Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/lib/bpf/btf_dump.c
26282 views
1
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3
/*
4
* BTF-to-C type converter.
5
*
6
* Copyright (c) 2019 Facebook
7
*/
8
9
#include <stdbool.h>
10
#include <stddef.h>
11
#include <stdlib.h>
12
#include <string.h>
13
#include <ctype.h>
14
#include <endian.h>
15
#include <errno.h>
16
#include <limits.h>
17
#include <linux/err.h>
18
#include <linux/btf.h>
19
#include <linux/kernel.h>
20
#include "btf.h"
21
#include "hashmap.h"
22
#include "libbpf.h"
23
#include "libbpf_internal.h"
24
#include "str_error.h"
25
26
static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
27
static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
28
29
static const char *pfx(int lvl)
30
{
31
return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
32
}
33
34
enum btf_dump_type_order_state {
35
NOT_ORDERED,
36
ORDERING,
37
ORDERED,
38
};
39
40
enum btf_dump_type_emit_state {
41
NOT_EMITTED,
42
EMITTING,
43
EMITTED,
44
};
45
46
/* per-type auxiliary state */
47
struct btf_dump_type_aux_state {
48
/* topological sorting state */
49
enum btf_dump_type_order_state order_state: 2;
50
/* emitting state used to determine the need for forward declaration */
51
enum btf_dump_type_emit_state emit_state: 2;
52
/* whether forward declaration was already emitted */
53
__u8 fwd_emitted: 1;
54
/* whether unique non-duplicate name was already assigned */
55
__u8 name_resolved: 1;
56
/* whether type is referenced from any other type */
57
__u8 referenced: 1;
58
};
59
60
/* indent string length; one indent string is added for each indent level */
61
#define BTF_DATA_INDENT_STR_LEN 32
62
63
/*
64
* Common internal data for BTF type data dump operations.
65
*/
66
struct btf_dump_data {
67
const void *data_end; /* end of valid data to show */
68
bool compact;
69
bool skip_names;
70
bool emit_zeroes;
71
bool emit_strings;
72
__u8 indent_lvl; /* base indent level */
73
char indent_str[BTF_DATA_INDENT_STR_LEN];
74
/* below are used during iteration */
75
int depth;
76
bool is_array_member;
77
bool is_array_terminated;
78
bool is_array_char;
79
};
80
81
struct btf_dump {
82
const struct btf *btf;
83
btf_dump_printf_fn_t printf_fn;
84
void *cb_ctx;
85
int ptr_sz;
86
bool strip_mods;
87
bool skip_anon_defs;
88
int last_id;
89
90
/* per-type auxiliary state */
91
struct btf_dump_type_aux_state *type_states;
92
size_t type_states_cap;
93
/* per-type optional cached unique name, must be freed, if present */
94
const char **cached_names;
95
size_t cached_names_cap;
96
97
/* topo-sorted list of dependent type definitions */
98
__u32 *emit_queue;
99
int emit_queue_cap;
100
int emit_queue_cnt;
101
102
/*
103
* stack of type declarations (e.g., chain of modifiers, arrays,
104
* funcs, etc)
105
*/
106
__u32 *decl_stack;
107
int decl_stack_cap;
108
int decl_stack_cnt;
109
110
/* maps struct/union/enum name to a number of name occurrences */
111
struct hashmap *type_names;
112
/*
113
* maps typedef identifiers and enum value names to a number of such
114
* name occurrences
115
*/
116
struct hashmap *ident_names;
117
/*
118
* data for typed display; allocated if needed.
119
*/
120
struct btf_dump_data *typed_dump;
121
};
122
123
static size_t str_hash_fn(long key, void *ctx)
124
{
125
return str_hash((void *)key);
126
}
127
128
static bool str_equal_fn(long a, long b, void *ctx)
129
{
130
return strcmp((void *)a, (void *)b) == 0;
131
}
132
133
static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
134
{
135
return btf__name_by_offset(d->btf, name_off);
136
}
137
138
static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
139
{
140
va_list args;
141
142
va_start(args, fmt);
143
d->printf_fn(d->cb_ctx, fmt, args);
144
va_end(args);
145
}
146
147
static int btf_dump_mark_referenced(struct btf_dump *d);
148
static int btf_dump_resize(struct btf_dump *d);
149
150
struct btf_dump *btf_dump__new(const struct btf *btf,
151
btf_dump_printf_fn_t printf_fn,
152
void *ctx,
153
const struct btf_dump_opts *opts)
154
{
155
struct btf_dump *d;
156
int err;
157
158
if (!OPTS_VALID(opts, btf_dump_opts))
159
return libbpf_err_ptr(-EINVAL);
160
161
if (!printf_fn)
162
return libbpf_err_ptr(-EINVAL);
163
164
d = calloc(1, sizeof(struct btf_dump));
165
if (!d)
166
return libbpf_err_ptr(-ENOMEM);
167
168
d->btf = btf;
169
d->printf_fn = printf_fn;
170
d->cb_ctx = ctx;
171
d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
172
173
d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
174
if (IS_ERR(d->type_names)) {
175
err = PTR_ERR(d->type_names);
176
d->type_names = NULL;
177
goto err;
178
}
179
d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
180
if (IS_ERR(d->ident_names)) {
181
err = PTR_ERR(d->ident_names);
182
d->ident_names = NULL;
183
goto err;
184
}
185
186
err = btf_dump_resize(d);
187
if (err)
188
goto err;
189
190
return d;
191
err:
192
btf_dump__free(d);
193
return libbpf_err_ptr(err);
194
}
195
196
static int btf_dump_resize(struct btf_dump *d)
197
{
198
int err, last_id = btf__type_cnt(d->btf) - 1;
199
200
if (last_id <= d->last_id)
201
return 0;
202
203
if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
204
sizeof(*d->type_states), last_id + 1))
205
return -ENOMEM;
206
if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
207
sizeof(*d->cached_names), last_id + 1))
208
return -ENOMEM;
209
210
if (d->last_id == 0) {
211
/* VOID is special */
212
d->type_states[0].order_state = ORDERED;
213
d->type_states[0].emit_state = EMITTED;
214
}
215
216
/* eagerly determine referenced types for anon enums */
217
err = btf_dump_mark_referenced(d);
218
if (err)
219
return err;
220
221
d->last_id = last_id;
222
return 0;
223
}
224
225
static void btf_dump_free_names(struct hashmap *map)
226
{
227
size_t bkt;
228
struct hashmap_entry *cur;
229
230
if (!map)
231
return;
232
233
hashmap__for_each_entry(map, cur, bkt)
234
free((void *)cur->pkey);
235
236
hashmap__free(map);
237
}
238
239
void btf_dump__free(struct btf_dump *d)
240
{
241
int i;
242
243
if (IS_ERR_OR_NULL(d))
244
return;
245
246
free(d->type_states);
247
if (d->cached_names) {
248
/* any set cached name is owned by us and should be freed */
249
for (i = 0; i <= d->last_id; i++) {
250
if (d->cached_names[i])
251
free((void *)d->cached_names[i]);
252
}
253
}
254
free(d->cached_names);
255
free(d->emit_queue);
256
free(d->decl_stack);
257
btf_dump_free_names(d->type_names);
258
btf_dump_free_names(d->ident_names);
259
260
free(d);
261
}
262
263
static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
264
static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
265
266
/*
267
* Dump BTF type in a compilable C syntax, including all the necessary
268
* dependent types, necessary for compilation. If some of the dependent types
269
* were already emitted as part of previous btf_dump__dump_type() invocation
270
* for another type, they won't be emitted again. This API allows callers to
271
* filter out BTF types according to user-defined criterias and emitted only
272
* minimal subset of types, necessary to compile everything. Full struct/union
273
* definitions will still be emitted, even if the only usage is through
274
* pointer and could be satisfied with just a forward declaration.
275
*
276
* Dumping is done in two high-level passes:
277
* 1. Topologically sort type definitions to satisfy C rules of compilation.
278
* 2. Emit type definitions in C syntax.
279
*
280
* Returns 0 on success; <0, otherwise.
281
*/
282
int btf_dump__dump_type(struct btf_dump *d, __u32 id)
283
{
284
int err, i;
285
286
if (id >= btf__type_cnt(d->btf))
287
return libbpf_err(-EINVAL);
288
289
err = btf_dump_resize(d);
290
if (err)
291
return libbpf_err(err);
292
293
d->emit_queue_cnt = 0;
294
err = btf_dump_order_type(d, id, false);
295
if (err < 0)
296
return libbpf_err(err);
297
298
for (i = 0; i < d->emit_queue_cnt; i++)
299
btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
300
301
return 0;
302
}
303
304
/*
305
* Mark all types that are referenced from any other type. This is used to
306
* determine top-level anonymous enums that need to be emitted as an
307
* independent type declarations.
308
* Anonymous enums come in two flavors: either embedded in a struct's field
309
* definition, in which case they have to be declared inline as part of field
310
* type declaration; or as a top-level anonymous enum, typically used for
311
* declaring global constants. It's impossible to distinguish between two
312
* without knowing whether given enum type was referenced from other type:
313
* top-level anonymous enum won't be referenced by anything, while embedded
314
* one will.
