Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/sound/x86/intel_hdmi_audio.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* intel_hdmi_audio.c - Intel HDMI audio driver
4
*
5
* Copyright (C) 2016 Intel Corp
6
* Authors: Sailaja Bandarupalli <[email protected]>
7
* Ramesh Babu K V <[email protected]>
8
* Vaibhav Agarwal <[email protected]>
9
* Jerome Anand <[email protected]>
10
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11
*
12
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13
* ALSA driver for Intel HDMI audio
14
*/
15
16
#include <linux/types.h>
17
#include <linux/platform_device.h>
18
#include <linux/io.h>
19
#include <linux/slab.h>
20
#include <linux/module.h>
21
#include <linux/interrupt.h>
22
#include <linux/pm_runtime.h>
23
#include <linux/dma-mapping.h>
24
#include <linux/delay.h>
25
#include <linux/string.h>
26
#include <sound/core.h>
27
#include <sound/asoundef.h>
28
#include <sound/pcm.h>
29
#include <sound/pcm_params.h>
30
#include <sound/initval.h>
31
#include <sound/control.h>
32
#include <sound/jack.h>
33
#include <drm/drm_edid.h>
34
#include <drm/drm_eld.h>
35
#include <drm/intel/intel_lpe_audio.h>
36
#include "intel_hdmi_audio.h"
37
38
#define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS 5000
39
40
#define for_each_pipe(card_ctx, pipe) \
41
for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
42
#define for_each_port(card_ctx, port) \
43
for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
44
45
/*standard module options for ALSA. This module supports only one card*/
46
static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
47
static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
48
static bool single_port;
49
50
module_param_named(index, hdmi_card_index, int, 0444);
51
MODULE_PARM_DESC(index,
52
"Index value for INTEL Intel HDMI Audio controller.");
53
module_param_named(id, hdmi_card_id, charp, 0444);
54
MODULE_PARM_DESC(id,
55
"ID string for INTEL Intel HDMI Audio controller.");
56
module_param(single_port, bool, 0444);
57
MODULE_PARM_DESC(single_port,
58
"Single-port mode (for compatibility)");
59
60
/*
61
* ELD SA bits in the CEA Speaker Allocation data block
62
*/
63
static const int eld_speaker_allocation_bits[] = {
64
[0] = FL | FR,
65
[1] = LFE,
66
[2] = FC,
67
[3] = RL | RR,
68
[4] = RC,
69
[5] = FLC | FRC,
70
[6] = RLC | RRC,
71
/* the following are not defined in ELD yet */
72
[7] = 0,
73
};
74
75
/*
76
* This is an ordered list!
77
*
78
* The preceding ones have better chances to be selected by
79
* hdmi_channel_allocation().
80
*/
81
static struct cea_channel_speaker_allocation channel_allocations[] = {
82
/* channel: 7 6 5 4 3 2 1 0 */
83
{ .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } },
84
/* 2.1 */
85
{ .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } },
86
/* Dolby Surround */
87
{ .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } },
88
/* surround40 */
89
{ .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } },
90
/* surround41 */
91
{ .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } },
92
/* surround50 */
93
{ .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } },
94
/* surround51 */
95
{ .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } },
96
/* 6.1 */
97
{ .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } },
98
/* surround71 */
99
{ .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } },
100
101
{ .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } },
102
{ .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } },
103
{ .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } },
104
{ .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } },
105
{ .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } },
106
{ .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } },
107
{ .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } },
108
{ .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } },
109
{ .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } },
110
{ .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } },
111
{ .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } },
112
{ .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } },
113
{ .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } },
114
{ .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } },
115
{ .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } },
116
{ .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } },
117
{ .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } },
118
{ .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } },
119
{ .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } },
120
{ .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } },
121
{ .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } },
122
{ .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } },
123
{ .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } },
124
};
125
126
static const struct channel_map_table map_tables[] = {
127
{ SNDRV_CHMAP_FL, 0x00, FL },
128
{ SNDRV_CHMAP_FR, 0x01, FR },
129
{ SNDRV_CHMAP_RL, 0x04, RL },
130
{ SNDRV_CHMAP_RR, 0x05, RR },
131
{ SNDRV_CHMAP_LFE, 0x02, LFE },
132
{ SNDRV_CHMAP_FC, 0x03, FC },
133
{ SNDRV_CHMAP_RLC, 0x06, RLC },
134
{ SNDRV_CHMAP_RRC, 0x07, RRC },
135
{} /* terminator */
136
};
137
138
/* hardware capability structure */
139
static const struct snd_pcm_hardware had_pcm_hardware = {
140
.info = (SNDRV_PCM_INFO_INTERLEAVED |
141
SNDRV_PCM_INFO_MMAP |
142
SNDRV_PCM_INFO_MMAP_VALID |
143
SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
144
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
145
SNDRV_PCM_FMTBIT_S24_LE |
146
SNDRV_PCM_FMTBIT_S32_LE),
147
.rates = SNDRV_PCM_RATE_32000 |
148
SNDRV_PCM_RATE_44100 |
149
SNDRV_PCM_RATE_48000 |
150
SNDRV_PCM_RATE_88200 |
151
SNDRV_PCM_RATE_96000 |
152
SNDRV_PCM_RATE_176400 |
153
SNDRV_PCM_RATE_192000,
154
.rate_min = HAD_MIN_RATE,
155
.rate_max = HAD_MAX_RATE,
156
.channels_min = HAD_MIN_CHANNEL,
157
.channels_max = HAD_MAX_CHANNEL,
158
.buffer_bytes_max = HAD_MAX_BUFFER,
159
.period_bytes_min = HAD_MIN_PERIOD_BYTES,
160
.period_bytes_max = HAD_MAX_PERIOD_BYTES,
161
.periods_min = HAD_MIN_PERIODS,
162
.periods_max = HAD_MAX_PERIODS,
163
.fifo_size = HAD_FIFO_SIZE,
164
};
165
166
/* Get the active PCM substream;
167
* Call had_substream_put() for unreferecing.
168
* Don't call this inside had_spinlock, as it takes by itself
169
*/
170
static struct snd_pcm_substream *
171
had_substream_get(struct snd_intelhad *intelhaddata)
172
{
173
struct snd_pcm_substream *substream;
174
unsigned long flags;
175
176
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
177
substream = intelhaddata->stream_info.substream;
178
if (substream)
179
intelhaddata->stream_info.substream_refcount++;
180
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
181
return substream;
182
}
183
184
/* Unref the active PCM substream;
185
* Don't call this inside had_spinlock, as it takes by itself
186
*/
187
static void had_substream_put(struct snd_intelhad *intelhaddata)
188
{
189
unsigned long flags;
190
191
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
192
intelhaddata->stream_info.substream_refcount--;
193
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
194
}
195
196
static u32 had_config_offset(int pipe)
197
{
198
switch (pipe) {
199
default:
200
case 0:
201
return AUDIO_HDMI_CONFIG_A;
202
case 1:
203
return AUDIO_HDMI_CONFIG_B;
204
case 2:
205
return AUDIO_HDMI_CONFIG_C;
206
}
207
}
208
209
/* Register access functions */
210
static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
211
int pipe, u32 reg)
212
{
213
return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
214
}
215
216
static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
217
int pipe, u32 reg, u32 val)
218
{
219
iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
220
}
221
222
static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
223
{
224
if (!ctx->connected)
225
*val = 0;
226
else
227
*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
228
}
229
230
static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
231
{
232
if (ctx->connected)
233
had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
234
}
235
236
/*
237
* enable / disable audio configuration
238
*
239
* The normal read/modify should not directly be used on VLV2 for
240
* updating AUD_CONFIG register.
