRV_CTL_ELEM_IFACE_CARD,
2261
.name = "", /* will be filled later manually */
2262
.access = SNDRV_CTL_ELEM_ACCESS_READ,
2263
.info = snd_ctl_boolean_mono_info,
2264
.get = realtek_ctl_connector_get,
2265
};
2266
2267
static int realtek_resume_jack(struct usb_mixer_elem_list *list)
2268
{
2269
snd_ctl_notify(list->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
2270
&list->kctl->id);
2271
return 0;
2272
}
2273
2274
static int realtek_add_jack(struct usb_mixer_interface *mixer,
2275
char *name, u32 val, int unitid,
2276
const struct snd_kcontrol_new *kctl_new)
2277
{
2278
struct usb_mixer_elem_info *cval;
2279
struct snd_kcontrol *kctl;
2280
2281
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
2282
if (!cval)
2283
return -ENOMEM;
2284
snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid);
2285
cval->head.resume = realtek_resume_jack;
2286
cval->val_type = USB_MIXER_BOOLEAN;
2287
cval->channels = 1;
2288
cval->min = 0;
2289
cval->max = 1;
2290
kctl = snd_ctl_new1(kctl_new, cval);
2291
if (!kctl) {
2292
kfree(cval);
2293
return -ENOMEM;
2294
}
2295
kctl->private_value = val;
2296
strscpy(kctl->id.name, name, sizeof(kctl->id.name));
2297
kctl->private_free = snd_usb_mixer_elem_free;
2298
return snd_usb_mixer_add_control(&cval->head, kctl);
2299
}
2300
2301
static int dell_dock_mixer_create(struct usb_mixer_interface *mixer)
2302
{
2303
int err;
2304
struct usb_device *dev = mixer->chip->dev;
2305
2306
/* Power down the audio codec to avoid loud pops in the next step. */
2307
realtek_hda_set(mixer->chip,
2308
HDA_VERB_CMD(AC_VERB_SET_POWER_STATE,
2309
REALTEK_AUDIO_FUNCTION_GROUP,
2310
AC_PWRST_D3));
2311
2312
/*
2313
* Turn off 'manual mode' in case it was enabled. This removes the need
2314
* to power cycle the dock after it was attached to a Windows machine.
2315
*/
2316
snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_MANUAL_MODE,
2317
USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
2318
0, 0, NULL, 0);
2319
2320
err = realtek_add_jack(mixer, "Line Out Jack", REALTEK_LINE1,
2321
REALTEK_JACK_INTERRUPT_NODE,
2322
&realtek_connector_ctl_ro);
2323
if (err < 0)
2324
return err;
2325
err = realtek_add_jack(mixer, "Headphone Jack", REALTEK_HP_OUT,
2326
REALTEK_JACK_INTERRUPT_NODE,
2327
&realtek_connector_ctl_ro);
2328
if (err < 0)
2329
return err;
2330
err = realtek_add_jack(mixer, "Headset Mic Jack",
2331
REALTEK_HP_OUT | REALTEK_MIC_FLAG,
2332
REALTEK_JACK_INTERRUPT_NODE,
2333
&realtek_connector_ctl_ro);
2334
if (err < 0)
2335
return err;
2336
return 0;
2337
}
2338
2339
static void dell_dock_init_vol(struct usb_mixer_interface *mixer, int ch, int id)
2340
{
2341
struct snd_usb_audio *chip = mixer->chip;
2342
u16 buf = 0;
2343
2344
snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
2345
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
2346
(UAC_FU_VOLUME << 8) | ch,
2347
snd_usb_ctrl_intf(mixer->hostif) | (id << 8),
2348
&buf, 2);
2349
}
2350
2351
static int dell_dock_mixer_init(struct usb_mixer_interface *mixer)
2352
{
2353
/* fix to 0dB playback volumes */
2354
dell_dock_init_vol(mixer, 1, 16);
2355
dell_dock_init_vol(mixer, 2, 16);
2356
dell_dock_init_vol(mixer, 1, 19);
2357
dell_dock_init_vol(mixer, 2, 19);
2358
return 0;
2359
}
2360
2361
/*
2362
* HP Thunderbolt Dock G2 jack detection
2363
*
2364
* Similar to the Dell WD15/WD19, but with different commands.
2365
*/
2366
2367
#define HP_DOCK_JACK_INTERRUPT_NODE 7
2368
2369
#define HP_DOCK_GET 37
2370
2371
#define HP_DOCK_JACK_PRESENCE 0xffb8
2372
#define HP_DOCK_JACK_PRESENCE_BIT BIT(2)
2373
2374
#define HP_DOCK_MIC_SENSE 0xf753
2375
#define HP_DOCK_MIC_SENSE_COMPLETE_BIT BIT(4)
2376
2377
#define HP_DOCK_MIC_SENSE_MASK (BIT(2) | BIT(1) | BIT(0))
2378
/* #define HP_DOCK_MIC_SENSE_PRESENT 0x2 */
2379
#define HP_DOCK_MIC_SENSE_NOT_PRESENT 0x4
2380
2381
static int hp_dock_ctl_connector_get(struct snd_kcontrol *kcontrol,
2382
struct snd_ctl_elem_value *ucontrol)
2383
{
2384
struct usb_mixer_elem_info *cval = snd_kcontrol_chip(kcontrol);
2385
struct snd_usb_audio *chip = cval->head.mixer->chip;
2386
u32 pv = kcontrol->private_value;
2387
bool presence;
2388
int err;
2389
u8 buf;
2390
2391
CLASS(snd_usb_lock, pm)(chip);
2392
if (pm.err < 0)
2393
return pm.err;
2394
2395
err = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0),
2396
HP_DOCK_GET,
2397
USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_IN,
2398
0, HP_DOCK_JACK_PRESENCE, &buf, sizeof(buf));
2399
if (err < 0)
2400
return err;
2401
2402
presence = !(buf & HP_DOCK_JACK_PRESENCE_BIT);
2403
2404
if (pv && presence) {
2405
for (int i = 0; i < 20; i++) {
2406
err = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0),
2407
HP_DOCK_GET,
2408
USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_IN,
2409
0, HP_DOCK_MIC_SENSE, &buf, sizeof(buf));
2410
if (err < 0)
2411
return err;
2412
2413
/* Mic sense is complete, we have a result. */
2414
if (buf & HP_DOCK_MIC_SENSE_COMPLETE_BIT)
2415
break;
2416
2417
msleep(100);
2418
}
2419
2420
/*
2421
* If we reach the retry limit without mic sense having
2422
* completed, buf will contain HP_DOCK_MIC_SENSE_PRESENT,
2423
* thus presence remains true even when detection fails.
2424
*/
2425
if ((buf & HP_DOCK_MIC_SENSE_MASK) == HP_DOCK_MIC_SENSE_NOT_PRESENT)
2426
presence = false;
2427
}
2428
ucontrol->value.integer.value[0] = presence;
2429
return 0;
2430
}
2431
2432
static const struct snd_kcontrol_new hp_dock_connector_ctl_ro = {
2433
.iface = SNDRV_CTL_ELEM_IFACE_CARD,
2434
.name = "", /* will be filled later manually */
2435
.access = SNDRV_CTL_ELEM_ACCESS_READ,
2436
.info = snd_ctl_boolean_mono_info,
2437
.get = hp_dock_ctl_connector_get,
2438
};
2439
2440
static int hp_dock_mixer_create(struct usb_mixer_interface *mixer)
2441
{
2442
int err;
2443
2444
err = realtek_add_jack(mixer, "Headsets Playback Jack", 0,
2445
HP_DOCK_JACK_INTERRUPT_NODE,
2446
&hp_dock_connector_ctl_ro);
2447
if (err < 0)
2448
return err;
2449
2450
err = realtek_add_jack(mixer, "Headset Capture Jack", 1,
2451
HP_DOCK_JACK_INTERRUPT_NODE,
2452
&hp_dock_connector_ctl_ro);
2453
if (err < 0)
2454
return err;
2455
2456
return 0;
2457
}
2458
2459
2460
/* RME Class Compliant device quirks */
2461
2462
#define SND_RME_GET_STATUS1 23
2463
#define SND_RME_GET_CURRENT_FREQ 17
2464
#define SND_RME_CLK_SYSTEM_SHIFT 16
2465
#define SND_RME_CLK_SYSTEM_MASK 0x1f
2466
#define SND_RME_CLK_AES_SHIFT 8
2467
#define SND_RME_CLK_SPDIF_SHIFT 12
2468
#define SND_RME_CLK_AES_SPDIF_MASK 0xf
2469
#define SND_RME_CLK_SYNC_SHIFT 6
2470
#define SND_RME_CLK_SYNC_MASK 0x3
2471
#define SND_RME_CLK_FREQMUL_SHIFT 18
2472
#define SND_RME_CLK_FREQMUL_MASK 0x7
2473
#define SND_RME_CLK_SYSTEM(x) \
2474
(((x) >> SND_RME_CLK_SYSTEM_SHIFT) & SND_RME_CLK_SYSTEM_MASK)
2475
#define SND_RME_CLK_AES(x) \
2476
(((x) >> SND_RME_CLK_AES_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
2477
#define SND_RME_CLK_SPDIF(x) \
2478
(((x) >> SND_RME_CLK_SPDIF_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
2479
#define SND_RME_CLK_SYNC(x) \
2480
(((x) >> SND_RME_CLK_SYNC_SHIFT) & SND_RME_CLK_SYNC_MASK)
2481
#define SND_RME_CLK_FREQMUL(x) \
2482
(((x) >> SND_RME_CLK_FREQMUL_SHIFT) & SND_RME_CLK_FREQMUL_MASK)
2483
#define SND_RME_CLK_AES_LOCK 0x1
2484
#define SND_RME_CLK_AES_SYNC 0x4
2485
#define SND_RME_CLK_SPDIF_LOCK 0x2
2486
#define SND_RME_CLK_SPDIF_SYNC 0x8
2487
#define SND_RME_SPDIF_IF_SHIFT 4
2488
#define SND_RME_SPDIF_FORMAT_SHIFT 5
2489
#define SND_RME_BINARY_MASK 0x1
2490
#define SND_RME_SPDIF_IF(x) \
2491
(((x) >> SND_RME_SPDIF_IF_SHIFT) & SND_RME_BINARY_MASK)
2492
#define SND_RME_SPDIF_FORMAT(x) \
2493
(((x) >> SND_RME_SPDIF_FORMAT_SHIFT) & SND_RME_BINARY_MASK)
2494
2495
static const u32 snd_rme_rate_table[] = {
2496
32000, 44100, 48000, 50000,
2497
64000, 88200, 96000, 100000,
2498
128000, 176400, 192000, 200000,
2499
256000, 352800, 384000, 400000,
2500
512000, 705600, 768000, 800000
2501
};
2502
2503
/* maximum number of items for AES and S/PDIF rates for above table */
2504
#define SND_RME_RATE_IDX_AES_SPDIF_NUM 12
2505
2506
enum snd_rme_domain {
2507
SND_RME_DOMAIN_SYSTEM,
2508
SND_RME_DOMAIN_AES,
2509
SND_RME_DOMAIN_SPDIF
2510
};
2511
2512
enum snd_rme_clock_status {
2513
SND_RME_CLOCK_NOLOCK,
2514
SND_RME_CLOCK_LOCK,
2515
SND_RME_CLOCK_SYNC
2516
};
2517
2518
static int snd_rme_read_value(struct snd_usb_audio *chip,
2519
unsigned int item,
2520
u32 *value)
2521
{
2522
struct usb_device *dev = chip->dev;
2523
int err;
2524
2525
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
2526
item,
2527
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2528
0, 0,
2529
value, sizeof(*value));
2530
if (err < 0)
2531
dev_err(&dev->dev,
2532
"unable to issue vendor read request %d (ret = %d)",
2533
item, err);
2534
return err;
2535
}
2536
2537
static int snd_rme_get_status1(struct snd_kcontrol *kcontrol,
2538