315
*/
316
static int btf_dump_mark_referenced(struct btf_dump *d)
317
{
318
int i, j, n = btf__type_cnt(d->btf);
319
const struct btf_type *t;
320
__u16 vlen;
321
322
for (i = d->last_id + 1; i < n; i++) {
323
t = btf__type_by_id(d->btf, i);
324
vlen = btf_vlen(t);
325
326
switch (btf_kind(t)) {
327
case BTF_KIND_INT:
328
case BTF_KIND_ENUM:
329
case BTF_KIND_ENUM64:
330
case BTF_KIND_FWD:
331
case BTF_KIND_FLOAT:
332
break;
333
334
case BTF_KIND_VOLATILE:
335
case BTF_KIND_CONST:
336
case BTF_KIND_RESTRICT:
337
case BTF_KIND_PTR:
338
case BTF_KIND_TYPEDEF:
339
case BTF_KIND_FUNC:
340
case BTF_KIND_VAR:
341
case BTF_KIND_DECL_TAG:
342
case BTF_KIND_TYPE_TAG:
343
d->type_states[t->type].referenced = 1;
344
break;
345
346
case BTF_KIND_ARRAY: {
347
const struct btf_array *a = btf_array(t);
348
349
d->type_states[a->index_type].referenced = 1;
350
d->type_states[a->type].referenced = 1;
351
break;
352
}
353
case BTF_KIND_STRUCT:
354
case BTF_KIND_UNION: {
355
const struct btf_member *m = btf_members(t);
356
357
for (j = 0; j < vlen; j++, m++)
358
d->type_states[m->type].referenced = 1;
359
break;
360
}
361
case BTF_KIND_FUNC_PROTO: {
362
const struct btf_param *p = btf_params(t);
363
364
for (j = 0; j < vlen; j++, p++)
365
d->type_states[p->type].referenced = 1;
366
break;
367
}
368
case BTF_KIND_DATASEC: {
369
const struct btf_var_secinfo *v = btf_var_secinfos(t);
370
371
for (j = 0; j < vlen; j++, v++)
372
d->type_states[v->type].referenced = 1;
373
break;
374
}
375
default:
376
return -EINVAL;
377
}
378
}
379
return 0;
380
}
381
382
static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
383
{
384
__u32 *new_queue;
385
size_t new_cap;
386
387
if (d->emit_queue_cnt >= d->emit_queue_cap) {
388
new_cap = max(16, d->emit_queue_cap * 3 / 2);
389
new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
390
if (!new_queue)
391
return -ENOMEM;
392
d->emit_queue = new_queue;
393
d->emit_queue_cap = new_cap;
394
}
395
396
d->emit_queue[d->emit_queue_cnt++] = id;
397
return 0;
398
}
399
400
/*
401
* Determine order of emitting dependent types and specified type to satisfy
402
* C compilation rules. This is done through topological sorting with an
403
* additional complication which comes from C rules. The main idea for C is
404
* that if some type is "embedded" into a struct/union, it's size needs to be
405
* known at the time of definition of containing type. E.g., for:
406
*
407
* struct A {};
408
* struct B { struct A x; }
409
*
410
* struct A *HAS* to be defined before struct B, because it's "embedded",
411
* i.e., it is part of struct B layout. But in the following case:
412
*
413
* struct A;
414
* struct B { struct A *x; }
415
* struct A {};
416
*
417
* it's enough to just have a forward declaration of struct A at the time of
418
* struct B definition, as struct B has a pointer to struct A, so the size of
419
* field x is known without knowing struct A size: it's sizeof(void *).
420
*
421
* Unfortunately, there are some trickier cases we need to handle, e.g.:
422
*
423
* struct A {}; // if this was forward-declaration: compilation error
424
* struct B {
425
* struct { // anonymous struct
426
* struct A y;
427
* } *x;
428
* };
429
*
430
* In this case, struct B's field x is a pointer, so it's size is known
431
* regardless of the size of (anonymous) struct it points to. But because this
432
* struct is anonymous and thus defined inline inside struct B, *and* it
433
* embeds struct A, compiler requires full definition of struct A to be known
434
* before struct B can be defined. This creates a transitive dependency
435
* between struct A and struct B. If struct A was forward-declared before
436
* struct B definition and fully defined after struct B definition, that would
437
* trigger compilation error.
438
*
439
* All this means that while we are doing topological sorting on BTF type
440
* graph, we need to determine relationships between different types (graph
441
* nodes):
442
* - weak link (relationship) between X and Y, if Y *CAN* be
443
* forward-declared at the point of X definition;
444
* - strong link, if Y *HAS* to be fully-defined before X can be defined.
445
*
446
* The rule is as follows. Given a chain of BTF types from X to Y, if there is
447
* BTF_KIND_PTR type in the chain and at least one non-anonymous type
448
* Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
449
* Weak/strong relationship is determined recursively during DFS traversal and
450
* is returned as a result from btf_dump_order_type().
451
*
452
* btf_dump_order_type() is trying to avoid unnecessary forward declarations,
453
* but it is not guaranteeing that no extraneous forward declarations will be
454
* emitted.
455
*
456
* To avoid extra work, algorithm marks some of BTF types as ORDERED, when
457
* it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
458
* ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
459
* entire graph path, so depending where from one came to that BTF type, it
460
* might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
461
* once they are processed, there is no need to do it again, so they are
462
* marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
463
* weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
464
* in any case, once those are processed, no need to do it again, as the
465
* result won't change.
466
*
467
* Returns:
468
* - 1, if type is part of strong link (so there is strong topological
469
* ordering requirements);
470
* - 0, if type is part of weak link (so can be satisfied through forward
471
* declaration);
472
* - <0, on error (e.g., unsatisfiable type loop detected).
473
*/
474
static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
475
{
476
/*
477
* Order state is used to detect strong link cycles, but only for BTF
478
* kinds that are or could be an independent definition (i.e.,
479
* stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
480
* func_protos, modifiers are just means to get to these definitions.
481
* Int/void don't need definitions, they are assumed to be always
482
* properly defined. We also ignore datasec, var, and funcs for now.
483
* So for all non-defining kinds, we never even set ordering state,
484
* for defining kinds we set ORDERING and subsequently ORDERED if it
485
* forms a strong link.
486
*/
487
struct btf_dump_type_aux_state *tstate = &d->type_states[id];
488
const struct btf_type *t;
489
__u16 vlen;
490
int err, i;
491
492
/* return true, letting typedefs know that it's ok to be emitted */
493
if (tstate->order_state == ORDERED)
494
return 1;
495
496
t = btf__type_by_id(d->btf, id);
497
498
if (tstate->order_state == ORDERING) {
499
/* type loop, but resolvable through fwd declaration */
500
if (btf_is_composite(t) && through_ptr && t->name_off != 0)
501
return 0;
502
pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
503
return -ELOOP;
504
}
505
506
switch (btf_kind(t)) {
507
case BTF_KIND_INT:
508
case BTF_KIND_FLOAT:
509
tstate->order_state = ORDERED;
510
return 0;
511
512
case BTF_KIND_PTR:
513
err = btf_dump_order_type(d, t->type, true);
514
tstate->order_state = ORDERED;
515
return err;
516
517
case BTF_KIND_ARRAY:
518
return btf_dump_order_type(d, btf_array(t)->type, false);
519
520
case BTF_KIND_STRUCT:
521
case BTF_KIND_UNION: {
522
const struct btf_member *m = btf_members(t);
523
/*
524
* struct/union is part of strong link, only if it's embedded
525
* (so no ptr in a path) or it's anonymous (so has to be
526
* defined inline, even if declared through ptr)
527
*/
528
if (through_ptr && t->name_off != 0)
529
return 0;
530
531
tstate->order_state = ORDERING;
532
533
vlen = btf_vlen(t);
534
for (i = 0; i < vlen; i++, m++) {
535
err = btf_dump_order_type(d, m->type, false);
536
if (err < 0)
537
return err;
538
}
539
540
if (t->name_off != 0) {
541
err = btf_dump_add_emit_queue_id(d, id);
542
if (err < 0)
543
return err;
544
}
545
546
tstate->order_state = ORDERED;
547
return 1;
548
}
549
case BTF_KIND_ENUM:
550
case BTF_KIND_ENUM64:
551
case BTF_KIND_FWD:
552
/*
553
* non-anonymous or non-referenced enums are top-level
554
* declarations and should be emitted. Same logic can be
555
* applied to FWDs, it won't hurt anyways.
556
*/
557
if (t->name_off != 0 || !tstate->referenced) {
558
err = btf_dump_add_emit_queue_id(d, id);
559
if (err)
560
return err;
561
}
562
tstate->order_state = ORDERED;
563
return 1;
564
565
case BTF_KIND_TYPEDEF: {
566
int is_strong;
567
568
is_strong = btf_dump_order_type(d, t->type, through_ptr);
569
if (is_strong < 0)
570
return is_strong;
571
572
/* typedef is similar to struct/union w.r.t. fwd-decls */
573
if (through_ptr && !is_strong)
574
return 0;
575
576
/* typedef is always a named definition */
577
err = btf_dump_add_emit_queue_id(d, id);
578
if (err)
579
return err;
580
581
d->type_states[id].order_state = ORDERED;
582
return 1;
583
}
584
case BTF_KIND_VOLATILE:
585
case BTF_KIND_CONST:
586
case BTF_KIND_RESTRICT:
587
case BTF_KIND_TYPE_TAG:
588
return btf_dump_order_type(d, t->type, through_ptr);
589
590
case BTF_KIND_FUNC_PROTO: {
591
const struct btf_param *p = btf_params(t);
592
bool is_strong;
593
594
err = btf_dump_order_type(d, t->type, through_ptr);
595
if (err < 0)
596
return err;
597
is_strong = err > 0;
598
599
vlen = btf_vlen(t);
600
for (i = 0; i < vlen; i++, p++) {
601
err = btf_dump_order_type(d, p->type, through_ptr);
602
if (err < 0)
603
return err;
604
if (err > 0)
605
is_strong = true;
606
}
607
return is_strong;
608
}
609
case BTF_KIND_FUNC:
610
case BTF_KIND_VAR:
611
case BTF_KIND_DATASEC:
612
case BTF_KIND_DECL_TAG:
613
d->type_states[id].order_state = ORDERED;
614
return 0;
615
616
default:
617
return -EINVAL;
618
}
619
}
620
621
static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
622
const struct btf_type *t);
623
624
static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
625
const struct btf_type *t);
626
static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
627
const struct btf_type *t, int lvl);
628
629
static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
630
const struct btf_type *t);
631
static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
632
const struct btf_type *t, int lvl);
633
634
static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
635
const struct btf_type *t);
636
637
static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
638
const struct btf_type *t, int lvl);
639
640
/* a local view into a shared stack */
641
struct id_stack {
642
const __u32 *ids;
643
int cnt;
644
};
645
646
static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
647
const char *fname, int lvl);
648
static void btf_dump_emit_type_chain(struct btf_dump *d,
649
struct id_stack *decl_stack,
650
const char *fname, int lvl);
651
652
static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
653
static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
654
static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
655
const char *orig_name);
656
657
static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
658
{
659
const struct btf_type *t = btf__type_by_id(d->btf, id);
660
661
/* __builtin_va_list is a compiler built-in, which causes compilation
662
* errors, when compiling w/ different compiler, then used to compile
663
* original code (e.g., GCC to compile kernel, Clang to use generated
664
* C header from BTF). As it is built-in, it should be already defined
665
* properly internally in compiler.
666
*/
667
if (t->name_off == 0)
668
return false;
669
return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
670
}
671
672
/*
673
* Emit C-syntax definitions of types from chains of BTF types.
674
*
675
* High-level handling of determining necessary forward declarations are handled
676
* by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
677
* declarations/definitions in C syntax are handled by a combo of
678
* btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
679
* corresponding btf_dump_emit_*_{def,fwd}() functions.
680
*
681
* We also keep track of "containing struct/union type ID" to determine when
682
* we reference it from inside and thus can avoid emitting unnecessary forward
683
* declaration.
684
*
685
* This algorithm is designed in such a way, that even if some error occurs
686
* (either technical, e.g., out of memory, or logical, i.e., malformed BTF
687
* that doesn't comply to C rules completely), algorithm will try to proceed
688
* and produce as much meaningful output as possible.