241
* This is because:
242
* Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
243
* HDMI IP. As a result a read-modify of AUD_CONFIG register will always
244
* clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
245
* register. This field should be 1xy binary for configuration with 6 or
246
* more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
247
* causes the "channels" field to be updated as 0xy binary resulting in
248
* bad audio. The fix is to always write the AUD_CONFIG[6:4] with
249
* appropriate value when doing read-modify of AUD_CONFIG register.
250
*/
251
static void had_enable_audio(struct snd_intelhad *intelhaddata,
252
bool enable)
253
{
254
/* update the cached value */
255
intelhaddata->aud_config.regx.aud_en = enable;
256
had_write_register(intelhaddata, AUD_CONFIG,
257
intelhaddata->aud_config.regval);
258
}
259
260
/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
261
static void had_ack_irqs(struct snd_intelhad *ctx)
262
{
263
u32 status_reg;
264
265
if (!ctx->connected)
266
return;
267
had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
268
status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
269
had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
270
had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
271
}
272
273
/* Reset buffer pointers */
274
static void had_reset_audio(struct snd_intelhad *intelhaddata)
275
{
276
had_write_register(intelhaddata, AUD_HDMI_STATUS,
277
AUD_HDMI_STATUSG_MASK_FUNCRST);
278
had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
279
}
280
281
/*
282
* initialize audio channel status registers
283
* This function is called in the prepare callback
284
*/
285
static int had_prog_status_reg(struct snd_pcm_substream *substream,
286
struct snd_intelhad *intelhaddata)
287
{
288
union aud_ch_status_0 ch_stat0 = {.regval = 0};
289
union aud_ch_status_1 ch_stat1 = {.regval = 0};
290
291
ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
292
IEC958_AES0_NONAUDIO) >> 1;
293
ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
294
IEC958_AES3_CON_CLOCK) >> 4;
295
296
switch (substream->runtime->rate) {
297
case AUD_SAMPLE_RATE_32:
298
ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
299
break;
300
301
case AUD_SAMPLE_RATE_44_1:
302
ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
303
break;
304
case AUD_SAMPLE_RATE_48:
305
ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
306
break;
307
case AUD_SAMPLE_RATE_88_2:
308
ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
309
break;
310
case AUD_SAMPLE_RATE_96:
311
ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
312
break;
313
case AUD_SAMPLE_RATE_176_4:
314
ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
315
break;
316
case AUD_SAMPLE_RATE_192:
317
ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
318
break;
319
320
default:
321
/* control should never come here */
322
return -EINVAL;
323
}
324
325
had_write_register(intelhaddata,
326
AUD_CH_STATUS_0, ch_stat0.regval);
327
328
switch (substream->runtime->format) {
329
case SNDRV_PCM_FORMAT_S16_LE:
330
ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
331
ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
332
break;
333
case SNDRV_PCM_FORMAT_S24_LE:
334
case SNDRV_PCM_FORMAT_S32_LE:
335
ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
336
ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
337
break;
338
default:
339
return -EINVAL;
340
}
341
342
had_write_register(intelhaddata,
343
AUD_CH_STATUS_1, ch_stat1.regval);
344
return 0;
345
}
346
347
/*
348
* function to initialize audio
349
* registers and buffer configuration registers
350
* This function is called in the prepare callback
351
*/
352
static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
353
struct snd_intelhad *intelhaddata)
354
{
355
union aud_cfg cfg_val = {.regval = 0};
356
union aud_buf_config buf_cfg = {.regval = 0};
357
u8 channels;
358
359
had_prog_status_reg(substream, intelhaddata);
360
361
buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
362
buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
363
buf_cfg.regx.aud_delay = 0;
364
had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
365
366
channels = substream->runtime->channels;
367
cfg_val.regx.num_ch = channels - 2;
368
if (channels <= 2)
369
cfg_val.regx.layout = LAYOUT0;
370
else
371
cfg_val.regx.layout = LAYOUT1;
372
373
if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
374
cfg_val.regx.packet_mode = 1;
375
376
if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
377
cfg_val.regx.left_align = 1;
378
379
cfg_val.regx.val_bit = 1;
380
381
/* fix up the DP bits */
382
if (intelhaddata->dp_output) {
383
cfg_val.regx.dp_modei = 1;
384
cfg_val.regx.set = 1;
385
}
386
387
had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
388
intelhaddata->aud_config = cfg_val;
389
return 0;
390
}
391
392
/*
393
* Compute derived values in channel_allocations[].
394
*/
395
static void init_channel_allocations(void)
396
{
397
int i, j;
398
struct cea_channel_speaker_allocation *p;
399
400
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
401
p = channel_allocations + i;
402
p->channels = 0;
403
p->spk_mask = 0;
404
for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
405
if (p->speakers[j]) {
406
p->channels++;
407
p->spk_mask |= p->speakers[j];
408
}
409
}
410
}
411
412
/*
413
* The transformation takes two steps:
414
*
415
* eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
416
* spk_mask => (channel_allocations[]) => ai->CA
417
*
418
* TODO: it could select the wrong CA from multiple candidates.
419
*/
420
static int had_channel_allocation(struct snd_intelhad *intelhaddata,
421
int channels)
422
{
423
int i;
424
int ca = 0;
425
int spk_mask = 0;
426
427
/*
428
* CA defaults to 0 for basic stereo audio
429
*/
430
if (channels <= 2)
431
return 0;
432
433
/*
434
* expand ELD's speaker allocation mask
435
*
436
* ELD tells the speaker mask in a compact(paired) form,
437
* expand ELD's notions to match the ones used by Audio InfoFrame.
438
*/
439
440
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
441
if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
442
spk_mask |= eld_speaker_allocation_bits[i];
443
}
444
445
/* search for the first working match in the CA table */
446
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
447
if (channels == channel_allocations[i].channels &&
448
(spk_mask & channel_allocations[i].spk_mask) ==
449
channel_allocations[i].spk_mask) {
450
ca = channel_allocations[i].ca_index;
451
break;
452
}
453
}
454
455
dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
456
457
return ca;
458
}
459
460
/* from speaker bit mask to ALSA API channel position */
461
static int spk_to_chmap(int spk)
462
{
463
const struct channel_map_table *t = map_tables;
464
465
for (; t->map; t++) {
466
if (t->spk_mask == spk)
467
return t->map;
468
}
469
return 0;
470
}
471
472
static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
473
{
474
int i, c;
475
int spk_mask = 0;
476
struct snd_pcm_chmap_elem *chmap;
477
u8 eld_high, eld_high_mask = 0xF0;
478
u8 high_msb;
479
480
kfree(intelhaddata->chmap->chmap);
481
intelhaddata->chmap->chmap = NULL;
482
483
chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
484
if (!chmap)
485
return;
486
487
dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
488
intelhaddata->eld[DRM_ELD_SPEAKER]);
489
490
/* WA: Fix the max channel supported to 8 */
491
492
/*
493
* Sink may support more than 8 channels, if eld_high has more than
494
* one bit set. SOC supports max 8 channels.
