Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/lib/bpf/libbpf.c
26282 views
1
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3
/*
4
* Common eBPF ELF object loading operations.
5
*
6
* Copyright (C) 2013-2015 Alexei Starovoitov <[email protected]>
7
* Copyright (C) 2015 Wang Nan <[email protected]>
8
* Copyright (C) 2015 Huawei Inc.
9
* Copyright (C) 2017 Nicira, Inc.
10
* Copyright (C) 2019 Isovalent, Inc.
11
*/
12
13
#ifndef _GNU_SOURCE
14
#define _GNU_SOURCE
15
#endif
16
#include <stdlib.h>
17
#include <stdio.h>
18
#include <stdarg.h>
19
#include <libgen.h>
20
#include <inttypes.h>
21
#include <limits.h>
22
#include <string.h>
23
#include <unistd.h>
24
#include <endian.h>
25
#include <fcntl.h>
26
#include <errno.h>
27
#include <ctype.h>
28
#include <asm/unistd.h>
29
#include <linux/err.h>
30
#include <linux/kernel.h>
31
#include <linux/bpf.h>
32
#include <linux/btf.h>
33
#include <linux/filter.h>
34
#include <linux/limits.h>
35
#include <linux/perf_event.h>
36
#include <linux/bpf_perf_event.h>
37
#include <linux/ring_buffer.h>
38
#include <sys/epoll.h>
39
#include <sys/ioctl.h>
40
#include <sys/mman.h>
41
#include <sys/stat.h>
42
#include <sys/types.h>
43
#include <sys/vfs.h>
44
#include <sys/utsname.h>
45
#include <sys/resource.h>
46
#include <libelf.h>
47
#include <gelf.h>
48
#include <zlib.h>
49
50
#include "libbpf.h"
51
#include "bpf.h"
52
#include "btf.h"
53
#include "str_error.h"
54
#include "libbpf_internal.h"
55
#include "hashmap.h"
56
#include "bpf_gen_internal.h"
57
#include "zip.h"
58
59
#ifndef BPF_FS_MAGIC
60
#define BPF_FS_MAGIC 0xcafe4a11
61
#endif
62
63
#define MAX_EVENT_NAME_LEN 64
64
65
#define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
66
67
#define BPF_INSN_SZ (sizeof(struct bpf_insn))
68
69
/* vsprintf() in __base_pr() uses nonliteral format string. It may break
70
* compilation if user enables corresponding warning. Disable it explicitly.
71
*/
72
#pragma GCC diagnostic ignored "-Wformat-nonliteral"
73
74
#define __printf(a, b) __attribute__((format(printf, a, b)))
75
76
static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
77
static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
78
static int map_set_def_max_entries(struct bpf_map *map);
79
80
static const char * const attach_type_name[] = {
81
[BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
82
[BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
83
[BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
84
[BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
85
[BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
86
[BPF_CGROUP_DEVICE] = "cgroup_device",
87
[BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
88
[BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
89
[BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
90
[BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
91
[BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect",
92
[BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
93
[BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
94
[BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
95
[BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
96
[BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername",
97
[BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
98
[BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
99
[BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname",
100
[BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
101
[BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
102
[BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg",
103
[BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
104
[BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
105
[BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
106
[BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg",
107
[BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
108
[BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
109
[BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
110
[BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
111
[BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
112
[BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
113
[BPF_LIRC_MODE2] = "lirc_mode2",
114
[BPF_FLOW_DISSECTOR] = "flow_dissector",
115
[BPF_TRACE_RAW_TP] = "trace_raw_tp",
116
[BPF_TRACE_FENTRY] = "trace_fentry",
117
[BPF_TRACE_FEXIT] = "trace_fexit",
118
[BPF_MODIFY_RETURN] = "modify_return",
119
[BPF_LSM_MAC] = "lsm_mac",
120
[BPF_LSM_CGROUP] = "lsm_cgroup",
121
[BPF_SK_LOOKUP] = "sk_lookup",
122
[BPF_TRACE_ITER] = "trace_iter",
123
[BPF_XDP_DEVMAP] = "xdp_devmap",
124
[BPF_XDP_CPUMAP] = "xdp_cpumap",
125
[BPF_XDP] = "xdp",
126
[BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
127
[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
128
[BPF_PERF_EVENT] = "perf_event",
129
[BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
130
[BPF_STRUCT_OPS] = "struct_ops",
131
[BPF_NETFILTER] = "netfilter",
132
[BPF_TCX_INGRESS] = "tcx_ingress",
133
[BPF_TCX_EGRESS] = "tcx_egress",
134
[BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi",
135
[BPF_NETKIT_PRIMARY] = "netkit_primary",
136
[BPF_NETKIT_PEER] = "netkit_peer",
137
[BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session",
138
[BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session",
139
};
140
141
static const char * const link_type_name[] = {
142
[BPF_LINK_TYPE_UNSPEC] = "unspec",
143
[BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
144
[BPF_LINK_TYPE_TRACING] = "tracing",
145
[BPF_LINK_TYPE_CGROUP] = "cgroup",
146
[BPF_LINK_TYPE_ITER] = "iter",
147
[BPF_LINK_TYPE_NETNS] = "netns",
148
[BPF_LINK_TYPE_XDP] = "xdp",
149
[BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
150
[BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
151
[BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
152
[BPF_LINK_TYPE_NETFILTER] = "netfilter",
153
[BPF_LINK_TYPE_TCX] = "tcx",
154
[BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi",
155
[BPF_LINK_TYPE_NETKIT] = "netkit",
156
[BPF_LINK_TYPE_SOCKMAP] = "sockmap",
157
};
158
159
static const char * const map_type_name[] = {
160
[BPF_MAP_TYPE_UNSPEC] = "unspec",
161
[BPF_MAP_TYPE_HASH] = "hash",
162
[BPF_MAP_TYPE_ARRAY] = "array",
163
[BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
164
[BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
165
[BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
166
[BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
167
[BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
168
[BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
169
[BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
170
[BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
171
[BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
172
[BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
173
[BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
174
[BPF_MAP_TYPE_DEVMAP] = "devmap",
175
[BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
176
[BPF_MAP_TYPE_SOCKMAP] = "sockmap",
177
[BPF_MAP_TYPE_CPUMAP] = "cpumap",
178
[BPF_MAP_TYPE_XSKMAP] = "xskmap",
179
[BPF_MAP_TYPE_SOCKHASH] = "sockhash",
180
[BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
181
[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
182
[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
183
[BPF_MAP_TYPE_QUEUE] = "queue",
184
[BPF_MAP_TYPE_STACK] = "stack",
185
[BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
186
[BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
187
[BPF_MAP_TYPE_RINGBUF] = "ringbuf",
188
[BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
189
[BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
190
[BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
191
[BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
192
[BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
193
[BPF_MAP_TYPE_ARENA] = "arena",
194
};
195
196
static const char * const prog_type_name[] = {
197
[BPF_PROG_TYPE_UNSPEC] = "unspec",
198
[BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
199
[BPF_PROG_TYPE_KPROBE] = "kprobe",
200
[BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
201
[BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
202
[BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
203
[BPF_PROG_TYPE_XDP] = "xdp",
204
[BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
205
[BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
206
[BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
207
[BPF_PROG_TYPE_LWT_IN] = "lwt_in",
208
[BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
209
[BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
210
[BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
211
[BPF_PROG_TYPE_SK_SKB] = "sk_skb",
212
[BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
213
[BPF_PROG_TYPE_SK_MSG] = "sk_msg",
214
[BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
215
[BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
216
[BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
217
[BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
218
[BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
219
[BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
220
[BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
221
[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
222
[BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
223
[BPF_PROG_TYPE_TRACING] = "tracing",
224
[BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
225
[BPF_PROG_TYPE_EXT] = "ext",
226
[BPF_PROG_TYPE_LSM] = "lsm",
227
[BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
228
[BPF_PROG_TYPE_SYSCALL] = "syscall",
229
[BPF_PROG_TYPE_NETFILTER] = "netfilter",
230
};
231
232
static int __base_pr(enum libbpf_print_level level, const char *format,
233
va_list args)
234
{
235
const char *env_var = "LIBBPF_LOG_LEVEL";
236
static enum libbpf_print_level min_level = LIBBPF_INFO;
237
static bool initialized;
238
239
if (!initialized) {
240
char *verbosity;
241
242
initialized = true;
243
verbosity = getenv(env_var);
244
if (verbosity) {
245
if (strcasecmp(verbosity, "warn") == 0)
246
min_level = LIBBPF_WARN;
247
else if (strcasecmp(verbosity, "debug") == 0)
248
min_level = LIBBPF_DEBUG;
249
else if (strcasecmp(verbosity, "info") == 0)
250
min_level = LIBBPF_INFO;
251
else
252
fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n",
253
env_var, verbosity);
254
}
255
}
256
257
/* if too verbose, skip logging */
258
if (level > min_level)
259
return 0;
260
261
return vfprintf(stderr, format, args);
262
}
263
264
static libbpf_print_fn_t __libbpf_pr = __base_pr;
265
266
libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
267
{
268
libbpf_print_fn_t old_print_fn;
269
270
old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
271
272
return old_print_fn;
273
}
274
275
__printf(2, 3)
276
void libbpf_print(enum libbpf_print_level level, const char *format, ...)