689
*/
690
static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
691
{
692
struct btf_dump_type_aux_state *tstate = &d->type_states[id];
693
bool top_level_def = cont_id == 0;
694
const struct btf_type *t;
695
__u16 kind;
696
697
if (tstate->emit_state == EMITTED)
698
return;
699
700
t = btf__type_by_id(d->btf, id);
701
kind = btf_kind(t);
702
703
if (tstate->emit_state == EMITTING) {
704
if (tstate->fwd_emitted)
705
return;
706
707
switch (kind) {
708
case BTF_KIND_STRUCT:
709
case BTF_KIND_UNION:
710
/*
711
* if we are referencing a struct/union that we are
712
* part of - then no need for fwd declaration
713
*/
714
if (id == cont_id)
715
return;
716
if (t->name_off == 0) {
717
pr_warn("anonymous struct/union loop, id:[%u]\n",
718
id);
719
return;
720
}
721
btf_dump_emit_struct_fwd(d, id, t);
722
btf_dump_printf(d, ";\n\n");
723
tstate->fwd_emitted = 1;
724
break;
725
case BTF_KIND_TYPEDEF:
726
/*
727
* for typedef fwd_emitted means typedef definition
728
* was emitted, but it can be used only for "weak"
729
* references through pointer only, not for embedding
730
*/
731
if (!btf_dump_is_blacklisted(d, id)) {
732
btf_dump_emit_typedef_def(d, id, t, 0);
733
btf_dump_printf(d, ";\n\n");
734
}
735
tstate->fwd_emitted = 1;
736
break;
737
default:
738
break;
739
}
740
741
return;
742
}
743
744
switch (kind) {
745
case BTF_KIND_INT:
746
/* Emit type alias definitions if necessary */
747
btf_dump_emit_missing_aliases(d, id, t);
748
749
tstate->emit_state = EMITTED;
750
break;
751
case BTF_KIND_ENUM:
752
case BTF_KIND_ENUM64:
753
if (top_level_def) {
754
btf_dump_emit_enum_def(d, id, t, 0);
755
btf_dump_printf(d, ";\n\n");
756
}
757
tstate->emit_state = EMITTED;
758
break;
759
case BTF_KIND_PTR:
760
case BTF_KIND_VOLATILE:
761
case BTF_KIND_CONST:
762
case BTF_KIND_RESTRICT:
763
case BTF_KIND_TYPE_TAG:
764
btf_dump_emit_type(d, t->type, cont_id);
765
break;
766
case BTF_KIND_ARRAY:
767
btf_dump_emit_type(d, btf_array(t)->type, cont_id);
768
break;
769
case BTF_KIND_FWD:
770
btf_dump_emit_fwd_def(d, id, t);
771
btf_dump_printf(d, ";\n\n");
772
tstate->emit_state = EMITTED;
773
break;
774
case BTF_KIND_TYPEDEF:
775
tstate->emit_state = EMITTING;
776
btf_dump_emit_type(d, t->type, id);
777
/*
778
* typedef can server as both definition and forward
779
* declaration; at this stage someone depends on
780
* typedef as a forward declaration (refers to it
781
* through pointer), so unless we already did it,
782
* emit typedef as a forward declaration
783
*/
784
if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
785
btf_dump_emit_typedef_def(d, id, t, 0);
786
btf_dump_printf(d, ";\n\n");
787
}
788
tstate->emit_state = EMITTED;
789
break;
790
case BTF_KIND_STRUCT:
791
case BTF_KIND_UNION:
792
tstate->emit_state = EMITTING;
793
/* if it's a top-level struct/union definition or struct/union
794
* is anonymous, then in C we'll be emitting all fields and
795
* their types (as opposed to just `struct X`), so we need to
796
* make sure that all types, referenced from struct/union
797
* members have necessary forward-declarations, where
798
* applicable
799
*/
800
if (top_level_def || t->name_off == 0) {
801
const struct btf_member *m = btf_members(t);
802
__u16 vlen = btf_vlen(t);
803
int i, new_cont_id;
804
805
new_cont_id = t->name_off == 0 ? cont_id : id;
806
for (i = 0; i < vlen; i++, m++)
807
btf_dump_emit_type(d, m->type, new_cont_id);
808
} else if (!tstate->fwd_emitted && id != cont_id) {
809
btf_dump_emit_struct_fwd(d, id, t);
810
btf_dump_printf(d, ";\n\n");
811
tstate->fwd_emitted = 1;
812
}
813
814
if (top_level_def) {
815
btf_dump_emit_struct_def(d, id, t, 0);
816
btf_dump_printf(d, ";\n\n");
817
tstate->emit_state = EMITTED;
818
} else {
819
tstate->emit_state = NOT_EMITTED;
820
}
821
break;
822
case BTF_KIND_FUNC_PROTO: {
823
const struct btf_param *p = btf_params(t);
824
__u16 n = btf_vlen(t);
825
int i;
826
827
btf_dump_emit_type(d, t->type, cont_id);
828
for (i = 0; i < n; i++, p++)
829
btf_dump_emit_type(d, p->type, cont_id);
830
831
break;
832
}
833
default:
834
break;
835
}
836
}
837
838
static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
839
const struct btf_type *t)
840
{
841
const struct btf_member *m;
842
int max_align = 1, align, i, bit_sz;
843
__u16 vlen;
844
845
m = btf_members(t);
846
vlen = btf_vlen(t);
847
/* all non-bitfield fields have to be naturally aligned */
848
for (i = 0; i < vlen; i++, m++) {
849
align = btf__align_of(btf, m->type);
850
bit_sz = btf_member_bitfield_size(t, i);
851
if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
852
return true;
853
max_align = max(align, max_align);
854
}
855
/* size of a non-packed struct has to be a multiple of its alignment */
856
if (t->size % max_align != 0)
857
return true;
858
/*
859
* if original struct was marked as packed, but its layout is
860
* naturally aligned, we'll detect that it's not packed
861
*/
862
return false;
863
}
864
865
static void btf_dump_emit_bit_padding(const struct btf_dump *d,
866
int cur_off, int next_off, int next_align,
867
bool in_bitfield, int lvl)
868
{
869
const struct {
870
const char *name;
871
int bits;
872
} pads[] = {
873
{"long", d->ptr_sz * 8}, {"int", 32}, {"short", 16}, {"char", 8}
874
};
875
int new_off = 0, pad_bits = 0, bits, i;
876
const char *pad_type = NULL;
877
878
if (cur_off >= next_off)
879
return; /* no gap */
880
881
/* For filling out padding we want to take advantage of
882
* natural alignment rules to minimize unnecessary explicit
883
* padding. First, we find the largest type (among long, int,
884
* short, or char) that can be used to force naturally aligned
885
* boundary. Once determined, we'll use such type to fill in
886
* the remaining padding gap. In some cases we can rely on
887
* compiler filling some gaps, but sometimes we need to force
888
* alignment to close natural alignment with markers like
889
* `long: 0` (this is always the case for bitfields). Note
890
* that even if struct itself has, let's say 4-byte alignment
891
* (i.e., it only uses up to int-aligned types), using `long:
892
* X;` explicit padding doesn't actually change struct's
893
* overall alignment requirements, but compiler does take into
894
* account that type's (long, in this example) natural
895
* alignment requirements when adding implicit padding. We use
896
* this fact heavily and don't worry about ruining correct
897
* struct alignment requirement.
898
*/
899
for (i = 0; i < ARRAY_SIZE(pads); i++) {
900
pad_bits = pads[i].bits;
901
pad_type = pads[i].name;
902
903
new_off = roundup(cur_off, pad_bits);
904
if (new_off <= next_off)
905
break;
906
}
907
908
if (new_off > cur_off && new_off <= next_off) {
909
/* We need explicit `<type>: 0` aligning mark if next
910
* field is right on alignment offset and its
911
* alignment requirement is less strict than <type>'s
912
* alignment (so compiler won't naturally align to the
913
* offset we expect), or if subsequent `<type>: X`,
914
* will actually completely fit in the remaining hole,
915
* making compiler basically ignore `<type>: X`
916
* completely.
917
*/
918
if (in_bitfield ||
919
(new_off == next_off && roundup(cur_off, next_align * 8) != new_off) ||
920
(new_off != next_off && next_off - new_off <= new_off - cur_off))
921
/* but for bitfields we'll emit explicit bit count */
922
btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type,
923
in_bitfield ? new_off - cur_off : 0);
924
cur_off = new_off;
925
}
926
927
/* Now we know we start at naturally aligned offset for a chosen
928
* padding type (long, int, short, or char), and so the rest is just
929
* a straightforward filling of remaining padding gap with full
930
* `<type>: sizeof(<type>);` markers, except for the last one, which
931
* might need smaller than sizeof(<type>) padding.
932
*/
933
while (cur_off != next_off) {
934
bits = min(next_off - cur_off, pad_bits);
935
if (bits == pad_bits) {
936
btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
937
cur_off += bits;
938
continue;
939
}
940
/* For the remainder padding that doesn't cover entire
941
* pad_type bit length, we pick the smallest necessary type.
942
* This is pure aesthetics, we could have just used `long`,
943
* but having smallest necessary one communicates better the
944
* scale of the padding gap.
945
*/
946
for (i = ARRAY_SIZE(pads) - 1; i >= 0; i--) {
947
pad_type = pads[i].name;
948
pad_bits = pads[i].bits;
949
if (pad_bits < bits)
950
continue;
951
952
btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, bits);
953
cur_off += bits;
954
break;
955
}
956
}
957
}
958
959
static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
960
const struct btf_type *t)
961
{
962
btf_dump_printf(d, "%s%s%s",
963
btf_is_struct(t) ? "struct" : "union",
964
t->name_off ? " " : "",
965
btf_dump_type_name(d, id));
966
}
967
968
static void btf_dump_emit_struct_def(struct btf_dump *d,
969
__u32 id,
970
const struct btf_type *t,
971
int lvl)
972
{
973
const struct btf_member *m = btf_members(t);
974
bool is_struct = btf_is_struct(t);
975
bool packed, prev_bitfield = false;
976
int align, i, off = 0;
977
__u16 vlen = btf_vlen(t);
978
979
align = btf__align_of(d->btf, id);
980
packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
981
982
btf_dump_printf(d, "%s%s%s {",
983
is_struct ? "struct" : "union",
984
t->name_off ? " " : "",
985
btf_dump_type_name(d, id));
986
987
for (i = 0; i < vlen; i++, m++) {
988
const char *fname;
989
int m_off, m_sz, m_align;
990
bool in_bitfield;
991
992
fname = btf_name_of(d, m->name_off);
993
m_sz = btf_member_bitfield_size(t, i);
994
m_off = btf_member_bit_offset(t, i);
995
m_align = packed ? 1 : btf__align_of(d->btf, m->type);
996
997
in_bitfield = prev_bitfield && m_sz != 0;
998
999
btf_dump_emit_bit_padding(d, off, m_off, m_align, in_bitfield, lvl + 1);
1000
btf_dump_printf(d, "\n%s", pfx(lvl + 1));
1001
btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
1002
1003
if (m_sz) {
1004
btf_dump_printf(d, ": %d", m_sz);
1005
off = m_off + m_sz;
1006
prev_bitfield = true;
1007
} else {
1008
m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
1009
off = m_off + m_sz * 8;
1010
prev_bitfield = false;
1011
}
1012
1013
btf_dump_printf(d, ";");
1014
}
1015
1016
/* pad at the end, if necessary */
1017
if (is_struct)
1018
btf_dump_emit_bit_padding(d, off, t->size * 8, align, false, lvl + 1);
1019
1020
/*
1021
* Keep `struct empty {}` on a single line,
1022
* only print newline when there are regular or padding fields.