495
* Refer eld_speaker_allocation_bits, for sink speaker allocation
496
*/
497
498
/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
499
eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
500
if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
501
/* eld_high & (eld_high-1): if more than 1 bit set */
502
/* 0x1F: 7 channels */
503
for (i = 1; i < 4; i++) {
504
high_msb = eld_high & (0x80 >> i);
505
if (high_msb) {
506
intelhaddata->eld[DRM_ELD_SPEAKER] &=
507
high_msb | 0xF;
508
break;
509
}
510
}
511
}
512
513
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
514
if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
515
spk_mask |= eld_speaker_allocation_bits[i];
516
}
517
518
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
519
if (spk_mask == channel_allocations[i].spk_mask) {
520
for (c = 0; c < channel_allocations[i].channels; c++) {
521
chmap->map[c] = spk_to_chmap(
522
channel_allocations[i].speakers[
523
(MAX_SPEAKERS - 1) - c]);
524
}
525
chmap->channels = channel_allocations[i].channels;
526
intelhaddata->chmap->chmap = chmap;
527
break;
528
}
529
}
530
if (i >= ARRAY_SIZE(channel_allocations))
531
kfree(chmap);
532
}
533
534
/*
535
* ALSA API channel-map control callbacks
536
*/
537
static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
538
struct snd_ctl_elem_info *uinfo)
539
{
540
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
541
uinfo->count = HAD_MAX_CHANNEL;
542
uinfo->value.integer.min = 0;
543
uinfo->value.integer.max = SNDRV_CHMAP_LAST;
544
return 0;
545
}
546
547
static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
548
struct snd_ctl_elem_value *ucontrol)
549
{
550
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
551
struct snd_intelhad *intelhaddata = info->private_data;
552
int i;
553
const struct snd_pcm_chmap_elem *chmap;
554
555
memset(ucontrol->value.integer.value, 0,
556
sizeof(long) * HAD_MAX_CHANNEL);
557
mutex_lock(&intelhaddata->mutex);
558
if (!intelhaddata->chmap->chmap) {
559
mutex_unlock(&intelhaddata->mutex);
560
return 0;
561
}
562
563
chmap = intelhaddata->chmap->chmap;
564
for (i = 0; i < chmap->channels; i++)
565
ucontrol->value.integer.value[i] = chmap->map[i];
566
mutex_unlock(&intelhaddata->mutex);
567
568
return 0;
569
}
570
571
static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
572
struct snd_pcm *pcm)
573
{
574
int err;
575
576
err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
577
NULL, 0, (unsigned long)intelhaddata,
578
&intelhaddata->chmap);
579
if (err < 0)
580
return err;
581
582
intelhaddata->chmap->private_data = intelhaddata;
583
intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
584
intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
585
intelhaddata->chmap->chmap = NULL;
586
return 0;
587
}
588
589
/*
590
* Initialize Data Island Packets registers
591
* This function is called in the prepare callback
592
*/
593
static void had_prog_dip(struct snd_pcm_substream *substream,
594
struct snd_intelhad *intelhaddata)
595
{
596
int i;
597
union aud_ctrl_st ctrl_state = {.regval = 0};
598
union aud_info_frame2 frame2 = {.regval = 0};
599
union aud_info_frame3 frame3 = {.regval = 0};
600
u8 checksum = 0;
601
u32 info_frame;
602
int channels;
603
int ca;
604
605
channels = substream->runtime->channels;
606
607
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
608
609
ca = had_channel_allocation(intelhaddata, channels);
610
if (intelhaddata->dp_output) {
611
info_frame = DP_INFO_FRAME_WORD1;
612
frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
613
} else {
614
info_frame = HDMI_INFO_FRAME_WORD1;
615
frame2.regx.chnl_cnt = substream->runtime->channels - 1;
616
frame3.regx.chnl_alloc = ca;
617
618
/* Calculte the byte wide checksum for all valid DIP words */
619
for (i = 0; i < BYTES_PER_WORD; i++)
620
checksum += (info_frame >> (i * 8)) & 0xff;
621
for (i = 0; i < BYTES_PER_WORD; i++)
622
checksum += (frame2.regval >> (i * 8)) & 0xff;
623
for (i = 0; i < BYTES_PER_WORD; i++)
624
checksum += (frame3.regval >> (i * 8)) & 0xff;
625
626
frame2.regx.chksum = -(checksum);
627
}
628
629
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
630
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
631
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
632
633
/* program remaining DIP words with zero */
634
for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
635
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
636
637
ctrl_state.regx.dip_freq = 1;
638
ctrl_state.regx.dip_en_sta = 1;
639
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
640
}
641
642
static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
643
{
644
u32 maud_val;
645
646
/* Select maud according to DP 1.2 spec */
647
if (link_rate == DP_2_7_GHZ) {
648
switch (aud_samp_freq) {
649
case AUD_SAMPLE_RATE_32:
650
maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
651
break;
652
653
case AUD_SAMPLE_RATE_44_1:
654
maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
655
break;
656
657
case AUD_SAMPLE_RATE_48:
658
maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
659
break;
660
661
case AUD_SAMPLE_RATE_88_2:
662
maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
663
break;
664
665
case AUD_SAMPLE_RATE_96:
666
maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
667
break;
668
669
case AUD_SAMPLE_RATE_176_4:
670
maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
671
break;
672
673
case HAD_MAX_RATE:
674
maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
675
break;
676
677
default:
678
maud_val = -EINVAL;
679
break;
680
}
681
} else if (link_rate == DP_1_62_GHZ) {
682
switch (aud_samp_freq) {
683
case AUD_SAMPLE_RATE_32:
684
maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
685
break;
686
687
case AUD_SAMPLE_RATE_44_1:
688
maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
689
break;
690
691
case AUD_SAMPLE_RATE_48:
692
maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
693
break;
694
695
case AUD_SAMPLE_RATE_88_2:
696
maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
697
break;
698
699
case AUD_SAMPLE_RATE_96:
700
maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
701
break;
702
703
case AUD_SAMPLE_RATE_176_4:
704
maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
705
break;
706
707
case HAD_MAX_RATE:
708
maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
709
break;
710
711
default:
712
maud_val = -EINVAL;
713
break;
714
}
715
} else
716
maud_val = -EINVAL;
717
718
return maud_val;
719
}
720
721
/*
722
* Program HDMI audio CTS value
723
*
724
* @aud_samp_freq: sampling frequency of audio data
725
* @tmds: sampling frequency of the display data
726
* @link_rate: DP link rate
727
* @n_param: N value, depends on aud_samp_freq
728
* @intelhaddata: substream private data
729
*
730
