Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/usb/mixer_quirks.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* USB Audio Driver for ALSA
4
*
5
* Quirks and vendor-specific extensions for mixer interfaces
6
*
7
* Copyright (c) 2002 by Takashi Iwai <[email protected]>
8
*
9
* Many codes borrowed from audio.c by
10
* Alan Cox ([email protected])
11
* Thomas Sailer ([email protected])
12
*
13
* Audio Advantage Micro II support added by:
14
* Przemek Rudy ([email protected])
15
*/
16
17
#include <linux/bitfield.h>
18
#include <linux/hid.h>
19
#include <linux/init.h>
20
#include <linux/input.h>
21
#include <linux/math64.h>
22
#include <linux/slab.h>
23
#include <linux/usb.h>
24
#include <linux/usb/audio.h>
25
26
#include <sound/asoundef.h>
27
#include <sound/core.h>
28
#include <sound/control.h>
29
#include <sound/hda_verbs.h>
30
#include <sound/hwdep.h>
31
#include <sound/info.h>
32
#include <sound/tlv.h>
33
34
#include "usbaudio.h"
35
#include "mixer.h"
36
#include "mixer_quirks.h"
37
#include "mixer_scarlett.h"
38
#include "mixer_scarlett2.h"
39
#include "mixer_us16x08.h"
40
#include "mixer_s1810c.h"
41
#include "helper.h"
42
#include "fcp.h"
43
44
struct std_mono_table {
45
unsigned int unitid, control, cmask;
46
int val_type;
47
const char *name;
48
snd_kcontrol_tlv_rw_t *tlv_callback;
49
};
50
51
/* This function allows for the creation of standard UAC controls.
52
* See the quirks for M-Audio FTUs or Ebox-44.
53
* If you don't want to set a TLV callback pass NULL.
54
*
55
* Since there doesn't seem to be a devices that needs a multichannel
56
* version, we keep it mono for simplicity.
57
*/
58
static int snd_create_std_mono_ctl_offset(struct usb_mixer_interface *mixer,
59
unsigned int unitid,
60
unsigned int control,
61
unsigned int cmask,
62
int val_type,
63
unsigned int idx_off,
64
const char *name,
65
snd_kcontrol_tlv_rw_t *tlv_callback)
66
{
67
struct usb_mixer_elem_info *cval;
68
struct snd_kcontrol *kctl;
69
70
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
71
if (!cval)
72
return -ENOMEM;
73
74
snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid);
75
cval->val_type = val_type;
76
cval->channels = 1;
77
cval->control = control;
78
cval->cmask = cmask;
79
cval->idx_off = idx_off;
80
81
/* get_min_max() is called only for integer volumes later,
82
* so provide a short-cut for booleans
83
*/
84
cval->min = 0;
85
cval->max = 1;
86
cval->res = 0;
87
cval->dBmin = 0;
88
cval->dBmax = 0;
89
90
/* Create control */
91
kctl = snd_ctl_new1(snd_usb_feature_unit_ctl, cval);
92
if (!kctl) {
93
kfree(cval);
94
return -ENOMEM;
95
}
96
97
/* Set name */
98
snprintf(kctl->id.name, sizeof(kctl->id.name), name);
99
kctl->private_free = snd_usb_mixer_elem_free;
100
101
/* set TLV */
102
if (tlv_callback) {
103
kctl->tlv.c = tlv_callback;
104
kctl->vd[0].access |=
105
SNDRV_CTL_ELEM_ACCESS_TLV_READ |
106
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
107
}
108
/* Add control to mixer */
109
return snd_usb_mixer_add_control(&cval->head, kctl);
110
}
111
112
static int snd_create_std_mono_ctl(struct usb_mixer_interface *mixer,
113
unsigned int unitid,
114
unsigned int control,
115
unsigned int cmask,
116
int val_type,
117
const char *name,
118
snd_kcontrol_tlv_rw_t *tlv_callback)
119
{
120
return snd_create_std_mono_ctl_offset(mixer, unitid, control, cmask,
121
val_type, 0 /* Offset */,
122
name, tlv_callback);
123
}
124
125
/*
126
* Create a set of standard UAC controls from a table
127
*/
128
static int snd_create_std_mono_table(struct usb_mixer_interface *mixer,
129
const struct std_mono_table *t)
130
{
131
int err;
132
133
while (t->name) {
134
err = snd_create_std_mono_ctl(mixer, t->unitid, t->control,
135
t->cmask, t->val_type, t->name,
136
t->tlv_callback);
137
if (err < 0)
138
return err;
139
t++;
140
}
141
142
return 0;
143
}
144
145
static int add_single_ctl_with_resume(struct usb_mixer_interface *mixer,
146
int id,
147
usb_mixer_elem_resume_func_t resume,
148
const struct snd_kcontrol_new *knew,
149
struct usb_mixer_elem_list **listp)
150
{
151
struct usb_mixer_elem_list *list;
152
struct snd_kcontrol *kctl;
153
154
list = kzalloc(sizeof(*list), GFP_KERNEL);
155
if (!list)
156
return -ENOMEM;
157
if (listp)
158
*listp = list;
159
list->mixer = mixer;
160
list->id = id;
161
list->resume = resume;
162
kctl = snd_ctl_new1(knew, list);
163
if (!kctl) {
164
kfree(list);
165
return -ENOMEM;
166
}
167
kctl->private_free = snd_usb_mixer_elem_free;
168
/* don't use snd_usb_mixer_add_control() here, this is a special list element */
169
return snd_usb_mixer_add_list(list, kctl, false);
170
}
171
172
/*
173
* Sound Blaster remote control configuration
174
*
175
* format of remote control data:
176
* Extigy: xx 00
177
* Audigy 2 NX: 06 80 xx 00 00 00
178
* Live! 24-bit: 06 80 xx yy 22 83
179
*/
180
static const struct rc_config {
181
u32 usb_id;
182
u8 offset;
183
u8 length;
184
u8 packet_length;
185
u8 min_packet_length; /* minimum accepted length of the URB result */
186
u8 mute_mixer_id;
187
u32 mute_code;
188
} rc_configs[] = {
189
{ USB_ID(0x041e, 0x3000), 0, 1, 2, 1, 18, 0x0013 }, /* Extigy */
190
{ USB_ID(0x041e, 0x3020), 2, 1, 6, 6, 18, 0x0013 }, /* Audigy 2 NX */
191
{ USB_ID(0x041e, 0x3040), 2, 2, 6, 6, 2, 0x6e91 }, /* Live! 24-bit */
192
{ USB_ID(0x041e, 0x3042), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 */
193
{ USB_ID(0x041e, 0x30df), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
194
{ USB_ID(0x041e, 0x3237), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
195
{ USB_ID(0x041e, 0x3263), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
196
{ USB_ID(0x041e, 0x3048), 2, 2, 6, 6, 2, 0x6e91 }, /* Toshiba SB0500 */
197
};
198
199
static void snd_usb_soundblaster_remote_complete(struct urb *urb)
200
{
201
struct usb_mixer_interface *mixer = urb->context;
202
const struct rc_config *rc = mixer->rc_cfg;
203
u32 code;
204
205
if (urb->status < 0 || urb->actual_length < rc->min_packet_length)
206
return;
207
208
code = mixer->rc_buffer[rc->offset];
209
if (rc->length == 2)
210
code |= mixer->rc_buffer[rc->offset + 1] << 8;
211
212
/* the Mute button actually changes the mixer control */
213
if (code == rc->mute_code)
214
snd_usb_mixer_notify_id(mixer, rc->mute_mixer_id);
215
mixer->rc_code = code;
216
wake_up(&mixer->rc_waitq);
217
}
218
219
static long snd_usb_sbrc_hwdep_read(struct snd_hwdep *hw, char __user *buf,
220
long count, loff_t *offset)
221
{
222
struct usb_mixer_interface *mixer = hw->private_data;
223
int err;
224
u32 rc_code;
225
226
if (count != 1 && count != 4)
227
return -EINVAL;
228
err = wait_event_interruptible(mixer->rc_waitq,
229
(rc_code = xchg(&mixer->rc_code, 0)) != 0);
230
if (err == 0) {
231
if (count == 1)
232
err = put_user(rc_code, buf);
233
else
234
err = put_user(rc_code, (u32 __user *)buf);
235
}
236
return err < 0 ? err : count;
237
}
238
239
static __poll_t snd_usb_sbrc_hwdep_poll(struct snd_hwdep *hw, struct file *file,
240
poll_table *wait)
241
{
242
struct usb_mixer_interface *mixer = hw->private_data;
243
244
poll_wait(file, &mixer->rc_waitq, wait);
245
return mixer->rc_code ? EPOLLIN | EPOLLRDNORM : 0;
246
}
247
248
static int snd_usb_soundblaster_remote_init(struct usb_mixer_interface *mixer)
249
{
250
struct snd_hwdep *hwdep;
251
int err, len, i;
252
253
for (i = 0; i < ARRAY_SIZE(rc_configs); ++i)
254
if (rc_configs[i].usb_id == mixer->chip->usb_id)
255
break;
256
if (i >= ARRAY_SIZE(rc_configs))
257
return 0;
258
mixer->rc_cfg = &rc_configs[i];
259
260
len = mixer->rc_cfg->packet_length;
261
262
init_waitqueue_head(&mixer->rc_waitq);
263
err = snd_hwdep_new(mixer->chip->card, "SB remote control", 0, &hwdep);
264
if (err < 0)
265
return err;
266
snprintf(hwdep->name, sizeof(hwdep->name),
267
"%s remote control", mixer->chip->card->shortname);
268
hwdep->iface = SNDRV_HWDEP_IFACE_SB_RC;
269
hwdep->private_data = mixer;
270
hwdep->ops.read = snd_usb_sbrc_hwdep_read;
271
hwdep->ops.poll = snd_usb_sbrc_hwdep_poll;
272
hwdep->exclusive = 1;
273
274
mixer->rc_urb = usb_alloc_urb(0, GFP_KERNEL);
275
if (!mixer->rc_urb)
276
return -ENOMEM;
277
mixer->rc_setup_packet = kmalloc(sizeof(*mixer->rc_setup_packet), GFP_KERNEL);
278
if (!mixer->rc_setup_packet) {
279
usb_free_urb(mixer->rc_urb);
280
mixer->rc_urb = NULL;
281
return -ENOMEM;
282
}
283
mixer->rc_setup_packet->bRequestType =
284
USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE;
285
mixer->rc_setup_packet->bRequest = UAC_GET_MEM;
286
mixer->rc_setup_packet->wValue = cpu_to_le16(0);
287
mixer->rc_setup_packet->wIndex = cpu_to_le16(0);
288
mixer->rc_setup_packet->wLength = cpu_to_le16(len);
289
usb_fill_control_urb(mixer->rc_urb, mixer->chip->dev,
290
usb_rcvctrlpipe(mixer->chip->dev, 0),
291
(u8 *)mixer->rc_setup_packet, mixer->rc_buffer, len,
292
snd_usb_soundblaster_remote_complete, mixer);
293
return 0;
294
}
295
296
#define snd_audigy2nx_led_info snd_ctl_boolean_mono_info
297
298
static int snd_audigy2nx_led_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
299
{
300
ucontrol->value.integer.value[0] = kcontrol->private_value >> 8;
301
return 0;
302
}
303
304
static int snd_audigy2nx_led_update(struct usb_mixer_interface *mixer,
305
int value, int index)
306
{
307
struct snd_usb_audio *chip = mixer->chip;
308
int err;
309
310
err = snd_usb_lock_shutdown(chip);
311
if (err < 0)
312
return err;
313
314
if (chip->usb_id == USB_ID(0x041e, 0x3042))
315
err = snd_usb_ctl_msg(chip->dev,
316
usb_sndctrlpipe(chip->dev, 0), 0x24,
317
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
318
!value, 0, NULL, 0);
319
/* USB X-Fi S51 Pro */
320
if (chip->usb_id == USB_ID(0x041e, 0x30df))
321
err = snd_usb_ctl_msg(chip->dev,
322
usb_sndctrlpipe(chip->dev, 0), 0x24,
323
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
324
!value, 0, NULL, 0);
325
else
326
err = snd_usb_ctl_msg(chip->dev,
327
usb_sndctrlpipe(chip->dev, 0), 0x24,
328
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
329
value, index + 2, NULL, 0);
330
snd_usb_unlock_shutdown(chip);
331
return err;
332
}
333
334
static int snd_audigy2nx_led_put(struct snd_kcontrol *kcontrol,
335
struct snd_ctl_elem_value *ucontrol)
336
{
337
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
338
struct usb_mixer_interface *mixer = list->mixer;
339
int index = kcontrol->private_value & 0xff;
340
unsigned int value = ucontrol->value.integer.value[0];
341
int old_value = kcontrol->private_value >> 8;
342
int err;
343
344
if (value > 1)
345
return -EINVAL;
346
if (value == old_value)
347
return 0;
348
kcontrol->private_value = (value << 8) | index;
349
err = snd_audigy2nx_led_update(mixer, value, index);
350
return err < 0 ? err : 1;
351
}
352
353
static int snd_audigy2nx_led_resume(struct usb_mixer_elem_list *list)
354
{
355
int priv_value = list->kctl->private_value;
356
357
return snd_audigy2nx_led_update(list->mixer, priv_value >> 8,
358
priv_value & 0xff);
359
}
360
361
/* name and private_value are set dynamically */
362
static const struct snd_kcontrol_new snd_audigy2nx_control = {
363
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
364
.info = snd_audigy2nx_led_info,
365
.get = snd_audigy2nx_led_get,
366
.put = snd_audigy2nx_led_put,
367
};
368
369
static const char * const snd_audigy2nx_led_names[] = {
370
"CMSS LED Switch",
371
"Power LED Switch",
372
"Dolby Digital LED Switch",
373
};
374
375
static int snd_audigy2nx_controls_create(struct usb_mixer_interface *mixer)
376
{
377
int i, err;
378
379
for (i = 0; i < ARRAY_SIZE(snd_audigy2nx_led_names); ++i) {
380
struct snd_kcontrol_new knew;
381
382
/* USB X-Fi S51 doesn't have a CMSS LED */
383
if (mixer->chip->usb_id == USB_ID(0x041e, 0x3042) && i == 0)
384
continue;
385
/* USB X-Fi S51 Pro doesn't have one either */
386
if (mixer->chip->usb_id == USB_ID(0x041e, 0x30df) && i == 0)
387
continue;
388
if (i > 1 && /* Live24ext has 2 LEDs only */
389
(mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
390
mixer->chip->usb_id == USB_ID(0x041e, 0x3042) ||
391
mixer->chip->usb_id == USB_ID(0x041e, 0x30df) ||
392
mixer->chip->usb_id == USB_ID(0x041e, 0x3048)))
393
break;
394
395
knew = snd_audigy2nx_control;
396
knew.name = snd_audigy2nx_led_names[i];
397
knew.private_value = (1 << 8) | i; /* LED on as default */
398
err = add_single_ctl_with_resume(mixer, 0,
399
snd_audigy2nx_led_resume,
400
&knew, NULL);
401
if (err < 0)
402
return err;
403
}
404
return 0;
405
}
406
407
static void snd_audigy2nx_proc_read(struct snd_info_entry *entry,
408
struct snd_info_buffer *buffer)
409
{
410
static const struct sb_jack {
411
int unitid;
412
const char *name;
413
} jacks_audigy2nx[] = {
414
{4, "dig in "},
415
{7, "line in"},
416
{19, "spk out"},
417
{20, "hph out"},
418
{-1, NULL}
419
}, jacks_live24ext[] = {
420
{4, "line in"}, /* &1=Line, &2=Mic*/
421
{3, "hph out"}, /* headphones */
422
{0, "RC "}, /* last command, 6 bytes see rc_config above */
423
{-1, NULL}
424
};
425
const struct sb_jack *jacks;
426
struct usb_mixer_interface *mixer = entry->private_data;
427
int i, err;
428
u8 buf[3];
429
430
snd_iprintf(buffer, "%s jacks\n\n", mixer->chip->card->shortname);
431
if (mixer->chip->usb_id == USB_ID(0x041e, 0x3020))
432
jacks = jacks_audigy2nx;
433
else if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
434
mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
435
jacks = jacks_live24ext;
436
else
437
return;
438
439
for (i = 0; jacks[i].name; ++i) {
440
snd_iprintf(buffer, "%s: ", jacks[i].name);
441
err = snd_usb_lock_shutdown(mixer->chip);
442
if (err < 0)
443
return;
444
err = snd_usb_ctl_msg(mixer->chip->dev,
445
usb_rcvctrlpipe(mixer->chip->dev, 0),
446
UAC_GET_MEM, USB_DIR_IN | USB_TYPE_CLASS |
447
USB_RECIP_INTERFACE, 0,
448
jacks[i].unitid << 8, buf, 3);
449
snd_usb_unlock_shutdown(mixer->chip);
450
if (err == 3 && (buf[0] == 3 || buf[0] == 6))
451
snd_iprintf(buffer, "%02x %02x\n", buf[1], buf[2]);
452
else
453
snd_iprintf(buffer, "?\n");
454
}
455
}
456
457
/* EMU0204 */
458
static int snd_emu0204_ch_switch_info(struct snd_kcontrol *kcontrol,
459
struct snd_ctl_elem_info *uinfo)
460
{
461
static const char * const texts[2] = {"1/2", "3/4"};
462
463
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
464
}
465
466
static int snd_emu0204_ch_switch_get(struct snd_kcontrol *kcontrol,
467
struct snd_ctl_elem_value *ucontrol)
468
{
469
ucontrol->value.enumerated.item[0] = kcontrol->private_value;
470
return 0;
471
}
472
473
static int snd_emu0204_ch_switch_update(struct usb_mixer_interface *mixer,
474
int value)
475
{
476
struct snd_usb_audio *chip = mixer->chip;
477
int err;
478
unsigned char buf[2];
479
480
err = snd_usb_lock_shutdown(chip);
481
if (err < 0)
482
return err;
483
484
buf[0] = 0x01;
485
buf[1] = value ? 0x02 : 0x01;
486
err = snd_usb_ctl_msg(chip->dev,
487
usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
488
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
489
0x0400, 0x0e00, buf, 2);
490
snd_usb_unlock_shutdown(chip);
491
return err;
492
}
493
494
static int snd_emu0204_ch_switch_put(struct snd_kcontrol *kcontrol,
495
struct snd_ctl_elem_value *ucontrol)
496
{
497
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
498
struct usb_mixer_interface *mixer = list->mixer;
499
unsigned int value = ucontrol->value.enumerated.item[0];
500
int err;
501
502
if (value > 1)
503
return -EINVAL;
504
505
if (value == kcontrol->private_value)
506
return 0;
507
508
kcontrol->private_value = value;
509
err = snd_emu0204_ch_switch_update(mixer, value);
510
return err < 0 ? err : 1;
511
}
512
513
static int snd_emu0204_ch_switch_resume(struct usb_mixer_elem_list *list)
514
{
515
return snd_emu0204_ch_switch_update(list->mixer,
516
list->kctl->private_value);
517
}
518
519
static const struct snd_kcontrol_new snd_emu0204_control = {
520
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
521
.name = "Front Jack Channels",
522
.info = snd_emu0204_ch_switch_info,
523
.get = snd_emu0204_ch_switch_get,
524
.put = snd_emu0204_ch_switch_put,
525
.private_value = 0,
526
};
527
528
static int snd_emu0204_controls_create(struct usb_mixer_interface *mixer)
529
{
530
return add_single_ctl_with_resume(mixer, 0,
531
snd_emu0204_ch_switch_resume,
532
&snd_emu0204_control, NULL);
533
}
534
535
#if IS_REACHABLE(CONFIG_INPUT)
536
/*
537
* Sony DualSense controller (PS5) jack detection
538
*
539
* Since this is an UAC 1 device, it doesn't support jack detection.
540
* However, the controller hid-playstation driver reports HP & MIC
541
* insert events through a dedicated input device.
542
*/
543
544
#define SND_DUALSENSE_JACK_OUT_TERM_ID 3
545
#define SND_DUALSENSE_JACK_IN_TERM_ID 4
546
547
struct dualsense_mixer_elem_info {
548
struct usb_mixer_elem_info info;
549
struct input_handler ih;
550
struct input_device_id id_table[2];
551
bool connected;
552
};
553
554
static void snd_dualsense_ih_event(struct input_handle *handle,
555
unsigned int type, unsigned int code,
556
int value)
557
{
558
struct dualsense_mixer_elem_info *mei;
559
struct usb_mixer_elem_list *me;
560
561
if (type != EV_SW)
562
return;
563
564
mei = container_of(handle->handler, struct dualsense_mixer_elem_info, ih);
565
me = &mei->info.head;
566
567
if ((me->id == SND_DUALSENSE_JACK_OUT_TERM_ID && code == SW_HEADPHONE_INSERT) ||
568
(me->id == SND_DUALSENSE_JACK_IN_TERM_ID && code == SW_MICROPHONE_INSERT)) {
569
mei->connected = !!value;
570
snd_ctl_notify(me->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
571
&me->kctl->id);
572
}
573
}
574
575
static bool snd_dualsense_ih_match(struct input_handler *handler,
576
struct input_dev *dev)
577
{
578
struct dualsense_mixer_elem_info *mei;
579
struct usb_device *snd_dev;
580
char *input_dev_path, *usb_dev_path;
581
size_t usb_dev_path_len;
582
bool match = false;
583
584
mei = container_of(handler, struct dualsense_mixer_elem_info, ih);
585
snd_dev = mei->info.head.mixer->chip->dev;
586
587
input_dev_path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
588
if (!input_dev_path) {
589
dev_warn(&snd_dev->dev, "Failed to get input dev path\n");
590
return false;
591
}
592
593
usb_dev_path = kobject_get_path(&snd_dev->dev.kobj, GFP_KERNEL);
594
if (!usb_dev_path) {
595
dev_warn(&snd_dev->dev, "Failed to get USB dev path\n");
596
goto free_paths;
597
}
598
599
/*
600
* Ensure the VID:PID matched input device supposedly owned by the
601
* hid-playstation driver belongs to the actual hardware handled by
602
* the current USB audio device, which implies input_dev_path being
603
* a subpath of usb_dev_path.
604
*
605
* This verification is necessary when there is more than one identical
606
* controller attached to the host system.