1023
*/
1024
if (vlen || t->size) {
1025
btf_dump_printf(d, "\n");
1026
btf_dump_printf(d, "%s}", pfx(lvl));
1027
} else {
1028
btf_dump_printf(d, "}");
1029
}
1030
if (packed)
1031
btf_dump_printf(d, " __attribute__((packed))");
1032
}
1033
1034
static const char *missing_base_types[][2] = {
1035
/*
1036
* GCC emits typedefs to its internal __PolyX_t types when compiling Arm
1037
* SIMD intrinsics. Alias them to standard base types.
1038
*/
1039
{ "__Poly8_t", "unsigned char" },
1040
{ "__Poly16_t", "unsigned short" },
1041
{ "__Poly64_t", "unsigned long long" },
1042
{ "__Poly128_t", "unsigned __int128" },
1043
};
1044
1045
static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
1046
const struct btf_type *t)
1047
{
1048
const char *name = btf_dump_type_name(d, id);
1049
int i;
1050
1051
for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
1052
if (strcmp(name, missing_base_types[i][0]) == 0) {
1053
btf_dump_printf(d, "typedef %s %s;\n\n",
1054
missing_base_types[i][1], name);
1055
break;
1056
}
1057
}
1058
}
1059
1060
static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
1061
const struct btf_type *t)
1062
{
1063
btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
1064
}
1065
1066
static void btf_dump_emit_enum32_val(struct btf_dump *d,
1067
const struct btf_type *t,
1068
int lvl, __u16 vlen)
1069
{
1070
const struct btf_enum *v = btf_enum(t);
1071
bool is_signed = btf_kflag(t);
1072
const char *fmt_str;
1073
const char *name;
1074
size_t dup_cnt;
1075
int i;
1076
1077
for (i = 0; i < vlen; i++, v++) {
1078
name = btf_name_of(d, v->name_off);
1079
/* enumerators share namespace with typedef idents */
1080
dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1081
if (dup_cnt > 1) {
1082
fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,";
1083
btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val);
1084
} else {
1085
fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,";
1086
btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val);
1087
}
1088
}
1089
}
1090
1091
static void btf_dump_emit_enum64_val(struct btf_dump *d,
1092
const struct btf_type *t,
1093
int lvl, __u16 vlen)
1094
{
1095
const struct btf_enum64 *v = btf_enum64(t);
1096
bool is_signed = btf_kflag(t);
1097
const char *fmt_str;
1098
const char *name;
1099
size_t dup_cnt;
1100
__u64 val;
1101
int i;
1102
1103
for (i = 0; i < vlen; i++, v++) {
1104
name = btf_name_of(d, v->name_off);
1105
dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1106
val = btf_enum64_value(v);
1107
if (dup_cnt > 1) {
1108
fmt_str = is_signed ? "\n%s%s___%zd = %lldLL,"
1109
: "\n%s%s___%zd = %lluULL,";
1110
btf_dump_printf(d, fmt_str,
1111
pfx(lvl + 1), name, dup_cnt,
1112
(unsigned long long)val);
1113
} else {
1114
fmt_str = is_signed ? "\n%s%s = %lldLL,"
1115
: "\n%s%s = %lluULL,";
1116
btf_dump_printf(d, fmt_str,
1117
pfx(lvl + 1), name,
1118
(unsigned long long)val);
1119
}
1120
}
1121
}
1122
static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
1123
const struct btf_type *t,
1124
int lvl)
1125
{
1126
__u16 vlen = btf_vlen(t);
1127
1128
btf_dump_printf(d, "enum%s%s",
1129
t->name_off ? " " : "",
1130
btf_dump_type_name(d, id));
1131
1132
if (!vlen)
1133
return;
1134
1135
btf_dump_printf(d, " {");
1136
if (btf_is_enum(t))
1137
btf_dump_emit_enum32_val(d, t, lvl, vlen);
1138
else
1139
btf_dump_emit_enum64_val(d, t, lvl, vlen);
1140
btf_dump_printf(d, "\n%s}", pfx(lvl));
1141
1142
/* special case enums with special sizes */
1143
if (t->size == 1) {
1144
/* one-byte enums can be forced with mode(byte) attribute */
1145
btf_dump_printf(d, " __attribute__((mode(byte)))");
1146
} else if (t->size == 8 && d->ptr_sz == 8) {
1147
/* enum can be 8-byte sized if one of the enumerator values
1148
* doesn't fit in 32-bit integer, or by adding mode(word)
1149
* attribute (but probably only on 64-bit architectures); do
1150
* our best here to try to satisfy the contract without adding
1151
* unnecessary attributes
1152
*/
1153
bool needs_word_mode;
1154
1155
if (btf_is_enum(t)) {
1156
/* enum can't represent 64-bit values, so we need word mode */
1157
needs_word_mode = true;
1158
} else {
1159
/* enum64 needs mode(word) if none of its values has
1160
* non-zero upper 32-bits (which means that all values
1161
* fit in 32-bit integers and won't cause compiler to
1162
* bump enum to be 64-bit naturally
1163
*/
1164
int i;
1165
1166
needs_word_mode = true;
1167
for (i = 0; i < vlen; i++) {
1168
if (btf_enum64(t)[i].val_hi32 != 0) {
1169
needs_word_mode = false;
1170
break;
1171
}
1172
}
1173
}
1174
if (needs_word_mode)
1175
btf_dump_printf(d, " __attribute__((mode(word)))");
1176
}
1177
1178
}
1179
1180
static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
1181
const struct btf_type *t)
1182
{
1183
const char *name = btf_dump_type_name(d, id);
1184
1185
if (btf_kflag(t))
1186
btf_dump_printf(d, "union %s", name);
1187
else
1188
btf_dump_printf(d, "struct %s", name);
1189
}
1190
1191
static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
1192
const struct btf_type *t, int lvl)
1193
{
1194
const char *name = btf_dump_ident_name(d, id);
1195
1196
/*
1197
* Old GCC versions are emitting invalid typedef for __gnuc_va_list
1198
* pointing to VOID. This generates warnings from btf_dump() and
1199
* results in uncompilable header file, so we are fixing it up here
1200
* with valid typedef into __builtin_va_list.
1201
*/
1202
if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1203
btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1204
return;
1205
}
1206
1207
btf_dump_printf(d, "typedef ");
1208
btf_dump_emit_type_decl(d, t->type, name, lvl);
1209
}
1210
1211
static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1212
{
1213
__u32 *new_stack;
1214
size_t new_cap;
1215
1216
if (d->decl_stack_cnt >= d->decl_stack_cap) {
1217
new_cap = max(16, d->decl_stack_cap * 3 / 2);
1218
new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1219
if (!new_stack)
1220
return -ENOMEM;
1221
d->decl_stack = new_stack;
1222
d->decl_stack_cap = new_cap;
1223
}
1224
1225
d->decl_stack[d->decl_stack_cnt++] = id;
1226
1227
return 0;
1228
}
1229
1230
/*
1231
* Emit type declaration (e.g., field type declaration in a struct or argument
1232
* declaration in function prototype) in correct C syntax.
1233
*
1234
* For most types it's trivial, but there are few quirky type declaration
1235
* cases worth mentioning:
1236
* - function prototypes (especially nesting of function prototypes);
1237
* - arrays;
1238
* - const/volatile/restrict for pointers vs other types.
1239
*
1240
* For a good discussion of *PARSING* C syntax (as a human), see
1241
* Peter van der Linden's "Expert C Programming: Deep C Secrets",
1242
* Ch.3 "Unscrambling Declarations in C".
1243
*
1244
* It won't help with BTF to C conversion much, though, as it's an opposite
1245
* problem. So we came up with this algorithm in reverse to van der Linden's
1246
* parsing algorithm. It goes from structured BTF representation of type
1247
* declaration to a valid compilable C syntax.
1248
*
1249
* For instance, consider this C typedef:
1250
* typedef const int * const * arr[10] arr_t;
1251
* It will be represented in BTF with this chain of BTF types:
1252
* [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1253
*
1254
* Notice how [const] modifier always goes before type it modifies in BTF type
1255
* graph, but in C syntax, const/volatile/restrict modifiers are written to
1256
* the right of pointers, but to the left of other types. There are also other
1257
* quirks, like function pointers, arrays of them, functions returning other
1258
* functions, etc.
1259
*
1260
* We handle that by pushing all the types to a stack, until we hit "terminal"
1261
* type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1262
* top of a stack, modifiers are handled differently. Array/function pointers
1263
* have also wildly different syntax and how nesting of them are done. See
1264
* code for authoritative definition.
1265
*
1266
* To avoid allocating new stack for each independent chain of BTF types, we
1267
* share one bigger stack, with each chain working only on its own local view
1268
* of a stack frame. Some care is required to "pop" stack frames after
1269
* processing type declaration chain.