* Program CTS register based on the audio and display sampling frequency
731
*/
732
static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
733
u32 n_param, struct snd_intelhad *intelhaddata)
734
{
735
u32 cts_val;
736
u64 dividend, divisor;
737
738
if (intelhaddata->dp_output) {
739
/* Substitute cts_val with Maud according to DP 1.2 spec*/
740
cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
741
} else {
742
/* Calculate CTS according to HDMI 1.3a spec*/
743
dividend = (u64)tmds * n_param*1000;
744
divisor = 128 * aud_samp_freq;
745
cts_val = div64_u64(dividend, divisor);
746
}
747
dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
748
tmds, n_param, cts_val);
749
had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
750
}
751
752
static int had_calculate_n_value(u32 aud_samp_freq)
753
{
754
int n_val;
755
756
/* Select N according to HDMI 1.3a spec*/
757
switch (aud_samp_freq) {
758
case AUD_SAMPLE_RATE_32:
759
n_val = 4096;
760
break;
761
762
case AUD_SAMPLE_RATE_44_1:
763
n_val = 6272;
764
break;
765
766
case AUD_SAMPLE_RATE_48:
767
n_val = 6144;
768
break;
769
770
case AUD_SAMPLE_RATE_88_2:
771
n_val = 12544;
772
break;
773
774
case AUD_SAMPLE_RATE_96:
775
n_val = 12288;
776
break;
777
778
case AUD_SAMPLE_RATE_176_4:
779
n_val = 25088;
780
break;
781
782
case HAD_MAX_RATE:
783
n_val = 24576;
784
break;
785
786
default:
787
n_val = -EINVAL;
788
break;
789
}
790
return n_val;
791
}
792
793
/*
794
* Program HDMI audio N value
795
*
796
* @aud_samp_freq: sampling frequency of audio data
797
* @n_param: N value, depends on aud_samp_freq
798
* @intelhaddata: substream private data
799
*
800
* This function is called in the prepare callback.
801
* It programs based on the audio and display sampling frequency
802
*/
803
static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
804
struct snd_intelhad *intelhaddata)
805
{
806
int n_val;
807
808
if (intelhaddata->dp_output) {
809
/*
810
* According to DP specs, Maud and Naud values hold
811
* a relationship, which is stated as:
812
* Maud/Naud = 512 * fs / f_LS_Clk
813
* where, fs is the sampling frequency of the audio stream
814
* and Naud is 32768 for Async clock.
815
*/
816
817
n_val = DP_NAUD_VAL;
818
} else
819
n_val = had_calculate_n_value(aud_samp_freq);
820
821
if (n_val < 0)
822
return n_val;
823
824
had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
825
*n_param = n_val;
826
return 0;
827
}
828
829
/*
830
* PCM ring buffer handling
831
*
832
* The hardware provides a ring buffer with the fixed 4 buffer descriptors
833
* (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
834
* moves at each period elapsed. The below illustrates how it works:
835
*
836
* At time=0
837
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
838
* BD | 0 | 1 | 2 | 3 |
839
*
840
* At time=1 (period elapsed)
841
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
842
* BD | 1 | 2 | 3 | 0 |
843
*
844
* At time=2 (second period elapsed)
845
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
846
* BD | 2 | 3 | 0 | 1 |
847
*
848
* The bd_head field points to the index of the BD to be read. It's also the
849
* position to be filled at next. The pcm_head and the pcm_filled fields
850
* point to the indices of the current position and of the next position to
851
* be filled, respectively. For PCM buffer there are both _head and _filled
852
* because they may be difference when nperiods > 4. For example, in the
853
* example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
854
*
855
* pcm_head (=1) --v v-- pcm_filled (=5)
856
* PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
857
* BD | 1 | 2 | 3 | 0 |
858
* bd_head (=1) --^ ^-- next to fill (= bd_head)
859
*
860
* For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
861
* the hardware skips those BDs in the loop.
862
*
863
* An exceptional setup is the case with nperiods=1. Since we have to update
864
* BDs after finishing one BD processing, we'd need at least two BDs, where
865
* both BDs point to the same content, the same address, the same size of the
866
* whole PCM buffer.
867
*/
868
869
#define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
870
#define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
871
872
/* Set up a buffer descriptor at the "filled" position */
873
static void had_prog_bd(struct snd_pcm_substream *substream,
874
struct snd_intelhad *intelhaddata)
875
{
876
int idx = intelhaddata->bd_head;
877
int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
878
u32 addr = substream->runtime->dma_addr + ofs;
879
880
addr |= AUD_BUF_VALID;
881
if (!substream->runtime->no_period_wakeup)
882
addr |= AUD_BUF_INTR_EN;
883
had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
884
had_write_register(intelhaddata, AUD_BUF_LEN(idx),
885
intelhaddata->period_bytes);
886
887
/* advance the indices to the next */
888
intelhaddata->bd_head++;
889
intelhaddata->bd_head %= intelhaddata->num_bds;
890
intelhaddata->pcmbuf_filled++;
891
intelhaddata->pcmbuf_filled %= substream->runtime->periods;
892
}
893
894
/* invalidate a buffer descriptor with the given index */
895
static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
896
int idx)
897
{
898
had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
899
had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
900
}
901
902
/* Initial programming of ring buffer */
903
static void had_init_ringbuf(struct snd_pcm_substream *substream,
904
struct snd_intelhad *intelhaddata)
905
{
906
struct snd_pcm_runtime *runtime = substream->runtime;
907
int i, num_periods;
908
909
num_periods = runtime->periods;
910
intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
911
/* set the minimum 2 BDs for num_periods=1 */
912
intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
913
intelhaddata->period_bytes =
914
frames_to_bytes(runtime, runtime->period_size);
915
WARN_ON(intelhaddata->period_bytes & 0x3f);
916
917
intelhaddata->bd_head = 0;
918
intelhaddata->pcmbuf_head = 0;
919
intelhaddata->pcmbuf_filled = 0;
920
921
for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
922
if (i < intelhaddata->num_bds)
923
had_prog_bd(substream, intelhaddata);
924
else /* invalidate the rest */
925
had_invalidate_bd(intelhaddata, i);
926
}
927
928
intelhaddata->bd_head = 0; /* reset at head again before starting */
929
}
930
931
/* process a bd, advance to the next */
932
static void had_advance_ringbuf(struct snd_pcm_substream *substream,
933
struct snd_intelhad *intelhaddata)
934
{
935
int num_periods = substream->runtime->periods;
936
937
/* reprogram the next buffer */
938
had_prog_bd(substream, intelhaddata);
939
940
/* proceed to next */
941
intelhaddata->pcmbuf_head++;
942
intelhaddata->pcmbuf_head %= num_periods;
943
}
944
945
/* process the current BD(s);
946
* returns the current PCM buffer byte position, or -EPIPE for underrun.