277
{
278
va_list args;
279
int old_errno;
280
libbpf_print_fn_t print_fn;
281
282
print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
283
if (!print_fn)
284
return;
285
286
old_errno = errno;
287
288
va_start(args, format);
289
print_fn(level, format, args);
290
va_end(args);
291
292
errno = old_errno;
293
}
294
295
static void pr_perm_msg(int err)
296
{
297
struct rlimit limit;
298
char buf[100];
299
300
if (err != -EPERM || geteuid() != 0)
301
return;
302
303
err = getrlimit(RLIMIT_MEMLOCK, &limit);
304
if (err)
305
return;
306
307
if (limit.rlim_cur == RLIM_INFINITY)
308
return;
309
310
if (limit.rlim_cur < 1024)
311
snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
312
else if (limit.rlim_cur < 1024*1024)
313
snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
314
else
315
snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
316
317
pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
318
buf);
319
}
320
321
#define STRERR_BUFSIZE 128
322
323
/* Copied from tools/perf/util/util.h */
324
#ifndef zfree
325
# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
326
#endif
327
328
#ifndef zclose
329
# define zclose(fd) ({ \
330
int ___err = 0; \
331
if ((fd) >= 0) \
332
___err = close((fd)); \
333
fd = -1; \
334
___err; })
335
#endif
336
337
static inline __u64 ptr_to_u64(const void *ptr)
338
{
339
return (__u64) (unsigned long) ptr;
340
}
341
342
int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
343
{
344
/* as of v1.0 libbpf_set_strict_mode() is a no-op */
345
return 0;
346
}
347
348
__u32 libbpf_major_version(void)
349
{
350
return LIBBPF_MAJOR_VERSION;
351
}
352
353
__u32 libbpf_minor_version(void)
354
{
355
return LIBBPF_MINOR_VERSION;
356
}
357
358
const char *libbpf_version_string(void)
359
{
360
#define __S(X) #X
361
#define _S(X) __S(X)
362
return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
363
#undef _S
364
#undef __S
365
}
366
367
enum reloc_type {
368
RELO_LD64,
369
RELO_CALL,
370
RELO_DATA,
371
RELO_EXTERN_LD64,
372
RELO_EXTERN_CALL,
373
RELO_SUBPROG_ADDR,
374
RELO_CORE,
375
};
376
377
struct reloc_desc {
378
enum reloc_type type;
379
int insn_idx;
380
union {
381
const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
382
struct {
383
int map_idx;
384
int sym_off;
385
int ext_idx;
386
};
387
};
388
};
389
390
/* stored as sec_def->cookie for all libbpf-supported SEC()s */
391
enum sec_def_flags {
392
SEC_NONE = 0,
393
/* expected_attach_type is optional, if kernel doesn't support that */
394
SEC_EXP_ATTACH_OPT = 1,
395
/* legacy, only used by libbpf_get_type_names() and
396
* libbpf_attach_type_by_name(), not used by libbpf itself at all.
397
* This used to be associated with cgroup (and few other) BPF programs
398
* that were attachable through BPF_PROG_ATTACH command. Pretty
399
* meaningless nowadays, though.