u32 *status1)
2539
{
2540
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2541
struct snd_usb_audio *chip = list->mixer->chip;
2542
2543
*status1 = 0;
2544
CLASS(snd_usb_lock, pm)(chip);
2545
if (pm.err < 0)
2546
return pm.err;
2547
return snd_rme_read_value(chip, SND_RME_GET_STATUS1, status1);
2548
}
2549
2550
static int snd_rme_rate_get(struct snd_kcontrol *kcontrol,
2551
struct snd_ctl_elem_value *ucontrol)
2552
{
2553
u32 status1;
2554
u32 rate = 0;
2555
int idx;
2556
int err;
2557
2558
err = snd_rme_get_status1(kcontrol, &status1);
2559
if (err < 0)
2560
return err;
2561
switch (kcontrol->private_value) {
2562
case SND_RME_DOMAIN_SYSTEM:
2563
idx = SND_RME_CLK_SYSTEM(status1);
2564
if (idx < ARRAY_SIZE(snd_rme_rate_table))
2565
rate = snd_rme_rate_table[idx];
2566
break;
2567
case SND_RME_DOMAIN_AES:
2568
idx = SND_RME_CLK_AES(status1);
2569
if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
2570
rate = snd_rme_rate_table[idx];
2571
break;
2572
case SND_RME_DOMAIN_SPDIF:
2573
idx = SND_RME_CLK_SPDIF(status1);
2574
if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
2575
rate = snd_rme_rate_table[idx];
2576
break;
2577
default:
2578
return -EINVAL;
2579
}
2580
ucontrol->value.integer.value[0] = rate;
2581
return 0;
2582
}
2583
2584
static int snd_rme_sync_state_get(struct snd_kcontrol *kcontrol,
2585
struct snd_ctl_elem_value *ucontrol)
2586
{
2587
u32 status1;
2588
int idx = SND_RME_CLOCK_NOLOCK;
2589
int err;
2590
2591
err = snd_rme_get_status1(kcontrol, &status1);
2592
if (err < 0)
2593
return err;
2594
switch (kcontrol->private_value) {
2595
case SND_RME_DOMAIN_AES: /* AES */
2596
if (status1 & SND_RME_CLK_AES_SYNC)
2597
idx = SND_RME_CLOCK_SYNC;
2598
else if (status1 & SND_RME_CLK_AES_LOCK)
2599
idx = SND_RME_CLOCK_LOCK;
2600
break;
2601
case SND_RME_DOMAIN_SPDIF: /* SPDIF */
2602
if (status1 & SND_RME_CLK_SPDIF_SYNC)
2603
idx = SND_RME_CLOCK_SYNC;
2604
else if (status1 & SND_RME_CLK_SPDIF_LOCK)
2605
idx = SND_RME_CLOCK_LOCK;
2606
break;
2607
default:
2608
return -EINVAL;
2609
}
2610
ucontrol->value.enumerated.item[0] = idx;
2611
return 0;
2612
}
2613
2614
static int snd_rme_spdif_if_get(struct snd_kcontrol *kcontrol,
2615
struct snd_ctl_elem_value *ucontrol)
2616
{
2617
u32 status1;
2618
int err;
2619
2620
err = snd_rme_get_status1(kcontrol, &status1);
2621
if (err < 0)
2622
return err;
2623
ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_IF(status1);
2624
return 0;
2625
}
2626
2627
static int snd_rme_spdif_format_get(struct snd_kcontrol *kcontrol,
2628
struct snd_ctl_elem_value *ucontrol)
2629
{
2630
u32 status1;
2631
int err;
2632
2633
err = snd_rme_get_status1(kcontrol, &status1);
2634
if (err < 0)
2635
return err;
2636
ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_FORMAT(status1);
2637
return 0;
2638
}
2639
2640
static int snd_rme_sync_source_get(struct snd_kcontrol *kcontrol,
2641
struct snd_ctl_elem_value *ucontrol)
2642
{
2643
u32 status1;
2644
int err;
2645
2646
err = snd_rme_get_status1(kcontrol, &status1);
2647
if (err < 0)
2648
return err;
2649
ucontrol->value.enumerated.item[0] = SND_RME_CLK_SYNC(status1);
2650
return 0;
2651
}
2652
2653
static int snd_rme_current_freq_get(struct snd_kcontrol *kcontrol,
2654
struct snd_ctl_elem_value *ucontrol)
2655
{
2656
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2657
struct snd_usb_audio *chip = list->mixer->chip;
2658
u32 status1;
2659
const u64 num = 104857600000000ULL;
2660
u32 den;
2661
unsigned int freq;
2662
int err;
2663
2664
CLASS(snd_usb_lock, pm)(chip);
2665
if (pm.err < 0)
2666
return pm.err;
2667
err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, &status1);
2668
if (err < 0)
2669
return err;
2670
err = snd_rme_read_value(chip, SND_RME_GET_CURRENT_FREQ, &den);
2671
if (err < 0)
2672
return err;
2673
freq = (den == 0) ? 0 : div64_u64(num, den);
2674
freq <<= SND_RME_CLK_FREQMUL(status1);
2675
ucontrol->value.integer.value[0] = freq;
2676
return 0;
2677
}
2678
2679
static int snd_rme_rate_info(struct snd_kcontrol *kcontrol,
2680
struct snd_ctl_elem_info *uinfo)
2681
{
2682
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2683
uinfo->count = 1;
2684
switch (kcontrol->private_value) {
2685
case SND_RME_DOMAIN_SYSTEM:
2686
uinfo->value.integer.min = 32000;
2687
uinfo->value.integer.max = 800000;
2688
break;
2689
case SND_RME_DOMAIN_AES:
2690
case SND_RME_DOMAIN_SPDIF:
2691
default:
2692
uinfo->value.integer.min = 0;
2693
uinfo->value.integer.max = 200000;
2694
}
2695
uinfo->value.integer.step = 0;
2696
return 0;
2697
}
2698
2699
static int snd_rme_sync_state_info(struct snd_kcontrol *kcontrol,
2700
struct snd_ctl_elem_info *uinfo)
2701
{
2702
static const char *const sync_states[] = {
2703
"No Lock", "Lock", "Sync"
2704
};
2705
2706
return snd_ctl_enum_info(uinfo, 1,
2707
ARRAY_SIZE(sync_states), sync_states);
2708
}
2709
2710
static int snd_rme_spdif_if_info(struct snd_kcontrol *kcontrol,
2711
struct snd_ctl_elem_info *uinfo)
2712
{
2713
static const char *const spdif_if[] = {
2714
"Coaxial", "Optical"
2715
};
2716
2717
return snd_ctl_enum_info(uinfo, 1,
2718
ARRAY_SIZE(spdif_if), spdif_if);
2719
}
2720
2721
static int snd_rme_spdif_format_info(struct snd_kcontrol *kcontrol,
2722
struct snd_ctl_elem_info *uinfo)
2723
{
2724
static const char *const optical_type[] = {
2725
"Consumer", "Professional"
2726
};
2727
2728
return snd_ctl_enum_info(uinfo, 1,
2729
ARRAY_SIZE(optical_type), optical_type);
2730
}
2731
2732
static int snd_rme_sync_source_info(struct snd_kcontrol *kcontrol,
2733
struct snd_ctl_elem_info *uinfo)
2734
{
2735
static const char *const sync_sources[] = {
2736
"Internal", "AES", "SPDIF", "Internal"
2737
};
2738
2739
return snd_ctl_enum_info(uinfo, 1,
2740
ARRAY_SIZE(sync_sources), sync_sources);
2741
}
2742
2743
static const struct snd_kcontrol_new snd_rme_controls[] = {
2744
{
2745
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2746
.name = "AES Rate",
2747
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2748
.info = snd_rme_rate_info,
2749
.get = snd_rme_rate_get,
2750
.private_value = SND_RME_DOMAIN_AES
2751
},
2752
{
2753
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2754
.name = "AES Sync",
2755
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2756
.info = snd_rme_sync_state_info,
2757
.get = snd_rme_sync_state_get,
2758
.private_value = SND_RME_DOMAIN_AES
2759
},
2760
{
2761
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2762
.name = "SPDIF Rate",
2763
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2764
.info = snd_rme_rate_info,
2765
.get = snd_rme_rate_get,
2766
.private_value = SND_RME_DOMAIN_SPDIF
2767
},
2768
{
2769
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2770
.name = "SPDIF Sync",
2771
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2772
.info = snd_rme_sync_state_info,
2773
.get = snd_rme_sync_state_get,
2774
.private_value = SND_RME_DOMAIN_SPDIF
2775
},
2776
{
2777
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2778
.name = "SPDIF Interface",
2779
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2780
.info = snd_rme_spdif_if_info,
2781
.get = snd_rme_spdif_if_get,
2782
},
2783
{
2784
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2785
.name = "SPDIF Format",
2786
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2787
.info = snd_rme_spdif_format_info,
2788
.get = snd_rme_spdif_format_get,
2789
},
2790
{
2791
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2792
.name = "Sync Source",
2793
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2794
.info = snd_rme_sync_source_info,
2795
.get = snd_rme_sync_source_get
2796
},
2797
{
2798
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2799
.name = "System Rate",
2800
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2801
.info = snd_rme_rate_info,
2802
.get = snd_rme_rate_get,
2803
.private_value = SND_RME_DOMAIN_SYSTEM
2804
},
2805
{
2806
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2807
.name = "Current Frequency",
2808
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2809
.info = snd_rme_rate_info,
2810
.get = snd_rme_current_freq_get
2811
}
2812
};
2813
2814
static int snd_rme_controls_create(struct usb_mixer_interface *mixer)
2815
{
2816
int err, i;
2817
2818
for (i = 0; i < ARRAY_SIZE(snd_rme_controls); ++i) {
2819
err = add_single_ctl_with_resume(mixer, 0,
2820
NULL,
2821
&snd_rme_controls[i],
2822
NULL);
2823
if (err < 0)
2824
return err;
2825
}
2826
2827
return 0;
2828
}
2829
2830
/*
2831
* RME Babyface Pro (FS)
2832
*
2833
* These devices exposes a couple of DSP functions via request to EP0.
2834
* Switches are available via control registers, while routing is controlled
2835
* by controlling the volume on each possible crossing point.
2836
* Volume control is linear, from -inf (dec. 0) to +6dB (dec. 65536) with
2837
* 0dB being at dec. 32768.