607
*/
608
usb_dev_path_len = strlen(usb_dev_path);
609
if (usb_dev_path_len >= strlen(input_dev_path))
610
goto free_paths;
611
612
usb_dev_path[usb_dev_path_len] = '/';
613
match = !memcmp(input_dev_path, usb_dev_path, usb_dev_path_len + 1);
614
615
free_paths:
616
kfree(input_dev_path);
617
kfree(usb_dev_path);
618
619
return match;
620
}
621
622
static int snd_dualsense_ih_connect(struct input_handler *handler,
623
struct input_dev *dev,
624
const struct input_device_id *id)
625
{
626
struct input_handle *handle;
627
int err;
628
629
handle = kzalloc(sizeof(*handle), GFP_KERNEL);
630
if (!handle)
631
return -ENOMEM;
632
633
handle->dev = dev;
634
handle->handler = handler;
635
handle->name = handler->name;
636
637
err = input_register_handle(handle);
638
if (err)
639
goto err_free;
640
641
err = input_open_device(handle);
642
if (err)
643
goto err_unregister;
644
645
return 0;
646
647
err_unregister:
648
input_unregister_handle(handle);
649
err_free:
650
kfree(handle);
651
return err;
652
}
653
654
static void snd_dualsense_ih_disconnect(struct input_handle *handle)
655
{
656
input_close_device(handle);
657
input_unregister_handle(handle);
658
kfree(handle);
659
}
660
661
static void snd_dualsense_ih_start(struct input_handle *handle)
662
{
663
struct dualsense_mixer_elem_info *mei;
664
struct usb_mixer_elem_list *me;
665
int status = -1;
666
667
mei = container_of(handle->handler, struct dualsense_mixer_elem_info, ih);
668
me = &mei->info.head;
669
670
if (me->id == SND_DUALSENSE_JACK_OUT_TERM_ID &&
671
test_bit(SW_HEADPHONE_INSERT, handle->dev->swbit))
672
status = test_bit(SW_HEADPHONE_INSERT, handle->dev->sw);
673
else if (me->id == SND_DUALSENSE_JACK_IN_TERM_ID &&
674
test_bit(SW_MICROPHONE_INSERT, handle->dev->swbit))
675
status = test_bit(SW_MICROPHONE_INSERT, handle->dev->sw);
676
677
if (status >= 0) {
678
mei->connected = !!status;
679
snd_ctl_notify(me->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
680
&me->kctl->id);
681
}
682
}
683
684
static int snd_dualsense_jack_get(struct snd_kcontrol *kctl,
685
struct snd_ctl_elem_value *ucontrol)
686
{
687
struct dualsense_mixer_elem_info *mei = snd_kcontrol_chip(kctl);
688
689
ucontrol->value.integer.value[0] = mei->connected;
690
691
return 0;
692
}
693
694
static const struct snd_kcontrol_new snd_dualsense_jack_control = {
695
.iface = SNDRV_CTL_ELEM_IFACE_CARD,
696
.access = SNDRV_CTL_ELEM_ACCESS_READ,
697
.info = snd_ctl_boolean_mono_info,
698
.get = snd_dualsense_jack_get,
699
};
700
701
static int snd_dualsense_resume_jack(struct usb_mixer_elem_list *list)
702
{
703
snd_ctl_notify(list->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
704
&list->kctl->id);
705
return 0;
706
}
707
708
static void snd_dualsense_mixer_elem_free(struct snd_kcontrol *kctl)
709
{
710
struct dualsense_mixer_elem_info *mei = snd_kcontrol_chip(kctl);
711
712
if (mei->ih.event)
713
input_unregister_handler(&mei->ih);
714
715
snd_usb_mixer_elem_free(kctl);
716
}
717
718
static int snd_dualsense_jack_create(struct usb_mixer_interface *mixer,
719
const char *name, bool is_output)
720
{
721
struct dualsense_mixer_elem_info *mei;
722
struct input_device_id *idev_id;
723
struct snd_kcontrol *kctl;
724
int err;
725
726
mei = kzalloc(sizeof(*mei), GFP_KERNEL);
727
if (!mei)
728
return -ENOMEM;
729
730
snd_usb_mixer_elem_init_std(&mei->info.head, mixer,
731
is_output ? SND_DUALSENSE_JACK_OUT_TERM_ID :
732
SND_DUALSENSE_JACK_IN_TERM_ID);
733
734
mei->info.head.resume = snd_dualsense_resume_jack;
735
mei->info.val_type = USB_MIXER_BOOLEAN;
736
mei->info.channels = 1;
737
mei->info.min = 0;
738
mei->info.max = 1;
739
740
kctl = snd_ctl_new1(&snd_dualsense_jack_control, mei);
741
if (!kctl) {
742
kfree(mei);
743
return -ENOMEM;
744
}
745
746
strscpy(kctl->id.name, name, sizeof(kctl->id.name));
747
kctl->private_free = snd_dualsense_mixer_elem_free;
748
749
err = snd_usb_mixer_add_control(&mei->info.head, kctl);
750
if (err)
751
return err;
752
753
idev_id = &mei->id_table[0];
754
idev_id->flags = INPUT_DEVICE_ID_MATCH_VENDOR | INPUT_DEVICE_ID_MATCH_PRODUCT |
755
INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_SWBIT;
756
idev_id->vendor = USB_ID_VENDOR(mixer->chip->usb_id);
757
idev_id->product = USB_ID_PRODUCT(mixer->chip->usb_id);
758
idev_id->evbit[BIT_WORD(EV_SW)] = BIT_MASK(EV_SW);
759
if (is_output)
760
idev_id->swbit[BIT_WORD(SW_HEADPHONE_INSERT)] = BIT_MASK(SW_HEADPHONE_INSERT);
761
else
762
idev_id->swbit[BIT_WORD(SW_MICROPHONE_INSERT)] = BIT_MASK(SW_MICROPHONE_INSERT);
763
764
mei->ih.event = snd_dualsense_ih_event;
765
mei->ih.match = snd_dualsense_ih_match;
766
mei->ih.connect = snd_dualsense_ih_connect;
767
mei->ih.disconnect = snd_dualsense_ih_disconnect;
768
mei->ih.start = snd_dualsense_ih_start;
769
mei->ih.name = name;
770
mei->ih.id_table = mei->id_table;
771
772
err = input_register_handler(&mei->ih);
773
if (err) {
774
dev_warn(&mixer->chip->dev->dev,
775
"Could not register input handler: %d\n", err);
776
mei->ih.event = NULL;
777
}
778
779
return 0;
780
}
781
782
static int snd_dualsense_controls_create(struct usb_mixer_interface *mixer)
783
{
784
int err;
785
786
err = snd_dualsense_jack_create(mixer, "Headphone Jack", true);
787
if (err < 0)
788
return err;
789
790
return snd_dualsense_jack_create(mixer, "Headset Mic Jack", false);
791
}
792
#endif /* IS_REACHABLE(CONFIG_INPUT) */
793
794
/* ASUS Xonar U1 / U3 controls */
795
796
static int snd_xonar_u1_switch_get(struct snd_kcontrol *kcontrol,
797
struct snd_ctl_elem_value *ucontrol)
798
{
799
ucontrol->value.integer.value[0] = !!(kcontrol->private_value & 0x02);
800
return 0;
801
}
802
803
static int snd_xonar_u1_switch_update(struct usb_mixer_interface *mixer,
804
unsigned char status)
805
{
806
struct snd_usb_audio *chip = mixer->chip;
807
int err;
808
809
err = snd_usb_lock_shutdown(chip);
810
if (err < 0)
811
return err;
812
err = snd_usb_ctl_msg(chip->dev,
813
usb_sndctrlpipe(chip->dev, 0), 0x08,
814
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
815
50, 0, &status, 1);
816
snd_usb_unlock_shutdown(chip);
817
return err;
818
}
819
820
static int snd_xonar_u1_switch_put(struct snd_kcontrol *kcontrol,
821
struct snd_ctl_elem_value *ucontrol)
822
{
823
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
824
u8 old_status, new_status;
825
int err;
826
827
old_status = kcontrol->private_value;
828
if (ucontrol->value.integer.value[0])
829
new_status = old_status | 0x02;
830
else
831
new_status = old_status & ~0x02;
832
if (new_status == old_status)
833
return 0;
834
835
kcontrol->private_value = new_status;
836
err = snd_xonar_u1_switch_update(list->mixer, new_status);
837
return err < 0 ? err : 1;
838
}
839
840
static int snd_xonar_u1_switch_resume(struct usb_mixer_elem_list *list)
841
{
842
return snd_xonar_u1_switch_update(list->mixer,
843
list->kctl->private_value);
844
}
845
846
static const struct snd_kcontrol_new snd_xonar_u1_output_switch = {
847
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
848
.name = "Digital Playback Switch",
849
.info = snd_ctl_boolean_mono_info,
850
.get = snd_xonar_u1_switch_get,
851
.put = snd_xonar_u1_switch_put,
852
.private_value = 0x05,
853
};
854
855
static int snd_xonar_u1_controls_create(struct usb_mixer_interface *mixer)
856
{
857
return add_single_ctl_with_resume(mixer, 0,
858
snd_xonar_u1_switch_resume,
859
&snd_xonar_u1_output_switch, NULL);
860
}
861
862
/* Digidesign Mbox 1 helper functions */
863
864
static int snd_mbox1_is_spdif_synced(struct snd_usb_audio *chip)
865
{
866
unsigned char buff[3];
867
int err;
868
int is_spdif_synced;
869
870
/* Read clock source */
871
err = snd_usb_ctl_msg(chip->dev,
872
usb_rcvctrlpipe(chip->dev, 0), 0x81,
873
USB_DIR_IN |
874
USB_TYPE_CLASS |
875
USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
876
if (err < 0)
877
return err;
878
879
/* spdif sync: buff is all zeroes */
880
is_spdif_synced = !(buff[0] | buff[1] | buff[2]);
881
return is_spdif_synced;
882
}
883
884
static int snd_mbox1_set_clk_source(struct snd_usb_audio *chip, int rate_or_zero)
885
{
886
/* 2 possibilities: Internal -> expects sample rate
887
* S/PDIF sync -> expects rate = 0
888
*/
889
unsigned char buff[3];
890
891
buff[0] = (rate_or_zero >> 0) & 0xff;
892
buff[1] = (rate_or_zero >> 8) & 0xff;
893
buff[2] = (rate_or_zero >> 16) & 0xff;
894
895
/* Set clock source */
896
return snd_usb_ctl_msg(chip->dev,
897
usb_sndctrlpipe(chip->dev, 0), 0x1,
898
USB_TYPE_CLASS |
899
USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
900
}
901
902
static int snd_mbox1_is_spdif_input(struct snd_usb_audio *chip)
903
{
904
/* Hardware gives 2 possibilities: ANALOG Source -> 0x01
905
* S/PDIF Source -> 0x02
906
*/
907
int err;
908
unsigned char source[1];
909
910
/* Read input source */
911
err = snd_usb_ctl_msg(chip->dev,
912
usb_rcvctrlpipe(chip->dev, 0), 0x81,
913
USB_DIR_IN |
914
USB_TYPE_CLASS |
915
USB_RECIP_INTERFACE, 0x00, 0x500, source, 1);
916
if (err < 0)
917
return err;
918
919
return (source[0] == 2);
920
}
921
922
static int snd_mbox1_set_input_source(struct snd_usb_audio *chip, int is_spdif)
923
{
924
/* NB: Setting the input source to S/PDIF resets the clock source to S/PDIF
925
* Hardware expects 2 possibilities: ANALOG Source -> 0x01
926
* S/PDIF Source -> 0x02
927
*/
928
unsigned char buff[1];
929
930
buff[0] = (is_spdif & 1) + 1;
931
932
/* Set input source */
933
return snd_usb_ctl_msg(chip->dev,
934
usb_sndctrlpipe(chip->dev, 0), 0x1,
935
USB_TYPE_CLASS |
936
USB_RECIP_INTERFACE, 0x00, 0x500, buff, 1);
937
}
938
939
/* Digidesign Mbox 1 clock source switch (internal/spdif) */
940
941
static int snd_mbox1_clk_switch_get(struct snd_kcontrol *kctl,
942
struct snd_ctl_elem_value *ucontrol)
943
{
944
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
945
struct snd_usb_audio *chip = list->mixer->chip;
946
int err;
947
948
err = snd_usb_lock_shutdown(chip);
949
if (err < 0)
950
goto err;
951
952
err = snd_mbox1_is_spdif_synced(chip);
953
if (err < 0)
954
goto err;
955
956
kctl->private_value = err;
957
err = 0;
958
ucontrol->value.enumerated.item[0] = kctl->private_value;
959
err:
960
snd_usb_unlock_shutdown(chip);
961
return err;
962
}
963
964
static int snd_mbox1_clk_switch_update(struct usb_mixer_interface *mixer, int is_spdif_sync)
965
{
966
struct snd_usb_audio *chip = mixer->chip;
967
int err;
968
969
err = snd_usb_lock_shutdown(chip);
970
if (err < 0)
971
return err;
972
973
err = snd_mbox1_is_spdif_input(chip);
974
if (err < 0)
975
goto err;
976
977
err = snd_mbox1_is_spdif_synced(chip);
978
if (err < 0)
979
goto err;
980
981
/* FIXME: hardcoded sample rate */
982
err = snd_mbox1_set_clk_source(chip, is_spdif_sync ? 0 : 48000);
983
if (err < 0)
984
goto err;
985
986
err = snd_mbox1_is_spdif_synced(chip);
987
err:
988
snd_usb_unlock_shutdown(chip);
989
return err;
990
}
991
992
static int snd_mbox1_clk_switch_put(struct snd_kcontrol *kctl,
993
struct snd_ctl_elem_value *ucontrol)
994
{
995
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
996
struct usb_mixer_interface *mixer = list->mixer;
997
int err;
998
bool cur_val, new_val;
999
1000
cur_val = kctl->private_value;
1001
new_val = ucontrol->value.enumerated.item[0];
1002
if (cur_val == new_val)
1003
return 0;
1004
1005
kctl->private_value = new_val;
1006
err = snd_mbox1_clk_switch_update(mixer, new_val);
1007
return err < 0 ? err : 1;
1008
}
1009
1010
static int snd_mbox1_clk_switch_info(struct snd_kcontrol *kcontrol,
1011
struct snd_ctl_elem_info *uinfo)
1012
{
1013
static const char *const texts[2] = {
1014
"Internal",
1015
"S/PDIF"
1016
};
1017
1018
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
1019
}
1020
1021
static int snd_mbox1_clk_switch_resume(struct usb_mixer_elem_list *list)
1022
{
1023
return snd_mbox1_clk_switch_update(list->mixer, list->kctl->private_value);
1024
}
1025
1026
/* Digidesign Mbox 1 input source switch (analog/spdif) */
1027
1028
static int snd_mbox1_src_switch_get(struct snd_kcontrol *kctl,
1029
struct snd_ctl_elem_value *ucontrol)
1030
{
1031
ucontrol->value.enumerated.item[0] = kctl->private_value;
1032
return 0;
1033
}
1034
1035
static int snd_mbox1_src_switch_update(struct usb_mixer_interface *mixer, int is_spdif_input)
1036
{
1037
struct snd_usb_audio *chip = mixer->chip;
1038
int err;
1039
1040
err = snd_usb_lock_shutdown(chip);
1041
if (err < 0)
1042
return err;
1043
1044
err = snd_mbox1_is_spdif_input(chip);
1045
if (err < 0)
1046
goto err;
1047
1048
err = snd_mbox1_set_input_source(chip, is_spdif_input);
1049
if (err < 0)
1050
goto err;
1051
1052
err = snd_mbox1_is_spdif_input(chip);
1053
if (err < 0)
1054
goto err;
1055
1056
err = snd_mbox1_is_spdif_synced(chip);
1057
err:
1058
snd_usb_unlock_shutdown(chip);
1059
return err;
1060
}
1061
1062
static int snd_mbox1_src_switch_put(struct snd_kcontrol *kctl,
1063
struct snd_ctl_elem_value *ucontrol)
1064
{
1065
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
1066
struct usb_mixer_interface *mixer = list->mixer;
1067
int err;
1068
bool cur_val, new_val;
1069
1070
cur_val = kctl->private_value;
1071
new_val = ucontrol->value.enumerated.item[0];
1072
if (cur_val == new_val)
1073
return 0;
1074
1075
kctl->private_value = new_val;
1076
err = snd_mbox1_src_switch_update(mixer, new_val);
1077
return err < 0 ? err : 1;
1078
}
1079
1080
static int snd_mbox1_src_switch_info(struct snd_kcontrol *kcontrol,
1081
struct snd_ctl_elem_info *uinfo)
1082
{
1083
static const char *const texts[2] = {
1084
"Analog",
1085
"S/PDIF"
1086
};
1087
1088
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
1089
}
1090
1091
static int snd_mbox1_src_switch_resume(struct usb_mixer_elem_list *list)
1092
{
1093
return snd_mbox1_src_switch_update(list->mixer, list->kctl->private_value);
1094
}
1095
1096
static const struct snd_kcontrol_new snd_mbox1_clk_switch = {
1097
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1098
.name = "Clock Source",
1099
.index = 0,
1100
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1101
.info = snd_mbox1_clk_switch_info,
1102
.get = snd_mbox1_clk_switch_get,
1103
.put = snd_mbox1_clk_switch_put,
1104
.private_value = 0
1105
};
1106
1107
static const struct snd_kcontrol_new snd_mbox1_src_switch = {
1108
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1109
.name = "Input Source",
1110
.index = 1,
1111
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1112
.info = snd_mbox1_src_switch_info,
1113
.get = snd_mbox1_src_switch_get,
1114
.put = snd_mbox1_src_switch_put,
1115
.private_value = 0
1116
};
1117
1118
static int snd_mbox1_controls_create(struct usb_mixer_interface *mixer)
1119
{
1120
int err;
1121
1122
err = add_single_ctl_with_resume(mixer, 0,
1123
snd_mbox1_clk_switch_resume,
1124
&snd_mbox1_clk_switch, NULL);
1125
if (err < 0)
1126
return err;
1127
1128
return add_single_ctl_with_resume(mixer, 1,
1129
snd_mbox1_src_switch_resume,
1130
&snd_mbox1_src_switch, NULL);
1131
}
1132
1133
/* Native Instruments device quirks */
1134
1135
#define _MAKE_NI_CONTROL(bRequest, wIndex) ((bRequest) << 16 | (wIndex))
1136
1137
static int snd_ni_control_init_val(struct usb_mixer_interface *mixer,
1138
struct snd_kcontrol *kctl)
1139
{
1140
struct usb_device *dev = mixer->chip->dev;
1141
unsigned int pval = kctl->private_value;
1142
u8 value;
1143
int err;
1144
1145
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
1146
(pval >> 16) & 0xff,
1147
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
1148
0, pval & 0xffff, &value, 1);
1149
if (err < 0) {
1150
dev_err(&dev->dev,
1151
"unable to issue vendor read request (ret = %d)", err);
1152
return err;
1153
}
1154
1155
kctl->private_value |= ((unsigned int)value << 24);
1156
return 0;
1157
}
1158
1159
static int snd_nativeinstruments_control_get(struct snd_kcontrol *kcontrol,
1160
struct snd_ctl_elem_value *ucontrol)
1161
{
1162
ucontrol->value.integer.value[0] = kcontrol->private_value >> 24;
1163
return 0;
1164
}
1165
1166
static int snd_ni_update_cur_val(struct usb_mixer_elem_list *list)
1167
{
1168
struct snd_usb_audio *chip = list->mixer->chip;
1169
unsigned int pval = list->kctl->private_value;
1170
int err;
1171
1172
err = snd_usb_lock_shutdown(chip);
1173
if (err < 0)
1174
return err;
1175
err = usb_control_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0),
1176
(pval >> 16) & 0xff,
1177
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
1178
pval >> 24, pval & 0xffff, NULL, 0, 1000);
1179
snd_usb_unlock_shutdown(chip);
1180
return err;
1181
}
1182
1183
static int snd_nativeinstruments_control_put(struct snd_kcontrol *kcontrol,
1184
struct snd_ctl_elem_value *ucontrol)
1185
{
1186
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
1187
u8 oldval = (kcontrol->private_value >> 24) & 0xff;
1188
u8 newval = ucontrol->value.integer.value[0];
1189
int err;
1190
1191
if (oldval == newval)
1192
return 0;
1193
1194
kcontrol->private_value &= ~(0xff << 24);
1195
kcontrol->private_value |= (unsigned int)newval << 24;
1196
err = snd_ni_update_cur_val(list);
1197
return err < 0 ? err : 1;
1198
}
1199
1200
static const struct snd_kcontrol_new snd_nativeinstruments_ta6_mixers[] = {
1201
{
1202
.name = "Direct Thru Channel A",
1203
.private_value = _MAKE_NI_CONTROL(0x01, 0x03),
1204
},
1205
{
1206
.name = "Direct Thru Channel B",
1207
.private_value = _MAKE_NI_CONTROL(0x01, 0x05),
1208
},
1209
{
1210
.name = "Phono Input Channel A",
1211
.private_value = _MAKE_NI_CONTROL(0x02, 0x03),
1212
},
1213
{
1214
.name = "Phono Input Channel B",
1215
.private_value = _MAKE_NI_CONTROL(0x02, 0x05),
1216
},
1217
};
1218
1219
static const struct snd_kcontrol_new snd_nativeinstruments_ta10_mixers[] = {
1220
{
1221
.name = "Direct Thru Channel A",
1222
.private_value = _MAKE_NI_CONTROL(0x01, 0x03),
1223
},
1224
{
1225
.name = "Direct Thru Channel B",
1226
.private_value = _MAKE_NI_CONTROL(0x01, 0x05),
1227
},