400
*/
401
SEC_ATTACHABLE = 2,
402
SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
403
/* attachment target is specified through BTF ID in either kernel or
404
* other BPF program's BTF object
405
*/
406
SEC_ATTACH_BTF = 4,
407
/* BPF program type allows sleeping/blocking in kernel */
408
SEC_SLEEPABLE = 8,
409
/* BPF program support non-linear XDP buffer */
410
SEC_XDP_FRAGS = 16,
411
/* Setup proper attach type for usdt probes. */
412
SEC_USDT = 32,
413
};
414
415
struct bpf_sec_def {
416
char *sec;
417
enum bpf_prog_type prog_type;
418
enum bpf_attach_type expected_attach_type;
419
long cookie;
420
int handler_id;
421
422
libbpf_prog_setup_fn_t prog_setup_fn;
423
libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
424
libbpf_prog_attach_fn_t prog_attach_fn;
425
};
426
427
/*
428
* bpf_prog should be a better name but it has been used in
429
* linux/filter.h.
430
*/
431
struct bpf_program {
432
char *name;
433
char *sec_name;
434
size_t sec_idx;
435
const struct bpf_sec_def *sec_def;
436
/* this program's instruction offset (in number of instructions)
437
* within its containing ELF section
438
*/
439
size_t sec_insn_off;
440
/* number of original instructions in ELF section belonging to this
441
* program, not taking into account subprogram instructions possible
442
* appended later during relocation
443
*/
444
size_t sec_insn_cnt;
445
/* Offset (in number of instructions) of the start of instruction
446
* belonging to this BPF program within its containing main BPF
447
* program. For the entry-point (main) BPF program, this is always
448
* zero. For a sub-program, this gets reset before each of main BPF
449
* programs are processed and relocated and is used to determined
450
* whether sub-program was already appended to the main program, and
451
* if yes, at which instruction offset.
452
*/
453
size_t sub_insn_off;
454
455
/* instructions that belong to BPF program; insns[0] is located at
456
* sec_insn_off instruction within its ELF section in ELF file, so
457
* when mapping ELF file instruction index to the local instruction,
458
* one needs to subtract sec_insn_off; and vice versa.
459
*/
460
struct bpf_insn *insns;
461
/* actual number of instruction in this BPF program's image; for
462
* entry-point BPF programs this includes the size of main program
463
* itself plus all the used sub-programs, appended at the end
464
*/
465
size_t insns_cnt;
466
467
struct reloc_desc *reloc_desc;
468
int nr_reloc;
469
470
/* BPF verifier log settings */
471
char *log_buf;
472
size_t log_size;
473
__u32 log_level;
474
475
struct bpf_object *obj;
476
477
int fd;
478
bool autoload;
479
bool autoattach;
480
bool sym_global;
481
bool mark_btf_static;
482
enum bpf_prog_type type;
483
enum bpf_attach_type expected_attach_type;
484
int exception_cb_idx;
485
486
int prog_ifindex;
487
__u32 attach_btf_obj_fd;
488
__u32 attach_btf_id;
489
__u32 attach_prog_fd;
490
491
void *func_info;
492
__u32 func_info_rec_size;
493
__u32 func_info_cnt;
494
495
void *line_info;
496
__u32 line_info_rec_size;
497
__u32 line_info_cnt;
498
__u32 prog_flags;
499
};
500
501
struct bpf_struct_ops {
502
struct bpf_program **progs;
503
__u32 *kern_func_off;
504
/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
505
void *data;
506
/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
507
* btf_vmlinux's format.
508
* struct bpf_struct_ops_tcp_congestion_ops {
509
* [... some other kernel fields ...]
510
* struct tcp_congestion_ops data;
511
* }
512
* kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
513
* bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
514
* from "data".
515
*/
516
void *kern_vdata;
517
__u32 type_id;
518
};
519
520
#define DATA_SEC ".data"
521
#define BSS_SEC ".bss"
522
#define RODATA_SEC ".rodata"
523
#define KCONFIG_SEC ".kconfig"
524
#define KSYMS_SEC ".ksyms"
525
#define STRUCT_OPS_SEC ".struct_ops"
526
#define STRUCT_OPS_LINK_SEC ".struct_ops.link"
527
#define ARENA_SEC ".addr_space.1"
528
529
enum libbpf_map_type {
530
LIBBPF_MAP_UNSPEC,
531
LIBBPF_MAP_DATA,
532
LIBBPF_MAP_BSS,
533
LIBBPF_MAP_RODATA,
534
LIBBPF_MAP_KCONFIG,
535
};
536
537
struct bpf_map_def {
538
unsigned int type;
539
unsigned int key_size;
540
unsigned int value_size;
541
unsigned int max_entries;
542
unsigned int map_flags;
543
};
544
545
struct bpf_map {
546
struct bpf_object *obj;
547
char *name;
548
/* real_name is defined for special internal maps (.rodata*,
549
* .data*, .bss, .kconfig) and preserves their original ELF section
550
* name. This is important to be able to find corresponding BTF
551
* DATASEC information.