947
*/
948
static int had_process_ringbuf(struct snd_pcm_substream *substream,
949
struct snd_intelhad *intelhaddata)
950
{
951
int len, processed;
952
unsigned long flags;
953
954
processed = 0;
955
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
956
for (;;) {
957
/* get the remaining bytes on the buffer */
958
had_read_register(intelhaddata,
959
AUD_BUF_LEN(intelhaddata->bd_head),
960
&len);
961
if (len < 0 || len > intelhaddata->period_bytes) {
962
dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
963
len);
964
len = -EPIPE;
965
goto out;
966
}
967
968
if (len > 0) /* OK, this is the current buffer */
969
break;
970
971
/* len=0 => already empty, check the next buffer */
972
if (++processed >= intelhaddata->num_bds) {
973
len = -EPIPE; /* all empty? - report underrun */
974
goto out;
975
}
976
had_advance_ringbuf(substream, intelhaddata);
977
}
978
979
len = intelhaddata->period_bytes - len;
980
len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
981
out:
982
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
983
return len;
984
}
985
986
/* called from irq handler */
987
static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
988
{
989
struct snd_pcm_substream *substream;
990
991
substream = had_substream_get(intelhaddata);
992
if (!substream)
993
return; /* no stream? - bail out */
994
995
if (!intelhaddata->connected) {
996
snd_pcm_stop_xrun(substream);
997
goto out; /* disconnected? - bail out */
998
}
999
1000
/* process or stop the stream */
1001
if (had_process_ringbuf(substream, intelhaddata) < 0)
1002
snd_pcm_stop_xrun(substream);
1003
else
1004
snd_pcm_period_elapsed(substream);
1005
1006
out:
1007
had_substream_put(intelhaddata);
1008
}
1009
1010
/*
1011
* The interrupt status 'sticky' bits might not be cleared by
1012
* setting '1' to that bit once...
1013
*/
1014
static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1015
{
1016
int i;
1017
u32 val;
1018
1019
for (i = 0; i < 100; i++) {
1020
/* clear bit30, 31 AUD_HDMI_STATUS */
1021
had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1022
if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1023
return;
1024
udelay(100);
1025
cond_resched();
1026
had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1027
}
1028
dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1029
}
1030
1031
/* Perform some reset procedure after stopping the stream;
1032
* this is called from prepare or hw_free callbacks once after trigger STOP
1033
* or underrun has been processed in order to settle down the h/w state.
1034
*/
1035
static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1036
{
1037
struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1038
1039
if (!intelhaddata->connected)
1040
return 0;
1041
1042
/* Reset buffer pointers */
1043
had_reset_audio(intelhaddata);
1044
wait_clear_underrun_bit(intelhaddata);
1045
return 0;
1046
}
1047
1048
/* called from irq handler */
1049
static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1050
{
1051
struct snd_pcm_substream *substream;
1052
1053
/* Report UNDERRUN error to above layers */
1054
substream = had_substream_get(intelhaddata);
1055
if (substream) {
1056
snd_pcm_stop_xrun(substream);
1057
had_substream_put(intelhaddata);
1058
}
1059
}
1060
1061
/*
1062
* ALSA PCM open callback
1063
*/
1064
static int had_pcm_open(struct snd_pcm_substream *substream)
1065
{
1066
struct snd_intelhad *intelhaddata;
1067
struct snd_pcm_runtime *runtime;
1068
int retval;
1069
1070
intelhaddata = snd_pcm_substream_chip(substream);
1071
runtime = substream->runtime;
1072
1073
retval = pm_runtime_resume_and_get(intelhaddata->dev);
1074
if (retval < 0)
1075
return retval;
1076
1077
/* set the runtime hw parameter with local snd_pcm_hardware struct */
1078
runtime->hw = had_pcm_hardware;
1079
1080
retval = snd_pcm_hw_constraint_integer(runtime,
1081
SNDRV_PCM_HW_PARAM_PERIODS);
1082
if (retval < 0)
1083
goto error;
1084
1085
/* Make sure, that the period size is always aligned
1086
* 64byte boundary
1087
*/
1088
retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1089
SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1090
if (retval < 0)
1091
goto error;
1092
1093
retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1094
if (retval < 0)
1095
goto error;
1096
1097
/* expose PCM substream */
1098
spin_lock_irq(&intelhaddata->had_spinlock);
1099
intelhaddata->stream_info.substream = substream;
1100
intelhaddata->stream_info.substream_refcount++;
1101
spin_unlock_irq(&intelhaddata->had_spinlock);
1102
1103
return retval;
1104
error:
1105
pm_runtime_put_autosuspend(intelhaddata->dev);
1106
return retval;
1107
}
1108
1109
/*
1110
* ALSA PCM close callback
1111
*/
1112
static int had_pcm_close(struct snd_pcm_substream *substream)
1113
{
1114
struct snd_intelhad *intelhaddata;
1115
1116
intelhaddata = snd_pcm_substream_chip(substream);
1117
1118
/* unreference and sync with the pending PCM accesses */
1119
spin_lock_irq(&intelhaddata->had_spinlock);
1120
intelhaddata->stream_info.substream = NULL;
1121
intelhaddata->stream_info.substream_refcount--;
1122
while (intelhaddata->stream_info.substream_refcount > 0) {
1123
spin_unlock_irq(&intelhaddata->had_spinlock);
1124
cpu_relax();
1125
spin_lock_irq(&intelhaddata->had_spinlock);
1126
}
1127
spin_unlock_irq(&intelhaddata->had_spinlock);
1128
1129
pm_runtime_put_autosuspend(intelhaddata->dev);
1130
return 0;
1131
}
1132
1133
/*
1134
* ALSA PCM hw_params callback
1135
*/
1136
static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1137
struct snd_pcm_hw_params *hw_params)
1138
{
1139
struct snd_intelhad *intelhaddata;
1140
int buf_size;
1141
1142
intelhaddata = snd_pcm_substream_chip(substream);
1143
buf_size = params_buffer_bytes(hw_params);
1144
dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1145
__func__, buf_size);
1146
return 0;
1147
}
1148
1149
/*
1150
* ALSA PCM trigger callback
1151
*/
1152
static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1153
{
1154
int retval = 0;
1155
struct snd_intelhad *intelhaddata;
1156
1157
intelhaddata = snd_pcm_substream_chip(substream);
1158
1159
spin_lock(&intelhaddata->had_spinlock);
1160
switch (cmd) {
1161
case SNDRV_PCM_TRIGGER_START:
1162
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1163
case SNDRV_PCM_TRIGGER_RESUME:
1164
/* Enable Audio */
1165
had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1166
had_enable_audio(intelhaddata, true);
1167
break;
1168
1169
case SNDRV_PCM_TRIGGER_STOP:
1170
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1171
/* Disable Audio */
1172
had_enable_audio(intelhaddata, false);
1173
break;
1174
1175
default:
1176
retval = -EINVAL;
1177
}
1178
spin_unlock(&intelhaddata->had_spinlock);
1179
return retval;
1180
}
1181
1182
/*
1183
* ALSA PCM prepare callback
1184
*/
1185