1228
{
1229
.name = "Direct Thru Channel C",
1230
.private_value = _MAKE_NI_CONTROL(0x01, 0x07),
1231
},
1232
{
1233
.name = "Direct Thru Channel D",
1234
.private_value = _MAKE_NI_CONTROL(0x01, 0x09),
1235
},
1236
{
1237
.name = "Phono Input Channel A",
1238
.private_value = _MAKE_NI_CONTROL(0x02, 0x03),
1239
},
1240
{
1241
.name = "Phono Input Channel B",
1242
.private_value = _MAKE_NI_CONTROL(0x02, 0x05),
1243
},
1244
{
1245
.name = "Phono Input Channel C",
1246
.private_value = _MAKE_NI_CONTROL(0x02, 0x07),
1247
},
1248
{
1249
.name = "Phono Input Channel D",
1250
.private_value = _MAKE_NI_CONTROL(0x02, 0x09),
1251
},
1252
};
1253
1254
static int snd_nativeinstruments_create_mixer(struct usb_mixer_interface *mixer,
1255
const struct snd_kcontrol_new *kc,
1256
unsigned int count)
1257
{
1258
int i, err = 0;
1259
struct snd_kcontrol_new template = {
1260
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1261
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1262
.get = snd_nativeinstruments_control_get,
1263
.put = snd_nativeinstruments_control_put,
1264
.info = snd_ctl_boolean_mono_info,
1265
};
1266
1267
for (i = 0; i < count; i++) {
1268
struct usb_mixer_elem_list *list;
1269
1270
template.name = kc[i].name;
1271
template.private_value = kc[i].private_value;
1272
1273
err = add_single_ctl_with_resume(mixer, 0,
1274
snd_ni_update_cur_val,
1275
&template, &list);
1276
if (err < 0)
1277
break;
1278
snd_ni_control_init_val(mixer, list->kctl);
1279
}
1280
1281
return err;
1282
}
1283
1284
/* M-Audio FastTrack Ultra quirks */
1285
/* FTU Effect switch (also used by C400/C600) */
1286
static int snd_ftu_eff_switch_info(struct snd_kcontrol *kcontrol,
1287
struct snd_ctl_elem_info *uinfo)
1288
{
1289
static const char *const texts[8] = {
1290
"Room 1", "Room 2", "Room 3", "Hall 1",
1291
"Hall 2", "Plate", "Delay", "Echo"
1292
};
1293
1294
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
1295
}
1296
1297
static int snd_ftu_eff_switch_init(struct usb_mixer_interface *mixer,
1298
struct snd_kcontrol *kctl)
1299
{
1300
struct usb_device *dev = mixer->chip->dev;
1301
unsigned int pval = kctl->private_value;
1302
int err;
1303
unsigned char value[2];
1304
1305
value[0] = 0x00;
1306
value[1] = 0x00;
1307
1308
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), UAC_GET_CUR,
1309
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
1310
pval & 0xff00,
1311
snd_usb_ctrl_intf(mixer->hostif) | ((pval & 0xff) << 8),
1312
value, 2);
1313
if (err < 0)
1314
return err;
1315
1316
kctl->private_value |= (unsigned int)value[0] << 24;
1317
return 0;
1318
}
1319
1320
static int snd_ftu_eff_switch_get(struct snd_kcontrol *kctl,
1321
struct snd_ctl_elem_value *ucontrol)
1322
{
1323
ucontrol->value.enumerated.item[0] = kctl->private_value >> 24;
1324
return 0;
1325
}
1326
1327
static int snd_ftu_eff_switch_update(struct usb_mixer_elem_list *list)
1328
{
1329
struct snd_usb_audio *chip = list->mixer->chip;
1330
unsigned int pval = list->kctl->private_value;
1331
unsigned char value[2];
1332
int err;
1333
1334
value[0] = pval >> 24;
1335
value[1] = 0;
1336
1337
err = snd_usb_lock_shutdown(chip);
1338
if (err < 0)
1339
return err;
1340
err = snd_usb_ctl_msg(chip->dev,
1341
usb_sndctrlpipe(chip->dev, 0),
1342
UAC_SET_CUR,
1343
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
1344
pval & 0xff00,
1345
snd_usb_ctrl_intf(list->mixer->hostif) | ((pval & 0xff) << 8),
1346
value, 2);
1347
snd_usb_unlock_shutdown(chip);
1348
return err;
1349
}
1350
1351
static int snd_ftu_eff_switch_put(struct snd_kcontrol *kctl,
1352
struct snd_ctl_elem_value *ucontrol)
1353
{
1354
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
1355
unsigned int pval = list->kctl->private_value;
1356
int cur_val, err, new_val;
1357
1358
cur_val = pval >> 24;
1359
new_val = ucontrol->value.enumerated.item[0];
1360
if (cur_val == new_val)
1361
return 0;
1362
1363
kctl->private_value &= ~(0xff << 24);
1364
kctl->private_value |= new_val << 24;
1365
err = snd_ftu_eff_switch_update(list);
1366
return err < 0 ? err : 1;
1367
}
1368
1369
static int snd_ftu_create_effect_switch(struct usb_mixer_interface *mixer,
1370
int validx, int bUnitID)
1371
{
1372
static struct snd_kcontrol_new template = {
1373
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1374
.name = "Effect Program Switch",
1375
.index = 0,
1376
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1377
.info = snd_ftu_eff_switch_info,
1378
.get = snd_ftu_eff_switch_get,
1379
.put = snd_ftu_eff_switch_put
1380
};
1381
struct usb_mixer_elem_list *list;
1382
int err;
1383
1384
err = add_single_ctl_with_resume(mixer, bUnitID,
1385
snd_ftu_eff_switch_update,
1386
&template, &list);
1387
if (err < 0)
1388
return err;
1389
list->kctl->private_value = (validx << 8) | bUnitID;
1390
snd_ftu_eff_switch_init(mixer, list->kctl);
1391
return 0;
1392
}
1393
1394
/* Create volume controls for FTU devices*/
1395
static int snd_ftu_create_volume_ctls(struct usb_mixer_interface *mixer)
1396
{
1397
char name[64];
1398
unsigned int control, cmask;
1399
int in, out, err;
1400
1401
const unsigned int id = 5;
1402
const int val_type = USB_MIXER_S16;
1403
1404
for (out = 0; out < 8; out++) {
1405
control = out + 1;
1406
for (in = 0; in < 8; in++) {
1407
cmask = BIT(in);
1408
snprintf(name, sizeof(name),
1409
"AIn%d - Out%d Capture Volume",
1410
in + 1, out + 1);
1411
err = snd_create_std_mono_ctl(mixer, id, control,
1412
cmask, val_type, name,
1413
&snd_usb_mixer_vol_tlv);
1414
if (err < 0)
1415
return err;
1416
}
1417
for (in = 8; in < 16; in++) {
1418
cmask = BIT(in);
1419
snprintf(name, sizeof(name),
1420
"DIn%d - Out%d Playback Volume",
1421
in - 7, out + 1);
1422
err = snd_create_std_mono_ctl(mixer, id, control,
1423
cmask, val_type, name,
1424
&snd_usb_mixer_vol_tlv);
1425
if (err < 0)
1426
return err;
1427
}
1428
}
1429
1430
return 0;
1431
}
1432
1433
/* This control needs a volume quirk, see mixer.c */
1434
static int snd_ftu_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
1435
{
1436
static const char name[] = "Effect Volume";
1437
const unsigned int id = 6;
1438
const int val_type = USB_MIXER_U8;
1439
const unsigned int control = 2;
1440
const unsigned int cmask = 0;
1441
1442
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1443
name, snd_usb_mixer_vol_tlv);
1444
}
1445
1446
/* This control needs a volume quirk, see mixer.c */
1447
static int snd_ftu_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
1448
{
1449
static const char name[] = "Effect Duration";
1450
const unsigned int id = 6;
1451
const int val_type = USB_MIXER_S16;
1452
const unsigned int control = 3;
1453
const unsigned int cmask = 0;
1454
1455
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1456
name, snd_usb_mixer_vol_tlv);
1457
}
1458
1459
/* This control needs a volume quirk, see mixer.c */
1460
static int snd_ftu_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
1461
{
1462
static const char name[] = "Effect Feedback Volume";
1463
const unsigned int id = 6;
1464
const int val_type = USB_MIXER_U8;
1465
const unsigned int control = 4;
1466
const unsigned int cmask = 0;
1467
1468
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1469
name, NULL);
1470
}
1471
1472
static int snd_ftu_create_effect_return_ctls(struct usb_mixer_interface *mixer)
1473
{
1474
unsigned int cmask;
1475
int err, ch;
1476
char name[48];
1477
1478
const unsigned int id = 7;
1479
const int val_type = USB_MIXER_S16;
1480
const unsigned int control = 7;
1481
1482
for (ch = 0; ch < 4; ++ch) {
1483
cmask = BIT(ch);
1484
snprintf(name, sizeof(name),
1485
"Effect Return %d Volume", ch + 1);
1486
err = snd_create_std_mono_ctl(mixer, id, control,
1487
cmask, val_type, name,
1488
snd_usb_mixer_vol_tlv);
1489
if (err < 0)
1490
return err;
1491
}
1492
1493
return 0;
1494
}
1495
1496
static int snd_ftu_create_effect_send_ctls(struct usb_mixer_interface *mixer)
1497
{
1498
unsigned int cmask;
1499
int err, ch;
1500
char name[48];
1501
1502
const unsigned int id = 5;
1503
const int val_type = USB_MIXER_S16;
1504
const unsigned int control = 9;
1505
1506
for (ch = 0; ch < 8; ++ch) {
1507
cmask = BIT(ch);
1508
snprintf(name, sizeof(name),
1509
"Effect Send AIn%d Volume", ch + 1);
1510
err = snd_create_std_mono_ctl(mixer, id, control, cmask,
1511
val_type, name,
1512
snd_usb_mixer_vol_tlv);
1513
if (err < 0)
1514
return err;
1515
}
1516
for (ch = 8; ch < 16; ++ch) {
1517
cmask = BIT(ch);
1518
snprintf(name, sizeof(name),
1519
"Effect Send DIn%d Volume", ch - 7);
1520
err = snd_create_std_mono_ctl(mixer, id, control, cmask,
1521
val_type, name,
1522
snd_usb_mixer_vol_tlv);
1523
if (err < 0)
1524
return err;
1525
}
1526
return 0;
1527
}
1528
1529
static int snd_ftu_create_mixer(struct usb_mixer_interface *mixer)
1530
{
1531
int err;
1532
1533
err = snd_ftu_create_volume_ctls(mixer);
1534
if (err < 0)
1535
return err;
1536
1537
err = snd_ftu_create_effect_switch(mixer, 1, 6);
1538
if (err < 0)
1539
return err;
1540
1541
err = snd_ftu_create_effect_volume_ctl(mixer);
1542
if (err < 0)
1543
return err;
1544
1545
err = snd_ftu_create_effect_duration_ctl(mixer);
1546
if (err < 0)
1547
return err;
1548
1549
err = snd_ftu_create_effect_feedback_ctl(mixer);
1550
if (err < 0)
1551
return err;
1552
1553
err = snd_ftu_create_effect_return_ctls(mixer);
1554
if (err < 0)
1555
return err;
1556
1557
err = snd_ftu_create_effect_send_ctls(mixer);
1558
if (err < 0)
1559
return err;
1560
1561
return 0;
1562
}
1563
1564
void snd_emuusb_set_samplerate(struct snd_usb_audio *chip,
1565
unsigned char samplerate_id)
1566
{
1567
struct usb_mixer_interface *mixer;
1568
struct usb_mixer_elem_info *cval;
1569
int unitid = 12; /* SampleRate ExtensionUnit ID */
1570
1571
list_for_each_entry(mixer, &chip->mixer_list, list) {
1572
if (mixer->id_elems[unitid]) {
1573
cval = mixer_elem_list_to_info(mixer->id_elems[unitid]);
1574
snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR,
1575
cval->control << 8,
1576
samplerate_id);
1577
snd_usb_mixer_notify_id(mixer, unitid);
1578
break;
1579
}
1580
}
1581
}
1582
1583
/* M-Audio Fast Track C400/C600 */
1584
/* C400/C600 volume controls, this control needs a volume quirk, see mixer.c */
1585
static int snd_c400_create_vol_ctls(struct usb_mixer_interface *mixer)
1586
{
1587
char name[64];
1588
unsigned int cmask, offset;
1589
int out, chan, err;
1590
int num_outs = 0;
1591
int num_ins = 0;
1592
1593
const unsigned int id = 0x40;
1594
const int val_type = USB_MIXER_S16;
1595
const int control = 1;
1596
1597
switch (mixer->chip->usb_id) {
1598
case USB_ID(0x0763, 0x2030):
1599
num_outs = 6;
1600
num_ins = 4;
1601
break;
1602
case USB_ID(0x0763, 0x2031):
1603
num_outs = 8;
1604
num_ins = 6;
1605
break;
1606
}
1607
1608
for (chan = 0; chan < num_outs + num_ins; chan++) {
1609
for (out = 0; out < num_outs; out++) {
1610
if (chan < num_outs) {
1611
snprintf(name, sizeof(name),
1612
"PCM%d-Out%d Playback Volume",
1613
chan + 1, out + 1);
1614
} else {
1615
snprintf(name, sizeof(name),
1616
"In%d-Out%d Playback Volume",
1617
chan - num_outs + 1, out + 1);
1618
}
1619
1620
cmask = (out == 0) ? 0 : BIT(out - 1);
1621
offset = chan * num_outs;
1622
err = snd_create_std_mono_ctl_offset(mixer, id, control,
1623
cmask, val_type, offset, name,
1624
&snd_usb_mixer_vol_tlv);
1625
if (err < 0)
1626
return err;
1627
}
1628
}
1629
1630
return 0;
1631
}
1632
1633
/* This control needs a volume quirk, see mixer.c */
1634
static int snd_c400_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
1635
{
1636
static const char name[] = "Effect Volume";
1637
const unsigned int id = 0x43;
1638
const int val_type = USB_MIXER_U8;
1639
const unsigned int control = 3;
1640
const unsigned int cmask = 0;
1641
1642
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1643
name, snd_usb_mixer_vol_tlv);
1644
}
1645
1646
/* This control needs a volume quirk, see mixer.c */
1647
static int snd_c400_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
1648
{
1649
static const char name[] = "Effect Duration";
1650
const unsigned int id = 0x43;
1651
const int val_type = USB_MIXER_S16;
1652
const unsigned int control = 4;
1653
const unsigned int cmask = 0;
1654
1655
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1656
name, snd_usb_mixer_vol_tlv);
1657
}
1658
1659
/* This control needs a volume quirk, see mixer.c */
1660
static int snd_c400_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
1661
{
1662
static const char name[] = "Effect Feedback Volume";
1663
const unsigned int id = 0x43;
1664
const int val_type = USB_MIXER_U8;
1665
const unsigned int control = 5;
1666
const unsigned int cmask = 0;
1667
1668
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
1669
name, NULL);
1670
}
1671
1672
static int snd_c400_create_effect_vol_ctls(struct usb_mixer_interface *mixer)
1673
{
1674
char name[64];
1675
unsigned int cmask;
1676
int chan, err;
1677
int num_outs = 0;
1678
int num_ins = 0;
1679
1680
const unsigned int id = 0x42;
1681
const int val_type = USB_MIXER_S16;
1682
const int control = 1;
1683
1684
switch (mixer->chip->usb_id) {
1685
case USB_ID(0x0763, 0x2030):
1686
num_outs = 6;
1687
num_ins = 4;
1688
break;
1689
case USB_ID(0x0763, 0x2031):
1690
num_outs = 8;
1691
num_ins = 6;
1692
break;
1693
}
1694
1695
for (chan = 0; chan < num_outs + num_ins; chan++) {
1696
if (chan < num_outs) {
1697
snprintf(name, sizeof(name),
1698
"Effect Send DOut%d",
1699
chan + 1);
1700
} else {
1701
snprintf(name, sizeof(name),
1702
"Effect Send AIn%d",
1703
chan - num_outs + 1);
1704
}
1705
1706
cmask = (chan == 0) ? 0 : BIT(chan - 1);
1707
err = snd_create_std_mono_ctl(mixer, id, control,
1708
cmask, val_type, name,
1709
&snd_usb_mixer_vol_tlv);
1710
if (err < 0)
1711
return err;
1712
}
1713
1714
return 0;
1715
}
1716
1717
static int snd_c400_create_effect_ret_vol_ctls(struct usb_mixer_interface *mixer)
1718
{
1719
char name[64];
1720
unsigned int cmask;
1721
int chan, err;
1722
int num_outs = 0;
1723
int offset = 0;
1724
1725
const unsigned int id = 0x40;
1726
const int val_type = USB_MIXER_S16;
1727
const int control = 1;
1728
1729
switch (mixer->chip->usb_id) {
1730
case USB_ID(0x0763, 0x2030):
1731
num_outs = 6;
1732
offset = 0x3c;
1733
/* { 0x3c, 0x43, 0x3e, 0x45, 0x40, 0x47 } */
1734
break;
1735
case USB_ID(0x0763, 0x2031):
1736
num_outs = 8;
1737
offset = 0x70;
1738
/* { 0x70, 0x79, 0x72, 0x7b, 0x74, 0x7d, 0x76, 0x7f } */
1739
break;
1740
}
1741
1742
for (chan = 0; chan < num_outs; chan++) {
1743
snprintf(name, sizeof(name),
1744
"Effect Return %d",
1745
chan + 1);
1746
1747
cmask = (chan == 0) ? 0 :
1748
BIT(chan + (chan % 2) * num_outs - 1);
1749
err = snd_create_std_mono_ctl_offset(mixer, id, control,
1750
cmask, val_type, offset, name,
1751
&snd_usb_mixer_vol_tlv);
1752
if (err < 0)
1753
return err;
1754
}
1755
1756
return 0;
1757
}
1758
1759
static int snd_c400_create_mixer(struct usb_mixer_interface *mixer)
1760
{
1761
int err;
1762
1763
err = snd_c400_create_vol_ctls(mixer);
1764
if (err < 0)
1765
return err;
1766
1767
err = snd_c400_create_effect_vol_ctls(mixer);
1768
if (err < 0)
1769
return err;
1770
1771
err = snd_c400_create_effect_ret_vol_ctls(mixer);
1772
if (err < 0)
1773
return err;
1774
1775
err = snd_ftu_create_effect_switch(mixer, 2, 0x43);
1776
if (err < 0)
1777
return err;
1778
1779
err = snd_c400_create_effect_volume_ctl(mixer);
1780
if (err < 0)
1781
return err;
1782
1783
err = snd_c400_create_effect_duration_ctl(mixer);
1784
if (err < 0)
1785
return err;
1786
1787
err = snd_c400_create_effect_feedback_ctl(mixer);
1788
if (err < 0)
1789
return err;
1790
1791
return 0;
1792
}
1793
1794
/*
1795
* The mixer units for Ebox-44 are corrupt, and even where they
1796
* are valid they presents mono controls as L and R channels of
1797
* stereo. So we provide a good mixer here.
1798
*/
1799
static const struct std_mono_table ebox44_table[] = {
1800
{
1801
.unitid = 4,
1802
.control = 1,
1803
.cmask = 0x0,
1804
.val_type = USB_MIXER_INV_BOOLEAN,
1805
.name = "Headphone Playback Switch"
1806
},
1807
{
1808
.unitid = 4,
1809
.control = 2,
1810
.cmask = 0x1,
1811
.val_type = USB_MIXER_S16,
1812
.name = "Headphone A Mix Playback Volume"
1813
},
1814
{
1815
.unitid = 4,
1816
.control = 2,
1817
.cmask = 0x2,
1818
.val_type = USB_MIXER_S16,
1819
.name = "Headphone B Mix Playback Volume"
1820
},
1821
1822
{
1823
.unitid = 7,
1824
.control = 1,
1825
.cmask = 0x0,
1826
.val_type = USB_MIXER_INV_BOOLEAN,
1827
.name = "Output Playback Switch"
1828
},
1829
{
1830
.unitid = 7,
1831
.control = 2,
1832
.cmask = 0x1,
1833
.val_type = USB_MIXER_S16,
1834
.name = "Output A Playback Volume"
1835
},
1836
{
1837
.unitid = 7,
1838
.control = 2,
1839
.cmask = 0x2,
1840
.val_type = USB_MIXER_S16,
1841
.name = "Output B Playback Volume"
1842
},
1843
1844
{
1845
.unitid = 10,
1846
.control = 1,
1847
.cmask = 0x0,
1848
.val_type = USB_MIXER_INV_BOOLEAN,
1849
.name = "Input Capture Switch"
1850
},
1851
{
1852
.unitid = 10,
1853
.control = 2,
1854
.cmask = 0x1,
1855
.val_type = USB_MIXER_S16,
1856
.name = "Input A Capture Volume"
1857
},
1858
{
1859
.unitid = 10,
1860
.control = 2,
1861
.cmask = 0x2,
1862
.val_type = USB_MIXER_S16,
1863
.name = "Input B Capture Volume"
1864
},
1865
1866
{}
1867
};
1868
1869
/* Audio Advantage Micro II findings:
1870
*
1871
* Mapping spdif AES bits to vendor register.bit:
1872
* AES0: [0 0 0 0 2.3 2.2 2.1 2.0] - default 0x00
1873
* AES1: [3.3 3.2.3.1.3.0 2.7 2.6 2.5 2.4] - default: 0x01
1874
* AES2: [0 0 0 0 0 0 0 0]
1875
* AES3: [0 0 0 0 0 0 x 0] - 'x' bit is set basing on standard usb request
1876
* (UAC_EP_CS_ATTR_SAMPLE_RATE) for Audio Devices
1877
*
1878
* power on values:
1879
* r2: 0x10
1880
* r3: 0x20 (b7 is zeroed just before playback (except IEC61937) and set
1881
* just after it to 0xa0, presumably it disables/mutes some analog
1882
* parts when there is no audio.)