1270
*/
1271
int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1272
const struct btf_dump_emit_type_decl_opts *opts)
1273
{
1274
const char *fname;
1275
int lvl, err;
1276
1277
if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1278
return libbpf_err(-EINVAL);
1279
1280
err = btf_dump_resize(d);
1281
if (err)
1282
return libbpf_err(err);
1283
1284
fname = OPTS_GET(opts, field_name, "");
1285
lvl = OPTS_GET(opts, indent_level, 0);
1286
d->strip_mods = OPTS_GET(opts, strip_mods, false);
1287
btf_dump_emit_type_decl(d, id, fname, lvl);
1288
d->strip_mods = false;
1289
return 0;
1290
}
1291
1292
static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1293
const char *fname, int lvl)
1294
{
1295
struct id_stack decl_stack;
1296
const struct btf_type *t;
1297
int err, stack_start;
1298
1299
stack_start = d->decl_stack_cnt;
1300
for (;;) {
1301
t = btf__type_by_id(d->btf, id);
1302
if (d->strip_mods && btf_is_mod(t))
1303
goto skip_mod;
1304
1305
err = btf_dump_push_decl_stack_id(d, id);
1306
if (err < 0) {
1307
/*
1308
* if we don't have enough memory for entire type decl
1309
* chain, restore stack, emit warning, and try to
1310
* proceed nevertheless
1311
*/
1312
pr_warn("not enough memory for decl stack: %s\n", errstr(err));
1313
d->decl_stack_cnt = stack_start;
1314
return;
1315
}
1316
skip_mod:
1317
/* VOID */
1318
if (id == 0)
1319
break;
1320
1321
switch (btf_kind(t)) {
1322
case BTF_KIND_PTR:
1323
case BTF_KIND_VOLATILE:
1324
case BTF_KIND_CONST:
1325
case BTF_KIND_RESTRICT:
1326
case BTF_KIND_FUNC_PROTO:
1327
case BTF_KIND_TYPE_TAG:
1328
id = t->type;
1329
break;
1330
case BTF_KIND_ARRAY:
1331
id = btf_array(t)->type;
1332
break;
1333
case BTF_KIND_INT:
1334
case BTF_KIND_ENUM:
1335
case BTF_KIND_ENUM64:
1336
case BTF_KIND_FWD:
1337
case BTF_KIND_STRUCT:
1338
case BTF_KIND_UNION:
1339
case BTF_KIND_TYPEDEF:
1340
case BTF_KIND_FLOAT:
1341
goto done;
1342
default:
1343
pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1344
btf_kind(t), id);
1345
goto done;
1346
}
1347
}
1348
done:
1349
/*
1350
* We might be inside a chain of declarations (e.g., array of function
1351
* pointers returning anonymous (so inlined) structs, having another
1352
* array field). Each of those needs its own "stack frame" to handle
1353
* emitting of declarations. Those stack frames are non-overlapping
1354
* portions of shared btf_dump->decl_stack. To make it a bit nicer to
1355
* handle this set of nested stacks, we create a view corresponding to
1356
* our own "stack frame" and work with it as an independent stack.
1357
* We'll need to clean up after emit_type_chain() returns, though.
1358
*/
1359
decl_stack.ids = d->decl_stack + stack_start;
1360
decl_stack.cnt = d->decl_stack_cnt - stack_start;
1361
btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1362
/*
1363
* emit_type_chain() guarantees that it will pop its entire decl_stack
1364
* frame before returning. But it works with a read-only view into
1365
* decl_stack, so it doesn't actually pop anything from the
1366
* perspective of shared btf_dump->decl_stack, per se. We need to
1367
* reset decl_stack state to how it was before us to avoid it growing
1368
* all the time.
1369
*/
1370
d->decl_stack_cnt = stack_start;
1371
}
1372
1373
static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1374
{
1375
const struct btf_type *t;
1376
__u32 id;
1377
1378
while (decl_stack->cnt) {
1379
id = decl_stack->ids[decl_stack->cnt - 1];
1380
t = btf__type_by_id(d->btf, id);
1381
1382
switch (btf_kind(t)) {
1383
case BTF_KIND_VOLATILE:
1384
btf_dump_printf(d, "volatile ");
1385
break;
1386
case BTF_KIND_CONST:
1387
btf_dump_printf(d, "const ");
1388
break;
1389
case BTF_KIND_RESTRICT:
1390
btf_dump_printf(d, "restrict ");
1391
break;
1392
default:
1393
return;
1394
}
1395
decl_stack->cnt--;
1396
}
1397
}
1398
1399
static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1400
{
1401
const struct btf_type *t;
1402
__u32 id;
1403
1404
while (decl_stack->cnt) {
1405
id = decl_stack->ids[decl_stack->cnt - 1];
1406
t = btf__type_by_id(d->btf, id);
1407
if (!btf_is_mod(t))
1408
return;
1409
decl_stack->cnt--;
1410
}
1411
}
1412
1413
static void btf_dump_emit_name(const struct btf_dump *d,
1414
const char *name, bool last_was_ptr)
1415
{
1416
bool separate = name[0] && !last_was_ptr;
1417
1418
btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1419
}
1420
1421
static void btf_dump_emit_type_chain(struct btf_dump *d,
1422
struct id_stack *decls,
1423
const char *fname, int lvl)
1424
{
1425
/*
1426
* last_was_ptr is used to determine if we need to separate pointer
1427
* asterisk (*) from previous part of type signature with space, so
1428
* that we get `int ***`, instead of `int * * *`. We default to true
1429
* for cases where we have single pointer in a chain. E.g., in ptr ->
1430
* func_proto case. func_proto will start a new emit_type_chain call
1431
* with just ptr, which should be emitted as (*) or (*<fname>), so we
1432
* don't want to prepend space for that last pointer.
1433
*/
1434
bool last_was_ptr = true;
1435
const struct btf_type *t;
1436
const char *name;
1437
__u16 kind;
1438
__u32 id;
1439
1440
while (decls->cnt) {
1441
id = decls->ids[--decls->cnt];
1442
if (id == 0) {
1443
/* VOID is a special snowflake */
1444
btf_dump_emit_mods(d, decls);
1445
btf_dump_printf(d, "void");
1446
last_was_ptr = false;
1447
continue;
1448
}
1449
1450
t = btf__type_by_id(d->btf, id);
1451
kind = btf_kind(t);
1452
1453
switch (kind) {
1454
case BTF_KIND_INT:
1455
case BTF_KIND_FLOAT:
1456
btf_dump_emit_mods(d, decls);
1457
name = btf_name_of(d, t->name_off);
1458
btf_dump_printf(d, "%s", name);
1459
break;
1460
case BTF_KIND_STRUCT:
1461
case BTF_KIND_UNION:
1462
btf_dump_emit_mods(d, decls);
1463
/* inline anonymous struct/union */
1464
if (t->name_off == 0 && !d->skip_anon_defs)
1465
btf_dump_emit_struct_def(d, id, t, lvl);
1466
else
1467
btf_dump_emit_struct_fwd(d, id, t);
1468
break;
1469
case BTF_KIND_ENUM:
1470
case BTF_KIND_ENUM64:
1471
btf_dump_emit_mods(d, decls);
1472
/* inline anonymous enum */
1473
if (t->name_off == 0 && !d->skip_anon_defs)
1474
btf_dump_emit_enum_def(d, id, t, lvl);
1475
else
1476
btf_dump_emit_enum_fwd(d, id, t);
1477
break;
1478
case BTF_KIND_FWD:
1479
btf_dump_emit_mods(d, decls);
1480
btf_dump_emit_fwd_def(d, id, t);
1481
break;
1482
case BTF_KIND_TYPEDEF:
1483
btf_dump_emit_mods(d, decls);
1484
btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1485
break;
1486
case BTF_KIND_PTR:
1487
btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1488
break;
1489
case BTF_KIND_VOLATILE:
1490
btf_dump_printf(d, " volatile");
1491
break;
1492
case BTF_KIND_CONST:
1493
btf_dump_printf(d, " const");
1494
break;
1495
case BTF_KIND_RESTRICT:
1496
btf_dump_printf(d, " restrict");
1497
break;
1498
case BTF_KIND_TYPE_TAG:
1499
btf_dump_emit_mods(d, decls);
1500
name = btf_name_of(d, t->name_off);
1501
if (btf_kflag(t))
1502
btf_dump_printf(d, " __attribute__((%s))", name);
1503
else
1504
btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name);
1505
break;
1506
case BTF_KIND_ARRAY: {
1507
const struct btf_array *a = btf_array(t);
1508
const struct btf_type *next_t;
1509
__u32 next_id;
1510
bool multidim;
1511
/*
1512
* GCC has a bug
1513
* (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1514
* which causes it to emit extra const/volatile
1515
* modifiers for an array, if array's element type has
1516
* const/volatile modifiers. Clang doesn't do that.
1517
* In general, it doesn't seem very meaningful to have
1518
* a const/volatile modifier for array, so we are
1519
* going to silently skip them here.
1520
*/
1521
btf_dump_drop_mods(d, decls);
1522
1523
if (decls->cnt == 0) {
1524
btf_dump_emit_name(d, fname, last_was_ptr);
1525
btf_dump_printf(d, "[%u]", a->nelems);
1526
return;
1527
}
1528
1529
next_id = decls->ids[decls->cnt - 1];
1530
next_t = btf__type_by_id(d->btf, next_id);
1531
multidim = btf_is_array(next_t);
1532
/* we need space if we have named non-pointer */
1533
if (fname[0] && !last_was_ptr)
1534
btf_dump_printf(d, " ");
1535
/* no parentheses for multi-dimensional array */
1536
if (!multidim)
1537
btf_dump_printf(d, "(");
1538
btf_dump_emit_type_chain(d, decls, fname, lvl);
1539
if (!multidim)
1540
btf_dump_printf(d, ")");
1541
btf_dump_printf(d, "[%u]", a->nelems);
1542
return;
1543
}
1544
case BTF_KIND_FUNC_PROTO: {
1545
const struct btf_param *p = btf_params(t);
1546
__u16 vlen = btf_vlen(t);
1547
int i;
1548
1549
/*
1550
* GCC emits extra volatile qualifier for
1551
* __attribute__((noreturn)) function pointers. Clang
1552
* doesn't do it. It's a GCC quirk for backwards
1553
* compatibility with code written for GCC <2.5. So,
1554
* similarly to extra qualifiers for array, just drop
1555
* them, instead of handling them.
1556
*/
1557
btf_dump_drop_mods(d, decls);
1558
if (decls->cnt) {
1559
btf_dump_printf(d, " (");
1560
btf_dump_emit_type_chain(d, decls, fname, lvl);
1561
btf_dump_printf(d, ")");
1562
} else {
1563
btf_dump_emit_name(d, fname, last_was_ptr);
1564
}
1565
btf_dump_printf(d, "(");
1566
/*
1567
* Clang for BPF target generates func_proto with no
1568
* args as a func_proto with a single void arg (e.g.,
1569
* `int (*f)(void)` vs just `int (*f)()`). We are
1570
* going to emit valid empty args (void) syntax for
1571
* such case. Similarly and conveniently, valid
1572
* no args case can be special-cased here as well.
1573
*/
1574
if (vlen == 0 || (vlen == 1 && p->type == 0)) {
1575
btf_dump_printf(d, "void)");
1576
return;
1577
}
1578
1579
for (i = 0; i < vlen; i++, p++) {
1580
if (i > 0)
1581
btf_dump_printf(d, ", ");
1582
1583
/* last arg of type void is vararg */
1584
if (i == vlen - 1 && p->type == 0) {
1585
btf_dump_printf(d, "...");
1586
break;
1587
}
1588
1589
name = btf_name_of(d, p->name_off);
1590
btf_dump_emit_type_decl(d, p->type, name, lvl);
1591
}
1592
1593
btf_dump_printf(d, ")");
1594
return;
1595
}
1596
default:
1597
pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1598
kind, id);
1599
return;
1600
}
1601
1602
last_was_ptr = kind == BTF_KIND_PTR;
1603
}
1604
1605
btf_dump_emit_name(d, fname, last_was_ptr);
1606
}
1607
1608
/* show type name as (type_name) */
1609
static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id,
1610
bool top_level)
1611
{
1612
const struct btf_type *t;
1613
1614
/* for array members, we don't bother emitting type name for each
1615
* member to avoid the redundancy of
1616
* .name = (char[4])[(char)'f',(char)'o',(char)'o',]
1617
*/
1618
if (d->typed_dump->is_array_member)
1619
return;
1620
1621
/* avoid type name specification for variable/section; it will be done
1622
* for the associated variable value(s).