static int had_pcm_prepare(struct snd_pcm_substream *substream)
1186
{
1187
int retval;
1188
u32 disp_samp_freq, n_param;
1189
u32 link_rate = 0;
1190
struct snd_intelhad *intelhaddata;
1191
struct snd_pcm_runtime *runtime;
1192
1193
intelhaddata = snd_pcm_substream_chip(substream);
1194
runtime = substream->runtime;
1195
1196
dev_dbg(intelhaddata->dev, "period_size=%d\n",
1197
(int)frames_to_bytes(runtime, runtime->period_size));
1198
dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1199
dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1200
(int)snd_pcm_lib_buffer_bytes(substream));
1201
dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1202
dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1203
1204
/* Get N value in KHz */
1205
disp_samp_freq = intelhaddata->tmds_clock_speed;
1206
1207
retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1208
if (retval) {
1209
dev_err(intelhaddata->dev,
1210
"programming N value failed %#x\n", retval);
1211
goto prep_end;
1212
}
1213
1214
if (intelhaddata->dp_output)
1215
link_rate = intelhaddata->link_rate;
1216
1217
had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1218
n_param, intelhaddata);
1219
1220
had_prog_dip(substream, intelhaddata);
1221
1222
retval = had_init_audio_ctrl(substream, intelhaddata);
1223
1224
/* Prog buffer address */
1225
had_init_ringbuf(substream, intelhaddata);
1226
1227
/*
1228
* Program channel mapping in following order:
1229
* FL, FR, C, LFE, RL, RR
1230
*/
1231
1232
had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1233
1234
prep_end:
1235
return retval;
1236
}
1237
1238
/*
1239
* ALSA PCM pointer callback
1240
*/
1241
static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1242
{
1243
struct snd_intelhad *intelhaddata;
1244
int len;
1245
1246
intelhaddata = snd_pcm_substream_chip(substream);
1247
1248
if (!intelhaddata->connected)
1249
return SNDRV_PCM_POS_XRUN;
1250
1251
len = had_process_ringbuf(substream, intelhaddata);
1252
if (len < 0)
1253
return SNDRV_PCM_POS_XRUN;
1254
len = bytes_to_frames(substream->runtime, len);
1255
/* wrapping may happen when periods=1 */
1256
len %= substream->runtime->buffer_size;
1257
return len;
1258
}
1259
1260
/*
1261
* ALSA PCM ops
1262
*/
1263
static const struct snd_pcm_ops had_pcm_ops = {
1264
.open = had_pcm_open,
1265
.close = had_pcm_close,
1266
.hw_params = had_pcm_hw_params,
1267
.prepare = had_pcm_prepare,
1268
.trigger = had_pcm_trigger,
1269
.sync_stop = had_pcm_sync_stop,
1270
.pointer = had_pcm_pointer,
1271
};
1272
1273
/* process mode change of the running stream; called in mutex */
1274
static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1275
{
1276
struct snd_pcm_substream *substream;
1277
int retval = 0;
1278
u32 disp_samp_freq, n_param;
1279
u32 link_rate = 0;
1280
1281
substream = had_substream_get(intelhaddata);
1282
if (!substream)
1283
return 0;
1284
1285
/* Disable Audio */
1286
had_enable_audio(intelhaddata, false);
1287
1288
/* Update CTS value */
1289
disp_samp_freq = intelhaddata->tmds_clock_speed;
1290
1291
retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1292
if (retval) {
1293
dev_err(intelhaddata->dev,
1294
"programming N value failed %#x\n", retval);
1295
goto out;
1296
}
1297
1298
if (intelhaddata->dp_output)
1299
link_rate = intelhaddata->link_rate;
1300
1301
had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1302
n_param, intelhaddata);
1303
1304
/* Enable Audio */
1305
had_enable_audio(intelhaddata, true);
1306
1307
out:
1308
had_substream_put(intelhaddata);
1309
return retval;
1310
}
1311
1312
/* process hot plug, called from wq with mutex locked */
1313
static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1314
{
1315
struct snd_pcm_substream *substream;
1316
1317
spin_lock_irq(&intelhaddata->had_spinlock);
1318
if (intelhaddata->connected) {
1319
dev_dbg(intelhaddata->dev, "Device already connected\n");
1320
spin_unlock_irq(&intelhaddata->had_spinlock);
1321
return;
1322
}
1323
1324
/* Disable Audio */
1325
had_enable_audio(intelhaddata, false);
1326
1327
intelhaddata->connected = true;
1328
dev_dbg(intelhaddata->dev,
1329
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1330
__func__, __LINE__);
1331
spin_unlock_irq(&intelhaddata->had_spinlock);
1332
1333
had_build_channel_allocation_map(intelhaddata);
1334
1335
/* Report to above ALSA layer */
1336
substream = had_substream_get(intelhaddata);
1337
if (substream) {
1338
snd_pcm_stop_xrun(substream);
1339
had_substream_put(intelhaddata);
1340
}
1341
1342
snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1343
}
1344
1345
/* process hot unplug, called from wq with mutex locked */
1346
static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1347
{
1348
struct snd_pcm_substream *substream;
1349
1350
spin_lock_irq(&intelhaddata->had_spinlock);
1351
if (!intelhaddata->connected) {
1352
dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1353
spin_unlock_irq(&intelhaddata->had_spinlock);
1354
return;
1355
1356
}
1357
1358
/* Disable Audio */
1359
had_enable_audio(intelhaddata, false);
1360
1361
intelhaddata->connected = false;
1362
dev_dbg(intelhaddata->dev,
1363
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1364
__func__, __LINE__);
1365
spin_unlock_irq(&intelhaddata->had_spinlock);
1366
1367
kfree(intelhaddata->chmap->chmap);
1368
intelhaddata->chmap->chmap = NULL;
1369
1370
/* Report to above ALSA layer */
1371
substream = had_substream_get(intelhaddata);
1372
if (substream) {
1373
snd_pcm_stop_xrun(substream);
1374
had_substream_put(intelhaddata);
1375
}
1376
1377
snd_jack_report(intelhaddata->jack, 0);
1378
}
1379
1380
/*
1381
* ALSA iec958 and ELD controls
1382
*/
1383
1384
static int had_iec958_info(struct snd_kcontrol *kcontrol,
1385
struct snd_ctl_elem_info *uinfo)
1386
{
1387
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1388
uinfo->count = 1;
1389
return 0;
1390
}
1391
1392
static int had_iec958_get(struct snd_kcontrol *kcontrol,
1393
struct snd_ctl_elem_value *ucontrol)
1394
{
1395
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1396
1397
mutex_lock(&intelhaddata->mutex);
1398
ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1399
ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1400
ucontrol->value.iec958.status[2] =
1401
(intelhaddata->aes_bits >> 16) & 0xff;
1402
ucontrol->value.iec958.status[3] =
1403
(intelhaddata->aes_bits >> 24) & 0xff;
1404
mutex_unlock(&intelhaddata->mutex);
1405
return 0;
1406
}
1407
1408
static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1409
struct snd_ctl_elem_value *ucontrol)
1410
{
1411
ucontrol->value.iec958.status[0] = 0xff;
1412
ucontrol->value.iec958.status[1] = 0xff;
1413
ucontrol->value.iec958.status[2] = 0xff;
1414
ucontrol->value.iec958.status[3] = 0xff;
1415
return 0;
1416
}
1417
1418