1883
* r9: 0x28
1884
*
1885
* Optical transmitter on/off:
1886
* vendor register.bit: 9.1
1887
* 0 - on (0x28 register value)
1888
* 1 - off (0x2a register value)
1889
*
1890
*/
1891
static int snd_microii_spdif_info(struct snd_kcontrol *kcontrol,
1892
struct snd_ctl_elem_info *uinfo)
1893
{
1894
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1895
uinfo->count = 1;
1896
return 0;
1897
}
1898
1899
static int snd_microii_spdif_default_get(struct snd_kcontrol *kcontrol,
1900
struct snd_ctl_elem_value *ucontrol)
1901
{
1902
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
1903
struct snd_usb_audio *chip = list->mixer->chip;
1904
int err;
1905
struct usb_interface *iface;
1906
struct usb_host_interface *alts;
1907
unsigned int ep;
1908
unsigned char data[3];
1909
int rate;
1910
1911
err = snd_usb_lock_shutdown(chip);
1912
if (err < 0)
1913
return err;
1914
1915
ucontrol->value.iec958.status[0] = kcontrol->private_value & 0xff;
1916
ucontrol->value.iec958.status[1] = (kcontrol->private_value >> 8) & 0xff;
1917
ucontrol->value.iec958.status[2] = 0x00;
1918
1919
/* use known values for that card: interface#1 altsetting#1 */
1920
iface = usb_ifnum_to_if(chip->dev, 1);
1921
if (!iface || iface->num_altsetting < 2) {
1922
err = -EINVAL;
1923
goto end;
1924
}
1925
alts = &iface->altsetting[1];
1926
if (get_iface_desc(alts)->bNumEndpoints < 1) {
1927
err = -EINVAL;
1928
goto end;
1929
}
1930
ep = get_endpoint(alts, 0)->bEndpointAddress;
1931
1932
err = snd_usb_ctl_msg(chip->dev,
1933
usb_rcvctrlpipe(chip->dev, 0),
1934
UAC_GET_CUR,
1935
USB_TYPE_CLASS | USB_RECIP_ENDPOINT | USB_DIR_IN,
1936
UAC_EP_CS_ATTR_SAMPLE_RATE << 8,
1937
ep,
1938
data,
1939
sizeof(data));
1940
if (err < 0)
1941
goto end;
1942
1943
rate = data[0] | (data[1] << 8) | (data[2] << 16);
1944
ucontrol->value.iec958.status[3] = (rate == 48000) ?
1945
IEC958_AES3_CON_FS_48000 : IEC958_AES3_CON_FS_44100;
1946
1947
err = 0;
1948
end:
1949
snd_usb_unlock_shutdown(chip);
1950
return err;
1951
}
1952
1953
static int snd_microii_spdif_default_update(struct usb_mixer_elem_list *list)
1954
{
1955
struct snd_usb_audio *chip = list->mixer->chip;
1956
unsigned int pval = list->kctl->private_value;
1957
u8 reg;
1958
int err;
1959
1960
err = snd_usb_lock_shutdown(chip);
1961
if (err < 0)
1962
return err;
1963
1964
reg = ((pval >> 4) & 0xf0) | (pval & 0x0f);
1965
err = snd_usb_ctl_msg(chip->dev,
1966
usb_sndctrlpipe(chip->dev, 0),
1967
UAC_SET_CUR,
1968
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
1969
reg,
1970
2,
1971
NULL,
1972
0);
1973
if (err < 0)
1974
goto end;
1975
1976
reg = (pval & IEC958_AES0_NONAUDIO) ? 0xa0 : 0x20;
1977
reg |= (pval >> 12) & 0x0f;
1978
err = snd_usb_ctl_msg(chip->dev,
1979
usb_sndctrlpipe(chip->dev, 0),
1980
UAC_SET_CUR,
1981
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
1982
reg,
1983
3,
1984
NULL,
1985
0);
1986
if (err < 0)
1987
goto end;
1988
1989
end:
1990
snd_usb_unlock_shutdown(chip);
1991
return err;
1992
}
1993
1994
static int snd_microii_spdif_default_put(struct snd_kcontrol *kcontrol,
1995
struct snd_ctl_elem_value *ucontrol)
1996
{
1997
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
1998
unsigned int pval, pval_old;
1999
int err;
2000
2001
pval = kcontrol->private_value;
2002
pval_old = pval;
2003
pval &= 0xfffff0f0;
2004
pval |= (ucontrol->value.iec958.status[1] & 0x0f) << 8;
2005
pval |= (ucontrol->value.iec958.status[0] & 0x0f);
2006
2007
pval &= 0xffff0fff;
2008
pval |= (ucontrol->value.iec958.status[1] & 0xf0) << 8;
2009
2010
/* The frequency bits in AES3 cannot be set via register access. */
2011
2012
/* Silently ignore any bits from the request that cannot be set. */
2013
2014
if (pval == pval_old)
2015
return 0;
2016
2017
kcontrol->private_value = pval;
2018
err = snd_microii_spdif_default_update(list);
2019
return err < 0 ? err : 1;
2020
}
2021
2022
static int snd_microii_spdif_mask_get(struct snd_kcontrol *kcontrol,
2023
struct snd_ctl_elem_value *ucontrol)
2024
{
2025
ucontrol->value.iec958.status[0] = 0x0f;
2026
ucontrol->value.iec958.status[1] = 0xff;
2027
ucontrol->value.iec958.status[2] = 0x00;
2028
ucontrol->value.iec958.status[3] = 0x00;
2029
2030
return 0;
2031
}
2032
2033
static int snd_microii_spdif_switch_get(struct snd_kcontrol *kcontrol,
2034
struct snd_ctl_elem_value *ucontrol)
2035
{
2036
ucontrol->value.integer.value[0] = !(kcontrol->private_value & 0x02);
2037
2038
return 0;
2039
}
2040
2041
static int snd_microii_spdif_switch_update(struct usb_mixer_elem_list *list)
2042
{
2043
struct snd_usb_audio *chip = list->mixer->chip;
2044
u8 reg = list->kctl->private_value;
2045
int err;
2046
2047
err = snd_usb_lock_shutdown(chip);
2048
if (err < 0)
2049
return err;
2050
2051
err = snd_usb_ctl_msg(chip->dev,
2052
usb_sndctrlpipe(chip->dev, 0),
2053
UAC_SET_CUR,
2054
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
2055
reg,
2056
9,
2057
NULL,
2058
0);
2059
2060
snd_usb_unlock_shutdown(chip);
2061
return err;
2062
}
2063
2064
static int snd_microii_spdif_switch_put(struct snd_kcontrol *kcontrol,
2065
struct snd_ctl_elem_value *ucontrol)
2066
{
2067
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2068
u8 reg;
2069
int err;
2070
2071
reg = ucontrol->value.integer.value[0] ? 0x28 : 0x2a;
2072
if (reg != list->kctl->private_value)
2073
return 0;
2074
2075
kcontrol->private_value = reg;
2076
err = snd_microii_spdif_switch_update(list);
2077
return err < 0 ? err : 1;
2078
}
2079
2080
static const struct snd_kcontrol_new snd_microii_mixer_spdif[] = {
2081
{
2082
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2083
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
2084
.info = snd_microii_spdif_info,
2085
.get = snd_microii_spdif_default_get,
2086
.put = snd_microii_spdif_default_put,
2087
.private_value = 0x00000100UL,/* reset value */
2088
},
2089
{
2090
.access = SNDRV_CTL_ELEM_ACCESS_READ,
2091
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2092
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
2093
.info = snd_microii_spdif_info,
2094
.get = snd_microii_spdif_mask_get,
2095
},
2096
{
2097
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2098
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
2099
.info = snd_ctl_boolean_mono_info,
2100
.get = snd_microii_spdif_switch_get,
2101
.put = snd_microii_spdif_switch_put,
2102
.private_value = 0x00000028UL,/* reset value */
2103
}
2104
};
2105
2106
static int snd_microii_controls_create(struct usb_mixer_interface *mixer)
2107
{
2108
int err, i;
2109
static const usb_mixer_elem_resume_func_t resume_funcs[] = {
2110
snd_microii_spdif_default_update,
2111
NULL,
2112
snd_microii_spdif_switch_update
2113
};
2114
2115
for (i = 0; i < ARRAY_SIZE(snd_microii_mixer_spdif); ++i) {
2116
err = add_single_ctl_with_resume(mixer, 0,
2117
resume_funcs[i],
2118
&snd_microii_mixer_spdif[i],
2119
NULL);
2120
if (err < 0)
2121
return err;
2122
}
2123
2124
return 0;
2125
}
2126
2127
/* Creative Sound Blaster E1 */
2128
2129
static int snd_soundblaster_e1_switch_get(struct snd_kcontrol *kcontrol,
2130
struct snd_ctl_elem_value *ucontrol)
2131
{
2132
ucontrol->value.integer.value[0] = kcontrol->private_value;
2133
return 0;
2134
}
2135
2136
static int snd_soundblaster_e1_switch_update(struct usb_mixer_interface *mixer,
2137
unsigned char state)
2138
{
2139
struct snd_usb_audio *chip = mixer->chip;
2140
int err;
2141
unsigned char buff[2];
2142
2143
buff[0] = 0x02;
2144
buff[1] = state ? 0x02 : 0x00;
2145
2146
err = snd_usb_lock_shutdown(chip);
2147
if (err < 0)
2148
return err;
2149
err = snd_usb_ctl_msg(chip->dev,
2150
usb_sndctrlpipe(chip->dev, 0), HID_REQ_SET_REPORT,
2151
USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT,
2152
0x0202, 3, buff, 2);
2153
snd_usb_unlock_shutdown(chip);
2154
return err;
2155
}
2156
2157
static int snd_soundblaster_e1_switch_put(struct snd_kcontrol *kcontrol,
2158
struct snd_ctl_elem_value *ucontrol)
2159
{
2160
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2161
unsigned char value = !!ucontrol->value.integer.value[0];
2162
int err;
2163
2164
if (kcontrol->private_value == value)
2165
return 0;
2166
kcontrol->private_value = value;
2167
err = snd_soundblaster_e1_switch_update(list->mixer, value);
2168
return err < 0 ? err : 1;
2169
}
2170
2171
static int snd_soundblaster_e1_switch_resume(struct usb_mixer_elem_list *list)
2172
{
2173
return snd_soundblaster_e1_switch_update(list->mixer,
2174
list->kctl->private_value);
2175
}
2176
2177
static int snd_soundblaster_e1_switch_info(struct snd_kcontrol *kcontrol,
2178
struct snd_ctl_elem_info *uinfo)
2179
{
2180
static const char *const texts[2] = {
2181
"Mic", "Aux"
2182
};
2183
2184
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
2185
}
2186
2187
static const struct snd_kcontrol_new snd_soundblaster_e1_input_switch = {
2188
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2189
.name = "Input Source",
2190
.info = snd_soundblaster_e1_switch_info,
2191
.get = snd_soundblaster_e1_switch_get,
2192
.put = snd_soundblaster_e1_switch_put,
2193
.private_value = 0,
2194
};
2195
2196
static int snd_soundblaster_e1_switch_create(struct usb_mixer_interface *mixer)
2197
{
2198
return add_single_ctl_with_resume(mixer, 0,
2199
snd_soundblaster_e1_switch_resume,
2200
&snd_soundblaster_e1_input_switch,
2201
NULL);
2202
}
2203
2204
/*
2205
* Dell WD15 dock jack detection
2206
*
2207
* The WD15 contains an ALC4020 USB audio controller and ALC3263 audio codec
2208
* from Realtek. It is a UAC 1 device, and UAC 1 does not support jack
2209
* detection. Instead, jack detection works by sending HD Audio commands over
2210
* vendor-type USB messages.
2211
*/
2212
2213
#define HDA_VERB_CMD(V, N, D) (((N) << 20) | ((V) << 8) | (D))
2214
2215
#define REALTEK_HDA_VALUE 0x0038
2216
2217
#define REALTEK_HDA_SET 62
2218
#define REALTEK_MANUAL_MODE 72
2219
#define REALTEK_HDA_GET_OUT 88
2220
#define REALTEK_HDA_GET_IN 89
2221
2222
#define REALTEK_AUDIO_FUNCTION_GROUP 0x01
2223
#define REALTEK_LINE1 0x1a
2224
#define REALTEK_VENDOR_REGISTERS 0x20
2225
#define REALTEK_HP_OUT 0x21
2226
2227
#define REALTEK_CBJ_CTRL2 0x50
2228
2229
#define REALTEK_JACK_INTERRUPT_NODE 5
2230
2231
#define REALTEK_MIC_FLAG 0x100
2232
2233
static int realtek_hda_set(struct snd_usb_audio *chip, u32 cmd)
2234
{
2235
struct usb_device *dev = chip->dev;
2236
__be32 buf = cpu_to_be32(cmd);
2237
2238
return snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_SET,
2239
USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
2240
REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
2241
}
2242
2243
static int realtek_hda_get(struct snd_usb_audio *chip, u32 cmd, u32 *value)
2244
{
2245
struct usb_device *dev = chip->dev;
2246
int err;
2247
__be32 buf = cpu_to_be32(cmd);
2248
2249
err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_GET_OUT,
2250
USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
2251
REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
2252
if (err < 0)
2253
return err;
2254
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), REALTEK_HDA_GET_IN,
2255
USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_IN,
2256
REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
2257
if (err < 0)
2258
return err;
2259
2260
*value = be32_to_cpu(buf);
2261
return 0;
2262
}
2263
2264
static int realtek_ctl_connector_get(struct snd_kcontrol *kcontrol,
2265
struct snd_ctl_elem_value *ucontrol)
2266
{
2267
struct usb_mixer_elem_info *cval = snd_kcontrol_chip(kcontrol);
2268
struct snd_usb_audio *chip = cval->head.mixer->chip;
2269
u32 pv = kcontrol->private_value;
2270
u32 node_id = pv & 0xff;
2271
u32 sense;
2272
u32 cbj_ctrl2;
2273
bool presence;
2274
int err;
2275
2276
err = snd_usb_lock_shutdown(chip);
2277
if (err < 0)
2278
return err;
2279
err = realtek_hda_get(chip,
2280
HDA_VERB_CMD(AC_VERB_GET_PIN_SENSE, node_id, 0),
2281
&sense);
2282
if (err < 0)
2283
goto err;
2284
if (pv & REALTEK_MIC_FLAG) {
2285
err = realtek_hda_set(chip,
2286
HDA_VERB_CMD(AC_VERB_SET_COEF_INDEX,
2287
REALTEK_VENDOR_REGISTERS,
2288
REALTEK_CBJ_CTRL2));
2289
if (err < 0)
2290
goto err;
2291
err = realtek_hda_get(chip,
2292
HDA_VERB_CMD(AC_VERB_GET_PROC_COEF,
2293
REALTEK_VENDOR_REGISTERS, 0),
2294
&cbj_ctrl2);
2295
if (err < 0)
2296
goto err;
2297
}
2298
err:
2299
snd_usb_unlock_shutdown(chip);
2300
if (err < 0)
2301
return err;
2302
2303
presence = sense & AC_PINSENSE_PRESENCE;
2304
if (pv & REALTEK_MIC_FLAG)
2305
presence = presence && (cbj_ctrl2 & 0x0070) == 0x0070;
2306
ucontrol->value.integer.value[0] = presence;
2307
return 0;
2308
}
2309
2310
static const struct snd_kcontrol_new realtek_connector_ctl_ro = {
2311
.iface = SNDRV_CTL_ELEM_IFACE_CARD,
2312
.name = "", /* will be filled later manually */
2313
.access = SNDRV_CTL_ELEM_ACCESS_READ,
2314
.info = snd_ctl_boolean_mono_info,
2315
.get = realtek_ctl_connector_get,
2316
};
2317
2318
static int realtek_resume_jack(struct usb_mixer_elem_list *list)
2319
{
2320
snd_ctl_notify(list->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
2321
&list->kctl->id);
2322
return 0;
2323
}
2324
2325
static int realtek_add_jack(struct usb_mixer_interface *mixer,
2326
char *name, u32 val)
2327
{
2328
struct usb_mixer_elem_info *cval;
2329
struct snd_kcontrol *kctl;
2330
2331
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
2332
if (!cval)
2333
return -ENOMEM;
2334
snd_usb_mixer_elem_init_std(&cval->head, mixer,
2335
REALTEK_JACK_INTERRUPT_NODE);
2336
cval->head.resume = realtek_resume_jack;
2337
cval->val_type = USB_MIXER_BOOLEAN;
2338
cval->channels = 1;
2339
cval->min = 0;
2340
cval->max = 1;
2341
kctl = snd_ctl_new1(&realtek_connector_ctl_ro, cval);
2342
if (!kctl) {
2343
kfree(cval);
2344
return -ENOMEM;
2345
}
2346
kctl->private_value = val;
2347
strscpy(kctl->id.name, name, sizeof(kctl->id.name));
2348
kctl->private_free = snd_usb_mixer_elem_free;
2349
return snd_usb_mixer_add_control(&cval->head, kctl);
2350
}
2351
2352
static int dell_dock_mixer_create(struct usb_mixer_interface *mixer)
2353
{
2354
int err;
2355
struct usb_device *dev = mixer->chip->dev;
2356
2357
/* Power down the audio codec to avoid loud pops in the next step. */
2358
realtek_hda_set(mixer->chip,
2359
HDA_VERB_CMD(AC_VERB_SET_POWER_STATE,
2360
REALTEK_AUDIO_FUNCTION_GROUP,
2361
AC_PWRST_D3));
2362
2363
/*
2364
* Turn off 'manual mode' in case it was enabled. This removes the need
2365
* to power cycle the dock after it was attached to a Windows machine.