2838
*/
2839
enum {
2840
SND_BBFPRO_CTL_REG1 = 0,
2841
SND_BBFPRO_CTL_REG2
2842
};
2843
2844
#define SND_BBFPRO_CTL_REG_MASK 1
2845
#define SND_BBFPRO_CTL_IDX_MASK 0xff
2846
#define SND_BBFPRO_CTL_IDX_SHIFT 1
2847
#define SND_BBFPRO_CTL_VAL_MASK 1
2848
#define SND_BBFPRO_CTL_VAL_SHIFT 9
2849
#define SND_BBFPRO_CTL_REG1_CLK_MASTER 0
2850
#define SND_BBFPRO_CTL_REG1_CLK_OPTICAL 1
2851
#define SND_BBFPRO_CTL_REG1_SPDIF_PRO 7
2852
#define SND_BBFPRO_CTL_REG1_SPDIF_EMPH 8
2853
#define SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL 10
2854
#define SND_BBFPRO_CTL_REG2_48V_AN1 0
2855
#define SND_BBFPRO_CTL_REG2_48V_AN2 1
2856
#define SND_BBFPRO_CTL_REG2_SENS_IN3 2
2857
#define SND_BBFPRO_CTL_REG2_SENS_IN4 3
2858
#define SND_BBFPRO_CTL_REG2_PAD_AN1 4
2859
#define SND_BBFPRO_CTL_REG2_PAD_AN2 5
2860
2861
#define SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET 992
2862
#define SND_BBFPRO_MIXER_IDX_MASK 0x3ff
2863
#define SND_BBFPRO_MIXER_VAL_MASK 0x3ffff
2864
#define SND_BBFPRO_MIXER_VAL_SHIFT 9
2865
#define SND_BBFPRO_MIXER_VAL_MIN 0 // -inf
2866
#define SND_BBFPRO_MIXER_VAL_MAX 65536 // +6dB
2867
2868
#define SND_BBFPRO_GAIN_CHANNEL_MASK 0x03
2869
#define SND_BBFPRO_GAIN_CHANNEL_SHIFT 7
2870
#define SND_BBFPRO_GAIN_VAL_MASK 0x7f
2871
#define SND_BBFPRO_GAIN_VAL_MIN 0
2872
#define SND_BBFPRO_GAIN_VAL_MIC_MAX 65
2873
#define SND_BBFPRO_GAIN_VAL_LINE_MAX 18 // 9db in 0.5db incraments
2874
2875
#define SND_BBFPRO_USBREQ_CTL_REG1 0x10
2876
#define SND_BBFPRO_USBREQ_CTL_REG2 0x17
2877
#define SND_BBFPRO_USBREQ_GAIN 0x1a
2878
#define SND_BBFPRO_USBREQ_MIXER 0x12
2879
2880
static int snd_bbfpro_ctl_update(struct usb_mixer_interface *mixer, u8 reg,
2881
u8 index, u8 value)
2882
{
2883
u16 usb_req, usb_idx, usb_val;
2884
struct snd_usb_audio *chip = mixer->chip;
2885
2886
CLASS(snd_usb_lock, pm)(chip);
2887
if (pm.err < 0)
2888
return pm.err;
2889
2890
if (reg == SND_BBFPRO_CTL_REG1) {
2891
usb_req = SND_BBFPRO_USBREQ_CTL_REG1;
2892
if (index == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
2893
usb_idx = 3;
2894
usb_val = value ? 3 : 0;
2895
} else {
2896
usb_idx = BIT(index);
2897
usb_val = value ? usb_idx : 0;
2898
}
2899
} else {
2900
usb_req = SND_BBFPRO_USBREQ_CTL_REG2;
2901
usb_idx = BIT(index);
2902
usb_val = value ? usb_idx : 0;
2903
}
2904
2905
return snd_usb_ctl_msg(chip->dev,
2906
usb_sndctrlpipe(chip->dev, 0), usb_req,
2907
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2908
usb_val, usb_idx, NULL, 0);
2909
}
2910
2911
static int snd_bbfpro_ctl_get(struct snd_kcontrol *kcontrol,
2912
struct snd_ctl_elem_value *ucontrol)
2913
{
2914
u8 reg, idx, val;
2915
int pv;
2916
2917
pv = kcontrol->private_value;
2918
reg = pv & SND_BBFPRO_CTL_REG_MASK;
2919
idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2920
val = kcontrol->private_value >> SND_BBFPRO_CTL_VAL_SHIFT;
2921
2922
if ((reg == SND_BBFPRO_CTL_REG1 &&
2923
idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
2924
(reg == SND_BBFPRO_CTL_REG2 &&
2925
(idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
2926
idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
2927
ucontrol->value.enumerated.item[0] = val;
2928
} else {
2929
ucontrol->value.integer.value[0] = val;
2930
}
2931
return 0;
2932
}
2933
2934
static int snd_bbfpro_ctl_info(struct snd_kcontrol *kcontrol,
2935
struct snd_ctl_elem_info *uinfo)
2936
{
2937
u8 reg, idx;
2938
int pv;
2939
2940
pv = kcontrol->private_value;
2941
reg = pv & SND_BBFPRO_CTL_REG_MASK;
2942
idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2943
2944
if (reg == SND_BBFPRO_CTL_REG1 &&
2945
idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
2946
static const char * const texts[2] = {
2947
"AutoSync",
2948
"Internal"
2949
};
2950
return snd_ctl_enum_info(uinfo, 1, 2, texts);
2951
} else if (reg == SND_BBFPRO_CTL_REG2 &&
2952
(idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
2953
idx == SND_BBFPRO_CTL_REG2_SENS_IN4)) {
2954
static const char * const texts[2] = {
2955
"-10dBV",
2956
"+4dBu"
2957
};
2958
return snd_ctl_enum_info(uinfo, 1, 2, texts);
2959
}
2960
2961
uinfo->count = 1;
2962
uinfo->value.integer.min = 0;
2963
uinfo->value.integer.max = 1;
2964
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2965
return 0;
2966
}
2967
2968
static int snd_bbfpro_ctl_put(struct snd_kcontrol *kcontrol,
2969
struct snd_ctl_elem_value *ucontrol)
2970
{
2971
int err;
2972
u8 reg, idx;
2973
int old_value, pv, val;
2974
2975
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2976
struct usb_mixer_interface *mixer = list->mixer;
2977
2978
pv = kcontrol->private_value;
2979
reg = pv & SND_BBFPRO_CTL_REG_MASK;
2980
idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2981
old_value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
2982
2983
if ((reg == SND_BBFPRO_CTL_REG1 &&
2984
idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
2985
(reg == SND_BBFPRO_CTL_REG2 &&
2986
(idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
2987
idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
2988
val = ucontrol->value.enumerated.item[0];
2989
} else {
2990
val = ucontrol->value.integer.value[0];
2991
}
2992
2993
if (val > 1)
2994
return -EINVAL;
2995
2996
if (val == old_value)
2997
return 0;
2998
2999
kcontrol->private_value = reg
3000
| ((idx & SND_BBFPRO_CTL_IDX_MASK) << SND_BBFPRO_CTL_IDX_SHIFT)
3001
| ((val & SND_BBFPRO_CTL_VAL_MASK) << SND_BBFPRO_CTL_VAL_SHIFT);
3002
3003
err = snd_bbfpro_ctl_update(mixer, reg, idx, val);
3004
return err < 0 ? err : 1;
3005
}
3006
3007
static int snd_bbfpro_ctl_resume(struct usb_mixer_elem_list *list)
3008
{
3009
u8 reg, idx;
3010
int value, pv;
3011
3012
pv = list->kctl->private_value;
3013
reg = pv & SND_BBFPRO_CTL_REG_MASK;
3014
idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
3015
value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
3016
3017
return snd_bbfpro_ctl_update(list->mixer, reg, idx, value);
3018
}
3019
3020
static int snd_bbfpro_gain_update(struct usb_mixer_interface *mixer,
3021
u8 channel, u8 gain)
3022
{
3023
struct snd_usb_audio *chip = mixer->chip;
3024
3025
if (channel < 2) {
3026
// XLR preamp: 3-bit fine, 5-bit coarse; special case >60
3027
if (gain < 60)
3028
gain = ((gain % 3) << 5) | (gain / 3);
3029
else
3030
gain = ((gain % 6) << 5) | (60 / 3);
3031
}
3032
3033
CLASS(snd_usb_lock, pm)(chip);
3034
if (pm.err < 0)
3035
return pm.err;
3036
3037
return snd_usb_ctl_msg(chip->dev,
3038
usb_sndctrlpipe(chip->dev, 0),
3039
SND_BBFPRO_USBREQ_GAIN,
3040
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
3041
gain, channel, NULL, 0);
3042
}
3043
3044
static int snd_bbfpro_gain_get(struct snd_kcontrol *kcontrol,
3045
struct snd_ctl_elem_value *ucontrol)
3046
{
3047
int value = kcontrol->private_value & SND_BBFPRO_GAIN_VAL_MASK;
3048
3049
ucontrol->value.integer.value[0] = value;
3050
return 0;
3051
}
3052
3053
static int snd_bbfpro_gain_info(struct snd_kcontrol *kcontrol,
3054
struct snd_ctl_elem_info *uinfo)
3055
{
3056
int pv, channel;
3057
3058
pv = kcontrol->private_value;
3059
channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
3060
SND_BBFPRO_GAIN_CHANNEL_MASK;
3061
3062
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3063
uinfo->count = 1;
3064
uinfo->value.integer.min = SND_BBFPRO_GAIN_VAL_MIN;
3065
3066
if (channel < 2)
3067
uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_MIC_MAX;
3068
else
3069
uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_LINE_MAX;
3070
3071
return 0;
3072
}
3073
3074
static int snd_bbfpro_gain_put(struct snd_kcontrol *kcontrol,
3075
struct snd_ctl_elem_value *ucontrol)
3076
{
3077
int pv, channel, old_value, value, err;
3078
3079
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3080
struct usb_mixer_interface *mixer = list->mixer;
3081
3082
pv = kcontrol->private_value;
3083
channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
3084
SND_BBFPRO_GAIN_CHANNEL_MASK;
3085
old_value = pv & SND_BBFPRO_GAIN_VAL_MASK;
3086
value = ucontrol->value.integer.value[0];
3087
3088
if (value < SND_BBFPRO_GAIN_VAL_MIN)
3089
return -EINVAL;
3090
3091
if (channel < 2) {
3092
if (value > SND_BBFPRO_GAIN_VAL_MIC_MAX)
3093
return -EINVAL;
3094
} else {
3095
if (value > SND_BBFPRO_GAIN_VAL_LINE_MAX)
3096
return -EINVAL;
3097
}
3098
3099
if (value == old_value)
3100
return 0;
3101
3102
err = snd_bbfpro_gain_update(mixer, channel, value);
3103
if (err < 0)
3104
return err;
3105
3106
kcontrol->private_value =
3107
(channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT) | value;
3108
return 1;
3109
}
3110
3111
static int snd_bbfpro_gain_resume(struct usb_mixer_elem_list *list)
3112
{
3113
int pv, channel, value;
3114
struct snd_kcontrol *kctl = list->kctl;
3115
3116
pv = kctl->private_value;
3117
channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
3118
SND_BBFPRO_GAIN_CHANNEL_MASK;
3119
value = pv & SND_BBFPRO_GAIN_VAL_MASK;
3120
3121
return snd_bbfpro_gain_update(list->mixer, channel, value);
3122
}
3123
3124
static int snd_bbfpro_vol_update(struct usb_mixer_interface *mixer, u16 index,
3125
u32 value)
3126
{
3127
struct snd_usb_audio *chip = mixer->chip;
3128
u16 idx;
3129
u16 usb_idx, usb_val;
3130
u32 v;
3131
3132
CLASS(snd_usb_lock, pm)(chip);
3133
if (pm.err < 0)
3134
return pm.err;
3135
3136
idx = index & SND_BBFPRO_MIXER_IDX_MASK;
3137
// 18 bit linear volume, split so 2 bits end up in index.
3138
v = value & SND_BBFPRO_MIXER_VAL_MASK;
3139
usb_idx = idx | (v & 0x3) << 14;
3140
usb_val = (v >> 2) & 0xffff;
3141
3142
return snd_usb_ctl_msg(chip->dev,
3143
usb_sndctrlpipe(chip->dev, 0),
3144
SND_BBFPRO_USBREQ_MIXER,
3145
USB_DIR_OUT | USB_TYPE_VENDOR |
3146
USB_RECIP_DEVICE,
3147
usb_val, usb_idx, NULL, 0);
3148
}
3149
3150
static int snd_bbfpro_vol_get(struct snd_kcontrol *kcontrol,
3151
struct snd_ctl_elem_value *ucontrol)
3152
{
3153
ucontrol->value.integer.value[0] =
3154
kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
3155
return 0;
3156
}
3157
3158
static int snd_bbfpro_vol_info(struct snd_kcontrol *kcontrol,
3159
struct snd_ctl_elem_info *uinfo)
3160
{
3161
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3162
uinfo->count = 1;
3163
uinfo->value.integer.min = SND_BBFPRO_MIXER_VAL_MIN;
3164
uinfo->value.integer.max = SND_BBFPRO_MIXER_VAL_MAX;
3165
return 0;
3166
}
3167
3168
static int snd_bbfpro_vol_put(struct snd_kcontrol *kcontrol,
3169
struct snd_ctl_elem_value *ucontrol)
3170
{
3171
int err;
3172
u16 idx;
3173
u32 new_val, old_value, uvalue;
3174
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3175
struct usb_mixer_interface *mixer = list->mixer;
3176
3177
uvalue = ucontrol->value.integer.value[0];
3178
idx = kcontrol->private_value & SND_BBFPRO_MIXER_IDX_MASK;
3179
old_value = kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
3180
3181
if (uvalue > SND_BBFPRO_MIXER_VAL_MAX)
3182
return -EINVAL;
3183
3184
if (uvalue == old_value)
3185
return 0;
3186
3187
new_val = uvalue & SND_BBFPRO_MIXER_VAL_MASK;
3188
3189
kcontrol->private_value = idx
3190
| (new_val << SND_BBFPRO_MIXER_VAL_SHIFT);
3191
3192
err = snd_bbfpro_vol_update(mixer, idx, new_val);
3193
return err < 0 ? err : 1;
3194
}
3195
3196
static int snd_bbfpro_vol_resume(struct usb_mixer_elem_list *list)
3197
{
3198
int pv = list->kctl->private_value;
3199
u16 idx = pv & SND_BBFPRO_MIXER_IDX_MASK;
3200
u32 val = (pv >> SND_BBFPRO_MIXER_VAL_SHIFT)
3201
& SND_BBFPRO_MIXER_VAL_MASK;
3202
return snd_bbfpro_vol_update(list->mixer, idx, val);
3203
}
3204
3205
// Predfine elements
3206
static const struct snd_kcontrol_new snd_bbfpro_ctl_control = {
3207
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3208
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3209
.index = 0,
3210
.info = snd_bbfpro_ctl_info,
3211
.get = snd_bbfpro_ctl_get,
3212
.put = snd_bbfpro_ctl_put
3213
};
3214
3215
static const struct snd_kcontrol_new snd_bbfpro_gain_control = {
3216