552
*/
553
char *real_name;
554
int fd;
555
int sec_idx;
556
size_t sec_offset;
557
int map_ifindex;
558
int inner_map_fd;
559
struct bpf_map_def def;
560
__u32 numa_node;
561
__u32 btf_var_idx;
562
int mod_btf_fd;
563
__u32 btf_key_type_id;
564
__u32 btf_value_type_id;
565
__u32 btf_vmlinux_value_type_id;
566
enum libbpf_map_type libbpf_type;
567
void *mmaped;
568
struct bpf_struct_ops *st_ops;
569
struct bpf_map *inner_map;
570
void **init_slots;
571
int init_slots_sz;
572
char *pin_path;
573
bool pinned;
574
bool reused;
575
bool autocreate;
576
bool autoattach;
577
__u64 map_extra;
578
};
579
580
enum extern_type {
581
EXT_UNKNOWN,
582
EXT_KCFG,
583
EXT_KSYM,
584
};
585
586
enum kcfg_type {
587
KCFG_UNKNOWN,
588
KCFG_CHAR,
589
KCFG_BOOL,
590
KCFG_INT,
591
KCFG_TRISTATE,
592
KCFG_CHAR_ARR,
593
};
594
595
struct extern_desc {
596
enum extern_type type;
597
int sym_idx;
598
int btf_id;
599
int sec_btf_id;
600
char *name;
601
char *essent_name;
602
bool is_set;
603
bool is_weak;
604
union {
605
struct {
606
enum kcfg_type type;
607
int sz;
608
int align;
609
int data_off;
610
bool is_signed;
611
} kcfg;
612
struct {
613
unsigned long long addr;
614
615
/* target btf_id of the corresponding kernel var. */
616
int kernel_btf_obj_fd;
617
int kernel_btf_id;
618
619
/* local btf_id of the ksym extern's type. */
620
__u32 type_id;
621
/* BTF fd index to be patched in for insn->off, this is
622
* 0 for vmlinux BTF, index in obj->fd_array for module
623
* BTF
624
*/
625
__s16 btf_fd_idx;
626
} ksym;
627
};
628
};
629
630
struct module_btf {
631
struct btf *btf;
632
char *name;
633
__u32 id;
634
int fd;
635
int fd_array_idx;
636
};
637
638
enum sec_type {
639
SEC_UNUSED = 0,
640
SEC_RELO,
641
SEC_BSS,
642
SEC_DATA,
643
SEC_RODATA,
644
SEC_ST_OPS,
645
};
646
647
struct elf_sec_desc {
648
enum sec_type sec_type;
649
Elf64_Shdr *shdr;
650
Elf_Data *data;
651
};
652
653
struct elf_state {
654
int fd;
655
const void *obj_buf;
656
size_t obj_buf_sz;
657
Elf *elf;
658
Elf64_Ehdr *ehdr;
659
Elf_Data *symbols;
660
Elf_Data *arena_data;
661
size_t shstrndx; /* section index for section name strings */
662
size_t strtabidx;
663
struct elf_sec_desc *secs;
664
size_t sec_cnt;
665
int btf_maps_shndx;
666
__u32 btf_maps_sec_btf_id;
667
int text_shndx;
668
int symbols_shndx;
669
bool has_st_ops;
670
int arena_data_shndx;
671
};
672
673
struct usdt_manager;
674
675
enum bpf_object_state {
676
OBJ_OPEN,
677
OBJ_PREPARED,
678
OBJ_LOADED,
679
};
680
681
struct bpf_object {
682
char name[BPF_OBJ_NAME_LEN];
683
char license[64];
684
__u32 kern_version;
685
686
enum bpf_object_state state;
687
struct bpf_program *programs;
688
size_t nr_programs;
689
struct bpf_map *maps;
690
size_t nr_maps;
691
size_t maps_cap;
692
693
char *kconfig;
694
struct extern_desc *externs;
695
int nr_extern;
696
int kconfig_map_idx;
697
698
bool has_subcalls;
699
bool has_rodata;
700
701
struct bpf_gen *gen_loader;
702
703
/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
704
struct elf_state efile;
705
706
unsigned char byteorder;
707
708
struct btf *btf;
709
struct btf_ext *btf_ext;
710
711
/* Parse and load BTF vmlinux if any of the programs in the object need
712
* it at load time.