2366
*/
2367
snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_MANUAL_MODE,
2368
USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
2369
0, 0, NULL, 0);
2370
2371
err = realtek_add_jack(mixer, "Line Out Jack", REALTEK_LINE1);
2372
if (err < 0)
2373
return err;
2374
err = realtek_add_jack(mixer, "Headphone Jack", REALTEK_HP_OUT);
2375
if (err < 0)
2376
return err;
2377
err = realtek_add_jack(mixer, "Headset Mic Jack",
2378
REALTEK_HP_OUT | REALTEK_MIC_FLAG);
2379
if (err < 0)
2380
return err;
2381
return 0;
2382
}
2383
2384
static void dell_dock_init_vol(struct usb_mixer_interface *mixer, int ch, int id)
2385
{
2386
struct snd_usb_audio *chip = mixer->chip;
2387
u16 buf = 0;
2388
2389
snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
2390
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
2391
(UAC_FU_VOLUME << 8) | ch,
2392
snd_usb_ctrl_intf(mixer->hostif) | (id << 8),
2393
&buf, 2);
2394
}
2395
2396
static int dell_dock_mixer_init(struct usb_mixer_interface *mixer)
2397
{
2398
/* fix to 0dB playback volumes */
2399
dell_dock_init_vol(mixer, 1, 16);
2400
dell_dock_init_vol(mixer, 2, 16);
2401
dell_dock_init_vol(mixer, 1, 19);
2402
dell_dock_init_vol(mixer, 2, 19);
2403
return 0;
2404
}
2405
2406
/* RME Class Compliant device quirks */
2407
2408
#define SND_RME_GET_STATUS1 23
2409
#define SND_RME_GET_CURRENT_FREQ 17
2410
#define SND_RME_CLK_SYSTEM_SHIFT 16
2411
#define SND_RME_CLK_SYSTEM_MASK 0x1f
2412
#define SND_RME_CLK_AES_SHIFT 8
2413
#define SND_RME_CLK_SPDIF_SHIFT 12
2414
#define SND_RME_CLK_AES_SPDIF_MASK 0xf
2415
#define SND_RME_CLK_SYNC_SHIFT 6
2416
#define SND_RME_CLK_SYNC_MASK 0x3
2417
#define SND_RME_CLK_FREQMUL_SHIFT 18
2418
#define SND_RME_CLK_FREQMUL_MASK 0x7
2419
#define SND_RME_CLK_SYSTEM(x) \
2420
(((x) >> SND_RME_CLK_SYSTEM_SHIFT) & SND_RME_CLK_SYSTEM_MASK)
2421
#define SND_RME_CLK_AES(x) \
2422
(((x) >> SND_RME_CLK_AES_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
2423
#define SND_RME_CLK_SPDIF(x) \
2424
(((x) >> SND_RME_CLK_SPDIF_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
2425
#define SND_RME_CLK_SYNC(x) \
2426
(((x) >> SND_RME_CLK_SYNC_SHIFT) & SND_RME_CLK_SYNC_MASK)
2427
#define SND_RME_CLK_FREQMUL(x) \
2428
(((x) >> SND_RME_CLK_FREQMUL_SHIFT) & SND_RME_CLK_FREQMUL_MASK)
2429
#define SND_RME_CLK_AES_LOCK 0x1
2430
#define SND_RME_CLK_AES_SYNC 0x4
2431
#define SND_RME_CLK_SPDIF_LOCK 0x2
2432
#define SND_RME_CLK_SPDIF_SYNC 0x8
2433
#define SND_RME_SPDIF_IF_SHIFT 4
2434
#define SND_RME_SPDIF_FORMAT_SHIFT 5
2435
#define SND_RME_BINARY_MASK 0x1
2436
#define SND_RME_SPDIF_IF(x) \
2437
(((x) >> SND_RME_SPDIF_IF_SHIFT) & SND_RME_BINARY_MASK)
2438
#define SND_RME_SPDIF_FORMAT(x) \
2439
(((x) >> SND_RME_SPDIF_FORMAT_SHIFT) & SND_RME_BINARY_MASK)
2440
2441
static const u32 snd_rme_rate_table[] = {
2442
32000, 44100, 48000, 50000,
2443
64000, 88200, 96000, 100000,
2444
128000, 176400, 192000, 200000,
2445
256000, 352800, 384000, 400000,
2446
512000, 705600, 768000, 800000
2447
};
2448
2449
/* maximum number of items for AES and S/PDIF rates for above table */
2450
#define SND_RME_RATE_IDX_AES_SPDIF_NUM 12
2451
2452
enum snd_rme_domain {
2453
SND_RME_DOMAIN_SYSTEM,
2454
SND_RME_DOMAIN_AES,
2455
SND_RME_DOMAIN_SPDIF
2456
};
2457
2458
enum snd_rme_clock_status {
2459
SND_RME_CLOCK_NOLOCK,
2460
SND_RME_CLOCK_LOCK,
2461
SND_RME_CLOCK_SYNC
2462
};
2463
2464
static int snd_rme_read_value(struct snd_usb_audio *chip,
2465
unsigned int item,
2466
u32 *value)
2467
{
2468
struct usb_device *dev = chip->dev;
2469
int err;
2470
2471
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
2472
item,
2473
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2474
0, 0,
2475
value, sizeof(*value));
2476
if (err < 0)
2477
dev_err(&dev->dev,
2478
"unable to issue vendor read request %d (ret = %d)",
2479
item, err);
2480
return err;
2481
}
2482
2483
static int snd_rme_get_status1(struct snd_kcontrol *kcontrol,
2484
u32 *status1)
2485
{
2486
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2487
struct snd_usb_audio *chip = list->mixer->chip;
2488
int err;
2489
2490
err = snd_usb_lock_shutdown(chip);
2491
if (err < 0)
2492
return err;
2493
err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, status1);
2494
snd_usb_unlock_shutdown(chip);
2495
return err;
2496
}
2497
2498
static int snd_rme_rate_get(struct snd_kcontrol *kcontrol,
2499
struct snd_ctl_elem_value *ucontrol)
2500
{
2501
u32 status1;
2502
u32 rate = 0;
2503
int idx;
2504
int err;
2505
2506
err = snd_rme_get_status1(kcontrol, &status1);
2507
if (err < 0)
2508
return err;
2509
switch (kcontrol->private_value) {
2510
case SND_RME_DOMAIN_SYSTEM:
2511
idx = SND_RME_CLK_SYSTEM(status1);
2512
if (idx < ARRAY_SIZE(snd_rme_rate_table))
2513
rate = snd_rme_rate_table[idx];
2514
break;
2515
case SND_RME_DOMAIN_AES:
2516
idx = SND_RME_CLK_AES(status1);
2517
if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
2518
rate = snd_rme_rate_table[idx];
2519
break;
2520
case SND_RME_DOMAIN_SPDIF:
2521
idx = SND_RME_CLK_SPDIF(status1);
2522
if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
2523
rate = snd_rme_rate_table[idx];
2524
break;
2525
default:
2526
return -EINVAL;
2527
}
2528
ucontrol->value.integer.value[0] = rate;
2529
return 0;
2530
}
2531
2532
static int snd_rme_sync_state_get(struct snd_kcontrol *kcontrol,
2533
struct snd_ctl_elem_value *ucontrol)
2534
{
2535
u32 status1;
2536
int idx = SND_RME_CLOCK_NOLOCK;
2537
int err;
2538
2539
err = snd_rme_get_status1(kcontrol, &status1);
2540
if (err < 0)
2541
return err;
2542
switch (kcontrol->private_value) {
2543
case SND_RME_DOMAIN_AES: /* AES */
2544
if (status1 & SND_RME_CLK_AES_SYNC)
2545
idx = SND_RME_CLOCK_SYNC;
2546
else if (status1 & SND_RME_CLK_AES_LOCK)
2547
idx = SND_RME_CLOCK_LOCK;
2548
break;
2549
case SND_RME_DOMAIN_SPDIF: /* SPDIF */
2550
if (status1 & SND_RME_CLK_SPDIF_SYNC)
2551
idx = SND_RME_CLOCK_SYNC;
2552
else if (status1 & SND_RME_CLK_SPDIF_LOCK)
2553
idx = SND_RME_CLOCK_LOCK;
2554
break;
2555
default:
2556
return -EINVAL;
2557
}
2558
ucontrol->value.enumerated.item[0] = idx;
2559
return 0;
2560
}
2561
2562
static int snd_rme_spdif_if_get(struct snd_kcontrol *kcontrol,
2563
struct snd_ctl_elem_value *ucontrol)
2564
{
2565
u32 status1;
2566
int err;
2567
2568
err = snd_rme_get_status1(kcontrol, &status1);
2569
if (err < 0)
2570
return err;
2571
ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_IF(status1);
2572
return 0;
2573
}
2574
2575
static int snd_rme_spdif_format_get(struct snd_kcontrol *kcontrol,
2576
struct snd_ctl_elem_value *ucontrol)
2577
{
2578
u32 status1;
2579
int err;
2580
2581
err = snd_rme_get_status1(kcontrol, &status1);
2582
if (err < 0)
2583
return err;
2584
ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_FORMAT(status1);
2585
return 0;
2586
}
2587
2588
static int snd_rme_sync_source_get(struct snd_kcontrol *kcontrol,
2589
struct snd_ctl_elem_value *ucontrol)
2590
{
2591
u32 status1;
2592
int err;
2593
2594
err = snd_rme_get_status1(kcontrol, &status1);
2595
if (err < 0)
2596
return err;
2597
ucontrol->value.enumerated.item[0] = SND_RME_CLK_SYNC(status1);
2598
return 0;
2599
}
2600
2601
static int snd_rme_current_freq_get(struct snd_kcontrol *kcontrol,
2602
struct snd_ctl_elem_value *ucontrol)
2603
{
2604
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2605
struct snd_usb_audio *chip = list->mixer->chip;
2606
u32 status1;
2607
const u64 num = 104857600000000ULL;
2608
u32 den;
2609
unsigned int freq;
2610
int err;
2611
2612
err = snd_usb_lock_shutdown(chip);
2613
if (err < 0)
2614
return err;
2615
err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, &status1);
2616
if (err < 0)
2617
goto end;
2618
err = snd_rme_read_value(chip, SND_RME_GET_CURRENT_FREQ, &den);
2619
if (err < 0)
2620
goto end;
2621
freq = (den == 0) ? 0 : div64_u64(num, den);
2622
freq <<= SND_RME_CLK_FREQMUL(status1);
2623
ucontrol->value.integer.value[0] = freq;
2624
2625
end:
2626
snd_usb_unlock_shutdown(chip);
2627
return err;
2628
}
2629
2630
static int snd_rme_rate_info(struct snd_kcontrol *kcontrol,
2631
struct snd_ctl_elem_info *uinfo)
2632
{
2633
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2634
uinfo->count = 1;
2635
switch (kcontrol->private_value) {
2636
case SND_RME_DOMAIN_SYSTEM:
2637
uinfo->value.integer.min = 32000;
2638
uinfo->value.integer.max = 800000;
2639
break;
2640
case SND_RME_DOMAIN_AES:
2641
case SND_RME_DOMAIN_SPDIF:
2642
default:
2643
uinfo->value.integer.min = 0;
2644
uinfo->value.integer.max = 200000;
2645
}
2646
uinfo->value.integer.step = 0;
2647
return 0;
2648
}
2649
2650
static int snd_rme_sync_state_info(struct snd_kcontrol *kcontrol,
2651
struct snd_ctl_elem_info *uinfo)
2652
{
2653
static const char *const sync_states[] = {
2654
"No Lock", "Lock", "Sync"
2655
};
2656
2657
return snd_ctl_enum_info(uinfo, 1,
2658
ARRAY_SIZE(sync_states), sync_states);
2659
}
2660
2661
static int snd_rme_spdif_if_info(struct snd_kcontrol *kcontrol,
2662
struct snd_ctl_elem_info *uinfo)
2663
{
2664
static const char *const spdif_if[] = {
2665
"Coaxial", "Optical"
2666
};
2667
2668
return snd_ctl_enum_info(uinfo, 1,
2669
ARRAY_SIZE(spdif_if), spdif_if);
2670
}
2671
2672
static int snd_rme_spdif_format_info(struct snd_kcontrol *kcontrol,
2673
struct snd_ctl_elem_info *uinfo)
2674
{
2675
static const char *const optical_type[] = {
2676
"Consumer", "Professional"
2677
};
2678
2679
return snd_ctl_enum_info(uinfo, 1,
2680
ARRAY_SIZE(optical_type), optical_type);
2681
}
2682
2683
static int snd_rme_sync_source_info(struct snd_kcontrol *kcontrol,
2684
struct snd_ctl_elem_info *uinfo)
2685
{
2686
static const char *const sync_sources[] = {
2687
"Internal", "AES", "SPDIF", "Internal"
2688
};
2689
2690
return snd_ctl_enum_info(uinfo, 1,
2691
ARRAY_SIZE(sync_sources), sync_sources);
2692
}
2693
2694
static const struct snd_kcontrol_new snd_rme_controls[] = {
2695
{
2696
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2697
.name = "AES Rate",
2698
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2699
.info = snd_rme_rate_info,
2700
.get = snd_rme_rate_get,
2701
.private_value = SND_RME_DOMAIN_AES
2702
},
2703
{
2704
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2705
.name = "AES Sync",
2706
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2707
.info = snd_rme_sync_state_info,
2708
.get = snd_rme_sync_state_get,
2709
.private_value = SND_RME_DOMAIN_AES
2710
},
2711
{
2712
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2713
.name = "SPDIF Rate",
2714
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2715
.info = snd_rme_rate_info,
2716
.get = snd_rme_rate_get,
2717
.private_value = SND_RME_DOMAIN_SPDIF
2718
},
2719
{
2720
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2721
.name = "SPDIF Sync",
2722
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2723
.info = snd_rme_sync_state_info,
2724
.get = snd_rme_sync_state_get,
2725
.private_value = SND_RME_DOMAIN_SPDIF
2726
},
2727
{
2728
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2729
.name = "SPDIF Interface",
2730
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2731
.info = snd_rme_spdif_if_info,
2732
.get = snd_rme_spdif_if_get,
2733
},
2734
{
2735
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2736
.name = "SPDIF Format",
2737
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2738
.info = snd_rme_spdif_format_info,
2739
.get = snd_rme_spdif_format_get,
2740
},
2741
{
2742
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2743
.name = "Sync Source",
2744
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2745
.info = snd_rme_sync_source_info,
2746
.get = snd_rme_sync_source_get
2747
},
2748
{
2749
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2750
.name = "System Rate",
2751
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2752
.info = snd_rme_rate_info,
2753
.get = snd_rme_rate_get,
2754
.private_value = SND_RME_DOMAIN_SYSTEM
2755
},
2756
{
2757
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2758
.name = "Current Frequency",
2759
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
2760
.info = snd_rme_rate_info,
2761
.get = snd_rme_current_freq_get
2762
}
2763
};
2764
2765
static int snd_rme_controls_create(struct usb_mixer_interface *mixer)
2766
{
2767
int err, i;
2768
2769
for (i = 0; i < ARRAY_SIZE(snd_rme_controls); ++i) {
2770
err = add_single_ctl_with_resume(mixer, 0,
2771
NULL,
2772
&snd_rme_controls[i],
2773
NULL);
2774
if (err < 0)
2775
return err;
2776
}
2777
2778
return 0;
2779
}
2780
2781
/*
2782
* RME Babyface Pro (FS)
2783
*
2784
* These devices exposes a couple of DSP functions via request to EP0.
2785
* Switches are available via control registers, while routing is controlled
2786
* by controlling the volume on each possible crossing point.
2787
* Volume control is linear, from -inf (dec. 0) to +6dB (dec. 65536) with
2788
* 0dB being at dec. 32768.
2789
*/
2790
enum {
2791
SND_BBFPRO_CTL_REG1 = 0,
2792
SND_BBFPRO_CTL_REG2
2793
};
2794
2795
#define SND_BBFPRO_CTL_REG_MASK 1
2796
#define SND_BBFPRO_CTL_IDX_MASK 0xff
2797
#define SND_BBFPRO_CTL_IDX_SHIFT 1
2798
#define SND_BBFPRO_CTL_VAL_MASK 1
2799
#define SND_BBFPRO_CTL_VAL_SHIFT 9
2800
#define SND_BBFPRO_CTL_REG1_CLK_MASTER 0
2801
#define SND_BBFPRO_CTL_REG1_CLK_OPTICAL 1
2802
#define SND_BBFPRO_CTL_REG1_SPDIF_PRO 7
2803
#define SND_BBFPRO_CTL_REG1_SPDIF_EMPH 8
2804
#define SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL 10
2805
#define SND_BBFPRO_CTL_REG2_48V_AN1 0
2806
#define SND_BBFPRO_CTL_REG2_48V_AN2 1
2807
#define SND_BBFPRO_CTL_REG2_SENS_IN3 2
2808
#define SND_BBFPRO_CTL_REG2_SENS_IN4 3
2809
#define SND_BBFPRO_CTL_REG2_PAD_AN1 4
2810
#define SND_BBFPRO_CTL_REG2_PAD_AN2 5
2811
2812
#define SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET 992
2813
#define SND_BBFPRO_MIXER_IDX_MASK 0x3ff
2814
#define SND_BBFPRO_MIXER_VAL_MASK 0x3ffff
2815
#define SND_BBFPRO_MIXER_VAL_SHIFT 9
2816
#define SND_BBFPRO_MIXER_VAL_MIN 0 // -inf
2817
#define SND_BBFPRO_MIXER_VAL_MAX 65536 // +6dB
2818
2819
#define SND_BBFPRO_GAIN_CHANNEL_MASK 0x03
2820
#define SND_BBFPRO_GAIN_CHANNEL_SHIFT 7
2821
#define SND_BBFPRO_GAIN_VAL_MASK 0x7f
2822
#define SND_BBFPRO_GAIN_VAL_MIN 0
2823
#define SND_BBFPRO_GAIN_VAL_MIC_MAX 65
2824
#define SND_BBFPRO_GAIN_VAL_LINE_MAX 18 // 9db in 0.5db incraments
2825
2826
#define SND_BBFPRO_USBREQ_CTL_REG1 0x10
2827
#define SND_BBFPRO_USBREQ_CTL_REG2 0x17
2828
#define SND_BBFPRO_USBREQ_GAIN 0x1a
2829
#define SND_BBFPRO_USBREQ_MIXER 0x12
2830
2831
static int snd_bbfpro_ctl_update(struct usb_mixer_interface *mixer, u8 reg,
2832
u8 index, u8 value)
2833
{
2834
int err;
2835
u16 usb_req, usb_idx, usb_val;
2836
struct snd_usb_audio *chip = mixer->chip;
2837
2838
err = snd_usb_lock_shutdown(chip);
2839
if (err < 0)
2840
return err;
2841
2842
if (reg == SND_BBFPRO_CTL_REG1) {
2843
usb_req = SND_BBFPRO_USBREQ_CTL_REG1;
2844
if (index == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
2845
usb_idx = 3;
2846
usb_val = value ? 3 : 0;
2847
} else {
2848
usb_idx = BIT(index);
2849
usb_val = value ? usb_idx : 0;
2850
}
2851
} else {
2852
usb_req = SND_BBFPRO_USBREQ_CTL_REG2;
2853
usb_idx = BIT(index);
2854
usb_val = value ? usb_idx : 0;
2855
}
2856
2857
err = snd_usb_ctl_msg(chip->dev,
2858
usb_sndctrlpipe(chip->dev, 0), usb_req,
2859
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2860
usb_val, usb_idx, NULL, 0);
2861
2862
snd_usb_unlock_shutdown(chip);
2863
return err;
2864
}
2865
2866
static int snd_bbfpro_ctl_get(struct snd_kcontrol *kcontrol,
2867
struct snd_ctl_elem_value *ucontrol)
2868
{
2869
u8 reg, idx, val;
2870
int pv;
2871
2872
pv = kcontrol->private_value;
2873
reg = pv & SND_BBFPRO_CTL_REG_MASK;
2874
idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2875
val = kcontrol->private_value >> SND_BBFPRO_CTL_VAL_SHIFT;
2876
2877
if ((reg == SND_BBFPRO_CTL_REG1 &&
2878
idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
2879
(reg == SND_BBFPRO_CTL_REG2 &&
2880
(idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
2881
idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
2882
ucontrol->value.enumerated.item[0] = val;
2883
} else {
2884
ucontrol->value.integer.value[0] = val;
2885
}
2886
return 0;
2887
}
2888
2889
static int snd_bbfpro_ctl_info(struct snd_kcontrol *kcontrol,
2890
struct snd_ctl_elem_info *uinfo)
2891
{
2892
u8 reg, idx;
2893
int pv;
2894
2895
pv = kcontrol->private_value;
2896
reg = pv & SND_BBFPRO_CTL_REG_MASK;
2897
idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2898
2899
if (reg == SND_BBFPRO_CTL_REG1 &&
2900
idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
2901
static const char * const texts[2] = {
2902
"AutoSync",
2903
"Internal"
2904
};
2905
return snd_ctl_enum_info(uinfo, 1, 2, texts);
2906
} else if (reg == SND_BBFPRO_CTL_REG2 &&
2907
(idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
2908
idx == SND_BBFPRO_CTL_REG2_SENS_IN4)) {
2909
static const char * const texts[2] = {
2910
"-10dBV",
2911
"+4dBu"
2912
};
2913
return snd_ctl_enum_info(uinfo, 1, 2, texts);
2914
}
2915
2916
uinfo->count = 1;
2917
uinfo->value.integer.min = 0;
2918
uinfo->value.integer.max = 1;
2919
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2920
return 0;
2921
}
2922
2923
static int snd_bbfpro_ctl_put(struct snd_kcontrol *kcontrol,
2924
struct snd_ctl_elem_value *ucontrol)
2925
{
2926
int err;
2927
u8 reg, idx;
2928
int old_value, pv, val;
2929
2930
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
2931
struct usb_mixer_interface *mixer = list->mixer;
2932
2933
pv = kcontrol->private_value;
2934
reg = pv & SND_BBFPRO_CTL_REG_MASK;
2935
idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2936
old_value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
2937
2938
if ((reg == SND_BBFPRO_CTL_REG1 &&
2939
idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
2940
(reg == SND_BBFPRO_CTL_REG2 &&
2941
(idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
2942
idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
2943
val = ucontrol->value.enumerated.item[0];
2944
} else {
2945
val = ucontrol->value.integer.value[0];
2946
}
2947
2948
if (val > 1)
2949
return -EINVAL;
2950
2951
if (val == old_value)
2952
return 0;
2953
2954
kcontrol->private_value = reg
2955
| ((idx & SND_BBFPRO_CTL_IDX_MASK) << SND_BBFPRO_CTL_IDX_SHIFT)
2956
| ((val & SND_BBFPRO_CTL_VAL_MASK) << SND_BBFPRO_CTL_VAL_SHIFT);
2957
2958
err = snd_bbfpro_ctl_update(mixer, reg, idx, val);
2959
return err < 0 ? err : 1;
2960
}
2961
2962
static int snd_bbfpro_ctl_resume(struct usb_mixer_elem_list *list)
2963
{
2964
u8 reg, idx;
2965
int value, pv;
2966
2967
pv = list->kctl->private_value;
2968
reg = pv & SND_BBFPRO_CTL_REG_MASK;
2969
idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
2970
value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
2971
2972
return snd_bbfpro_ctl_update(list->mixer, reg, idx, value);
2973
}
2974
2975
static int snd_bbfpro_gain_update(struct usb_mixer_interface *mixer,
2976
u8 channel, u8 gain)
2977
{
2978
int err;
2979
struct snd_usb_audio *chip = mixer->chip;
2980
2981
if (channel < 2) {
2982
// XLR preamp: 3-bit fine, 5-bit coarse; special case >60
2983
if (gain < 60)
2984
gain = ((gain % 3) << 5) | (gain / 3);
2985
else
2986
gain = ((gain % 6) << 5) | (60 / 3);
2987
}
2988
2989
err = snd_usb_lock_shutdown(chip);
2990
if (err < 0)
2991
return err;
2992
2993
err = snd_usb_ctl_msg(chip->dev,
2994
usb_sndctrlpipe(chip->dev, 0),
2995
SND_BBFPRO_USBREQ_GAIN,
2996
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2997
gain, channel, NULL, 0);
2998
2999
snd_usb_unlock_shutdown(chip);
3000
return err;
3001
}
3002
3003
static int snd_bbfpro_gain_get(struct snd_kcontrol *kcontrol,
3004
struct snd_ctl_elem_value *ucontrol)
3005
{
3006
int value = kcontrol->private_value & SND_BBFPRO_GAIN_VAL_MASK;
3007
3008
ucontrol->value.integer.value[0] = value;
3009
return 0;
3010
}
3011
3012
static int snd_bbfpro_gain_info(struct snd_kcontrol *kcontrol,
3013
struct snd_ctl_elem_info *uinfo)
3014
{
3015
int pv, channel;
3016
3017
pv = kcontrol->private_value;
3018
channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
3019
SND_BBFPRO_GAIN_CHANNEL_MASK;
3020
3021
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3022
uinfo->count = 1;
3023
uinfo->value.integer.min = SND_BBFPRO_GAIN_VAL_MIN;
3024
3025
if (channel < 2)
3026
uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_MIC_MAX;
3027
else
3028
uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_LINE_MAX;
3029
3030
return 0;
3031
}
3032
3033
static int snd_bbfpro_gain_put(struct snd_kcontrol *kcontrol,
3034
struct snd_ctl_elem_value *ucontrol)
3035
{
3036
int pv, channel, old_value, value, err;
3037
3038
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3039
struct usb_mixer_interface *mixer = list->mixer;
3040
3041
pv = kcontrol->private_value;
3042
channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
3043
SND_BBFPRO_GAIN_CHANNEL_MASK;
3044
old_value = pv & SND_BBFPRO_GAIN_VAL_MASK;
3045
value = ucontrol->value.integer.value[0];
3046
3047
if (value < SND_BBFPRO_GAIN_VAL_MIN)
3048
return -EINVAL;
3049
3050
if (channel < 2) {
3051
if (value > SND_BBFPRO_GAIN_VAL_MIC_MAX)
3052
return -EINVAL;
3053
} else {
3054
if (value > SND_BBFPRO_GAIN_VAL_LINE_MAX)
3055
return -EINVAL;
3056
}
3057
3058
if (value == old_value)
3059
return 0;
3060
3061
err = snd_bbfpro_gain_update(mixer, channel, value);
3062
if (err < 0)
3063
return err;
3064
3065
kcontrol->private_value =
3066
(channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT) | value;
3067
return 1;
3068
}
3069
3070
static int snd_bbfpro_gain_resume(struct usb_mixer_elem_list *list)
3071
{
3072
int pv, channel, value;
3073
struct snd_kcontrol *kctl = list->kctl;
3074
3075
pv = kctl->private_value;
3076
channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) &
3077
SND_BBFPRO_GAIN_CHANNEL_MASK;
3078
value = pv & SND_BBFPRO_GAIN_VAL_MASK;
3079
3080
return snd_bbfpro_gain_update(list->mixer, channel, value);
3081
}
3082
3083
static int snd_bbfpro_vol_update(struct usb_mixer_interface *mixer, u16 index,
3084
u32 value)
3085
{
3086
struct snd_usb_audio *chip = mixer->chip;
3087
int err;
3088
u16 idx;
3089
u16 usb_idx, usb_val;
3090
u32 v;
3091
3092
err = snd_usb_lock_shutdown(chip);
3093
if (err < 0)
3094
return err;
3095
3096
idx = index & SND_BBFPRO_MIXER_IDX_MASK;
3097
// 18 bit linear volume, split so 2 bits end up in index.