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3217
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3218
.index = 0,
3219
.info = snd_bbfpro_gain_info,
3220
.get = snd_bbfpro_gain_get,
3221
.put = snd_bbfpro_gain_put
3222
};
3223
3224
static const struct snd_kcontrol_new snd_bbfpro_vol_control = {
3225
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3226
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3227
.index = 0,
3228
.info = snd_bbfpro_vol_info,
3229
.get = snd_bbfpro_vol_get,
3230
.put = snd_bbfpro_vol_put
3231
};
3232
3233
static int snd_bbfpro_ctl_add(struct usb_mixer_interface *mixer, u8 reg,
3234
u8 index, char *name)
3235
{
3236
struct snd_kcontrol_new knew = snd_bbfpro_ctl_control;
3237
3238
knew.name = name;
3239
knew.private_value = (reg & SND_BBFPRO_CTL_REG_MASK)
3240
| ((index & SND_BBFPRO_CTL_IDX_MASK)
3241
<< SND_BBFPRO_CTL_IDX_SHIFT);
3242
3243
return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_ctl_resume,
3244
&knew, NULL);
3245
}
3246
3247
static int snd_bbfpro_gain_add(struct usb_mixer_interface *mixer, u8 channel,
3248
char *name)
3249
{
3250
struct snd_kcontrol_new knew = snd_bbfpro_gain_control;
3251
3252
knew.name = name;
3253
knew.private_value = channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT;
3254
3255
return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_gain_resume,
3256
&knew, NULL);
3257
}
3258
3259
static int snd_bbfpro_vol_add(struct usb_mixer_interface *mixer, u16 index,
3260
char *name)
3261
{
3262
struct snd_kcontrol_new knew = snd_bbfpro_vol_control;
3263
3264
knew.name = name;
3265
knew.private_value = index & SND_BBFPRO_MIXER_IDX_MASK;
3266
3267
return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_vol_resume,
3268
&knew, NULL);
3269
}
3270
3271
static int snd_bbfpro_controls_create(struct usb_mixer_interface *mixer)
3272
{
3273
int err, i, o;
3274
char name[48];
3275
3276
static const char * const input[] = {
3277
"AN1", "AN2", "IN3", "IN4", "AS1", "AS2", "ADAT3",
3278
"ADAT4", "ADAT5", "ADAT6", "ADAT7", "ADAT8"};
3279
3280
static const char * const output[] = {
3281
"AN1", "AN2", "PH3", "PH4", "AS1", "AS2", "ADAT3", "ADAT4",
3282
"ADAT5", "ADAT6", "ADAT7", "ADAT8"};
3283
3284
for (o = 0 ; o < 12 ; ++o) {
3285
for (i = 0 ; i < 12 ; ++i) {
3286
// Line routing
3287
snprintf(name, sizeof(name),
3288
"%s-%s-%s Playback Volume",
3289
(i < 2 ? "Mic" : "Line"),
3290
input[i], output[o]);
3291
err = snd_bbfpro_vol_add(mixer, (26 * o + i), name);
3292
if (err < 0)
3293
return err;
3294
3295
// PCM routing... yes, it is output remapping
3296
snprintf(name, sizeof(name),
3297
"PCM-%s-%s Playback Volume",
3298
output[i], output[o]);
3299
err = snd_bbfpro_vol_add(mixer, (26 * o + 12 + i),
3300
name);
3301
if (err < 0)
3302
return err;
3303
}
3304
}
3305
3306
// Main out volume
3307
for (i = 0 ; i < 12 ; ++i) {
3308
snprintf(name, sizeof(name), "Main-Out %s", output[i]);
3309
// Main outs are offset to 992
3310
err = snd_bbfpro_vol_add(mixer,
3311
i + SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET,
3312
name);
3313
if (err < 0)
3314
return err;
3315
}
3316
3317
// Input gain
3318
for (i = 0 ; i < 4 ; ++i) {
3319
if (i < 2)
3320
snprintf(name, sizeof(name), "Mic-%s Gain", input[i]);
3321
else
3322
snprintf(name, sizeof(name), "Line-%s Gain", input[i]);
3323
3324
err = snd_bbfpro_gain_add(mixer, i, name);
3325
if (err < 0)
3326
return err;
3327
}
3328
3329
// Control Reg 1
3330
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3331
SND_BBFPRO_CTL_REG1_CLK_OPTICAL,
3332
"Sample Clock Source");
3333
if (err < 0)
3334
return err;
3335
3336
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3337
SND_BBFPRO_CTL_REG1_SPDIF_PRO,
3338
"IEC958 Pro Mask");
3339
if (err < 0)
3340
return err;
3341
3342
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3343
SND_BBFPRO_CTL_REG1_SPDIF_EMPH,
3344
"IEC958 Emphasis");
3345
if (err < 0)
3346
return err;
3347
3348
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3349
SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL,
3350
"IEC958 Switch");
3351
if (err < 0)
3352
return err;
3353
3354
// Control Reg 2
3355
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3356
SND_BBFPRO_CTL_REG2_48V_AN1,
3357
"Mic-AN1 48V");
3358
if (err < 0)
3359
return err;
3360
3361
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3362
SND_BBFPRO_CTL_REG2_48V_AN2,
3363
"Mic-AN2 48V");
3364
if (err < 0)
3365
return err;
3366
3367
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3368
SND_BBFPRO_CTL_REG2_SENS_IN3,
3369
"Line-IN3 Sens.");
3370
if (err < 0)
3371
return err;
3372
3373
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3374
SND_BBFPRO_CTL_REG2_SENS_IN4,
3375
"Line-IN4 Sens.");
3376
if (err < 0)
3377
return err;
3378
3379
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3380
SND_BBFPRO_CTL_REG2_PAD_AN1,
3381
"Mic-AN1 PAD");
3382
if (err < 0)
3383
return err;
3384
3385
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3386
SND_BBFPRO_CTL_REG2_PAD_AN2,
3387
"Mic-AN2 PAD");
3388
if (err < 0)
3389
return err;
3390
3391
return 0;
3392
}
3393
3394
/*
3395
* RME Digiface USB
3396
*/
3397
3398
#define RME_DIGIFACE_READ_STATUS 17
3399
#define RME_DIGIFACE_STATUS_REG0L 0
3400
#define RME_DIGIFACE_STATUS_REG0H 1
3401
#define RME_DIGIFACE_STATUS_REG1L 2
3402
#define RME_DIGIFACE_STATUS_REG1H 3
3403
#define RME_DIGIFACE_STATUS_REG2L 4
3404
#define RME_DIGIFACE_STATUS_REG2H 5
3405
#define RME_DIGIFACE_STATUS_REG3L 6
3406
#define RME_DIGIFACE_STATUS_REG3H 7
3407
3408
#define RME_DIGIFACE_CTL_REG1 16
3409
#define RME_DIGIFACE_CTL_REG2 18
3410
3411
/* Reg is overloaded, 0-7 for status halfwords or 16 or 18 for control registers */
3412
#define RME_DIGIFACE_REGISTER(reg, mask) (((reg) << 16) | (mask))
3413
#define RME_DIGIFACE_INVERT BIT(31)
3414
3415
static int snd_rme_digiface_write_reg(struct snd_kcontrol *kcontrol, int item, u16 mask, u16 val)
3416
{
3417
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3418
struct snd_usb_audio *chip = list->mixer->chip;
3419
struct usb_device *dev = chip->dev;
3420
int err;
3421
3422
err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0),
3423
item,
3424
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
3425
val, mask, NULL, 0);
3426
if (err < 0)
3427
dev_err(&dev->dev,
3428
"unable to issue control set request %d (ret = %d)",
3429
item, err);
3430
return err;
3431
}
3432
3433
static int snd_rme_digiface_read_status(struct snd_kcontrol *kcontrol, u32 status[4])
3434
{
3435
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3436
struct snd_usb_audio *chip = list->mixer->chip;
3437
struct usb_device *dev = chip->dev;
3438
__le32 buf[4];
3439
int err;
3440
3441
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
3442
RME_DIGIFACE_READ_STATUS,
3443
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
3444
0, 0,
3445
buf, sizeof(buf));
3446
if (err < 0) {
3447
dev_err(&dev->dev,
3448
"unable to issue status read request (ret = %d)",
3449
err);
3450
} else {
3451
for (int i = 0; i < ARRAY_SIZE(buf); i++)
3452
status[i] = le32_to_cpu(buf[i]);
3453
}
3454
return err;
3455
}
3456
3457
static int snd_rme_digiface_get_status_val(struct snd_kcontrol *kcontrol)
3458
{
3459
int err;
3460
u32 status[4];
3461
bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT;
3462
u8 reg = (kcontrol->private_value >> 16) & 0xff;
3463
u16 mask = kcontrol->private_value & 0xffff;
3464
u16 val;
3465
3466
err = snd_rme_digiface_read_status(kcontrol, status);
3467
if (err < 0)
3468
return err;
3469
3470
switch (reg) {
3471
/* Status register halfwords */
3472
case RME_DIGIFACE_STATUS_REG0L ... RME_DIGIFACE_STATUS_REG3H:
3473
break;
3474
case RME_DIGIFACE_CTL_REG1: /* Control register 1, present in halfword 3L */
3475
reg = RME_DIGIFACE_STATUS_REG3L;
3476
break;
3477
case RME_DIGIFACE_CTL_REG2: /* Control register 2, present in halfword 3H */
3478
reg = RME_DIGIFACE_STATUS_REG3H;
3479
break;
3480
default:
3481
return -EINVAL;
3482
}
3483
3484
if (reg & 1)
3485
val = status[reg >> 1] >> 16;
3486
else
3487
val = status[reg >> 1] & 0xffff;
3488
3489
if (invert)
3490
val ^= mask;
3491
3492
return field_get(mask, val);
3493
}
3494
3495
static int snd_rme_digiface_rate_get(struct snd_kcontrol *kcontrol,
3496
struct snd_ctl_elem_value *ucontrol)
3497
{
3498
int freq = snd_rme_digiface_get_status_val(kcontrol);
3499
3500
if (freq < 0)
3501
return freq;
3502
if (freq >= ARRAY_SIZE(snd_rme_rate_table))
3503
return -EIO;
3504
3505
ucontrol->value.integer.value[0] = snd_rme_rate_table[freq];
3506
return 0;
3507
}
3508
3509
static int snd_rme_digiface_enum_get(struct snd_kcontrol *kcontrol,
3510
struct snd_ctl_elem_value *ucontrol)
3511
{
3512
int val = snd_rme_digiface_get_status_val(kcontrol);
3513
3514
if (val < 0)
3515
return val;
3516
3517
ucontrol->value.enumerated.item[0] = val;
3518
return 0;
3519
}
3520
3521
static int snd_rme_digiface_enum_put(struct snd_kcontrol *kcontrol,
3522
struct snd_ctl_elem_value *ucontrol)
3523
{
3524
bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT;
3525
u8 reg = (kcontrol->private_value >> 16) & 0xff;
3526
u16 mask = kcontrol->private_value & 0xffff;
3527
u16 val = field_prep(mask, ucontrol->value.enumerated.item[0]);
3528
3529
if (invert)
3530
val ^= mask;
3531
3532
return snd_rme_digiface_write_reg(kcontrol, reg, mask, val);
3533
}
3534
3535
static int snd_rme_digiface_current_sync_get(struct snd_kcontrol *kcontrol,
3536
struct snd_ctl_elem_value *ucontrol)
3537
{
3538
int ret = snd_rme_digiface_enum_get(kcontrol, ucontrol);
3539
3540
/* 7 means internal for current sync */
3541
if (ucontrol->value.enumerated.item[0] == 7)
3542
ucontrol->value.enumerated.item[0] = 0;
3543
3544
return ret;
3545
}
3546
3547
static int snd_rme_digiface_sync_state_get(struct snd_kcontrol *kcontrol,
3548
struct snd_ctl_elem_value *ucontrol)
3549
{
3550
u32 status[4];
3551
int err;
3552
bool valid, sync;
3553
3554
err = snd_rme_digiface_read_status(kcontrol, status);
3555
if (err < 0)
3556
return err;
3557
3558
valid = status[0] & BIT(kcontrol->private_value);
3559
sync = status[0] & BIT(5 + kcontrol->private_value);
3560
3561
if (!valid)
3562
ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_NOLOCK;
3563
else if (!sync)
3564
ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_LOCK;
3565
else
3566
ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_SYNC;
3567
return 0;
3568
}
3569
3570
static int snd_rme_digiface_format_info(struct snd_kcontrol *kcontrol,
3571
struct snd_ctl_elem_info *uinfo)
3572
{
3573
static const char *const format[] = {
3574
"ADAT", "S/PDIF"
3575
};
3576
3577
return snd_ctl_enum_info(uinfo, 1,
3578
ARRAY_SIZE(format), format);
3579
}
3580
3581
static int snd_rme_digiface_sync_source_info(struct snd_kcontrol *kcontrol,
3582
struct snd_ctl_elem_info *uinfo)
3583
{
3584
static const char *const sync_sources[] = {
3585
"Internal", "Input 1", "Input 2", "Input 3", "Input 4"
3586
};
3587
3588
return snd_ctl_enum_info(uinfo, 1,
3589
ARRAY_SIZE(sync_sources), sync_sources);
3590
}
3591
3592
static int snd_rme_digiface_rate_info(struct snd_kcontrol *kcontrol,
3593
struct snd_ctl_elem_info *uinfo)
3594
{
3595
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3596
uinfo->count = 1;
3597
uinfo->value.integer.min = 0;
3598
uinfo->value.integer.max = 200000;
3599
uinfo->value.integer.step = 0;
3600
return 0;
3601
}
3602
3603
static const struct snd_kcontrol_new snd_rme_digiface_controls[] = {
3604
{
3605
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3606
.name = "Input 1 Sync",
3607
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3608
.info = snd_rme_sync_state_info,
3609
.get = snd_rme_digiface_sync_state_get,
3610
.private_value = 0,
3611
},
3612
{
3613
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3614
.name = "Input 1 Format",
3615
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3616
.info = snd_rme_digiface_format_info,
3617