713
*/
714
struct btf *btf_vmlinux;
715
/* Path to the custom BTF to be used for BPF CO-RE relocations as an
716
* override for vmlinux BTF.
717
*/
718
char *btf_custom_path;
719
/* vmlinux BTF override for CO-RE relocations */
720
struct btf *btf_vmlinux_override;
721
/* Lazily initialized kernel module BTFs */
722
struct module_btf *btf_modules;
723
bool btf_modules_loaded;
724
size_t btf_module_cnt;
725
size_t btf_module_cap;
726
727
/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
728
char *log_buf;
729
size_t log_size;
730
__u32 log_level;
731
732
int *fd_array;
733
size_t fd_array_cap;
734
size_t fd_array_cnt;
735
736
struct usdt_manager *usdt_man;
737
738
int arena_map_idx;
739
void *arena_data;
740
size_t arena_data_sz;
741
742
struct kern_feature_cache *feat_cache;
743
char *token_path;
744
int token_fd;
745
746
char path[];
747
};
748
749
static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
750
static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
751
static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
752
static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
753
static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
754
static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
755
static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
756
static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
757
static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
758
759
void bpf_program__unload(struct bpf_program *prog)
760
{
761
if (!prog)
762
return;
763
764
zclose(prog->fd);
765
766
zfree(&prog->func_info);
767
zfree(&prog->line_info);
768
}
769
770
static void bpf_program__exit(struct bpf_program *prog)
771
{
772
if (!prog)
773
return;
774
775
bpf_program__unload(prog);
776
zfree(&prog->name);
777
zfree(&prog->sec_name);
778
zfree(&prog->insns);
779
zfree(&prog->reloc_desc);
780
781
prog->nr_reloc = 0;
782
prog->insns_cnt = 0;
783
prog->sec_idx = -1;
784
}
785
786
static bool insn_is_subprog_call(const struct bpf_insn *insn)
787
{
788
return BPF_CLASS(insn->code) == BPF_JMP &&
789
BPF_OP(insn->code) == BPF_CALL &&
790
BPF_SRC(insn->code) == BPF_K &&
791
insn->src_reg == BPF_PSEUDO_CALL &&
792
insn->dst_reg == 0 &&
793
insn->off == 0;
794
}
795
796
static bool is_call_insn(const struct bpf_insn *insn)
797
{
798
return insn->code == (BPF_JMP | BPF_CALL);
799
}
800
801
static bool insn_is_pseudo_func(struct bpf_insn *insn)
802
{
803
return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
804
}
805
806
static int
807
bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
808
const char *name, size_t sec_idx, const char *sec_name,
809
size_t sec_off, void *insn_data, size_t insn_data_sz)
810
{
811
if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
812
pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
813
sec_name, name, sec_off, insn_data_sz);
814
return -EINVAL;
815
}
816
817
memset(prog, 0, sizeof(*prog));
818
prog->obj = obj;
819
820
prog->sec_idx = sec_idx;
821
prog->sec_insn_off = sec_off / BPF_INSN_SZ;
822
prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
823
/* insns_cnt can later be increased by appending used subprograms */
824
prog->insns_cnt = prog->sec_insn_cnt;
825
826
prog->type = BPF_PROG_TYPE_UNSPEC;
827
prog->fd = -1;
828
prog->exception_cb_idx = -1;
829
830
/* libbpf's convention for SEC("?abc...") is that it's just like
831
* SEC("abc...") but the corresponding bpf_program starts out with
832
* autoload set to false.