3098
v = value & SND_BBFPRO_MIXER_VAL_MASK;
3099
usb_idx = idx | (v & 0x3) << 14;
3100
usb_val = (v >> 2) & 0xffff;
3101
3102
err = snd_usb_ctl_msg(chip->dev,
3103
usb_sndctrlpipe(chip->dev, 0),
3104
SND_BBFPRO_USBREQ_MIXER,
3105
USB_DIR_OUT | USB_TYPE_VENDOR |
3106
USB_RECIP_DEVICE,
3107
usb_val, usb_idx, NULL, 0);
3108
3109
snd_usb_unlock_shutdown(chip);
3110
return err;
3111
}
3112
3113
static int snd_bbfpro_vol_get(struct snd_kcontrol *kcontrol,
3114
struct snd_ctl_elem_value *ucontrol)
3115
{
3116
ucontrol->value.integer.value[0] =
3117
kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
3118
return 0;
3119
}
3120
3121
static int snd_bbfpro_vol_info(struct snd_kcontrol *kcontrol,
3122
struct snd_ctl_elem_info *uinfo)
3123
{
3124
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3125
uinfo->count = 1;
3126
uinfo->value.integer.min = SND_BBFPRO_MIXER_VAL_MIN;
3127
uinfo->value.integer.max = SND_BBFPRO_MIXER_VAL_MAX;
3128
return 0;
3129
}
3130
3131
static int snd_bbfpro_vol_put(struct snd_kcontrol *kcontrol,
3132
struct snd_ctl_elem_value *ucontrol)
3133
{
3134
int err;
3135
u16 idx;
3136
u32 new_val, old_value, uvalue;
3137
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3138
struct usb_mixer_interface *mixer = list->mixer;
3139
3140
uvalue = ucontrol->value.integer.value[0];
3141
idx = kcontrol->private_value & SND_BBFPRO_MIXER_IDX_MASK;
3142
old_value = kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
3143
3144
if (uvalue > SND_BBFPRO_MIXER_VAL_MAX)
3145
return -EINVAL;
3146
3147
if (uvalue == old_value)
3148
return 0;
3149
3150
new_val = uvalue & SND_BBFPRO_MIXER_VAL_MASK;
3151
3152
kcontrol->private_value = idx
3153
| (new_val << SND_BBFPRO_MIXER_VAL_SHIFT);
3154
3155
err = snd_bbfpro_vol_update(mixer, idx, new_val);
3156
return err < 0 ? err : 1;
3157
}
3158
3159
static int snd_bbfpro_vol_resume(struct usb_mixer_elem_list *list)
3160
{
3161
int pv = list->kctl->private_value;
3162
u16 idx = pv & SND_BBFPRO_MIXER_IDX_MASK;
3163
u32 val = (pv >> SND_BBFPRO_MIXER_VAL_SHIFT)
3164
& SND_BBFPRO_MIXER_VAL_MASK;
3165
return snd_bbfpro_vol_update(list->mixer, idx, val);
3166
}
3167
3168
// Predfine elements
3169
static const struct snd_kcontrol_new snd_bbfpro_ctl_control = {
3170
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3171
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3172
.index = 0,
3173
.info = snd_bbfpro_ctl_info,
3174
.get = snd_bbfpro_ctl_get,
3175
.put = snd_bbfpro_ctl_put
3176
};
3177
3178
static const struct snd_kcontrol_new snd_bbfpro_gain_control = {
3179
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3180
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3181
.index = 0,
3182
.info = snd_bbfpro_gain_info,
3183
.get = snd_bbfpro_gain_get,
3184
.put = snd_bbfpro_gain_put
3185
};
3186
3187
static const struct snd_kcontrol_new snd_bbfpro_vol_control = {
3188
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3189
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3190
.index = 0,
3191
.info = snd_bbfpro_vol_info,
3192
.get = snd_bbfpro_vol_get,
3193
.put = snd_bbfpro_vol_put
3194
};
3195
3196
static int snd_bbfpro_ctl_add(struct usb_mixer_interface *mixer, u8 reg,
3197
u8 index, char *name)
3198
{
3199
struct snd_kcontrol_new knew = snd_bbfpro_ctl_control;
3200
3201
knew.name = name;
3202
knew.private_value = (reg & SND_BBFPRO_CTL_REG_MASK)
3203
| ((index & SND_BBFPRO_CTL_IDX_MASK)
3204
<< SND_BBFPRO_CTL_IDX_SHIFT);
3205
3206
return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_ctl_resume,
3207
&knew, NULL);
3208
}
3209
3210
static int snd_bbfpro_gain_add(struct usb_mixer_interface *mixer, u8 channel,
3211
char *name)
3212
{
3213
struct snd_kcontrol_new knew = snd_bbfpro_gain_control;
3214
3215
knew.name = name;
3216
knew.private_value = channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT;
3217
3218
return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_gain_resume,
3219
&knew, NULL);
3220
}
3221
3222
static int snd_bbfpro_vol_add(struct usb_mixer_interface *mixer, u16 index,
3223
char *name)
3224
{
3225
struct snd_kcontrol_new knew = snd_bbfpro_vol_control;
3226
3227
knew.name = name;
3228
knew.private_value = index & SND_BBFPRO_MIXER_IDX_MASK;
3229
3230
return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_vol_resume,
3231
&knew, NULL);
3232
}
3233
3234
static int snd_bbfpro_controls_create(struct usb_mixer_interface *mixer)
3235
{
3236
int err, i, o;
3237
char name[48];
3238
3239
static const char * const input[] = {
3240
"AN1", "AN2", "IN3", "IN4", "AS1", "AS2", "ADAT3",
3241
"ADAT4", "ADAT5", "ADAT6", "ADAT7", "ADAT8"};
3242
3243
static const char * const output[] = {
3244
"AN1", "AN2", "PH3", "PH4", "AS1", "AS2", "ADAT3", "ADAT4",
3245
"ADAT5", "ADAT6", "ADAT7", "ADAT8"};
3246
3247
for (o = 0 ; o < 12 ; ++o) {
3248
for (i = 0 ; i < 12 ; ++i) {
3249
// Line routing
3250
snprintf(name, sizeof(name),
3251
"%s-%s-%s Playback Volume",
3252
(i < 2 ? "Mic" : "Line"),
3253
input[i], output[o]);
3254
err = snd_bbfpro_vol_add(mixer, (26 * o + i), name);
3255
if (err < 0)
3256
return err;
3257
3258
// PCM routing... yes, it is output remapping
3259
snprintf(name, sizeof(name),
3260
"PCM-%s-%s Playback Volume",
3261
output[i], output[o]);
3262
err = snd_bbfpro_vol_add(mixer, (26 * o + 12 + i),
3263
name);
3264
if (err < 0)
3265
return err;
3266
}
3267
}
3268
3269
// Main out volume
3270
for (i = 0 ; i < 12 ; ++i) {
3271
snprintf(name, sizeof(name), "Main-Out %s", output[i]);
3272
// Main outs are offset to 992
3273
err = snd_bbfpro_vol_add(mixer,
3274
i + SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET,
3275
name);
3276
if (err < 0)
3277
return err;
3278
}
3279
3280
// Input gain
3281
for (i = 0 ; i < 4 ; ++i) {
3282
if (i < 2)
3283
snprintf(name, sizeof(name), "Mic-%s Gain", input[i]);
3284
else
3285
snprintf(name, sizeof(name), "Line-%s Gain", input[i]);
3286
3287
err = snd_bbfpro_gain_add(mixer, i, name);
3288
if (err < 0)
3289
return err;
3290
}
3291
3292
// Control Reg 1
3293
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3294
SND_BBFPRO_CTL_REG1_CLK_OPTICAL,
3295
"Sample Clock Source");
3296
if (err < 0)
3297
return err;
3298
3299
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3300
SND_BBFPRO_CTL_REG1_SPDIF_PRO,
3301
"IEC958 Pro Mask");
3302
if (err < 0)
3303
return err;
3304
3305
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3306
SND_BBFPRO_CTL_REG1_SPDIF_EMPH,
3307
"IEC958 Emphasis");
3308
if (err < 0)
3309
return err;
3310
3311
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
3312
SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL,
3313
"IEC958 Switch");
3314
if (err < 0)
3315
return err;
3316
3317
// Control Reg 2
3318
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3319
SND_BBFPRO_CTL_REG2_48V_AN1,
3320
"Mic-AN1 48V");
3321
if (err < 0)
3322
return err;
3323
3324
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3325
SND_BBFPRO_CTL_REG2_48V_AN2,
3326
"Mic-AN2 48V");
3327
if (err < 0)
3328
return err;
3329
3330
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3331
SND_BBFPRO_CTL_REG2_SENS_IN3,
3332
"Line-IN3 Sens.");
3333
if (err < 0)
3334
return err;
3335
3336
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3337
SND_BBFPRO_CTL_REG2_SENS_IN4,
3338
"Line-IN4 Sens.");
3339
if (err < 0)
3340
return err;
3341
3342
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3343
SND_BBFPRO_CTL_REG2_PAD_AN1,
3344
"Mic-AN1 PAD");
3345
if (err < 0)
3346
return err;
3347
3348
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
3349
SND_BBFPRO_CTL_REG2_PAD_AN2,
3350
"Mic-AN2 PAD");
3351
if (err < 0)
3352
return err;
3353
3354
return 0;
3355
}
3356
3357
/*
3358
* RME Digiface USB
3359
*/
3360
3361
#define RME_DIGIFACE_READ_STATUS 17
3362
#define RME_DIGIFACE_STATUS_REG0L 0
3363
#define RME_DIGIFACE_STATUS_REG0H 1
3364
#define RME_DIGIFACE_STATUS_REG1L 2
3365
#define RME_DIGIFACE_STATUS_REG1H 3
3366
#define RME_DIGIFACE_STATUS_REG2L 4
3367
#define RME_DIGIFACE_STATUS_REG2H 5
3368
#define RME_DIGIFACE_STATUS_REG3L 6
3369
#define RME_DIGIFACE_STATUS_REG3H 7
3370
3371
#define RME_DIGIFACE_CTL_REG1 16
3372
#define RME_DIGIFACE_CTL_REG2 18
3373
3374
/* Reg is overloaded, 0-7 for status halfwords or 16 or 18 for control registers */
3375
#define RME_DIGIFACE_REGISTER(reg, mask) (((reg) << 16) | (mask))
3376
#define RME_DIGIFACE_INVERT BIT(31)
3377
3378
/* Nonconst helpers */
3379
#define field_get(_mask, _reg) (((_reg) & (_mask)) >> (ffs(_mask) - 1))
3380
#define field_prep(_mask, _val) (((_val) << (ffs(_mask) - 1)) & (_mask))
3381
3382
static int snd_rme_digiface_write_reg(struct snd_kcontrol *kcontrol, int item, u16 mask, u16 val)
3383
{
3384
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3385
struct snd_usb_audio *chip = list->mixer->chip;
3386
struct usb_device *dev = chip->dev;
3387
int err;
3388
3389
err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0),
3390
item,
3391
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
3392
val, mask, NULL, 0);
3393
if (err < 0)
3394
dev_err(&dev->dev,
3395
"unable to issue control set request %d (ret = %d)",
3396
item, err);
3397
return err;
3398
}
3399
3400
static int snd_rme_digiface_read_status(struct snd_kcontrol *kcontrol, u32 status[4])
3401
{
3402
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
3403
struct snd_usb_audio *chip = list->mixer->chip;
3404
struct usb_device *dev = chip->dev;
3405
__le32 buf[4];
3406
int err;
3407
3408
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
3409
RME_DIGIFACE_READ_STATUS,
3410
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
3411
0, 0,
3412
buf, sizeof(buf));
3413
if (err < 0) {
3414
dev_err(&dev->dev,
3415
"unable to issue status read request (ret = %d)",
3416
err);
3417
} else {
3418
for (int i = 0; i < ARRAY_SIZE(buf); i++)
3419
status[i] = le32_to_cpu(buf[i]);
3420
}
3421
return err;
3422
}
3423
3424
static int snd_rme_digiface_get_status_val(struct snd_kcontrol *kcontrol)
3425
{
3426
int err;
3427
u32 status[4];
3428
bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT;
3429
u8 reg = (kcontrol->private_value >> 16) & 0xff;
3430
u16 mask = kcontrol->private_value & 0xffff;
3431
u16 val;
3432
3433
err = snd_rme_digiface_read_status(kcontrol, status);
3434
if (err < 0)
3435
return err;
3436
3437
switch (reg) {
3438
/* Status register halfwords */
3439
case RME_DIGIFACE_STATUS_REG0L ... RME_DIGIFACE_STATUS_REG3H:
3440
break;
3441
case RME_DIGIFACE_CTL_REG1: /* Control register 1, present in halfword 3L */
3442
reg = RME_DIGIFACE_STATUS_REG3L;
3443
break;
3444
case RME_DIGIFACE_CTL_REG2: /* Control register 2, present in halfword 3H */
3445
reg = RME_DIGIFACE_STATUS_REG3H;
3446
break;
3447
default:
3448
return -EINVAL;
3449
}
3450
3451
if (reg & 1)
3452
val = status[reg >> 1] >> 16;
3453
else
3454
val = status[reg >> 1] & 0xffff;
3455
3456
if (invert)
3457
val ^= mask;
3458
3459
return field_get(mask, val);
3460
}
3461
3462
static int snd_rme_digiface_rate_get(struct snd_kcontrol *kcontrol,
3463
struct snd_ctl_elem_value *ucontrol)
3464
{
3465
int freq = snd_rme_digiface_get_status_val(kcontrol);
3466
3467
if (freq < 0)
3468
return freq;
3469
if (freq >= ARRAY_SIZE(snd_rme_rate_table))
3470
return -EIO;
3471
3472
ucontrol->value.integer.value[0] = snd_rme_rate_table[freq];
3473
return 0;
3474
}
3475
3476
static int snd_rme_digiface_enum_get(struct snd_kcontrol *kcontrol,
3477
struct snd_ctl_elem_value *ucontrol)
3478
{
3479
int val = snd_rme_digiface_get_status_val(kcontrol);
3480
3481
if (val < 0)
3482
return val;
3483
3484
ucontrol->value.enumerated.item[0] = val;
3485
return 0;
3486
}
3487
3488
static int snd_rme_digiface_enum_put(struct snd_kcontrol *kcontrol,
3489
struct snd_ctl_elem_value *ucontrol)
3490
{
3491
bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT;
3492
u8 reg = (kcontrol->private_value >> 16) & 0xff;
3493
u16 mask = kcontrol->private_value & 0xffff;
3494
u16 val = field_prep(mask, ucontrol->value.enumerated.item[0]);
3495
3496
if (invert)
3497
val ^= mask;
3498
3499
return snd_rme_digiface_write_reg(kcontrol, reg, mask, val);
3500
}
3501
3502
static int snd_rme_digiface_current_sync_get(struct snd_kcontrol *kcontrol,
3503
struct snd_ctl_elem_value *ucontrol)
3504
{
3505
int ret = snd_rme_digiface_enum_get(kcontrol, ucontrol);
3506
3507
/* 7 means internal for current sync */
3508
if (ucontrol->value.enumerated.item[0] == 7)
3509
ucontrol->value.enumerated.item[0] = 0;
3510
3511
return ret;
3512
}
3513
3514
static int snd_rme_digiface_sync_state_get(struct snd_kcontrol *kcontrol,
3515
struct snd_ctl_elem_value *ucontrol)
3516
{
3517
u32 status[4];
3518
int err;
3519
bool valid, sync;
3520
3521
err = snd_rme_digiface_read_status(kcontrol, status);
3522
if (err < 0)
3523
return err;
3524
3525
valid = status[0] & BIT(kcontrol->private_value);
3526
sync = status[0] & BIT(5 + kcontrol->private_value);
3527
3528
if (!valid)
3529
ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_NOLOCK;
3530
else if (!sync)
3531
ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_LOCK;
3532
else
3533
ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_SYNC;
3534
return 0;
3535
}
3536
3537
static int snd_rme_digiface_format_info(struct snd_kcontrol *kcontrol,
3538
struct snd_ctl_elem_info *uinfo)
3539
{
3540
static const char *const format[] = {
3541
"ADAT", "S/PDIF"
3542
};
3543
3544
return snd_ctl_enum_info(uinfo, 1,
3545
ARRAY_SIZE(format), format);
3546
}
3547
3548
static int snd_rme_digiface_sync_source_info(struct snd_kcontrol *kcontrol,
3549
struct snd_ctl_elem_info *uinfo)
3550
{
3551
static const char *const sync_sources[] = {
3552
"Internal", "Input 1", "Input 2", "Input 3", "Input 4"
3553
};
3554
3555
return snd_ctl_enum_info(uinfo, 1,
3556
ARRAY_SIZE(sync_sources), sync_sources);
3557
}
3558
3559
static int snd_rme_digiface_rate_info(struct snd_kcontrol *kcontrol,
3560
struct snd_ctl_elem_info *uinfo)
3561
{
3562
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3563
uinfo->count = 1;
3564
uinfo->value.integer.min = 0;
3565
uinfo->value.integer.max = 200000;
3566
uinfo->value.integer.step = 0;
3567
return 0;
3568
}
3569
3570
static const struct snd_kcontrol_new snd_rme_digiface_controls[] = {
3571
{
3572
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3573
.name = "Input 1 Sync",
3574
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3575
.info = snd_rme_sync_state_info,
3576
.get = snd_rme_digiface_sync_state_get,
3577
.private_value = 0,
3578
},
3579
{
3580
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3581
.name = "Input 1 Format",
3582
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3583
.info = snd_rme_digiface_format_info,
3584
.get = snd_rme_digiface_enum_get,
3585
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0H, BIT(0)) |
3586
RME_DIGIFACE_INVERT,
3587
},
3588
{
3589
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3590
.name = "Input 1 Rate",
3591
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3592
.info = snd_rme_digiface_rate_info,
3593
.get = snd_rme_digiface_rate_get,
3594
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)),
3595
},
3596
{
3597
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3598
.name = "Input 2 Sync",
3599
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3600
.info = snd_rme_sync_state_info,
3601
.get = snd_rme_digiface_sync_state_get,
3602
.private_value = 1,
3603
},
3604
{
3605
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3606
.name = "Input 2 Format",
3607
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3608
.info = snd_rme_digiface_format_info,
3609
.get = snd_rme_digiface_enum_get,
3610
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(13)) |
3611
RME_DIGIFACE_INVERT,
3612
},
3613
{
3614
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3615
.name = "Input 2 Rate",
3616
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3617
.info = snd_rme_digiface_rate_info,
3618
.get = snd_rme_digiface_rate_get,
3619
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(7, 4)),
3620
},
3621
{
3622
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3623
.name = "Input 3 Sync",
3624
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3625
.info = snd_rme_sync_state_info,
3626
.get = snd_rme_digiface_sync_state_get,
3627
.private_value = 2,
3628
},
3629
{
3630
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3631
.name = "Input 3 Format",
3632
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3633
.info = snd_rme_digiface_format_info,
3634
.get = snd_rme_digiface_enum_get,
3635
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(14)) |
3636
RME_DIGIFACE_INVERT,
3637
},
3638
{
3639
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3640
.name = "Input 3 Rate",
3641
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3642
.info = snd_rme_digiface_rate_info,
3643
.get = snd_rme_digiface_rate_get,
3644
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(11, 8)),
3645
},
3646
{
3647
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3648
.name = "Input 4 Sync",
3649
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3650
.info = snd_rme_sync_state_info,
3651
.get = snd_rme_digiface_sync_state_get,
3652
.private_value = 3,
3653
},
3654
{
3655
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3656
.name = "Input 4 Format",
3657
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3658
.info = snd_rme_digiface_format_info,
3659
.get = snd_rme_digiface_enum_get,
3660
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(15, 12)) |
3661
RME_DIGIFACE_INVERT,
3662
},
3663
{
3664
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3665
.name = "Input 4 Rate",
3666
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3667
.info = snd_rme_digiface_rate_info,
3668
.get = snd_rme_digiface_rate_get,
3669
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)),
3670
},
3671
{
3672
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3673
.name = "Output 1 Format",
3674
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3675
.info = snd_rme_digiface_format_info,
3676
.get = snd_rme_digiface_enum_get,
3677
.put = snd_rme_digiface_enum_put,
3678
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(0)),
3679
},
3680
{
3681
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3682
.name = "Output 2 Format",
3683
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3684
.info = snd_rme_digiface_format_info,
3685
.get = snd_rme_digiface_enum_get,
3686
.put = snd_rme_digiface_enum_put,
3687
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(1)),
3688
},
3689
{
3690
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3691
.name = "Output 3 Format",
3692
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3693
.info = snd_rme_digiface_format_info,
3694
.get = snd_rme_digiface_enum_get,
3695
.put = snd_rme_digiface_enum_put,
3696
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(3)),
3697
},
3698
{
3699
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3700
.name = "Output 4 Format",
3701
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3702
.info = snd_rme_digiface_format_info,
3703
.get = snd_rme_digiface_enum_get,
3704
.put = snd_rme_digiface_enum_put,
3705
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(4)),
3706
},
3707
{
3708
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3709
.name = "Sync Source",
3710
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3711
.info = snd_rme_digiface_sync_source_info,
3712
.get = snd_rme_digiface_enum_get,
3713
.put = snd_rme_digiface_enum_put,
3714
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(2, 0)),
3715
},
3716
{
3717
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3718
.name = "Current Sync Source",
3719
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3720
.info = snd_rme_digiface_sync_source_info,
3721
.get = snd_rme_digiface_current_sync_get,
3722
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(12, 10)),
3723
},
3724
{
3725
/*
3726
* This is writeable, but it is only set by the PCM rate.
3727
* Mixer apps currently need to drive the mixer using raw USB requests,
3728
* so they can also change this that way to configure the rate for
3729
* stand-alone operation when the PCM is closed.
3730
*/
3731
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3732
.name = "System Rate",
3733
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3734
.info = snd_rme_rate_info,
3735
.get = snd_rme_digiface_rate_get,
3736
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(6, 3)),
3737
},
3738
{
3739
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3740
.name = "Current Rate",
3741
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
3742
.info = snd_rme_rate_info,
3743
.get = snd_rme_digiface_rate_get,
3744
.private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1H, GENMASK(7, 4)),
3745
}
3746
};
3747
3748
static int snd_rme_digiface_controls_create(struct usb_mixer_interface *mixer)
3749
{
3750
int err, i;
3751
3752
for (i = 0; i < ARRAY_SIZE(snd_rme_digiface_controls); ++i) {
3753
err = add_single_ctl_with_resume(mixer, 0,
3754
NULL,
3755
&snd_rme_digiface_controls[i],
3756
NULL);
3757
if (err < 0)
3758
return err;
3759
}
3760
3761
return 0;
3762
}
3763
3764
/*
3765
* Pioneer DJ / AlphaTheta DJM Mixers
3766
*
3767
* These devices generally have options for soft-switching the playback and
3768
* capture sources in addition to the recording level. Although different
3769
* devices have different configurations, there seems to be canonical values
3770
* for specific capture/playback types: See the definitions of these below.