.get = snd_rme_digiface_enum_get,
3618
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0H, BIT(0)) |
3619
RME_DIGIFACE_INVERT,
3620
},
3621
{
3622
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3623
.name = "Input 1 Rate",
3624
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3625
.info = snd_rme_digiface_rate_info,
3626
.get = snd_rme_digiface_rate_get,
3627
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)),
3628
},
3629
{
3630
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3631
.name = "Input 2 Sync",
3632
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3633
.info = snd_rme_sync_state_info,
3634
.get = snd_rme_digiface_sync_state_get,
3635
.private_value = 1,
3636
},
3637
{
3638
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3639
.name = "Input 2 Format",
3640
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3641
.info = snd_rme_digiface_format_info,
3642
.get = snd_rme_digiface_enum_get,
3643
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(13)) |
3644
RME_DIGIFACE_INVERT,
3645
},
3646
{
3647
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3648
.name = "Input 2 Rate",
3649
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3650
.info = snd_rme_digiface_rate_info,
3651
.get = snd_rme_digiface_rate_get,
3652
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(7, 4)),
3653
},
3654
{
3655
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3656
.name = "Input 3 Sync",
3657
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3658
.info = snd_rme_sync_state_info,
3659
.get = snd_rme_digiface_sync_state_get,
3660
.private_value = 2,
3661
},
3662
{
3663
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3664
.name = "Input 3 Format",
3665
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3666
.info = snd_rme_digiface_format_info,
3667
.get = snd_rme_digiface_enum_get,
3668
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(14)) |
3669
RME_DIGIFACE_INVERT,
3670
},
3671
{
3672
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3673
.name = "Input 3 Rate",
3674
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3675
.info = snd_rme_digiface_rate_info,
3676
.get = snd_rme_digiface_rate_get,
3677
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(11, 8)),
3678
},
3679
{
3680
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3681
.name = "Input 4 Sync",
3682
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3683
.info = snd_rme_sync_state_info,
3684
.get = snd_rme_digiface_sync_state_get,
3685
.private_value = 3,
3686
},
3687
{
3688
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3689
.name = "Input 4 Format",
3690
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3691
.info = snd_rme_digiface_format_info,
3692
.get = snd_rme_digiface_enum_get,
3693
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(15, 12)) |
3694
RME_DIGIFACE_INVERT,
3695
},
3696
{
3697
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3698
.name = "Input 4 Rate",
3699
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3700
.info = snd_rme_digiface_rate_info,
3701
.get = snd_rme_digiface_rate_get,
3702
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)),
3703
},
3704
{
3705
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3706
.name = "Output 1 Format",
3707
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3708
.info = snd_rme_digiface_format_info,
3709
.get = snd_rme_digiface_enum_get,
3710
.put = snd_rme_digiface_enum_put,
3711
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(0)),
3712
},
3713
{
3714
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3715
.name = "Output 2 Format",
3716
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3717
.info = snd_rme_digiface_format_info,
3718
.get = snd_rme_digiface_enum_get,
3719
.put = snd_rme_digiface_enum_put,
3720
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(1)),
3721
},
3722
{
3723
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3724
.name = "Output 3 Format",
3725
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3726
.info = snd_rme_digiface_format_info,
3727
.get = snd_rme_digiface_enum_get,
3728
.put = snd_rme_digiface_enum_put,
3729
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(3)),
3730
},
3731
{
3732
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3733
.name = "Output 4 Format",
3734
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3735
.info = snd_rme_digiface_format_info,
3736
.get = snd_rme_digiface_enum_get,
3737
.put = snd_rme_digiface_enum_put,
3738
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(4)),
3739
},
3740
{
3741
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3742
.name = "Sync Source",
3743
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3744
.info = snd_rme_digiface_sync_source_info,
3745
.get = snd_rme_digiface_enum_get,
3746
.put = snd_rme_digiface_enum_put,
3747
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(2, 0)),
3748
},
3749
{
3750
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3751
.name = "Current Sync Source",
3752
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3753
.info = snd_rme_digiface_sync_source_info,
3754
.get = snd_rme_digiface_current_sync_get,
3755
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(12, 10)),
3756
},
3757
{
3758
/*
3759
* This is writeable, but it is only set by the PCM rate.
3760
* Mixer apps currently need to drive the mixer using raw USB requests,
3761
* so they can also change this that way to configure the rate for
3762
* stand-alone operation when the PCM is closed.
3763
*/
3764
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3765
.name = "System Rate",
3766
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3767
.info = snd_rme_rate_info,
3768
.get = snd_rme_digiface_rate_get,
3769
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(6, 3)),
3770
},
3771
{
3772
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3773
.name = "Current Rate",
3774
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3775
.info = snd_rme_rate_info,
3776
.get = snd_rme_digiface_rate_get,
3777
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1H, GENMASK(7, 4)),
3778
}
3779
};
3780
3781
static int snd_rme_digiface_controls_create(struct usb_mixer_interface *mixer)
3782
{
3783
int err, i;
3784
3785
for (i = 0; i < ARRAY_SIZE(snd_rme_digiface_controls); ++i) {
3786
err = add_single_ctl_with_resume(mixer, 0,
3787
NULL,
3788
&snd_rme_digiface_controls[i],
3789
NULL);
3790
if (err < 0)
3791
return err;
3792
}
3793
3794
return 0;
3795
}
3796
3797
/*
3798
* Pioneer DJ / AlphaTheta DJM Mixers
3799
*
3800
* These devices generally have options for soft-switching the playback and
3801
* capture sources in addition to the recording level. Although different
3802
* devices have different configurations, there seems to be canonical values
3803
* for specific capture/playback types: See the definitions of these below.
3804
*
3805
* The wValue is masked with the stereo channel number. e.g. Setting Ch2 to
3806
* capture phono would be 0x0203. Capture, playback and capture level have
3807
* different wIndexes.
3808
*/
3809
3810
// Capture types
3811
#define SND_DJM_CAP_LINE 0x00
3812
#define SND_DJM_CAP_CDLINE 0x01
3813
#define SND_DJM_CAP_DIGITAL 0x02
3814
#define SND_DJM_CAP_PHONO 0x03
3815
#define SND_DJM_CAP_PREFADER 0x05
3816
#define SND_DJM_CAP_PFADER 0x06
3817
#define SND_DJM_CAP_XFADERA 0x07
3818
#define SND_DJM_CAP_XFADERB 0x08
3819
#define SND_DJM_CAP_MIC 0x09
3820
#define SND_DJM_CAP_AUX 0x0d
3821
#define SND_DJM_CAP_RECOUT 0x0a
3822
#define SND_DJM_CAP_RECOUT_NOMIC 0x0e
3823
#define SND_DJM_CAP_NONE 0x0f
3824
#define SND_DJM_CAP_FXSEND 0x10
3825
#define SND_DJM_CAP_CH1PFADER 0x11
3826
#define SND_DJM_CAP_CH2PFADER 0x12
3827
#define SND_DJM_CAP_CH3PFADER 0x13
3828
#define SND_DJM_CAP_CH4PFADER 0x14
3829
#define SND_DJM_CAP_EXT1SEND 0x21
3830
#define SND_DJM_CAP_EXT2SEND 0x22
3831
#define SND_DJM_CAP_CH1PREFADER 0x31
3832
#define SND_DJM_CAP_CH2PREFADER 0x32
3833
#define SND_DJM_CAP_CH3PREFADER 0x33
3834
#define SND_DJM_CAP_CH4PREFADER 0x34
3835
3836
// Playback types
3837
#define SND_DJM_PB_CH1 0x00
3838
#define SND_DJM_PB_CH2 0x01
3839
#define SND_DJM_PB_AUX 0x04
3840
3841
#define SND_DJM_WINDEX_CAP 0x8002
3842
#define SND_DJM_WINDEX_CAPLVL 0x8003
3843
#define SND_DJM_WINDEX_PB 0x8016
3844
3845
// kcontrol->private_value layout
3846
#define SND_DJM_VALUE_MASK 0x0000ffff
3847
#define SND_DJM_GROUP_MASK 0x00ff0000
3848
#define SND_DJM_DEVICE_MASK 0xff000000
3849
#define SND_DJM_GROUP_SHIFT 16
3850
#define SND_DJM_DEVICE_SHIFT 24
3851
3852
// device table index
3853
// used for the snd_djm_devices table, so please update accordingly
3854
#define SND_DJM_250MK2_IDX 0x0
3855
#define SND_DJM_750_IDX 0x1
3856
#define SND_DJM_850_IDX 0x2
3857
#define SND_DJM_900NXS2_IDX 0x3
3858
#define SND_DJM_750MK2_IDX 0x4
3859
#define SND_DJM_450_IDX 0x5
3860
#define SND_DJM_A9_IDX 0x6
3861
#define SND_DJM_V10_IDX 0x7
3862
3863
#define SND_DJM_CTL(_name, suffix, _default_value, _windex) { \
3864
.name = _name, \
3865
.options = snd_djm_opts_##suffix, \
3866
.noptions = ARRAY_SIZE(snd_djm_opts_##suffix), \
3867
.default_value = _default_value, \
3868
.wIndex = _windex }
3869
3870
#define SND_DJM_DEVICE(suffix) { \
3871
.controls = snd_djm_ctls_##suffix, \
3872
.ncontrols = ARRAY_SIZE(snd_djm_ctls_##suffix) }
3873
3874
struct snd_djm_device {
3875
const char *name;
3876
const struct snd_djm_ctl *controls;
3877
size_t ncontrols;
3878
};
3879
3880
struct snd_djm_ctl {
3881
const char *name;
3882
const u16 *options;
3883
size_t noptions;
3884
u16 default_value;
3885
u16 wIndex;
3886
};
3887
3888
static const char *snd_djm_get_label_caplevel_common(u16 wvalue)
3889
{
3890
switch (wvalue) {
3891
case 0x0000: return "-19dB";
3892
case 0x0100: return "-15dB";
3893
case 0x0200: return "-10dB";
3894
case 0x0300: return "-5dB";
3895
default: return NULL;
3896
}
3897
};
3898
3899
// Models like DJM-A9 or DJM-V10 have different capture levels than others
3900
static const char *snd_djm_get_label_caplevel_high(u16 wvalue)
3901
{
3902
switch (wvalue) {
3903
case 0x0000: return "+15dB";
3904
case 0x0100: return "+12dB";
3905
case 0x0200: return "+9dB";
3906
case 0x0300: return "+6dB";
3907
case 0x0400: return "+3dB";
3908
case 0x0500: return "0dB";
3909
default: return NULL;
3910
}
3911
};
3912
3913
static const char *snd_djm_get_label_cap_common(u16 wvalue)
3914
{
3915
switch (wvalue & 0x00ff) {
3916
case SND_DJM_CAP_LINE: return "Control Tone LINE";
3917
case SND_DJM_CAP_CDLINE: return "Control Tone CD/LINE";
3918
case SND_DJM_CAP_DIGITAL: return "Control Tone DIGITAL";
3919
case SND_DJM_CAP_PHONO: return "Control Tone PHONO";
3920
case SND_DJM_CAP_PFADER: return "Post Fader";
3921
case SND_DJM_CAP_XFADERA: return "Cross Fader A";
3922
case SND_DJM_CAP_XFADERB: return "Cross Fader B";
3923
case SND_DJM_CAP_MIC: return "Mic";
3924
case SND_DJM_CAP_RECOUT: return "Rec Out";
3925
case SND_DJM_CAP_RECOUT_NOMIC: return "Rec Out without Mic";
3926
case SND_DJM_CAP_AUX: return "Aux";
3927
case SND_DJM_CAP_NONE: return "None";
3928
case SND_DJM_CAP_FXSEND: return "FX SEND";
3929
case SND_DJM_CAP_CH1PREFADER: return "Pre Fader Ch1";
3930
case SND_DJM_CAP_CH2PREFADER: return "Pre Fader Ch2";
3931
case SND_DJM_CAP_CH3PREFADER: return "Pre Fader Ch3";
3932
case SND_DJM_CAP_CH4PREFADER: return "Pre Fader Ch4";
3933
case SND_DJM_CAP_CH1PFADER: return "Post Fader Ch1";
3934
case SND_DJM_CAP_CH2PFADER: return "Post Fader Ch2";
3935
case SND_DJM_CAP_CH3PFADER: return "Post Fader Ch3";
3936
case SND_DJM_CAP_CH4PFADER: return "Post Fader Ch4";
3937
case SND_DJM_CAP_EXT1SEND: return "EXT1 SEND";
3938
case SND_DJM_CAP_EXT2SEND: return "EXT2 SEND";
3939
default: return NULL;
3940
}
3941
};
3942
3943
// The DJM-850 has different values for CD/LINE and LINE capture
3944
// control options than the other DJM declared in this file.