1623
*/
1624
t = btf__type_by_id(d->btf, id);
1625
if (btf_is_var(t) || btf_is_datasec(t))
1626
return;
1627
1628
if (top_level)
1629
btf_dump_printf(d, "(");
1630
1631
d->skip_anon_defs = true;
1632
d->strip_mods = true;
1633
btf_dump_emit_type_decl(d, id, "", 0);
1634
d->strip_mods = false;
1635
d->skip_anon_defs = false;
1636
1637
if (top_level)
1638
btf_dump_printf(d, ")");
1639
}
1640
1641
/* return number of duplicates (occurrences) of a given name */
1642
static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1643
const char *orig_name)
1644
{
1645
char *old_name, *new_name;
1646
size_t dup_cnt = 0;
1647
int err;
1648
1649
new_name = strdup(orig_name);
1650
if (!new_name)
1651
return 1;
1652
1653
(void)hashmap__find(name_map, orig_name, &dup_cnt);
1654
dup_cnt++;
1655
1656
err = hashmap__set(name_map, new_name, dup_cnt, &old_name, NULL);
1657
if (err)
1658
free(new_name);
1659
1660
free(old_name);
1661
1662
return dup_cnt;
1663
}
1664
1665
static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1666
struct hashmap *name_map)
1667
{
1668
struct btf_dump_type_aux_state *s = &d->type_states[id];
1669
const struct btf_type *t = btf__type_by_id(d->btf, id);
1670
const char *orig_name = btf_name_of(d, t->name_off);
1671
const char **cached_name = &d->cached_names[id];
1672
size_t dup_cnt;
1673
1674
if (t->name_off == 0)
1675
return "";
1676
1677
if (s->name_resolved)
1678
return *cached_name ? *cached_name : orig_name;
1679
1680
if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) {
1681
s->name_resolved = 1;
1682
return orig_name;
1683
}
1684
1685
dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1686
if (dup_cnt > 1) {
1687
const size_t max_len = 256;
1688
char new_name[max_len];
1689
1690
snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1691
*cached_name = strdup(new_name);
1692
}
1693
1694
s->name_resolved = 1;
1695
return *cached_name ? *cached_name : orig_name;
1696
}
1697
1698
static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1699
{
1700
return btf_dump_resolve_name(d, id, d->type_names);
1701
}
1702
1703
static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1704
{
1705
return btf_dump_resolve_name(d, id, d->ident_names);
1706
}
1707
1708
static int btf_dump_dump_type_data(struct btf_dump *d,
1709
const char *fname,
1710
const struct btf_type *t,
1711
__u32 id,
1712
const void *data,
1713
__u8 bits_offset,
1714
__u8 bit_sz);
1715
1716
static const char *btf_dump_data_newline(struct btf_dump *d)
1717
{
1718
return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n";
1719
}
1720
1721
static const char *btf_dump_data_delim(struct btf_dump *d)
1722
{
1723
return d->typed_dump->depth == 0 ? "" : ",";
1724
}
1725
1726
static void btf_dump_data_pfx(struct btf_dump *d)
1727
{
1728
int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth;
1729
1730
if (d->typed_dump->compact)
1731
return;
1732
1733
for (i = 0; i < lvl; i++)
1734
btf_dump_printf(d, "%s", d->typed_dump->indent_str);
1735
}
1736
1737
/* A macro is used here as btf_type_value[s]() appends format specifiers
1738
* to the format specifier passed in; these do the work of appending
1739
* delimiters etc while the caller simply has to specify the type values
1740
* in the format specifier + value(s).
1741
*/
1742
#define btf_dump_type_values(d, fmt, ...) \
1743
btf_dump_printf(d, fmt "%s%s", \
1744
##__VA_ARGS__, \
1745
btf_dump_data_delim(d), \
1746
btf_dump_data_newline(d))
1747
1748
static int btf_dump_unsupported_data(struct btf_dump *d,
1749
const struct btf_type *t,
1750
__u32 id)
1751
{
1752
btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t));
1753
return -ENOTSUP;
1754
}
1755
1756
static int btf_dump_get_bitfield_value(struct btf_dump *d,
1757
const struct btf_type *t,
1758
const void *data,
1759
__u8 bits_offset,
1760
__u8 bit_sz,
1761
__u64 *value)
1762
{
1763
__u16 left_shift_bits, right_shift_bits;
1764
const __u8 *bytes = data;
1765
__u8 nr_copy_bits;
1766
__u64 num = 0;
1767
int i;
1768
1769
/* Maximum supported bitfield size is 64 bits */
1770
if (t->size > 8) {
1771
pr_warn("unexpected bitfield size %d\n", t->size);
1772
return -EINVAL;
1773
}
1774
1775
/* Bitfield value retrieval is done in two steps; first relevant bytes are
1776
* stored in num, then we left/right shift num to eliminate irrelevant bits.
1777
*/
1778
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1779
for (i = t->size - 1; i >= 0; i--)
1780
num = num * 256 + bytes[i];
1781
nr_copy_bits = bit_sz + bits_offset;
1782
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1783
for (i = 0; i < t->size; i++)
1784
num = num * 256 + bytes[i];
1785
nr_copy_bits = t->size * 8 - bits_offset;
1786
#else
1787
# error "Unrecognized __BYTE_ORDER__"
1788
#endif
1789
left_shift_bits = 64 - nr_copy_bits;
1790
right_shift_bits = 64 - bit_sz;
1791
1792
*value = (num << left_shift_bits) >> right_shift_bits;
1793
1794
return 0;
1795
}
1796
1797
static int btf_dump_bitfield_check_zero(struct btf_dump *d,
1798
const struct btf_type *t,
1799
const void *data,
1800
__u8 bits_offset,
1801
__u8 bit_sz)
1802
{
1803
__u64 check_num;
1804
int err;
1805
1806
err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num);
1807
if (err)
1808
return err;
1809
if (check_num == 0)
1810
return -ENODATA;
1811
return 0;
1812
}
1813
1814
static int btf_dump_bitfield_data(struct btf_dump *d,
1815
const struct btf_type *t,
1816
const void *data,
1817
__u8 bits_offset,
1818
__u8 bit_sz)
1819
{
1820
__u64 print_num;
1821
int err;
1822
1823
err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num);
1824
if (err)
1825
return err;
1826
1827
btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num);
1828
1829
return 0;
1830
}
1831
1832
/* ints, floats and ptrs */
1833
static int btf_dump_base_type_check_zero(struct btf_dump *d,
1834
const struct btf_type *t,
1835
__u32 id,
1836
const void *data)
1837
{
1838
static __u8 bytecmp[16] = {};
1839
int nr_bytes;
1840
1841
/* For pointer types, pointer size is not defined on a per-type basis.
1842
* On dump creation however, we store the pointer size.
1843
*/
1844
if (btf_kind(t) == BTF_KIND_PTR)
1845
nr_bytes = d->ptr_sz;
1846
else
1847
nr_bytes = t->size;
1848
1849
if (nr_bytes < 1 || nr_bytes > 16) {
1850
pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id);
1851
return -EINVAL;
1852
}
1853
1854
if (memcmp(data, bytecmp, nr_bytes) == 0)
1855
return -ENODATA;
1856
return 0;
1857
}
1858
1859
static bool ptr_is_aligned(const struct btf *btf, __u32 type_id,
1860
const void *data)
1861
{
1862
int alignment = btf__align_of(btf, type_id);
1863
1864
if (alignment == 0)
1865
return false;
1866
1867
return ((uintptr_t)data) % alignment == 0;
1868
}
1869
1870
static int btf_dump_int_data(struct btf_dump *d,
1871
const struct btf_type *t,
1872
__u32 type_id,
1873
const void *data,
1874
__u8 bits_offset)
1875
{
1876
__u8 encoding = btf_int_encoding(t);
1877
bool sign = encoding & BTF_INT_SIGNED;
1878
char buf[16] __attribute__((aligned(16)));
1879
int sz = t->size;
1880
1881
if (sz == 0 || sz > sizeof(buf)) {
1882
pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1883
return -EINVAL;
1884
}
1885
1886
/* handle packed int data - accesses of integers not aligned on
1887
* int boundaries can cause problems on some platforms.
1888
*/
1889
if (!ptr_is_aligned(d->btf, type_id, data)) {
1890
memcpy(buf, data, sz);
1891
data = buf;
1892
}
1893
1894
switch (sz) {
1895
case 16: {
1896
const __u64 *ints = data;
1897
__u64 lsi, msi;
1898
1899
/* avoid use of __int128 as some 32-bit platforms do not
1900
* support it.