3771
*
3772
* The wValue is masked with the stereo channel number. e.g. Setting Ch2 to
3773
* capture phono would be 0x0203. Capture, playback and capture level have
3774
* different wIndexes.
3775
*/
3776
3777
// Capture types
3778
#define SND_DJM_CAP_LINE 0x00
3779
#define SND_DJM_CAP_CDLINE 0x01
3780
#define SND_DJM_CAP_DIGITAL 0x02
3781
#define SND_DJM_CAP_PHONO 0x03
3782
#define SND_DJM_CAP_PREFADER 0x05
3783
#define SND_DJM_CAP_PFADER 0x06
3784
#define SND_DJM_CAP_XFADERA 0x07
3785
#define SND_DJM_CAP_XFADERB 0x08
3786
#define SND_DJM_CAP_MIC 0x09
3787
#define SND_DJM_CAP_AUX 0x0d
3788
#define SND_DJM_CAP_RECOUT 0x0a
3789
#define SND_DJM_CAP_RECOUT_NOMIC 0x0e
3790
#define SND_DJM_CAP_NONE 0x0f
3791
#define SND_DJM_CAP_FXSEND 0x10
3792
#define SND_DJM_CAP_CH1PFADER 0x11
3793
#define SND_DJM_CAP_CH2PFADER 0x12
3794
#define SND_DJM_CAP_CH3PFADER 0x13
3795
#define SND_DJM_CAP_CH4PFADER 0x14
3796
#define SND_DJM_CAP_EXT1SEND 0x21
3797
#define SND_DJM_CAP_EXT2SEND 0x22
3798
#define SND_DJM_CAP_CH1PREFADER 0x31
3799
#define SND_DJM_CAP_CH2PREFADER 0x32
3800
#define SND_DJM_CAP_CH3PREFADER 0x33
3801
#define SND_DJM_CAP_CH4PREFADER 0x34
3802
3803
// Playback types
3804
#define SND_DJM_PB_CH1 0x00
3805
#define SND_DJM_PB_CH2 0x01
3806
#define SND_DJM_PB_AUX 0x04
3807
3808
#define SND_DJM_WINDEX_CAP 0x8002
3809
#define SND_DJM_WINDEX_CAPLVL 0x8003
3810
#define SND_DJM_WINDEX_PB 0x8016
3811
3812
// kcontrol->private_value layout
3813
#define SND_DJM_VALUE_MASK 0x0000ffff
3814
#define SND_DJM_GROUP_MASK 0x00ff0000
3815
#define SND_DJM_DEVICE_MASK 0xff000000
3816
#define SND_DJM_GROUP_SHIFT 16
3817
#define SND_DJM_DEVICE_SHIFT 24
3818
3819
// device table index
3820
// used for the snd_djm_devices table, so please update accordingly
3821
#define SND_DJM_250MK2_IDX 0x0
3822
#define SND_DJM_750_IDX 0x1
3823
#define SND_DJM_850_IDX 0x2
3824
#define SND_DJM_900NXS2_IDX 0x3
3825
#define SND_DJM_750MK2_IDX 0x4
3826
#define SND_DJM_450_IDX 0x5
3827
#define SND_DJM_A9_IDX 0x6
3828
#define SND_DJM_V10_IDX 0x7
3829
3830
#define SND_DJM_CTL(_name, suffix, _default_value, _windex) { \
3831
.name = _name, \
3832
.options = snd_djm_opts_##suffix, \
3833
.noptions = ARRAY_SIZE(snd_djm_opts_##suffix), \
3834
.default_value = _default_value, \
3835
.wIndex = _windex }
3836
3837
#define SND_DJM_DEVICE(suffix) { \
3838
.controls = snd_djm_ctls_##suffix, \
3839
.ncontrols = ARRAY_SIZE(snd_djm_ctls_##suffix) }
3840
3841
struct snd_djm_device {
3842
const char *name;
3843
const struct snd_djm_ctl *controls;
3844
size_t ncontrols;
3845
};
3846
3847
struct snd_djm_ctl {
3848
const char *name;
3849
const u16 *options;
3850
size_t noptions;
3851
u16 default_value;
3852
u16 wIndex;
3853
};
3854
3855
static const char *snd_djm_get_label_caplevel_common(u16 wvalue)
3856
{
3857
switch (wvalue) {
3858
case 0x0000: return "-19dB";
3859
case 0x0100: return "-15dB";
3860
case 0x0200: return "-10dB";
3861
case 0x0300: return "-5dB";
3862
default: return NULL;
3863
}
3864
};
3865
3866
// Models like DJM-A9 or DJM-V10 have different capture levels than others
3867
static const char *snd_djm_get_label_caplevel_high(u16 wvalue)
3868
{
3869
switch (wvalue) {
3870
case 0x0000: return "+15dB";
3871
case 0x0100: return "+12dB";
3872
case 0x0200: return "+9dB";
3873
case 0x0300: return "+6dB";
3874
case 0x0400: return "+3dB";
3875
case 0x0500: return "0dB";
3876
default: return NULL;
3877
}
3878
};
3879
3880
static const char *snd_djm_get_label_cap_common(u16 wvalue)
3881
{
3882
switch (wvalue & 0x00ff) {
3883
case SND_DJM_CAP_LINE: return "Control Tone LINE";
3884
case SND_DJM_CAP_CDLINE: return "Control Tone CD/LINE";
3885
case SND_DJM_CAP_DIGITAL: return "Control Tone DIGITAL";
3886
case SND_DJM_CAP_PHONO: return "Control Tone PHONO";
3887
case SND_DJM_CAP_PFADER: return "Post Fader";
3888
case SND_DJM_CAP_XFADERA: return "Cross Fader A";
3889
case SND_DJM_CAP_XFADERB: return "Cross Fader B";
3890
case SND_DJM_CAP_MIC: return "Mic";
3891
case SND_DJM_CAP_RECOUT: return "Rec Out";
3892
case SND_DJM_CAP_RECOUT_NOMIC: return "Rec Out without Mic";
3893
case SND_DJM_CAP_AUX: return "Aux";
3894
case SND_DJM_CAP_NONE: return "None";
3895
case SND_DJM_CAP_FXSEND: return "FX SEND";
3896
case SND_DJM_CAP_CH1PREFADER: return "Pre Fader Ch1";
3897
case SND_DJM_CAP_CH2PREFADER: return "Pre Fader Ch2";
3898
case SND_DJM_CAP_CH3PREFADER: return "Pre Fader Ch3";
3899
case SND_DJM_CAP_CH4PREFADER: return "Pre Fader Ch4";
3900
case SND_DJM_CAP_CH1PFADER: return "Post Fader Ch1";
3901
case SND_DJM_CAP_CH2PFADER: return "Post Fader Ch2";
3902
case SND_DJM_CAP_CH3PFADER: return "Post Fader Ch3";
3903
case SND_DJM_CAP_CH4PFADER: return "Post Fader Ch4";
3904
case SND_DJM_CAP_EXT1SEND: return "EXT1 SEND";
3905
case SND_DJM_CAP_EXT2SEND: return "EXT2 SEND";
3906
default: return NULL;
3907
}
3908
};
3909
3910
// The DJM-850 has different values for CD/LINE and LINE capture
3911
// control options than the other DJM declared in this file.
3912
static const char *snd_djm_get_label_cap_850(u16 wvalue)
3913
{
3914
switch (wvalue & 0x00ff) {
3915
case 0x00: return "Control Tone CD/LINE";
3916
case 0x01: return "Control Tone LINE";
3917
default: return snd_djm_get_label_cap_common(wvalue);
3918
}
3919
};
3920
3921
static const char *snd_djm_get_label_caplevel(u8 device_idx, u16 wvalue)
3922
{
3923
switch (device_idx) {
3924
case SND_DJM_A9_IDX: return snd_djm_get_label_caplevel_high(wvalue);
3925
case SND_DJM_V10_IDX: return snd_djm_get_label_caplevel_high(wvalue);
3926
default: return snd_djm_get_label_caplevel_common(wvalue);
3927
}
3928
};
3929
3930
static const char *snd_djm_get_label_cap(u8 device_idx, u16 wvalue)
3931
{
3932
switch (device_idx) {
3933
case SND_DJM_850_IDX: return snd_djm_get_label_cap_850(wvalue);
3934
default: return snd_djm_get_label_cap_common(wvalue);
3935
}
3936
};
3937
3938
static const char *snd_djm_get_label_pb(u16 wvalue)
3939
{
3940
switch (wvalue & 0x00ff) {
3941
case SND_DJM_PB_CH1: return "Ch1";
3942
case SND_DJM_PB_CH2: return "Ch2";
3943
case SND_DJM_PB_AUX: return "Aux";
3944
default: return NULL;
3945
}
3946
};
3947
3948
static const char *snd_djm_get_label(u8 device_idx, u16 wvalue, u16 windex)
3949
{
3950
switch (windex) {
3951
case SND_DJM_WINDEX_CAPLVL: return snd_djm_get_label_caplevel(device_idx, wvalue);
3952
case SND_DJM_WINDEX_CAP: return snd_djm_get_label_cap(device_idx, wvalue);
3953
case SND_DJM_WINDEX_PB: return snd_djm_get_label_pb(wvalue);
3954
default: return NULL;
3955
}
3956
};
3957
3958
// common DJM capture level option values
3959
static const u16 snd_djm_opts_cap_level[] = {
3960
0x0000, 0x0100, 0x0200, 0x0300 };
3961
3962
// DJM-250MK2
3963
static const u16 snd_djm_opts_250mk2_cap1[] = {
3964
0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a };
3965
3966
static const u16 snd_djm_opts_250mk2_cap2[] = {
3967
0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a };
3968
3969
static const u16 snd_djm_opts_250mk2_cap3[] = {
3970
0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d };
3971
3972
static const u16 snd_djm_opts_250mk2_pb1[] = { 0x0100, 0x0101, 0x0104 };
3973
static const u16 snd_djm_opts_250mk2_pb2[] = { 0x0200, 0x0201, 0x0204 };
3974
static const u16 snd_djm_opts_250mk2_pb3[] = { 0x0300, 0x0301, 0x0304 };
3975
3976
static const struct snd_djm_ctl snd_djm_ctls_250mk2[] = {
3977
SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
3978
SND_DJM_CTL("Input 1 Capture Switch", 250mk2_cap1, 2, SND_DJM_WINDEX_CAP),
3979
SND_DJM_CTL("Input 2 Capture Switch", 250mk2_cap2, 2, SND_DJM_WINDEX_CAP),
3980
SND_DJM_CTL("Input 3 Capture Switch", 250mk2_cap3, 0, SND_DJM_WINDEX_CAP),
3981
SND_DJM_CTL("Output 1 Playback Switch", 250mk2_pb1, 0, SND_DJM_WINDEX_PB),
3982
SND_DJM_CTL("Output 2 Playback Switch", 250mk2_pb2, 1, SND_DJM_WINDEX_PB),
3983
SND_DJM_CTL("Output 3 Playback Switch", 250mk2_pb3, 2, SND_DJM_WINDEX_PB)
3984
};
3985
3986
// DJM-450
3987
static const u16 snd_djm_opts_450_cap1[] = {
3988
0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a };
3989
3990
static const u16 snd_djm_opts_450_cap2[] = {
3991
0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a };
3992
3993
static const u16 snd_djm_opts_450_cap3[] = {
3994
0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d };
3995
3996
static const u16 snd_djm_opts_450_pb1[] = { 0x0100, 0x0101, 0x0104 };
3997
static const u16 snd_djm_opts_450_pb2[] = { 0x0200, 0x0201, 0x0204 };
3998
static const u16 snd_djm_opts_450_pb3[] = { 0x0300, 0x0301, 0x0304 };
3999
4000
static const struct snd_djm_ctl snd_djm_ctls_450[] = {
4001
SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4002
SND_DJM_CTL("Input 1 Capture Switch", 450_cap1, 2, SND_DJM_WINDEX_CAP),
4003
SND_DJM_CTL("Input 2 Capture Switch", 450_cap2, 2, SND_DJM_WINDEX_CAP),
4004
SND_DJM_CTL("Input 3 Capture Switch", 450_cap3, 0, SND_DJM_WINDEX_CAP),
4005
SND_DJM_CTL("Output 1 Playback Switch", 450_pb1, 0, SND_DJM_WINDEX_PB),
4006
SND_DJM_CTL("Output 2 Playback Switch", 450_pb2, 1, SND_DJM_WINDEX_PB),
4007
SND_DJM_CTL("Output 3 Playback Switch", 450_pb3, 2, SND_DJM_WINDEX_PB)
4008
};
4009
4010
// DJM-750
4011
static const u16 snd_djm_opts_750_cap1[] = {
4012
0x0101, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
4013
static const u16 snd_djm_opts_750_cap2[] = {
4014
0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
4015
static const u16 snd_djm_opts_750_cap3[] = {
4016
0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
4017
static const u16 snd_djm_opts_750_cap4[] = {
4018
0x0401, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
4019
4020
static const struct snd_djm_ctl snd_djm_ctls_750[] = {
4021
SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4022
SND_DJM_CTL("Input 1 Capture Switch", 750_cap1, 2, SND_DJM_WINDEX_CAP),
4023
SND_DJM_CTL("Input 2 Capture Switch", 750_cap2, 2, SND_DJM_WINDEX_CAP),
4024
SND_DJM_CTL("Input 3 Capture Switch", 750_cap3, 0, SND_DJM_WINDEX_CAP),
4025
SND_DJM_CTL("Input 4 Capture Switch", 750_cap4, 0, SND_DJM_WINDEX_CAP)
4026
};
4027
4028
// DJM-850
4029
static const u16 snd_djm_opts_850_cap1[] = {
4030
0x0100, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
4031
static const u16 snd_djm_opts_850_cap2[] = {
4032
0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
4033
static const u16 snd_djm_opts_850_cap3[] = {
4034
0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
4035
static const u16 snd_djm_opts_850_cap4[] = {
4036
0x0400, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
4037
4038
static const struct snd_djm_ctl snd_djm_ctls_850[] = {
4039
SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4040
SND_DJM_CTL("Input 1 Capture Switch", 850_cap1, 1, SND_DJM_WINDEX_CAP),
4041
SND_DJM_CTL("Input 2 Capture Switch", 850_cap2, 0, SND_DJM_WINDEX_CAP),
4042
SND_DJM_CTL("Input 3 Capture Switch", 850_cap3, 0, SND_DJM_WINDEX_CAP),
4043
SND_DJM_CTL("Input 4 Capture Switch", 850_cap4, 1, SND_DJM_WINDEX_CAP)
4044
};
4045
4046
// DJM-900NXS2
4047
static const u16 snd_djm_opts_900nxs2_cap1[] = {
4048
0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a };
4049
static const u16 snd_djm_opts_900nxs2_cap2[] = {
4050
0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a };
4051
static const u16 snd_djm_opts_900nxs2_cap3[] = {
4052
0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a };
4053
static const u16 snd_djm_opts_900nxs2_cap4[] = {
4054
0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a };
4055
static const u16 snd_djm_opts_900nxs2_cap5[] = {
4056
0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 };
4057
4058
static const struct snd_djm_ctl snd_djm_ctls_900nxs2[] = {
4059
SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4060
SND_DJM_CTL("Input 1 Capture Switch", 900nxs2_cap1, 2, SND_DJM_WINDEX_CAP),
4061
SND_DJM_CTL("Input 2 Capture Switch", 900nxs2_cap2, 2, SND_DJM_WINDEX_CAP),
4062
SND_DJM_CTL("Input 3 Capture Switch", 900nxs2_cap3, 2, SND_DJM_WINDEX_CAP),
4063
SND_DJM_CTL("Input 4 Capture Switch", 900nxs2_cap4, 2, SND_DJM_WINDEX_CAP),
4064
SND_DJM_CTL("Input 5 Capture Switch", 900nxs2_cap5, 3, SND_DJM_WINDEX_CAP)
4065
};
4066
4067
// DJM-750MK2
4068
static const u16 snd_djm_opts_750mk2_cap1[] = {
4069
0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a };
4070
static const u16 snd_djm_opts_750mk2_cap2[] = {
4071
0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a };
4072
static const u16 snd_djm_opts_750mk2_cap3[] = {
4073
0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a };
4074
static const u16 snd_djm_opts_750mk2_cap4[] = {
4075
0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a };
4076
static const u16 snd_djm_opts_750mk2_cap5[] = {
4077
0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 };
4078
4079
static const u16 snd_djm_opts_750mk2_pb1[] = { 0x0100, 0x0101, 0x0104 };
4080
static const u16 snd_djm_opts_750mk2_pb2[] = { 0x0200, 0x0201, 0x0204 };
4081
static const u16 snd_djm_opts_750mk2_pb3[] = { 0x0300, 0x0301, 0x0304 };
4082
4083
static const struct snd_djm_ctl snd_djm_ctls_750mk2[] = {
4084
SND_DJM_CTL("Master Input Level Capture Switch", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4085
SND_DJM_CTL("Input 1 Capture Switch", 750mk2_cap1, 2, SND_DJM_WINDEX_CAP),
4086
SND_DJM_CTL("Input 2 Capture Switch", 750mk2_cap2, 2, SND_DJM_WINDEX_CAP),
4087
SND_DJM_CTL("Input 3 Capture Switch", 750mk2_cap3, 2, SND_DJM_WINDEX_CAP),
4088
SND_DJM_CTL("Input 4 Capture Switch", 750mk2_cap4, 2, SND_DJM_WINDEX_CAP),
4089
SND_DJM_CTL("Input 5 Capture Switch", 750mk2_cap5, 3, SND_DJM_WINDEX_CAP),
4090
SND_DJM_CTL("Output 1 Playback Switch", 750mk2_pb1, 0, SND_DJM_WINDEX_PB),
4091
SND_DJM_CTL("Output 2 Playback Switch", 750mk2_pb2, 1, SND_DJM_WINDEX_PB),
4092
SND_DJM_CTL("Output 3 Playback Switch", 750mk2_pb3, 2, SND_DJM_WINDEX_PB)
4093
};
4094
4095
// DJM-A9
4096
static const u16 snd_djm_opts_a9_cap_level[] = {
4097
0x0000, 0x0100, 0x0200, 0x0300, 0x0400, 0x0500 };
4098
static const u16 snd_djm_opts_a9_cap1[] = {
4099
0x0107, 0x0108, 0x0109, 0x010a, 0x010e,
4100
0x111, 0x112, 0x113, 0x114, 0x0131, 0x132, 0x133, 0x134 };
4101
static const u16 snd_djm_opts_a9_cap2[] = {
4102
0x0201, 0x0202, 0x0203, 0x0205, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020e };
4103
static const u16 snd_djm_opts_a9_cap3[] = {
4104
0x0301, 0x0302, 0x0303, 0x0305, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030e };
4105
static const u16 snd_djm_opts_a9_cap4[] = {
4106
0x0401, 0x0402, 0x0403, 0x0405, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040e };
4107
static const u16 snd_djm_opts_a9_cap5[] = {
4108
0x0501, 0x0502, 0x0503, 0x0505, 0x0506, 0x0507, 0x0508, 0x0509, 0x050a, 0x050e };
4109
4110
static const struct snd_djm_ctl snd_djm_ctls_a9[] = {
4111
SND_DJM_CTL("Master Input Level Capture Switch", a9_cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4112
SND_DJM_CTL("Master Input Capture Switch", a9_cap1, 3, SND_DJM_WINDEX_CAP),
4113
SND_DJM_CTL("Input 1 Capture Switch", a9_cap2, 2, SND_DJM_WINDEX_CAP),
4114
SND_DJM_CTL("Input 2 Capture Switch", a9_cap3, 2, SND_DJM_WINDEX_CAP),
4115
SND_DJM_CTL("Input 3 Capture Switch", a9_cap4, 2, SND_DJM_WINDEX_CAP),
4116
SND_DJM_CTL("Input 4 Capture Switch", a9_cap5, 2, SND_DJM_WINDEX_CAP)
4117
};
4118
4119
// DJM-V10
4120
static const u16 snd_djm_opts_v10_cap_level[] = {
4121
0x0000, 0x0100, 0x0200, 0x0300, 0x0400, 0x0500
4122
};
4123
4124
static const u16 snd_djm_opts_v10_cap1[] = {
4125
0x0103,
4126
0x0100, 0x0102, 0x0106, 0x0110, 0x0107,
4127
0x0108, 0x0109, 0x010a, 0x0121, 0x0122
4128
};
4129
4130
static const u16 snd_djm_opts_v10_cap2[] = {
4131
0x0200, 0x0202, 0x0206, 0x0210, 0x0207,
4132
0x0208, 0x0209, 0x020a, 0x0221, 0x0222
4133
};
4134
4135
static const u16 snd_djm_opts_v10_cap3[] = {
4136
0x0303,
4137
0x0300, 0x0302, 0x0306, 0x0310, 0x0307,
4138
0x0308, 0x0309, 0x030a, 0x0321, 0x0322
4139
};
4140
4141
static const u16 snd_djm_opts_v10_cap4[] = {
4142
0x0403,
4143
0x0400, 0x0402, 0x0406, 0x0410, 0x0407,
4144
0x0408, 0x0409, 0x040a, 0x0421, 0x0422
4145
};
4146
4147
static const u16 snd_djm_opts_v10_cap5[] = {
4148
0x0500, 0x0502, 0x0506, 0x0510, 0x0507,
4149
0x0508, 0x0509, 0x050a, 0x0521, 0x0522
4150
};
4151
4152
static const u16 snd_djm_opts_v10_cap6[] = {
4153
0x0603,
4154
0x0600, 0x0602, 0x0606, 0x0610, 0x0607,
4155
0x0608, 0x0609, 0x060a, 0x0621, 0x0622
4156
};
4157
4158
static const struct snd_djm_ctl snd_djm_ctls_v10[] = {
4159
SND_DJM_CTL("Master Input Level Capture Switch", v10_cap_level, 0, SND_DJM_WINDEX_CAPLVL),
4160
SND_DJM_CTL("Input 1 Capture Switch", v10_cap1, 2, SND_DJM_WINDEX_CAP),
4161
SND_DJM_CTL("Input 2 Capture Switch", v10_cap2, 2, SND_DJM_WINDEX_CAP),
4162
SND_DJM_CTL("Input 3 Capture Switch", v10_cap3, 0, SND_DJM_WINDEX_CAP),
4163
SND_DJM_CTL("Input 4 Capture Switch", v10_cap4, 0, SND_DJM_WINDEX_CAP),
4164
SND_DJM_CTL("Input 5 Capture Switch", v10_cap5, 0, SND_DJM_WINDEX_CAP),
4165
SND_DJM_CTL("Input 6 Capture Switch", v10_cap6, 0, SND_DJM_WINDEX_CAP)