3945
static const char *snd_djm_get_label_cap_850(u16 wvalue)
3946
{
3947
switch (wvalue & 0x00ff) {
3948
case 0x00: return "Control Tone CD/LINE";
3949
case 0x01: return "Control Tone LINE";
3950
default: return snd_djm_get_label_cap_common(wvalue);
3951
}
3952
};
3953
3954
static const char *snd_djm_get_label_caplevel(u8 device_idx, u16 wvalue)
3955
{
3956
switch (device_idx) {
3957
case SND_DJM_A9_IDX: return snd_djm_get_label_caplevel_high(wvalue);
3958
case SND_DJM_V10_IDX: return snd_djm_get_label_caplevel_high(wvalue);
3959
default: return snd_djm_get_label_caplevel_common(wvalue);
3960
}
3961
};
3962
3963
static const char *snd_djm_get_label_cap(u8 device_idx, u16 wvalue)
3964
{
3965
switch (device_idx) {
3966
case SND_DJM_850_IDX: return snd_djm_get_label_cap_850(wvalue);
3967
default: return snd_djm_get_label_cap_common(wvalue);
3968
}
3969
};
3970
3971
static const char *snd_djm_get_label_pb(u16 wvalue)
3972
{
3973
switch (wvalue & 0x00ff) {
3974
case SND_DJM_PB_CH1: return "Ch1";
3975
case SND_DJM_PB_CH2: return "Ch2";
3976
case SND_DJM_PB_AUX: return "Aux";
3977
default: return NULL;
3978
}
3979
};
3980
3981
static const char *snd_djm_get_label(u8 device_idx, u16 wvalue, u16 windex)
3982
{
3983
switch (windex) {
3984
case SND_DJM_WINDEX_CAPLVL: return snd_djm_get_label_caplevel(device_idx, wvalue);
3985
case SND_DJM_WINDEX_CAP: return snd_djm_get_label_cap(device_idx, wvalue);
3986
case SND_DJM_WINDEX_PB: return snd_djm_get_label_pb(wvalue);
3987
default: return NULL;
3988
}
3989
};
3990
3991
// common DJM capture level option values
3992
static const u16 snd_djm_opts_cap_level[] = {
3993
0x0000, 0x0100, 0x0200, 0x0300 };
3994
3995
// DJM-250MK2
3996
static const u16 snd_djm_opts_250mk2_cap1[] = {
3997
0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a };
3998
3999
static const u16 snd_djm_opts_250mk2_cap2[] = {
4000
0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a };
4001
4002
static const u16 snd_djm_opts_250mk2_cap3[] = {
4003
0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d };
4004
4005
static const u16 snd_djm_opts_250mk2_pb1[] = { 0x0100, 0x0101, 0x0104 };
4006
static const u16 snd_djm_opts_250mk2_pb2[] = { 0x0200, 0x0201, 0x0204 };
4007
static const u16 snd_djm_opts_250mk2_pb3[] = { 0x0300, 0x0301, 0x0304 };
4008
4009
static const struct snd_djm_ctl snd_djm_ctls_250mk2[] = {
4010
SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4011
SND_DJM_CTL("Input 1 Capture Switch", 250mk2_cap1, 2, SND_DJM_WINDEX_CAP),
4012
SND_DJM_CTL("Input 2 Capture Switch", 250mk2_cap2, 2, SND_DJM_WINDEX_CAP),
4013
SND_DJM_CTL("Input 3 Capture Switch", 250mk2_cap3, 0, SND_DJM_WINDEX_CAP),
4014
SND_DJM_CTL("Output 1 Playback Switch", 250mk2_pb1, 0, SND_DJM_WINDEX_PB),
4015
SND_DJM_CTL("Output 2 Playback Switch", 250mk2_pb2, 1, SND_DJM_WINDEX_PB),
4016
SND_DJM_CTL("Output 3 Playback Switch", 250mk2_pb3, 2, SND_DJM_WINDEX_PB)
4017
};
4018
4019
// DJM-450
4020
static const u16 snd_djm_opts_450_cap1[] = {
4021
0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a };
4022
4023
static const u16 snd_djm_opts_450_cap2[] = {
4024
0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a };
4025
4026
static const u16 snd_djm_opts_450_cap3[] = {
4027
0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d };
4028
4029
static const u16 snd_djm_opts_450_pb1[] = { 0x0100, 0x0101, 0x0104 };
4030
static const u16 snd_djm_opts_450_pb2[] = { 0x0200, 0x0201, 0x0204 };
4031
static const u16 snd_djm_opts_450_pb3[] = { 0x0300, 0x0301, 0x0304 };
4032
4033
static const struct snd_djm_ctl snd_djm_ctls_450[] = {
4034
SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4035
SND_DJM_CTL("Input 1 Capture Switch", 450_cap1, 2, SND_DJM_WINDEX_CAP),
4036
SND_DJM_CTL("Input 2 Capture Switch", 450_cap2, 2, SND_DJM_WINDEX_CAP),
4037
SND_DJM_CTL("Input 3 Capture Switch", 450_cap3, 0, SND_DJM_WINDEX_CAP),
4038
SND_DJM_CTL("Output 1 Playback Switch", 450_pb1, 0, SND_DJM_WINDEX_PB),
4039
SND_DJM_CTL("Output 2 Playback Switch", 450_pb2, 1, SND_DJM_WINDEX_PB),
4040
SND_DJM_CTL("Output 3 Playback Switch", 450_pb3, 2, SND_DJM_WINDEX_PB)
4041
};
4042
4043
// DJM-750
4044
static const u16 snd_djm_opts_750_cap1[] = {
4045
0x0101, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
4046
static const u16 snd_djm_opts_750_cap2[] = {
4047
0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
4048
static const u16 snd_djm_opts_750_cap3[] = {
4049
0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
4050
static const u16 snd_djm_opts_750_cap4[] = {
4051
0x0401, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
4052
4053
static const struct snd_djm_ctl snd_djm_ctls_750[] = {
4054
SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4055
SND_DJM_CTL("Input 1 Capture Switch", 750_cap1, 2, SND_DJM_WINDEX_CAP),
4056
SND_DJM_CTL("Input 2 Capture Switch", 750_cap2, 2, SND_DJM_WINDEX_CAP),
4057
SND_DJM_CTL("Input 3 Capture Switch", 750_cap3, 0, SND_DJM_WINDEX_CAP),
4058
SND_DJM_CTL("Input 4 Capture Switch", 750_cap4, 0, SND_DJM_WINDEX_CAP)
4059
};
4060
4061
// DJM-850
4062
static const u16 snd_djm_opts_850_cap1[] = {
4063
0x0100, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
4064
static const u16 snd_djm_opts_850_cap2[] = {
4065
0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
4066
static const u16 snd_djm_opts_850_cap3[] = {
4067
0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
4068
static const u16 snd_djm_opts_850_cap4[] = {
4069
0x0400, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
4070
4071
static const struct snd_djm_ctl snd_djm_ctls_850[] = {
4072
SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4073
SND_DJM_CTL("Input 1 Capture Switch", 850_cap1, 1, SND_DJM_WINDEX_CAP),
4074
SND_DJM_CTL("Input 2 Capture Switch", 850_cap2, 0, SND_DJM_WINDEX_CAP),
4075
SND_DJM_CTL("Input 3 Capture Switch", 850_cap3, 0, SND_DJM_WINDEX_CAP),
4076
SND_DJM_CTL("Input 4 Capture Switch", 850_cap4, 1, SND_DJM_WINDEX_CAP)
4077
};
4078
4079
// DJM-900NXS2
4080
static const u16 snd_djm_opts_900nxs2_cap1[] = {
4081
0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a };
4082
static const u16 snd_djm_opts_900nxs2_cap2[] = {
4083
0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a };
4084
static const u16 snd_djm_opts_900nxs2_cap3[] = {
4085
0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a };
4086
static const u16 snd_djm_opts_900nxs2_cap4[] = {
4087
0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a };
4088
static const u16 snd_djm_opts_900nxs2_cap5[] = {
4089
0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 };
4090
4091
static const struct snd_djm_ctl snd_djm_ctls_900nxs2[] = {
4092
SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4093
SND_DJM_CTL("Input 1 Capture Switch", 900nxs2_cap1, 2, SND_DJM_WINDEX_CAP),
4094
SND_DJM_CTL("Input 2 Capture Switch", 900nxs2_cap2, 2, SND_DJM_WINDEX_CAP),
4095
SND_DJM_CTL("Input 3 Capture Switch", 900nxs2_cap3, 2, SND_DJM_WINDEX_CAP),
4096
SND_DJM_CTL("Input 4 Capture Switch", 900nxs2_cap4, 2, SND_DJM_WINDEX_CAP),
4097
SND_DJM_CTL("Input 5 Capture Switch", 900nxs2_cap5, 3, SND_DJM_WINDEX_CAP)
4098
};
4099
4100
// DJM-750MK2
4101
static const u16 snd_djm_opts_750mk2_cap1[] = {
4102
0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a };
4103
static const u16 snd_djm_opts_750mk2_cap2[] = {
4104
0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a };
4105
static const u16 snd_djm_opts_750mk2_cap3[] = {
4106
0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a };
4107
static const u16 snd_djm_opts_750mk2_cap4[] = {
4108
0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a };
4109
static const u16 snd_djm_opts_750mk2_cap5[] = {
4110
0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 };
4111
4112
static const u16 snd_djm_opts_750mk2_pb1[] = { 0x0100, 0x0101, 0x0104 };
4113
static const u16 snd_djm_opts_750mk2_pb2[] = { 0x0200, 0x0201, 0x0204 };
4114
static const u16 snd_djm_opts_750mk2_pb3[] = { 0x0300, 0x0301, 0x0304 };
4115
4116
static const struct snd_djm_ctl snd_djm_ctls_750mk2[] = {
4117
SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4118
SND_DJM_CTL("Input 1 Capture Switch", 750mk2_cap1, 2, SND_DJM_WINDEX_CAP),
4119
SND_DJM_CTL("Input 2 Capture Switch", 750mk2_cap2, 2, SND_DJM_WINDEX_CAP),
4120
SND_DJM_CTL("Input 3 Capture Switch", 750mk2_cap3, 2, SND_DJM_WINDEX_CAP),
4121
SND_DJM_CTL("Input 4 Capture Switch", 750mk2_cap4, 2, SND_DJM_WINDEX_CAP),
4122
SND_DJM_CTL("Input 5 Capture Switch", 750mk2_cap5, 3, SND_DJM_WINDEX_CAP),
4123
SND_DJM_CTL("Output 1 Playback Switch", 750mk2_pb1, 0, SND_DJM_WINDEX_PB),
4124
SND_DJM_CTL("Output 2 Playback Switch", 750mk2_pb2, 1, SND_DJM_WINDEX_PB),
4125
SND_DJM_CTL("Output 3 Playback Switch", 750mk2_pb3, 2, SND_DJM_WINDEX_PB)
4126
};
4127
4128
// DJM-A9
4129
static const u16 snd_djm_opts_a9_cap_level[] = {
4130
0x0000, 0x0100, 0x0200, 0x0300, 0x0400, 0x0500 };
4131
static const u16 snd_djm_opts_a9_cap1[] = {
4132
0x0107, 0x0108, 0x0109, 0x010a, 0x010e,
4133
0x111, 0x112, 0x113, 0x114, 0x0131, 0x132, 0x133, 0x134 };
4134
static const u16 snd_djm_opts_a9_cap2[] = {
4135
0x0201, 0x0202, 0x0203, 0x0205, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020e };
4136
static const u16 snd_djm_opts_a9_cap3[] = {
4137
0x0301, 0x0302, 0x0303, 0x0305, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030e };
4138
static const u16 snd_djm_opts_a9_cap4[] = {
4139
0x0401, 0x0402, 0x0403, 0x0405, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040e };
4140
static const u16 snd_djm_opts_a9_cap5[] = {
4141
0x0501, 0x0502, 0x0503, 0x0505, 0x0506, 0x0507, 0x0508, 0x0509, 0x050a, 0x050e };
4142
4143
static const struct snd_djm_ctl snd_djm_ctls_a9[] = {
4144
SND_DJM_CTL("Master Input Level Capture Switch", a9_cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4145