1901
*/
1902
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1903
lsi = ints[0];
1904
msi = ints[1];
1905
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1906
lsi = ints[1];
1907
msi = ints[0];
1908
#else
1909
# error "Unrecognized __BYTE_ORDER__"
1910
#endif
1911
if (msi == 0)
1912
btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi);
1913
else
1914
btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi,
1915
(unsigned long long)lsi);
1916
break;
1917
}
1918
case 8:
1919
if (sign)
1920
btf_dump_type_values(d, "%lld", *(long long *)data);
1921
else
1922
btf_dump_type_values(d, "%llu", *(unsigned long long *)data);
1923
break;
1924
case 4:
1925
if (sign)
1926
btf_dump_type_values(d, "%d", *(__s32 *)data);
1927
else
1928
btf_dump_type_values(d, "%u", *(__u32 *)data);
1929
break;
1930
case 2:
1931
if (sign)
1932
btf_dump_type_values(d, "%d", *(__s16 *)data);
1933
else
1934
btf_dump_type_values(d, "%u", *(__u16 *)data);
1935
break;
1936
case 1:
1937
if (d->typed_dump->is_array_char) {
1938
/* check for null terminator */
1939
if (d->typed_dump->is_array_terminated)
1940
break;
1941
if (*(char *)data == '\0') {
1942
btf_dump_type_values(d, "'\\0'");
1943
d->typed_dump->is_array_terminated = true;
1944
break;
1945
}
1946
if (isprint(*(char *)data)) {
1947
btf_dump_type_values(d, "'%c'", *(char *)data);
1948
break;
1949
}
1950
}
1951
if (sign)
1952
btf_dump_type_values(d, "%d", *(__s8 *)data);
1953
else
1954
btf_dump_type_values(d, "%u", *(__u8 *)data);
1955
break;
1956
default:
1957
pr_warn("unexpected sz %d for id [%u]\n", sz, type_id);
1958
return -EINVAL;
1959
}
1960
return 0;
1961
}
1962
1963
union float_data {
1964
long double ld;
1965
double d;
1966
float f;
1967
};
1968
1969
static int btf_dump_float_data(struct btf_dump *d,
1970
const struct btf_type *t,
1971
__u32 type_id,
1972
const void *data)
1973
{
1974
const union float_data *flp = data;
1975
union float_data fl;
1976
int sz = t->size;
1977
1978
/* handle unaligned data; copy to local union */
1979
if (!ptr_is_aligned(d->btf, type_id, data)) {
1980
memcpy(&fl, data, sz);
1981
flp = &fl;
1982
}
1983
1984
switch (sz) {
1985
case 16:
1986
btf_dump_type_values(d, "%Lf", flp->ld);
1987
break;
1988
case 8:
1989
btf_dump_type_values(d, "%lf", flp->d);
1990
break;
1991
case 4:
1992
btf_dump_type_values(d, "%f", flp->f);
1993
break;
1994
default:
1995
pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1996
return -EINVAL;
1997
}
1998
return 0;
1999
}
2000
2001
static int btf_dump_var_data(struct btf_dump *d,
2002
const struct btf_type *v,
2003
__u32 id,
2004
const void *data)
2005
{
2006
enum btf_func_linkage linkage = btf_var(v)->linkage;
2007
const struct btf_type *t;
2008
const char *l;
2009
__u32 type_id;
2010
2011
switch (linkage) {
2012
case BTF_FUNC_STATIC:
2013
l = "static ";
2014
break;
2015
case BTF_FUNC_EXTERN:
2016
l = "extern ";
2017
break;
2018
case BTF_FUNC_GLOBAL:
2019
default:
2020
l = "";
2021
break;
2022
}
2023
2024
/* format of output here is [linkage] [type] [varname] = (type)value,
2025
* for example "static int cpu_profile_flip = (int)1"
2026
*/
2027
btf_dump_printf(d, "%s", l);
2028
type_id = v->type;
2029
t = btf__type_by_id(d->btf, type_id);
2030
btf_dump_emit_type_cast(d, type_id, false);
2031
btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off));
2032
return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0);
2033
}
2034
2035
static int btf_dump_string_data(struct btf_dump *d,
2036
const struct btf_type *t,
2037
__u32 id,
2038
const void *data)
2039
{
2040
const struct btf_array *array = btf_array(t);
2041
const char *chars = data;
2042
__u32 i;
2043
2044
/* Make sure it is a NUL-terminated string. */
2045
for (i = 0; i < array->nelems; i++) {
2046
if ((void *)(chars + i) >= d->typed_dump->data_end)
2047
return -E2BIG;
2048
if (chars[i] == '\0')
2049
break;
2050
}
2051
if (i == array->nelems) {
2052
/* The caller will print this as a regular array. */
2053
return -EINVAL;
2054
}
2055
2056
btf_dump_data_pfx(d);
2057
btf_dump_printf(d, "\"");
2058
2059
for (i = 0; i < array->nelems; i++) {
2060
char c = chars[i];
2061
2062
if (c == '\0') {
2063
/*
2064
* When printing character arrays as strings, NUL bytes
2065
* are always treated as string terminators; they are
2066
* never printed.
2067
*/
2068
break;
2069
}
2070
if (isprint(c))
2071
btf_dump_printf(d, "%c", c);
2072
else
2073
btf_dump_printf(d, "\\x%02x", (__u8)c);
2074
}
2075
2076
btf_dump_printf(d, "\"");
2077
2078
return 0;
2079
}
2080
2081
static int btf_dump_array_data(struct btf_dump *d,
2082
const struct btf_type *t,
2083
__u32 id,
2084
const void *data)
2085
{
2086
const struct btf_array *array = btf_array(t);
2087
const struct btf_type *elem_type;
2088
__u32 i, elem_type_id;
2089
__s64 elem_size;
2090
bool is_array_member;
2091
bool is_array_terminated;
2092
2093
elem_type_id = array->type;
2094
elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2095
elem_size = btf__resolve_size(d->btf, elem_type_id);
2096
if (elem_size <= 0) {
2097
pr_warn("unexpected elem size %zd for array type [%u]\n",
2098
(ssize_t)elem_size, id);
2099
return -EINVAL;
2100
}
2101
2102
if (btf_is_int(elem_type)) {
2103
/*
2104
* BTF_INT_CHAR encoding never seems to be set for
2105
* char arrays, so if size is 1 and element is
2106
* printable as a char, we'll do that.
2107
*/
2108
if (elem_size == 1) {
2109
if (d->typed_dump->emit_strings &&
2110
btf_dump_string_data(d, t, id, data) == 0) {
2111
return 0;
2112
}
2113
d->typed_dump->is_array_char = true;
2114
}
2115
}
2116
2117
/* note that we increment depth before calling btf_dump_print() below;
2118
* this is intentional. btf_dump_data_newline() will not print a
2119
* newline for depth 0 (since this leaves us with trailing newlines
2120
* at the end of typed display), so depth is incremented first.
2121
* For similar reasons, we decrement depth before showing the closing
2122
* parenthesis.
2123
*/
2124
d->typed_dump->depth++;
2125
btf_dump_printf(d, "[%s", btf_dump_data_newline(d));
2126
2127
/* may be a multidimensional array, so store current "is array member"
2128
* status so we can restore it correctly later.
2129
*/
2130
is_array_member = d->typed_dump->is_array_member;
2131
d->typed_dump->is_array_member = true;
2132
is_array_terminated = d->typed_dump->is_array_terminated;
2133
d->typed_dump->is_array_terminated = false;
2134
for (i = 0; i < array->nelems; i++, data += elem_size) {
2135
if (d->typed_dump->is_array_terminated)
2136
break;
2137
btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0);
2138
}
2139
d->typed_dump->is_array_member = is_array_member;
2140
d->typed_dump->is_array_terminated = is_array_terminated;
2141
d->typed_dump->depth--;
2142
btf_dump_data_pfx(d);
2143
btf_dump_type_values(d, "]");
2144
2145
return 0;
2146
}
2147
2148
static int btf_dump_struct_data(struct btf_dump *d,
2149
const struct btf_type *t,
2150
__u32 id,
2151
const void *data)
2152
{
2153
const struct btf_member *m = btf_members(t);
2154
__u16 n = btf_vlen(t);
2155
int i, err = 0;
2156
2157
/* note that we increment depth before calling btf_dump_print() below;
2158
* this is intentional. btf_dump_data_newline() will not print a
2159
* newline for depth 0 (since this leaves us with trailing newlines
2160
* at the end of typed display), so depth is incremented first.
2161
* For similar reasons, we decrement depth before showing the closing
2162
* parenthesis.
2163
*/
2164
d->typed_dump->depth++;
2165
btf_dump_printf(d, "{%s", btf_dump_data_newline(d));
2166
2167
for (i = 0; i < n; i++, m++) {
2168
const struct btf_type *mtype;
2169
const char *mname;
2170
__u32 moffset;
2171
__u8 bit_sz;
2172
2173
mtype = btf__type_by_id(d->btf, m->type);
2174
mname = btf_name_of(d, m->name_off);
2175
moffset = btf_member_bit_offset(t, i);
2176
2177
bit_sz = btf_member_bitfield_size(t, i);
2178
err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8,
2179
moffset % 8, bit_sz);
2180
if (err < 0)
2181
return err;
2182
}
2183
d->typed_dump->depth--;
2184
btf_dump_data_pfx(d);
2185
btf_dump_type_values(d, "}");
2186
return err;
2187
}
2188
2189
union ptr_data {
2190
unsigned int p;
2191
unsigned long long lp;
2192
};
2193
2194
static int btf_dump_ptr_data(struct btf_dump *d,
2195
const struct btf_type *t,
2196
__u32 id,
2197
const void *data)
2198
{
2199
if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) {
2200
btf_dump_type_values(d, "%p", *(void **)data);
2201
} else {
2202
union ptr_data pt;
2203
2204
memcpy(&pt, data, d->ptr_sz);
2205
if (d->ptr_sz == 4)
2206
btf_dump_type_values(d, "0x%x", pt.p);
2207
else
2208
btf_dump_type_values(d, "0x%llx", pt.lp);
2209
}
2210
return 0;
2211
}
2212
2213
static int btf_dump_get_enum_value(struct btf_dump *d,
2214
const struct btf_type *t,
2215
const void *data,
2216
__u32 id,
2217
__s64 *value)
2218
{
2219
bool is_signed = btf_kflag(t);
2220
2221
if (!ptr_is_aligned(d->btf, id, data)) {
2222
__u64 val;
2223
int err;
2224
2225
err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val);
2226
if (err)
2227
return err;
2228
*value = (__s64)val;
2229
return 0;
2230
}
2231
2232
switch (t->size) {
2233
case 8:
2234
*value = *(__s64 *)data;
2235
return 0;
2236
case 4:
2237
*value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data;
2238
return 0;
2239
case 2:
2240
*value = is_signed ? *(__s16 *)data : *(__u16 *)data;
2241
return 0;
2242
case 1:
2243
*value = is_signed ? *(__s8 *)data : *(__u8 *)data;
2244
return 0;
2245
default:
2246
pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id);
2247
return -EINVAL;
2248
}
2249
}
2250
2251
static int btf_dump_enum_data(struct btf_dump *d,
2252
const struct btf_type *t,
2253
__u32 id,
2254
const void *data)
2255
{
2256
bool is_signed;
2257
__s64 value;
2258
int i, err;
2259
2260
err = btf_dump_get_enum_value(d, t, data, id, &value);
2261
if (err)
2262
return err;
2263
2264
is_signed = btf_kflag(t);
2265
if (btf_is_enum(t)) {
2266
const struct btf_enum *e;
2267
2268
for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) {
2269
if (value != e->val)
2270
continue;
2271
btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2272
return 0;
2273
}
2274
2275
btf_dump_type_values(d, is_signed ? "%d" : "%u", value);
2276
} else {
2277
const struct btf_enum64 *e;
2278
2279
for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) {
2280
if (value != btf_enum64_value(e))
2281
continue;
2282
btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2283
return 0;
2284
}
2285
2286
btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL",
2287
(unsigned long long)value);
2288
}
2289
return 0;
2290
}
2291
2292
static int btf_dump_datasec_data(struct btf_dump *d,
2293
const struct btf_type *t,
2294
__u32 id,
2295
const void *data)
2296
{
2297
const struct btf_var_secinfo *vsi;
2298
const struct btf_type *var;
2299
__u32 i;
2300
int err;
2301
2302
btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off));
2303
2304
for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) {
2305
var = btf__type_by_id(d->btf, vsi->type);
2306
err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0);
2307
if (err < 0)
2308
return err;
2309
btf_dump_printf(d, ";");
2310
}
2311
return 0;
2312
}
2313
2314
/* return size of type, or if base type overflows, return -E2BIG. */
2315
static int btf_dump_type_data_check_overflow(struct btf_dump *d,
2316
const struct btf_type *t,
2317
__u32 id,
2318
const void *data,
2319
__u8 bits_offset,
2320
__u8 bit_sz)
2321
{
2322
__s64 size;
2323
2324
if (bit_sz) {
2325
/* bits_offset is at most 7. bit_sz is at most 128. */
2326
__u8 nr_bytes = (bits_offset + bit_sz + 7) / 8;
2327
2328
/* When bit_sz is non zero, it is called from
2329
* btf_dump_struct_data() where it only cares about
2330
* negative error value.