static int had_iec958_put(struct snd_kcontrol *kcontrol,
1419
struct snd_ctl_elem_value *ucontrol)
1420
{
1421
unsigned int val;
1422
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1423
int changed = 0;
1424
1425
val = (ucontrol->value.iec958.status[0] << 0) |
1426
(ucontrol->value.iec958.status[1] << 8) |
1427
(ucontrol->value.iec958.status[2] << 16) |
1428
(ucontrol->value.iec958.status[3] << 24);
1429
mutex_lock(&intelhaddata->mutex);
1430
if (intelhaddata->aes_bits != val) {
1431
intelhaddata->aes_bits = val;
1432
changed = 1;
1433
}
1434
mutex_unlock(&intelhaddata->mutex);
1435
return changed;
1436
}
1437
1438
static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1439
struct snd_ctl_elem_info *uinfo)
1440
{
1441
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1442
uinfo->count = HDMI_MAX_ELD_BYTES;
1443
return 0;
1444
}
1445
1446
static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1447
struct snd_ctl_elem_value *ucontrol)
1448
{
1449
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1450
1451
mutex_lock(&intelhaddata->mutex);
1452
memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1453
HDMI_MAX_ELD_BYTES);
1454
mutex_unlock(&intelhaddata->mutex);
1455
return 0;
1456
}
1457
1458
static const struct snd_kcontrol_new had_controls[] = {
1459
{
1460
.access = SNDRV_CTL_ELEM_ACCESS_READ,
1461
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1462
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1463
.info = had_iec958_info, /* shared */
1464
.get = had_iec958_mask_get,
1465
},
1466
{
1467
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1468
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1469
.info = had_iec958_info,
1470
.get = had_iec958_get,
1471
.put = had_iec958_put,
1472
},
1473
{
1474
.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1475
SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1476
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1477
.name = "ELD",
1478
.info = had_ctl_eld_info,
1479
.get = had_ctl_eld_get,
1480
},
1481
};
1482
1483
/*
1484
* audio interrupt handler
1485
*/
1486
static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1487
{
1488
struct snd_intelhad_card *card_ctx = dev_id;
1489
u32 audio_stat[3] = {};
1490
int pipe, port;
1491
1492
for_each_pipe(card_ctx, pipe) {
1493
/* use raw register access to ack IRQs even while disconnected */
1494
audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1495
AUD_HDMI_STATUS) &
1496
(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1497
1498
if (audio_stat[pipe])
1499
had_write_register_raw(card_ctx, pipe,
1500
AUD_HDMI_STATUS, audio_stat[pipe]);
1501
}
1502
1503
for_each_port(card_ctx, port) {
1504
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1505
int pipe = ctx->pipe;
1506
1507
if (pipe < 0)
1508
continue;
1509
1510
if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1511
had_process_buffer_done(ctx);
1512
if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1513
had_process_buffer_underrun(ctx);
1514
}
1515
1516
return IRQ_HANDLED;
1517
}
1518
1519
/*
1520
* monitor plug/unplug notification from i915; just kick off the work
1521
*/
1522
static void notify_audio_lpe(struct platform_device *pdev, int port)
1523
{
1524
struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1525
struct snd_intelhad *ctx;
1526
1527
ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1528
if (single_port)
1529
ctx->port = port;
1530
1531
schedule_work(&ctx->hdmi_audio_wq);
1532
}
1533
1534
/* the work to handle monitor hot plug/unplug */
1535
static void had_audio_wq(struct work_struct *work)
1536
{
1537
struct snd_intelhad *ctx =
1538
container_of(work, struct snd_intelhad, hdmi_audio_wq);
1539
struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1540
struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1541
int ret;
1542
1543
ret = pm_runtime_resume_and_get(ctx->dev);
1544
if (ret < 0)
1545
return;
1546
1547
mutex_lock(&ctx->mutex);
1548
if (ppdata->pipe < 0) {
1549
dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1550
__func__, ctx->port);
1551
1552
memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1553
1554
ctx->dp_output = false;
1555
ctx->tmds_clock_speed = 0;
1556
ctx->link_rate = 0;
1557
1558
/* Shut down the stream */
1559
had_process_hot_unplug(ctx);
1560
1561
ctx->pipe = -1;
1562
} else {
1563
dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1564
__func__, ctx->port, ppdata->ls_clock);
1565
1566
memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1567
1568
ctx->dp_output = ppdata->dp_output;
1569
if (ctx->dp_output) {
1570
ctx->tmds_clock_speed = 0;
1571
ctx->link_rate = ppdata->ls_clock;
1572
} else {
1573
ctx->tmds_clock_speed = ppdata->ls_clock;
1574
ctx->link_rate = 0;
1575
}
1576
1577
/*
1578
* Shut down the stream before we change
1579
* the pipe assignment for this pcm device
1580
*/
1581
had_process_hot_plug(ctx);
1582
1583
ctx->pipe = ppdata->pipe;
1584
1585
/* Restart the stream if necessary */
1586
had_process_mode_change(ctx);
1587
}
1588
1589
mutex_unlock(&ctx->mutex);
1590
pm_runtime_put_autosuspend(ctx->dev);
1591
}
1592
1593
/*
1594
* Jack interface
1595
*/
1596
static int had_create_jack(struct snd_intelhad *ctx,
1597
struct snd_pcm *pcm)
1598
{
1599
char hdmi_str[32];
1600
int err;
1601
1602
snprintf(hdmi_str, sizeof(hdmi_str),
1603
"HDMI/DP,pcm=%d", pcm->device);
1604
1605
err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1606
SND_JACK_AVOUT, &ctx->jack,
1607
true, false);
1608
if (err < 0)
1609
return err;
1610
ctx->jack->private_data = ctx;
1611
return 0;
1612
}
1613
1614
/*
1615
* PM callbacks
1616
*/
1617
1618
static int hdmi_lpe_audio_suspend(struct device *dev)
1619
{
1620
struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1621
1622
snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1623
1624
return 0;
1625
}
1626
1627
static int hdmi_lpe_audio_resume(struct device *dev)
1628
{
1629
struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1630
1631
pm_runtime_mark_last_busy(dev);
1632
1633
snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1634
1635
return 0;
1636
}
1637
1638
/* release resources */
1639
static void hdmi_lpe_audio_free(struct snd_card *card)
1640
{
1641
struct snd_intelhad_card *card_ctx = card->private_data;
1642
struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1643
int port;
1644
1645
spin_lock_irq(&pdata->lpe_audio_slock);
1646
pdata->notify_audio_lpe = NULL;
1647
spin_unlock_irq(&pdata->lpe_audio_slock);
1648
1649
for_each_port(card_ctx, port) {
1650
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1651
1652
cancel_work_sync(&ctx->hdmi_audio_wq);
1653
}
1654
}
1655
1656
/*
1657
* hdmi_lpe_audio_probe - start bridge with i915
1658
*
1659
* This function is called when the i915 driver creates the
1660
* hdmi-lpe-audio platform device.