SND_DJM_CTL("Master Input Capture Switch", a9_cap1, 3, SND_DJM_WINDEX_CAP),
4146
SND_DJM_CTL("Input 1 Capture Switch", a9_cap2, 2, SND_DJM_WINDEX_CAP),
4147
SND_DJM_CTL("Input 2 Capture Switch", a9_cap3, 2, SND_DJM_WINDEX_CAP),
4148
SND_DJM_CTL("Input 3 Capture Switch", a9_cap4, 2, SND_DJM_WINDEX_CAP),
4149
SND_DJM_CTL("Input 4 Capture Switch", a9_cap5, 2, SND_DJM_WINDEX_CAP)
4150
};
4151
4152
// DJM-V10
4153
static const u16 snd_djm_opts_v10_cap_level[] = {
4154
0x0000, 0x0100, 0x0200, 0x0300, 0x0400, 0x0500
4155
};
4156
4157
static const u16 snd_djm_opts_v10_cap1[] = {
4158
0x0103,
4159
0x0100, 0x0102, 0x0106, 0x0110, 0x0107,
4160
0x0108, 0x0109, 0x010a, 0x0121, 0x0122
4161
};
4162
4163
static const u16 snd_djm_opts_v10_cap2[] = {
4164
0x0200, 0x0202, 0x0206, 0x0210, 0x0207,
4165
0x0208, 0x0209, 0x020a, 0x0221, 0x0222
4166
};
4167
4168
static const u16 snd_djm_opts_v10_cap3[] = {
4169
0x0303,
4170
0x0300, 0x0302, 0x0306, 0x0310, 0x0307,
4171
0x0308, 0x0309, 0x030a, 0x0321, 0x0322
4172
};
4173
4174
static const u16 snd_djm_opts_v10_cap4[] = {
4175
0x0403,
4176
0x0400, 0x0402, 0x0406, 0x0410, 0x0407,
4177
0x0408, 0x0409, 0x040a, 0x0421, 0x0422
4178
};
4179
4180
static const u16 snd_djm_opts_v10_cap5[] = {
4181
0x0500, 0x0502, 0x0506, 0x0510, 0x0507,
4182
0x0508, 0x0509, 0x050a, 0x0521, 0x0522
4183
};
4184
4185
static const u16 snd_djm_opts_v10_cap6[] = {
4186
0x0603,
4187
0x0600, 0x0602, 0x0606, 0x0610, 0x0607,
4188
0x0608, 0x0609, 0x060a, 0x0621, 0x0622
4189
};
4190
4191
static const struct snd_djm_ctl snd_djm_ctls_v10[] = {
4192
SND_DJM_CTL("Master Input Level Capture Switch", v10_cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4193
SND_DJM_CTL("Input 1 Capture Switch", v10_cap1, 2, SND_DJM_WINDEX_CAP),
4194
SND_DJM_CTL("Input 2 Capture Switch", v10_cap2, 2, SND_DJM_WINDEX_CAP),
4195
SND_DJM_CTL("Input 3 Capture Switch", v10_cap3, 0, SND_DJM_WINDEX_CAP),
4196
SND_DJM_CTL("Input 4 Capture Switch", v10_cap4, 0, SND_DJM_WINDEX_CAP),
4197
SND_DJM_CTL("Input 5 Capture Switch", v10_cap5, 0, SND_DJM_WINDEX_CAP),
4198
SND_DJM_CTL("Input 6 Capture Switch", v10_cap6, 0, SND_DJM_WINDEX_CAP)
4199
// playback channels are fixed and controlled by hardware knobs on the mixer
4200
};
4201
4202
static const struct snd_djm_device snd_djm_devices[] = {
4203
[SND_DJM_250MK2_IDX] = SND_DJM_DEVICE(250mk2),
4204
[SND_DJM_750_IDX] = SND_DJM_DEVICE(750),
4205
[SND_DJM_850_IDX] = SND_DJM_DEVICE(850),
4206
[SND_DJM_900NXS2_IDX] = SND_DJM_DEVICE(900nxs2),
4207
[SND_DJM_750MK2_IDX] = SND_DJM_DEVICE(750mk2),
4208
[SND_DJM_450_IDX] = SND_DJM_DEVICE(450),
4209
[SND_DJM_A9_IDX] = SND_DJM_DEVICE(a9),
4210
[SND_DJM_V10_IDX] = SND_DJM_DEVICE(v10),
4211
};
4212
4213
static int snd_djm_controls_info(struct snd_kcontrol *kctl,
4214
struct snd_ctl_elem_info *info)
4215
{
4216
unsigned long private_value = kctl->private_value;
4217
u8 device_idx = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
4218
u8 ctl_idx = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
4219
const struct snd_djm_device *device = &snd_djm_devices[device_idx];
4220
const char *name;
4221
const struct snd_djm_ctl *ctl;
4222
size_t noptions;
4223
4224
if (ctl_idx >= device->ncontrols)
4225
return -EINVAL;
4226
4227
ctl = &device->controls[ctl_idx];
4228
noptions = ctl->noptions;
4229
if (info->value.enumerated.item >= noptions)
4230
info->value.enumerated.item = noptions - 1;
4231
4232
name = snd_djm_get_label(device_idx,
4233
ctl->options[info->value.enumerated.item],
4234
ctl->wIndex);
4235
if (!name)
4236
return -EINVAL;
4237
4238
strscpy(info->value.enumerated.name, name, sizeof(info->value.enumerated.name));
4239
info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4240
info->count = 1;
4241
info->value.enumerated.items = noptions;
4242
return 0;
4243
}
4244
4245
static int snd_djm_controls_update(struct usb_mixer_interface *mixer,
4246
u8 device_idx, u8 group, u16 value)
4247
{
4248
const struct snd_djm_device *device = &snd_djm_devices[device_idx];
4249
4250
if (group >= device->ncontrols || value >= device->controls[group].noptions)
4251
return -EINVAL;
4252
4253
CLASS(snd_usb_lock, pm)(mixer->chip);
4254
if (pm.err)
4255
return pm.err;
4256
4257
return snd_usb_ctl_msg(mixer->chip->dev,
4258
usb_sndctrlpipe(mixer->chip->dev, 0),
4259
USB_REQ_SET_FEATURE,
4260
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
4261
device->controls[group].options[value],
4262
device->controls[group].wIndex,
4263
NULL, 0);
4264
}
4265
4266
static int snd_djm_controls_get(struct snd_kcontrol *kctl,
4267
struct snd_ctl_elem_value *elem)
4268
{
4269
elem->value.enumerated.item[0] = kctl->private_value & SND_DJM_VALUE_MASK;
4270
return 0;
4271
}
4272
4273
static int snd_djm_controls_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *elem)
4274
{
4275
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
4276
struct usb_mixer_interface *mixer = list->mixer;
4277
unsigned long private_value = kctl->private_value;
4278
4279
u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
4280
u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
4281
u16 value = elem->value.enumerated.item[0];
4282
4283
kctl->private_value = (((unsigned long)device << SND_DJM_DEVICE_SHIFT) |
4284
(group << SND_DJM_GROUP_SHIFT) |
4285
value);
4286
4287
return snd_djm_controls_update(mixer, device, group, value);
4288
}
4289
4290
static int snd_djm_controls_resume(struct usb_mixer_elem_list *list)
4291
{
4292
unsigned long private_value = list->kctl->private_value;
4293
u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
4294
u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
4295
u16 value = (private_value & SND_DJM_VALUE_MASK);
4296
4297
return snd_djm_controls_update(list->mixer, device, group, value);
4298
}
4299
4300
static int snd_djm_controls_create(struct usb_mixer_interface *mixer,
4301
const u8 device_idx)
4302
{
4303
int err, i;
4304
u16 value;
4305
4306
const struct snd_djm_device *device = &snd_djm_devices[device_idx];
4307
4308
struct snd_kcontrol_new knew = {
4309
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
4310
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
4311
.index = 0,
4312
.info = snd_djm_controls_info,
4313
.get = snd_djm_controls_get,
4314
.put = snd_djm_controls_put
4315
};
4316
4317
for (i = 0; i < device->ncontrols; i++) {
4318
value = device->controls[i].default_value;
4319
knew.name = device->controls[i].name;
4320
knew.private_value =
4321
((unsigned long)device_idx << SND_DJM_DEVICE_SHIFT) |
4322
(i << SND_DJM_GROUP_SHIFT) |
4323
value;
4324
err = snd_djm_controls_update(mixer, device_idx, i, value);
4325
if (err)
4326
return err;
4327
err = add_single_ctl_with_resume(mixer, 0, snd_djm_controls_resume,
4328
&knew, NULL);
4329
if (err)
4330
return err;
4331
}
4332
return 0;
4333
}
4334
4335
int snd_usb_mixer_apply_create_quirk(struct usb_mixer_interface *mixer)
4336
{
4337
int err = 0;
4338
4339
err = snd_usb_soundblaster_remote_init(mixer);
4340
if (err < 0)
4341
return err;
4342
4343
switch (mixer->chip->usb_id) {
4344
/* Tascam US-16x08 */
4345
case USB_ID(0x0644, 0x8047):
4346
err = snd_us16x08_controls_create(mixer);
4347
break;
4348
case USB_ID(0x041e, 0x3020):
4349
case USB_ID(0x041e, 0x3040):
4350
case USB_ID(0x041e, 0x3042):
4351
case USB_ID(0x041e, 0x30df):
4352
case USB_ID(0x041e, 0x3048):
4353
err = snd_audigy2nx_controls_create(mixer);
4354
if (err < 0)
4355
break;
4356
snd_card_ro_proc_new(mixer->chip->card, "audigy2nx",
4357
mixer, snd_audigy2nx_proc_read);
4358
break;
4359
4360
/* EMU0204 */
4361
case USB_ID(0x041e, 0x3f19):
4362
err = snd_emu0204_controls_create(mixer);
4363
break;
4364
4365
#if IS_REACHABLE(CONFIG_INPUT)
4366
case USB_ID(0x054c, 0x0ce6): /* Sony DualSense controller (PS5) */
4367
case USB_ID(0x054c, 0x0df2): /* Sony DualSense Edge controller (PS5) */
4368
err = snd_dualsense_controls_create(mixer);
4369
break;
4370
#endif /* IS_REACHABLE(CONFIG_INPUT) */
4371
4372
case USB_ID(0x0763, 0x2030): /* M-Audio Fast Track C400 */
4373
case USB_ID(0x0763, 0x2031): /* M-Audio Fast Track C400 */
4374
err = snd_c400_create_mixer(mixer);
4375
break;
4376
4377
case USB_ID(0x0763, 0x2080): /* M-Audio Fast Track Ultra */
4378
case USB_ID(0x0763, 0x2081): /* M-Audio Fast Track Ultra 8R */
4379
err = snd_ftu_create_mixer(mixer);
4380
break;
4381
4382
case USB_ID(0x0b05, 0x1739): /* ASUS Xonar U1 */
4383
case USB_ID(0x0b05, 0x1743): /* ASUS Xonar U1 (2) */
4384
case USB_ID(0x0b05, 0x17a0): /* ASUS Xonar U3 */
4385
err = snd_xonar_u1_controls_create(mixer);
4386
break;
4387
4388
case USB_ID(0x0d8c, 0x0103): /* Audio Advantage Micro II */
4389
err = snd_microii_controls_create(mixer);
4390
break;
4391
4392
case USB_ID(0x0dba, 0x1000): /* Digidesign Mbox 1 */
4393
err = snd_mbox1_controls_create(mixer);
4394
break;
4395
4396
case USB_ID(0x17cc, 0x1011): /* Traktor Audio 6 */
4397
err = snd_nativeinstruments_create_mixer(/* checkpatch hack */
4398
mixer,
4399
snd_nativeinstruments_ta6_mixers,
4400
ARRAY_SIZE(snd_nativeinstruments_ta6_mixers));
4401
break;
4402
4403
case USB_ID(0x17cc, 0x1021): /* Traktor Audio 10 */
4404
err = snd_nativeinstruments_create_mixer(/* checkpatch hack */
4405
mixer,
4406
snd_nativeinstruments_ta10_mixers,
4407
ARRAY_SIZE(snd_nativeinstruments_ta10_mixers));
4408
break;
4409
4410
case USB_ID(0x200c, 0x1018): /* Electrix Ebox-44 */
4411
/* detection is disabled in mixer_maps.c */
4412
err = snd_create_std_mono_table(mixer, ebox44_table);
4413
break;
4414
4415
case USB_ID(0x1235, 0x8010): /* Focusrite Forte */
4416
err = snd_forte_controls_create(mixer);
4417
break;
4418
case USB_ID(0x1235, 0x8012): /* Focusrite Scarlett 6i6 */
4419
case USB_ID(0x1235, 0x8002): /* Focusrite Scarlett 8i6 */
4420
case USB_ID(0x1235, 0x8004): /* Focusrite Scarlett 18i6 */
4421