2331
* Return nr_bytes in success case to make it
2332
* consistent as the regular integer case below.
2333
*/
2334
return data + nr_bytes > d->typed_dump->data_end ? -E2BIG : nr_bytes;
2335
}
2336
2337
size = btf__resolve_size(d->btf, id);
2338
2339
if (size < 0 || size >= INT_MAX) {
2340
pr_warn("unexpected size [%zu] for id [%u]\n",
2341
(size_t)size, id);
2342
return -EINVAL;
2343
}
2344
2345
/* Only do overflow checking for base types; we do not want to
2346
* avoid showing part of a struct, union or array, even if we
2347
* do not have enough data to show the full object. By
2348
* restricting overflow checking to base types we can ensure
2349
* that partial display succeeds, while avoiding overflowing
2350
* and using bogus data for display.
2351
*/
2352
t = skip_mods_and_typedefs(d->btf, id, NULL);
2353
if (!t) {
2354
pr_warn("unexpected error skipping mods/typedefs for id [%u]\n",
2355
id);
2356
return -EINVAL;
2357
}
2358
2359
switch (btf_kind(t)) {
2360
case BTF_KIND_INT:
2361
case BTF_KIND_FLOAT:
2362
case BTF_KIND_PTR:
2363
case BTF_KIND_ENUM:
2364
case BTF_KIND_ENUM64:
2365
if (data + bits_offset / 8 + size > d->typed_dump->data_end)
2366
return -E2BIG;
2367
break;
2368
default:
2369
break;
2370
}
2371
return (int)size;
2372
}
2373
2374
static int btf_dump_type_data_check_zero(struct btf_dump *d,
2375
const struct btf_type *t,
2376
__u32 id,
2377
const void *data,
2378
__u8 bits_offset,
2379
__u8 bit_sz)
2380
{
2381
__s64 value;
2382
int i, err;
2383
2384
/* toplevel exceptions; we show zero values if
2385
* - we ask for them (emit_zeros)
2386
* - if we are at top-level so we see "struct empty { }"
2387
* - or if we are an array member and the array is non-empty and
2388
* not a char array; we don't want to be in a situation where we
2389
* have an integer array 0, 1, 0, 1 and only show non-zero values.
2390
* If the array contains zeroes only, or is a char array starting
2391
* with a '\0', the array-level check_zero() will prevent showing it;
2392
* we are concerned with determining zero value at the array member
2393
* level here.
2394
*/
2395
if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 ||
2396
(d->typed_dump->is_array_member &&
2397
!d->typed_dump->is_array_char))
2398
return 0;
2399
2400
t = skip_mods_and_typedefs(d->btf, id, NULL);
2401
2402
switch (btf_kind(t)) {
2403
case BTF_KIND_INT:
2404
if (bit_sz)
2405
return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz);
2406
return btf_dump_base_type_check_zero(d, t, id, data);
2407
case BTF_KIND_FLOAT:
2408
case BTF_KIND_PTR:
2409
return btf_dump_base_type_check_zero(d, t, id, data);
2410
case BTF_KIND_ARRAY: {
2411
const struct btf_array *array = btf_array(t);
2412
const struct btf_type *elem_type;
2413
__u32 elem_type_id, elem_size;
2414
bool ischar;
2415
2416
elem_type_id = array->type;
2417
elem_size = btf__resolve_size(d->btf, elem_type_id);
2418
elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2419
2420
ischar = btf_is_int(elem_type) && elem_size == 1;
2421
2422
/* check all elements; if _any_ element is nonzero, all
2423
* of array is displayed. We make an exception however
2424
* for char arrays where the first element is 0; these
2425
* are considered zeroed also, even if later elements are
2426
* non-zero because the string is terminated.
2427
*/
2428
for (i = 0; i < array->nelems; i++) {
2429
if (i == 0 && ischar && *(char *)data == 0)
2430
return -ENODATA;
2431
err = btf_dump_type_data_check_zero(d, elem_type,
2432
elem_type_id,
2433
data +
2434
(i * elem_size),
2435
bits_offset, 0);
2436
if (err != -ENODATA)
2437
return err;
2438
}
2439
return -ENODATA;
2440
}
2441
case BTF_KIND_STRUCT:
2442
case BTF_KIND_UNION: {
2443
const struct btf_member *m = btf_members(t);
2444
__u16 n = btf_vlen(t);
2445
2446
/* if any struct/union member is non-zero, the struct/union
2447
* is considered non-zero and dumped.
2448
*/
2449
for (i = 0; i < n; i++, m++) {
2450
const struct btf_type *mtype;
2451
__u32 moffset;
2452
2453
mtype = btf__type_by_id(d->btf, m->type);
2454
moffset = btf_member_bit_offset(t, i);
2455
2456
/* btf_int_bits() does not store member bitfield size;
2457
* bitfield size needs to be stored here so int display
2458
* of member can retrieve it.
2459
*/
2460
bit_sz = btf_member_bitfield_size(t, i);
2461
err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8,
2462
moffset % 8, bit_sz);
2463
if (err != ENODATA)
2464
return err;
2465
}
2466
return -ENODATA;
2467
}
2468
case BTF_KIND_ENUM:
2469
case BTF_KIND_ENUM64:
2470
err = btf_dump_get_enum_value(d, t, data, id, &value);
2471
if (err)
2472
return err;
2473
if (value == 0)
2474
return -ENODATA;
2475
return 0;
2476
default:
2477
return 0;
2478
}
2479
}
2480
2481
/* returns size of data dumped, or error. */
2482
static int btf_dump_dump_type_data(struct btf_dump *d,
2483
const char *fname,
2484
const struct btf_type *t,
2485
__u32 id,
2486
const void *data,
2487
__u8 bits_offset,
2488
__u8 bit_sz)
2489
{
2490
int size, err = 0;
2491
2492
size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset, bit_sz);
2493
if (size < 0)
2494
return size;
2495
err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz);
2496
if (err) {
2497
/* zeroed data is expected and not an error, so simply skip
2498
* dumping such data. Record other errors however.
2499
*/
2500
if (err == -ENODATA)
2501
return size;
2502
return err;
2503
}
2504
btf_dump_data_pfx(d);
2505
2506
if (!d->typed_dump->skip_names) {
2507
if (fname && strlen(fname) > 0)
2508
btf_dump_printf(d, ".%s = ", fname);
2509
btf_dump_emit_type_cast(d, id, true);
2510
}
2511
2512
t = skip_mods_and_typedefs(d->btf, id, NULL);
2513
2514
switch (btf_kind(t)) {
2515
case BTF_KIND_UNKN:
2516
case BTF_KIND_FWD:
2517
case BTF_KIND_FUNC:
2518
case BTF_KIND_FUNC_PROTO:
2519
case BTF_KIND_DECL_TAG:
2520
err = btf_dump_unsupported_data(d, t, id);
2521
break;
2522
case BTF_KIND_INT:
2523
if (bit_sz)
2524
err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz);
2525
else
2526
err = btf_dump_int_data(d, t, id, data, bits_offset);
2527
break;
2528
case BTF_KIND_FLOAT:
2529
err = btf_dump_float_data(d, t, id, data);
2530
break;
2531
case BTF_KIND_PTR:
2532
err = btf_dump_ptr_data(d, t, id, data);
2533
break;
2534
case BTF_KIND_ARRAY:
2535
err = btf_dump_array_data(d, t, id, data);
2536
break;
2537
case BTF_KIND_STRUCT:
2538
case BTF_KIND_UNION:
2539
err = btf_dump_struct_data(d, t, id, data);
2540
break;
2541
case BTF_KIND_ENUM:
2542
case BTF_KIND_ENUM64:
2543
/* handle bitfield and int enum values */
2544
if (bit_sz) {
2545
__u64 print_num;
2546
__s64 enum_val;
2547
2548
err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz,
2549
&print_num);
2550
if (err)
2551
break;
2552
enum_val = (__s64)print_num;
2553
err = btf_dump_enum_data(d, t, id, &enum_val);
2554
} else
2555
err = btf_dump_enum_data(d, t, id, data);
2556
break;
2557
case BTF_KIND_VAR:
2558
err = btf_dump_var_data(d, t, id, data);
2559
break;
2560
case BTF_KIND_DATASEC:
2561
err = btf_dump_datasec_data(d, t, id, data);
2562
break;
2563
default:
2564
pr_warn("unexpected kind [%u] for id [%u]\n",
2565
BTF_INFO_KIND(t->info), id);
2566
return -EINVAL;
2567
}
2568
if (err < 0)
2569
return err;
2570
return size;
2571
}
2572
2573
int btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
2574
const void *data, size_t data_sz,
2575
const struct btf_dump_type_data_opts *opts)
2576
{
2577
struct btf_dump_data typed_dump = {};
2578
const struct btf_type *t;
2579
int ret;
2580
2581
if (!OPTS_VALID(opts, btf_dump_type_data_opts))
2582
return libbpf_err(-EINVAL);
2583
2584
t = btf__type_by_id(d->btf, id);
2585
if (!t)
2586
return libbpf_err(-ENOENT);
2587
2588
d->typed_dump = &typed_dump;
2589
d->typed_dump->data_end = data + data_sz;
2590
d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0);
2591
2592
/* default indent string is a tab */
2593
if (!OPTS_GET(opts, indent_str, NULL))
2594
d->typed_dump->indent_str[0] = '\t';
2595
else
2596
libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str,
2597
sizeof(d->typed_dump->indent_str));
2598
2599
d->typed_dump->compact = OPTS_GET(opts, compact, false);
2600
d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false);
2601
d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false);
2602
d->typed_dump->emit_strings = OPTS_GET(opts, emit_strings, false);
2603
2604
ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0);
2605
2606
d->typed_dump = NULL;
2607
2608
return libbpf_err(ret);
2609
}
2610
2611