4166
// playback channels are fixed and controlled by hardware knobs on the mixer
4167
};
4168
4169
static const struct snd_djm_device snd_djm_devices[] = {
4170
[SND_DJM_250MK2_IDX] = SND_DJM_DEVICE(250mk2),
4171
[SND_DJM_750_IDX] = SND_DJM_DEVICE(750),
4172
[SND_DJM_850_IDX] = SND_DJM_DEVICE(850),
4173
[SND_DJM_900NXS2_IDX] = SND_DJM_DEVICE(900nxs2),
4174
[SND_DJM_750MK2_IDX] = SND_DJM_DEVICE(750mk2),
4175
[SND_DJM_450_IDX] = SND_DJM_DEVICE(450),
4176
[SND_DJM_A9_IDX] = SND_DJM_DEVICE(a9),
4177
[SND_DJM_V10_IDX] = SND_DJM_DEVICE(v10),
4178
};
4179
4180
static int snd_djm_controls_info(struct snd_kcontrol *kctl,
4181
struct snd_ctl_elem_info *info)
4182
{
4183
unsigned long private_value = kctl->private_value;
4184
u8 device_idx = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
4185
u8 ctl_idx = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
4186
const struct snd_djm_device *device = &snd_djm_devices[device_idx];
4187
const char *name;
4188
const struct snd_djm_ctl *ctl;
4189
size_t noptions;
4190
4191
if (ctl_idx >= device->ncontrols)
4192
return -EINVAL;
4193
4194
ctl = &device->controls[ctl_idx];
4195
noptions = ctl->noptions;
4196
if (info->value.enumerated.item >= noptions)
4197
info->value.enumerated.item = noptions - 1;
4198
4199
name = snd_djm_get_label(device_idx,
4200
ctl->options[info->value.enumerated.item],
4201
ctl->wIndex);
4202
if (!name)
4203
return -EINVAL;
4204
4205
strscpy(info->value.enumerated.name, name, sizeof(info->value.enumerated.name));
4206
info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4207
info->count = 1;
4208
info->value.enumerated.items = noptions;
4209
return 0;
4210
}
4211
4212
static int snd_djm_controls_update(struct usb_mixer_interface *mixer,
4213
u8 device_idx, u8 group, u16 value)
4214
{
4215
int err;
4216
const struct snd_djm_device *device = &snd_djm_devices[device_idx];
4217
4218
if (group >= device->ncontrols || value >= device->controls[group].noptions)
4219
return -EINVAL;
4220
4221
err = snd_usb_lock_shutdown(mixer->chip);
4222
if (err)
4223
return err;
4224
4225
err = snd_usb_ctl_msg(mixer->chip->dev,
4226
usb_sndctrlpipe(mixer->chip->dev, 0),
4227
USB_REQ_SET_FEATURE,
4228
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
4229
device->controls[group].options[value],
4230
device->controls[group].wIndex,
4231
NULL, 0);
4232
4233
snd_usb_unlock_shutdown(mixer->chip);
4234
return err;
4235
}
4236
4237
static int snd_djm_controls_get(struct snd_kcontrol *kctl,
4238
struct snd_ctl_elem_value *elem)
4239
{
4240
elem->value.enumerated.item[0] = kctl->private_value & SND_DJM_VALUE_MASK;
4241
return 0;
4242
}
4243
4244
static int snd_djm_controls_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *elem)
4245
{
4246
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
4247
struct usb_mixer_interface *mixer = list->mixer;
4248
unsigned long private_value = kctl->private_value;
4249
4250
u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
4251
u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
4252
u16 value = elem->value.enumerated.item[0];
4253
4254
kctl->private_value = (((unsigned long)device << SND_DJM_DEVICE_SHIFT) |
4255
(group << SND_DJM_GROUP_SHIFT) |
4256
value);
4257
4258
return snd_djm_controls_update(mixer, device, group, value);
4259
}
4260
4261
static int snd_djm_controls_resume(struct usb_mixer_elem_list *list)
4262
{
4263
unsigned long private_value = list->kctl->private_value;
4264
u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
4265
u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
4266
u16 value = (private_value & SND_DJM_VALUE_MASK);
4267
4268
return snd_djm_controls_update(list->mixer, device, group, value);
4269
}
4270
4271
static int snd_djm_controls_create(struct usb_mixer_interface *mixer,
4272
const u8 device_idx)
4273
{
4274
int err, i;
4275
u16 value;
4276
4277
const struct snd_djm_device *device = &snd_djm_devices[device_idx];
4278
4279
struct snd_kcontrol_new knew = {
4280
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
4281
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
4282
.index = 0,
4283
.info = snd_djm_controls_info,
4284
.get = snd_djm_controls_get,
4285
.put = snd_djm_controls_put
4286
};
4287
4288
for (i = 0; i < device->ncontrols; i++) {
4289
value = device->controls[i].default_value;
4290
knew.name = device->controls[i].name;
4291
knew.private_value =
4292
((unsigned long)device_idx << SND_DJM_DEVICE_SHIFT) |
4293
(i << SND_DJM_GROUP_SHIFT) |
4294
value;
4295
err = snd_djm_controls_update(mixer, device_idx, i, value);
4296
if (err)
4297
return err;
4298
err = add_single_ctl_with_resume(mixer, 0, snd_djm_controls_resume,
4299
&knew, NULL);
4300
if (err)
4301
return err;
4302
}
4303
return 0;
4304
}
4305
4306
int snd_usb_mixer_apply_create_quirk(struct usb_mixer_interface *mixer)
4307
{
4308
int err = 0;
4309
4310
err = snd_usb_soundblaster_remote_init(mixer);
4311
if (err < 0)
4312
return err;
4313
4314
switch (mixer->chip->usb_id) {
4315
/* Tascam US-16x08 */
4316
case USB_ID(0x0644, 0x8047):
4317
err = snd_us16x08_controls_create(mixer);
4318
break;
4319
case USB_ID(0x041e, 0x3020):
4320
case USB_ID(0x041e, 0x3040):
4321
case USB_ID(0x041e, 0x3042):
4322
case USB_ID(0x041e, 0x30df):
4323
case USB_ID(0x041e, 0x3048):
4324
err = snd_audigy2nx_controls_create(mixer);
4325
if (err < 0)
4326
break;
4327
snd_card_ro_proc_new(mixer->chip->card, "audigy2nx",
4328
mixer, snd_audigy2nx_proc_read);
4329
break;
4330
4331
/* EMU0204 */
4332
case USB_ID(0x041e, 0x3f19):
4333
err = snd_emu0204_controls_create(mixer);
4334
break;
4335
4336
#if IS_REACHABLE(CONFIG_INPUT)
4337
case USB_ID(0x054c, 0x0ce6): /* Sony DualSense controller (PS5) */
4338
case USB_ID(0x054c, 0x0df2): /* Sony DualSense Edge controller (PS5) */
4339
err = snd_dualsense_controls_create(mixer);
4340
break;
4341
#endif /* IS_REACHABLE(CONFIG_INPUT) */
4342
4343
case USB_ID(0x0763, 0x2030): /* M-Audio Fast Track C400 */
4344
case USB_ID(0x0763, 0x2031): /* M-Audio Fast Track C400 */
4345
err = snd_c400_create_mixer(mixer);
4346
break;
4347
4348
case USB_ID(0x0763, 0x2080): /* M-Audio Fast Track Ultra */
4349
case USB_ID(0x0763, 0x2081): /* M-Audio Fast Track Ultra 8R */
4350
err = snd_ftu_create_mixer(mixer);
4351
break;
4352
4353
case USB_ID(0x0b05, 0x1739): /* ASUS Xonar U1 */
4354
case USB_ID(0x0b05, 0x1743): /* ASUS Xonar U1 (2) */
4355
case USB_ID(0x0b05, 0x17a0): /* ASUS Xonar U3 */
4356
err = snd_xonar_u1_controls_create(mixer);
4357
break;
4358
4359
case USB_ID(0x0d8c, 0x0103): /* Audio Advantage Micro II */
4360
err = snd_microii_controls_create(mixer);
4361
break;
4362
4363
case USB_ID(0x0dba, 0x1000): /* Digidesign Mbox 1 */
4364
err = snd_mbox1_controls_create(mixer);
4365
break;
4366
4367
case USB_ID(0x17cc, 0x1011): /* Traktor Audio 6 */
4368
err = snd_nativeinstruments_create_mixer(/* checkpatch hack */
4369
mixer,
4370
snd_nativeinstruments_ta6_mixers,
4371
ARRAY_SIZE(snd_nativeinstruments_ta6_mixers));
4372
break;
4373
4374
case USB_ID(0x17cc, 0x1021): /* Traktor Audio 10 */
4375
err = snd_nativeinstruments_create_mixer(/* checkpatch hack */
4376
mixer,
4377
snd_nativeinstruments_ta10_mixers,
4378
ARRAY_SIZE(snd_nativeinstruments_ta10_mixers));
4379
break;
4380
4381
case USB_ID(0x200c, 0x1018): /* Electrix Ebox-44 */
4382
/* detection is disabled in mixer_maps.c */
4383
err = snd_create_std_mono_table(mixer, ebox44_table);
4384
break;
4385
4386
case USB_ID(0x1235, 0x8012): /* Focusrite Scarlett 6i6 */
4387
case USB_ID(0x1235, 0x8002): /* Focusrite Scarlett 8i6 */
4388
case USB_ID(0x1235, 0x8004): /* Focusrite Scarlett 18i6 */
4389
case USB_ID(0x1235, 0x8014): /* Focusrite Scarlett 18i8 */
4390
case USB_ID(0x1235, 0x800c): /* Focusrite Scarlett 18i20 */
4391
err = snd_scarlett_controls_create(mixer);
4392
break;
4393
4394
case USB_ID(0x1235, 0x8203): /* Focusrite Scarlett 6i6 2nd Gen */
4395
case USB_ID(0x1235, 0x8204): /* Focusrite Scarlett 18i8 2nd Gen */
4396
case USB_ID(0x1235, 0x8201): /* Focusrite Scarlett 18i20 2nd Gen */
4397
case USB_ID(0x1235, 0x8211): /* Focusrite Scarlett Solo 3rd Gen */
4398
case USB_ID(0x1235, 0x8210): /* Focusrite Scarlett 2i2 3rd Gen */
4399
case USB_ID(0x1235, 0x8212): /* Focusrite Scarlett 4i4 3rd Gen */
4400
case USB_ID(0x1235, 0x8213): /* Focusrite Scarlett 8i6 3rd Gen */
4401
case USB_ID(0x1235, 0x8214): /* Focusrite Scarlett 18i8 3rd Gen */
4402
case USB_ID(0x1235, 0x8215): /* Focusrite Scarlett 18i20 3rd Gen */
4403
case USB_ID(0x1235, 0x8216): /* Focusrite Vocaster One */
4404
case USB_ID(0x1235, 0x8217): /* Focusrite Vocaster Two */
4405
case USB_ID(0x1235, 0x8218): /* Focusrite Scarlett Solo 4th Gen */
4406
case USB_ID(0x1235, 0x8219): /* Focusrite Scarlett 2i2 4th Gen */
4407
case USB_ID(0x1235, 0x821a): /* Focusrite Scarlett 4i4 4th Gen */
4408
case USB_ID(0x1235, 0x8206): /* Focusrite Clarett 2Pre USB */
4409
case USB_ID(0x1235, 0x8207): /* Focusrite Clarett 4Pre USB */
4410
case USB_ID(0x1235, 0x8208): /* Focusrite Clarett 8Pre USB */
4411
case USB_ID(0x1235, 0x820a): /* Focusrite Clarett+ 2Pre */
4412
case USB_ID(0x1235, 0x820b): /* Focusrite Clarett+ 4Pre */
4413
case USB_ID(0x1235, 0x820c): /* Focusrite Clarett+ 8Pre */
4414
err = snd_scarlett2_init(mixer);
4415
break;
4416
4417
case USB_ID(0x1235, 0x821b): /* Focusrite Scarlett 16i16 4th Gen */
4418
case USB_ID(0x1235, 0x821c): /* Focusrite Scarlett 18i16 4th Gen */
4419
case USB_ID(0x1235, 0x821d): /* Focusrite Scarlett 18i20 4th Gen */
4420
err = snd_fcp_init(mixer);
4421
break;
4422
4423
case USB_ID(0x041e, 0x323b): /* Creative Sound Blaster E1 */
4424
err = snd_soundblaster_e1_switch_create(mixer);
4425
break;
4426
case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
4427
err = dell_dock_mixer_create(mixer);
4428
if (err < 0)
4429
break;
4430
err = dell_dock_mixer_init(mixer);
4431
break;
4432
case USB_ID(0x0bda, 0x402e): /* Dell WD19 dock */
4433
err = dell_dock_mixer_create(mixer);
4434
break;
4435
4436
case USB_ID(0x2a39, 0x3fd2): /* RME ADI-2 Pro */
4437
case USB_ID(0x2a39, 0x3fd3): /* RME ADI-2 DAC */
4438
case USB_ID(0x2a39, 0x3fd4): /* RME */
4439
err = snd_rme_controls_create(mixer);
4440
break;
4441
4442
case USB_ID(0x194f, 0x010c): /* Presonus Studio 1810c */
4443
err = snd_sc1810_init_mixer(mixer);
4444
break;
4445
case USB_ID(0x194f, 0x010d): /* Presonus Studio 1824c */
4446
err = snd_sc1810_init_mixer(mixer);
4447
break;
4448
case USB_ID(0x2a39, 0x3fb0): /* RME Babyface Pro FS */
4449
err = snd_bbfpro_controls_create(mixer);
4450
break;
4451
case USB_ID(0x2a39, 0x3f8c): /* RME Digiface USB */
4452
case USB_ID(0x2a39, 0x3fa0): /* RME Digiface USB (alternate) */
4453
err = snd_rme_digiface_controls_create(mixer);
4454
break;
4455
case USB_ID(0x2b73, 0x0017): /* Pioneer DJ DJM-250MK2 */
4456
err = snd_djm_controls_create(mixer, SND_DJM_250MK2_IDX);
4457
break;
4458
case USB_ID(0x2b73, 0x0013): /* Pioneer DJ DJM-450 */
4459
err = snd_djm_controls_create(mixer, SND_DJM_450_IDX);
4460
break;
4461
case USB_ID(0x08e4, 0x017f): /* Pioneer DJ DJM-750 */
4462
err = snd_djm_controls_create(mixer, SND_DJM_750_IDX);
4463
break;
4464
case USB_ID(0x2b73, 0x001b): /* Pioneer DJ DJM-750MK2 */
4465
err = snd_djm_controls_create(mixer, SND_DJM_750MK2_IDX);
4466
break;
4467
case USB_ID(0x08e4, 0x0163): /* Pioneer DJ DJM-850 */
4468
err = snd_djm_controls_create(mixer, SND_DJM_850_IDX);
4469
break;
4470
case USB_ID(0x2b73, 0x000a): /* Pioneer DJ DJM-900NXS2 */
4471
err = snd_djm_controls_create(mixer, SND_DJM_900NXS2_IDX);
4472
break;
4473
case USB_ID(0x2b73, 0x003c): /* Pioneer DJ / AlphaTheta DJM-A9 */
4474
err = snd_djm_controls_create(mixer, SND_DJM_A9_IDX);
4475
break;
4476
case USB_ID(0x2b73, 0x0034): /* Pioneer DJ DJM-V10 */
4477
err = snd_djm_controls_create(mixer, SND_DJM_V10_IDX);
4478
break;
4479
}
4480
4481
return err;
4482
}
4483
4484
void snd_usb_mixer_resume_quirk(struct usb_mixer_interface *mixer)
4485
{
4486
switch (mixer->chip->usb_id) {
4487
case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
4488
dell_dock_mixer_init(mixer);
4489
break;
4490
}
4491
}
4492
4493
void snd_usb_mixer_rc_memory_change(struct usb_mixer_interface *mixer,
4494
int unitid)
4495
{
4496
if (!mixer->rc_cfg)
4497
return;
4498
/* unit ids specific to Extigy/Audigy 2 NX: */
4499
switch (unitid) {
4500
case 0: /* remote control */
4501
mixer->rc_urb->dev = mixer->chip->dev;
4502
usb_submit_urb(mixer->rc_urb, GFP_ATOMIC);
4503
break;
4504
case 4: /* digital in jack */
4505
case 7: /* line in jacks */
4506
case 19: /* speaker out jacks */
4507
case 20: /* headphones out jack */
4508
break;
4509
/* live24ext: 4 = line-in jack */
4510
case 3: /* hp-out jack (may actuate Mute) */
4511
if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
4512
mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
4513
snd_usb_mixer_notify_id(mixer, mixer->rc_cfg->mute_mixer_id);
4514
break;
4515
default:
4516
usb_audio_dbg(mixer->chip, "memory change in unknown unit %d\n", unitid);
4517
break;
4518
}
4519
}
4520
4521
static void snd_dragonfly_quirk_db_scale(struct usb_mixer_interface *mixer,
4522
struct usb_mixer_elem_info *cval,
4523
struct snd_kcontrol *kctl)
4524
{
4525
/* Approximation using 10 ranges based on output measurement on hw v1.2.
4526
* This seems close to the cubic mapping e.g. alsamixer uses.
4527
*/
4528
static const DECLARE_TLV_DB_RANGE(scale,
4529
0, 1, TLV_DB_MINMAX_ITEM(-5300, -4970),
4530
2, 5, TLV_DB_MINMAX_ITEM(-4710, -4160),
4531
6, 7, TLV_DB_MINMAX_ITEM(-3884, -3710),
4532
8, 14, TLV_DB_MINMAX_ITEM(-3443, -2560),
4533
15, 16, TLV_DB_MINMAX_ITEM(-2475, -2324),
4534
17, 19, TLV_DB_MINMAX_ITEM(-2228, -2031),
4535
20, 26, TLV_DB_MINMAX_ITEM(-1910, -1393),
4536
27, 31, TLV_DB_MINMAX_ITEM(-1322, -1032),
4537
32, 40, TLV_DB_MINMAX_ITEM(-968, -490),
4538
41, 50, TLV_DB_MINMAX_ITEM(-441, 0),
4539
);
4540
4541
if (cval->min == 0 && cval->max == 50) {
4542
usb_audio_info(mixer->chip, "applying DragonFly dB scale quirk (0-50 variant)\n");
4543
kctl->tlv.p = scale;
4544
kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
4545
kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
4546
4547
} else if (cval->min == 0 && cval->max <= 1000) {
4548
/* Some other clearly broken DragonFly variant.
4549
* At least a 0..53 variant (hw v1.0) exists.
4550
*/
4551
usb_audio_info(mixer->chip, "ignoring too narrow dB range on a DragonFly device");
4552
kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
4553
}
4554
}
4555
4556
/*
4557
* Some Plantronics headsets have control names that don't meet ALSA naming
4558
* standards. This function fixes nonstandard source names. By the time
4559
* this function is called the control name should look like one of these:
4560
* "source names Playback Volume"
4561
* "source names Playback Switch"
4562
* "source names Capture Volume"
4563
* "source names Capture Switch"
4564
* If any of the trigger words are found in the name then the name will
4565
* be changed to:
4566
* "Headset Playback Volume"
4567
* "Headset Playback Switch"
4568
* "Headset Capture Volume"
4569
* "Headset Capture Switch"
4570
* depending on the current suffix.
4571
*/
4572
static void snd_fix_plt_name(struct snd_usb_audio *chip,
4573
struct snd_ctl_elem_id *id)
4574
{
4575
/* no variant of "Sidetone" should be added to this list */
4576
static const char * const trigger[] = {
4577
"Earphone", "Microphone", "Receive", "Transmit"
4578
};
4579
static const char * const suffix[] = {
4580
" Playback Volume", " Playback Switch",
4581
" Capture Volume", " Capture Switch"
4582
};
4583
int i;
4584
4585
for (i = 0; i < ARRAY_SIZE(trigger); i++)
4586
if (strstr(id->name, trigger[i]))
4587
goto triggered;
4588
usb_audio_dbg(chip, "no change in %s\n", id->name);
4589
return;
4590
4591
triggered:
4592
for (i = 0; i < ARRAY_SIZE(suffix); i++)
4593
if (strstr(id->name, suffix[i])) {
4594
usb_audio_dbg(chip, "fixing kctl name %s\n", id->name);
4595
snprintf(id->name, sizeof(id->name), "Headset%s",
4596
suffix[i]);
4597
return;
4598
}
4599
usb_audio_dbg(chip, "something wrong in kctl name %s\n", id->name);
4600
}
4601
4602
void snd_usb_mixer_fu_apply_quirk(struct usb_mixer_interface *mixer,
4603
struct usb_mixer_elem_info *cval, int unitid,
4604
struct snd_kcontrol *kctl)
4605
{
4606
switch (mixer->chip->usb_id) {
4607
case USB_ID(0x21b4, 0x0081): /* AudioQuest DragonFly */
4608
if (unitid == 7 && cval->control == UAC_FU_VOLUME)
4609
snd_dragonfly_quirk_db_scale(mixer, cval, kctl);
4610
break;
4611
}
4612
4613
/* lowest playback value is muted on some devices */
4614
if (mixer->chip->quirk_flags & QUIRK_FLAG_MIXER_MIN_MUTE)
4615
if (strstr(kctl->id.name, "Playback"))
4616
cval->min_mute = 1;
4617
4618
/* ALSA-ify some Plantronics headset control names */
4619
if (USB_ID_VENDOR(mixer->chip->usb_id) == 0x047f &&
4620
(cval->control == UAC_FU_MUTE || cval->control == UAC_FU_VOLUME))
4621
snd_fix_plt_name(mixer->chip, &kctl->id);
4622
}
4623
4624