case USB_ID(0x1235, 0x8014): /* Focusrite Scarlett 18i8 */
4422
case USB_ID(0x1235, 0x800c): /* Focusrite Scarlett 18i20 */
4423
err = snd_scarlett_controls_create(mixer);
4424
break;
4425
4426
case USB_ID(0x1235, 0x8203): /* Focusrite Scarlett 6i6 2nd Gen */
4427
case USB_ID(0x1235, 0x8204): /* Focusrite Scarlett 18i8 2nd Gen */
4428
case USB_ID(0x1235, 0x8201): /* Focusrite Scarlett 18i20 2nd Gen */
4429
case USB_ID(0x1235, 0x8211): /* Focusrite Scarlett Solo 3rd Gen */
4430
case USB_ID(0x1235, 0x8210): /* Focusrite Scarlett 2i2 3rd Gen */
4431
case USB_ID(0x1235, 0x8212): /* Focusrite Scarlett 4i4 3rd Gen */
4432
case USB_ID(0x1235, 0x8213): /* Focusrite Scarlett 8i6 3rd Gen */
4433
case USB_ID(0x1235, 0x8214): /* Focusrite Scarlett 18i8 3rd Gen */
4434
case USB_ID(0x1235, 0x8215): /* Focusrite Scarlett 18i20 3rd Gen */
4435
case USB_ID(0x1235, 0x8216): /* Focusrite Vocaster One */
4436
case USB_ID(0x1235, 0x8217): /* Focusrite Vocaster Two */
4437
case USB_ID(0x1235, 0x8218): /* Focusrite Scarlett Solo 4th Gen */
4438
case USB_ID(0x1235, 0x8219): /* Focusrite Scarlett 2i2 4th Gen */
4439
case USB_ID(0x1235, 0x821a): /* Focusrite Scarlett 4i4 4th Gen */
4440
case USB_ID(0x1235, 0x8206): /* Focusrite Clarett 2Pre USB */
4441
case USB_ID(0x1235, 0x8207): /* Focusrite Clarett 4Pre USB */
4442
case USB_ID(0x1235, 0x8208): /* Focusrite Clarett 8Pre USB */
4443
case USB_ID(0x1235, 0x820a): /* Focusrite Clarett+ 2Pre */
4444
case USB_ID(0x1235, 0x820b): /* Focusrite Clarett+ 4Pre */
4445
case USB_ID(0x1235, 0x820c): /* Focusrite Clarett+ 8Pre */
4446
err = snd_scarlett2_init(mixer);
4447
break;
4448
4449
case USB_ID(0x1235, 0x821b): /* Focusrite Scarlett 16i16 4th Gen */
4450
case USB_ID(0x1235, 0x821c): /* Focusrite Scarlett 18i16 4th Gen */
4451
case USB_ID(0x1235, 0x821d): /* Focusrite Scarlett 18i20 4th Gen */
4452
err = snd_fcp_init(mixer);
4453
break;
4454
4455
case USB_ID(0x041e, 0x323b): /* Creative Sound Blaster E1 */
4456
err = snd_soundblaster_e1_switch_create(mixer);
4457
break;
4458
case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
4459
err = dell_dock_mixer_create(mixer);
4460
if (err < 0)
4461
break;
4462
err = dell_dock_mixer_init(mixer);
4463
break;
4464
case USB_ID(0x0bda, 0x402e): /* Dell WD19 dock */
4465
err = dell_dock_mixer_create(mixer);
4466
break;
4467
4468
case USB_ID(0x2a39, 0x3fd2): /* RME ADI-2 Pro */
4469
case USB_ID(0x2a39, 0x3fd3): /* RME ADI-2 DAC */
4470
case USB_ID(0x2a39, 0x3fd4): /* RME */
4471
err = snd_rme_controls_create(mixer);
4472
break;
4473
4474
case USB_ID(0x194f, 0x010c): /* Presonus Studio 1810c */
4475
err = snd_sc1810_init_mixer(mixer);
4476
break;
4477
case USB_ID(0x194f, 0x010d): /* Presonus Studio 1824c */
4478
err = snd_sc1810_init_mixer(mixer);
4479
break;
4480
case USB_ID(0x2a39, 0x3fb0): /* RME Babyface Pro FS */
4481
err = snd_bbfpro_controls_create(mixer);
4482
break;
4483
case USB_ID(0x2a39, 0x3f8c): /* RME Digiface USB */
4484
case USB_ID(0x2a39, 0x3fa0): /* RME Digiface USB (alternate) */
4485
err = snd_rme_digiface_controls_create(mixer);
4486
break;
4487
case USB_ID(0x2b73, 0x0017): /* Pioneer DJ DJM-250MK2 */
4488
err = snd_djm_controls_create(mixer, SND_DJM_250MK2_IDX);
4489
break;
4490
case USB_ID(0x2b73, 0x0013): /* Pioneer DJ DJM-450 */
4491
err = snd_djm_controls_create(mixer, SND_DJM_450_IDX);
4492
break;
4493
case USB_ID(0x08e4, 0x017f): /* Pioneer DJ DJM-750 */
4494
err = snd_djm_controls_create(mixer, SND_DJM_750_IDX);
4495
break;
4496
case USB_ID(0x2b73, 0x001b): /* Pioneer DJ DJM-750MK2 */
4497
err = snd_djm_controls_create(mixer, SND_DJM_750MK2_IDX);
4498
break;
4499
case USB_ID(0x08e4, 0x0163): /* Pioneer DJ DJM-850 */
4500
err = snd_djm_controls_create(mixer, SND_DJM_850_IDX);
4501
break;
4502
case USB_ID(0x2b73, 0x000a): /* Pioneer DJ DJM-900NXS2 */
4503
err = snd_djm_controls_create(mixer, SND_DJM_900NXS2_IDX);
4504
break;
4505
case USB_ID(0x2b73, 0x003c): /* Pioneer DJ / AlphaTheta DJM-A9 */
4506
err = snd_djm_controls_create(mixer, SND_DJM_A9_IDX);
4507
break;
4508
case USB_ID(0x2b73, 0x0034): /* Pioneer DJ DJM-V10 */
4509
err = snd_djm_controls_create(mixer, SND_DJM_V10_IDX);
4510
break;
4511
case USB_ID(0x03f0, 0x0269): /* HP TB Dock G2 */
4512
err = hp_dock_mixer_create(mixer);
4513
break;
4514
}
4515
4516
return err;
4517
}
4518
4519
void snd_usb_mixer_resume_quirk(struct usb_mixer_interface *mixer)
4520
{
4521
switch (mixer->chip->usb_id) {
4522
case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
4523
dell_dock_mixer_init(mixer);
4524
break;
4525
}
4526
}
4527
4528
void snd_usb_mixer_rc_memory_change(struct usb_mixer_interface *mixer,
4529
int unitid)
4530
{
4531
if (!mixer->rc_cfg)
4532
return;
4533
/* unit ids specific to Extigy/Audigy 2 NX: */
4534
switch (unitid) {
4535
case 0: /* remote control */
4536
mixer->rc_urb->dev = mixer->chip->dev;
4537
usb_submit_urb(mixer->rc_urb, GFP_ATOMIC);
4538
break;
4539
case 4: /* digital in jack */
4540
case 7: /* line in jacks */
4541
case 19: /* speaker out jacks */
4542
case 20: /* headphones out jack */
4543
break;
4544
/* live24ext: 4 = line-in jack */
4545
case 3: /* hp-out jack (may actuate Mute) */
4546
if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
4547
mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
4548
snd_usb_mixer_notify_id(mixer, mixer->rc_cfg->mute_mixer_id);
4549
break;
4550
default:
4551
usb_audio_dbg(mixer->chip, "memory change in unknown unit %d\n", unitid);
4552
break;
4553
}
4554
}
4555
4556
static void snd_dragonfly_quirk_db_scale(struct usb_mixer_interface *mixer,
4557
struct usb_mixer_elem_info *cval,
4558
struct snd_kcontrol *kctl)
4559
{
4560
/* Approximation using 10 ranges based on output measurement on hw v1.2.
4561
* This seems close to the cubic mapping e.g. alsamixer uses.
4562
*/
4563
static const DECLARE_TLV_DB_RANGE(scale,
4564
0, 1, TLV_DB_MINMAX_ITEM(-5300, -4970),
4565
2, 5, TLV_DB_MINMAX_ITEM(-4710, -4160),
4566
6, 7, TLV_DB_MINMAX_ITEM(-3884, -3710),
4567
8, 14, TLV_DB_MINMAX_ITEM(-3443, -2560),
4568
15, 16, TLV_DB_MINMAX_ITEM(-2475, -2324),
4569
17, 19, TLV_DB_MINMAX_ITEM(-2228, -2031),
4570
20, 26, TLV_DB_MINMAX_ITEM(-1910, -1393),
4571
27, 31, TLV_DB_MINMAX_ITEM(-1322, -1032),
4572
32, 40, TLV_DB_MINMAX_ITEM(-968, -490),
4573
41, 50, TLV_DB_MINMAX_ITEM(-441, 0),
4574
);
4575
4576
if (cval->min == 0 && cval->max == 50) {
4577
usb_audio_info(mixer->chip, "applying DragonFly dB scale quirk (0-50 variant)\n");
4578
kctl->tlv.p = scale;
4579
kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
4580
kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
4581
4582
} else if (cval->min == 0 && cval->max <= 1000) {
4583
/* Some other clearly broken DragonFly variant.
4584
* At least a 0..53 variant (hw v1.0) exists.
4585
*/
4586
usb_audio_info(mixer->chip, "ignoring too narrow dB range on a DragonFly device");
4587
kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
4588
}
4589
}
4590
4591
/*
4592
* Some Plantronics headsets have control names that don't meet ALSA naming
4593
* standards. This function fixes nonstandard source names. By the time
4594
* this function is called the control name should look like one of these:
4595
* "source names Playback Volume"
4596
* "source names Playback Switch"
4597
* "source names Capture Volume"
4598
* "source names Capture Switch"
4599
* If any of the trigger words are found in the name then the name will
4600
* be changed to:
4601
* "Headset Playback Volume"
4602
* "Headset Playback Switch"
4603
* "Headset Capture Volume"
4604
* "Headset Capture Switch"
4605
* depending on the current suffix.
4606
*/
4607
static void snd_fix_plt_name(struct snd_usb_audio *chip,
4608
struct snd_ctl_elem_id *id)
4609
{
4610
/* no variant of "Sidetone" should be added to this list */
4611
static const char * const trigger[] = {
4612
"Earphone", "Microphone", "Receive", "Transmit"
4613
};
4614
static const char * const suffix[] = {
4615
" Playback Volume", " Playback Switch",
4616
" Capture Volume", " Capture Switch"
4617
};
4618
int i;
4619
4620
for (i = 0; i < ARRAY_SIZE(trigger); i++)
4621
if (strstr(id->name, trigger[i]))
4622
goto triggered;
4623
usb_audio_dbg(chip, "no change in %s\n", id->name);
4624
return;
4625
4626
triggered:
4627
for (i = 0; i < ARRAY_SIZE(suffix); i++)
4628
if (strstr(id->name, suffix[i])) {
4629
usb_audio_dbg(chip, "fixing kctl name %s\n", id->name);
4630
snprintf(id->name, sizeof(id->name), "Headset%s",
4631
suffix[i]);
4632
return;
4633
}
4634
usb_audio_dbg(chip, "something wrong in kctl name %s\n", id->name);
4635
}
4636
4637
void snd_usb_mixer_fu_apply_quirk(struct usb_mixer_interface *mixer,
4638
struct usb_mixer_elem_info *cval, int unitid,
4639
struct snd_kcontrol *kctl)
4640
{
4641
switch (mixer->chip->usb_id) {
4642
case USB_ID(0x21b4, 0x0081): /* AudioQuest DragonFly */
4643
if (unitid == 7 && cval->control == UAC_FU_VOLUME)
4644
snd_dragonfly_quirk_db_scale(mixer, cval, kctl);
4645
break;
4646
}
4647
4648
/* lowest playback value is muted on some devices */
4649
if (mixer->chip->quirk_flags & QUIRK_FLAG_MIXER_PLAYBACK_MIN_MUTE)
4650
if (strstr(kctl->id.name, "Playback")) {
4651
usb_audio_info(mixer->chip,
4652
"applying playback min mute quirk\n");
4653
cval->min_mute = 1;
4654
}
4655
4656
/* lowest capture value is muted on some devices */
4657
if (mixer->chip->quirk_flags & QUIRK_FLAG_MIXER_CAPTURE_MIN_MUTE)
4658
if (strstr(kctl->id.name, "Capture")) {
4659
usb_audio_info(mixer->chip,
4660
"applying capture min mute quirk\n");
4661
cval->min_mute = 1;
4662
}
4663
/* ALSA-ify some Plantronics headset control names */
4664
if (USB_ID_VENDOR(mixer->chip->usb_id) == 0x047f &&
4665
(cval->control == UAC_FU_MUTE || cval->control == UAC_FU_VOLUME))
4666
snd_fix_plt_name(mixer->chip, &kctl->id);
4667
}
4668
4669