1661
*/
1662
static int __hdmi_lpe_audio_probe(struct platform_device *pdev)
1663
{
1664
struct snd_card *card;
1665
struct snd_intelhad_card *card_ctx;
1666
struct snd_intelhad *ctx;
1667
struct snd_pcm *pcm;
1668
struct intel_hdmi_lpe_audio_pdata *pdata;
1669
int irq;
1670
struct resource *res_mmio;
1671
int port, ret;
1672
1673
pdata = pdev->dev.platform_data;
1674
if (!pdata) {
1675
dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1676
return -EINVAL;
1677
}
1678
1679
/* get resources */
1680
irq = platform_get_irq(pdev, 0);
1681
if (irq < 0)
1682
return irq;
1683
1684
res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1685
if (!res_mmio) {
1686
dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1687
return -ENXIO;
1688
}
1689
1690
/* create a card instance with ALSA framework */
1691
ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1692
THIS_MODULE, sizeof(*card_ctx), &card);
1693
if (ret)
1694
return ret;
1695
1696
card_ctx = card->private_data;
1697
card_ctx->dev = &pdev->dev;
1698
card_ctx->card = card;
1699
strscpy(card->driver, INTEL_HAD);
1700
strscpy(card->shortname, "Intel HDMI/DP LPE Audio");
1701
strscpy(card->longname, "Intel HDMI/DP LPE Audio");
1702
1703
card_ctx->irq = -1;
1704
1705
card->private_free = hdmi_lpe_audio_free;
1706
1707
platform_set_drvdata(pdev, card_ctx);
1708
1709
card_ctx->num_pipes = pdata->num_pipes;
1710
card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1711
1712
for_each_port(card_ctx, port) {
1713
ctx = &card_ctx->pcm_ctx[port];
1714
ctx->card_ctx = card_ctx;
1715
ctx->dev = card_ctx->dev;
1716
ctx->port = single_port ? -1 : port;
1717
ctx->pipe = -1;
1718
1719
spin_lock_init(&ctx->had_spinlock);
1720
mutex_init(&ctx->mutex);
1721
INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1722
}
1723
1724
dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1725
__func__, (unsigned int)res_mmio->start,
1726
(unsigned int)res_mmio->end);
1727
1728
card_ctx->mmio_start =
1729
devm_ioremap(&pdev->dev, res_mmio->start,
1730
(size_t)(resource_size(res_mmio)));
1731
if (!card_ctx->mmio_start) {
1732
dev_err(&pdev->dev, "Could not get ioremap\n");
1733
return -EACCES;
1734
}
1735
1736
/* setup interrupt handler */
1737
ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1738
0, pdev->name, card_ctx);
1739
if (ret < 0) {
1740
dev_err(&pdev->dev, "request_irq failed\n");
1741
return ret;
1742
}
1743
1744
card_ctx->irq = irq;
1745
1746
/* only 32bit addressable */
1747
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1748
if (ret)
1749
return ret;
1750
1751
init_channel_allocations();
1752
1753
card_ctx->num_pipes = pdata->num_pipes;
1754
card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1755
1756
for_each_port(card_ctx, port) {
1757
int i;
1758
1759
ctx = &card_ctx->pcm_ctx[port];
1760
ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1761
MAX_CAP_STREAMS, &pcm);
1762
if (ret)
1763
return ret;
1764
1765
/* setup private data which can be retrieved when required */
1766
pcm->private_data = ctx;
1767
pcm->info_flags = 0;
1768
strscpy(pcm->name, card->shortname, sizeof(pcm->name));
1769
/* setup the ops for playback */
1770
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1771
1772
/* allocate dma pages;
1773
* try to allocate 600k buffer as default which is large enough
1774
*/
1775
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1776
card->dev, HAD_DEFAULT_BUFFER,
1777
HAD_MAX_BUFFER);
1778
1779
/* create controls */
1780
for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1781
struct snd_kcontrol *kctl;
1782
1783
kctl = snd_ctl_new1(&had_controls[i], ctx);
1784
if (!kctl)
1785
return -ENOMEM;
1786
1787
kctl->id.device = pcm->device;
1788
1789
ret = snd_ctl_add(card, kctl);
1790
if (ret < 0)
1791
return ret;
1792
}
1793
1794
/* Register channel map controls */
1795
ret = had_register_chmap_ctls(ctx, pcm);
1796
if (ret < 0)
1797
return ret;
1798
1799
ret = had_create_jack(ctx, pcm);
1800
if (ret < 0)
1801
return ret;
1802
}
1803
1804
ret = snd_card_register(card);
1805
if (ret)
1806
return ret;
1807
1808
spin_lock_irq(&pdata->lpe_audio_slock);
1809
pdata->notify_audio_lpe = notify_audio_lpe;
1810
spin_unlock_irq(&pdata->lpe_audio_slock);
1811
1812
pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS);
1813
pm_runtime_use_autosuspend(&pdev->dev);
1814
pm_runtime_enable(&pdev->dev);
1815
pm_runtime_mark_last_busy(&pdev->dev);
1816
pm_runtime_idle(&pdev->dev);
1817
1818
dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1819
for_each_port(card_ctx, port) {
1820
struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1821
1822
schedule_work(&ctx->hdmi_audio_wq);
1823
}
1824
1825
return 0;
1826
}
1827
1828
static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1829
{
1830
return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev));
1831
}
1832
1833
static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1834
SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1835
};
1836
1837
static struct platform_driver hdmi_lpe_audio_driver = {
1838
.driver = {
1839
.name = "hdmi-lpe-audio",
1840
.pm = pm_ptr(&hdmi_lpe_audio_pm),
1841
},
1842
.probe = hdmi_lpe_audio_probe,
1843
};
1844
1845
module_platform_driver(hdmi_lpe_audio_driver);
1846
MODULE_ALIAS("platform:hdmi_lpe_audio");
1847
1848
MODULE_AUTHOR("Sailaja Bandarupalli <[email protected]>");
1849
MODULE_AUTHOR("Ramesh Babu K V <[email protected]>");
1850
MODULE_AUTHOR("Vaibhav Agarwal <[email protected]>");
1851
MODULE_AUTHOR("Jerome Anand <[email protected]>");
1852
MODULE_DESCRIPTION("Intel HDMI Audio driver");
1853
MODULE_LICENSE("GPL v2");
1854
1855