833
*/
834
if (sec_name[0] == '?') {
835
prog->autoload = false;
836
/* from now on forget there was ? in section name */
837
sec_name++;
838
} else {
839
prog->autoload = true;
840
}
841
842
prog->autoattach = true;
843
844
/* inherit object's log_level */
845
prog->log_level = obj->log_level;
846
847
prog->sec_name = strdup(sec_name);
848
if (!prog->sec_name)
849
goto errout;
850
851
prog->name = strdup(name);
852
if (!prog->name)
853
goto errout;
854
855
prog->insns = malloc(insn_data_sz);
856
if (!prog->insns)
857
goto errout;
858
memcpy(prog->insns, insn_data, insn_data_sz);
859
860
return 0;
861
errout:
862
pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
863
bpf_program__exit(prog);
864
return -ENOMEM;
865
}
866
867
static int
868
bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
869
const char *sec_name, int sec_idx)
870
{
871
Elf_Data *symbols = obj->efile.symbols;
872
struct bpf_program *prog, *progs;
873
void *data = sec_data->d_buf;
874
size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
875
int nr_progs, err, i;
876
const char *name;
877
Elf64_Sym *sym;
878
879
progs = obj->programs;
880
nr_progs = obj->nr_programs;
881
nr_syms = symbols->d_size / sizeof(Elf64_Sym);
882
883
for (i = 0; i < nr_syms; i++) {
884
sym = elf_sym_by_idx(obj, i);
885
886
if (sym->st_shndx != sec_idx)
887
continue;
888
if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
889
continue;
890
891
prog_sz = sym->st_size;
892
sec_off = sym->st_value;
893
894
name = elf_sym_str(obj, sym->st_name);
895
if (!name) {
896
pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
897
sec_name, sec_off);
898
return -LIBBPF_ERRNO__FORMAT;
899
}
900
901
if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) {
902
pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
903
sec_name, sec_off);
904
return -LIBBPF_ERRNO__FORMAT;
905
}
906
907
if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
908
pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
909
return -ENOTSUP;
910
}
911
912
pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
913
sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
914
915
progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
916
if (!progs) {
917
/*
918
* In this case the original obj->programs
919
* is still valid, so don't need special treat for
920
* bpf_close_object().
921
*/
922
pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
923
sec_name, name);
924
return -ENOMEM;
925
}
926
obj->programs = progs;
927
928
prog = &progs[nr_progs];
929
930
err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
931
sec_off, data + sec_off, prog_sz);
932
if (err)
933
return err;
934
935
if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
936
prog->sym_global = true;
937
938
/* if function is a global/weak symbol, but has restricted
939
* (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
940
* as static to enable more permissive BPF verification mode
941
* with more outside context available to BPF verifier
942
*/
943
if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
944
|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
945
prog->mark_btf_static = true;
946
947
nr_progs++;
948
obj->nr_programs = nr_progs;
949
}
950
951
return 0;
952
}
953
954
static void bpf_object_bswap_progs(struct bpf_object *obj)
955
{
956
struct bpf_program *prog = obj->programs;
957
struct bpf_insn *insn;
958
int p, i;
959
960
for (p = 0; p < obj->nr_programs; p++, prog++) {
961
insn = prog->insns;
962
for (i = 0; i < prog->insns_cnt; i++, insn++)
963
bpf_insn_bswap(insn);
964
}
965
pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs);
966
}
967
968
static const struct btf_member *
969
find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
970
{
971
struct btf_member *m;
972
int i;
973
974
for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
975
if (btf_member_bit_offset(t, i) == bit_offset)
976
return m;
977
}
978
979
return NULL;
980
}
981
982
static const struct btf_member *
983
find_member_by_name(const struct btf *btf, const struct btf_type *t,
984
const char *name)
985
{
986
struct btf_member *m;
987
int i;
988
989
for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
990
if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
991
return m;
992
}
993
994
return NULL;
995
}
996
997
static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
998
__u16 kind, struct btf **res_btf,
999
struct module_btf **res_mod_btf);
1000
1001
#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
1002
static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
1003
const char *name, __u32 kind);
1004
1005
static int
1006
find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
1007
struct module_btf **mod_btf,
1008
const struct btf_type **type, __u32 *type_id,
1009
const struct btf_type **vtype, __u32 *vtype_id,
1010
const struct btf_member **data_member)
1011
{
1012
const struct btf_type *kern_type, *kern_vtype;
1013
const struct btf_member *kern_data_member;
1014
struct btf *btf = NULL;
1015
__s32 kern_vtype_id, kern_type_id;
1016
char tname[256];
1017
__u32 i;
1018
1019
snprintf(tname, sizeof(tname), "%.*s",
1020
(int)bpf_core_essential_name_len(tname_raw), tname_raw);
1021
1022
kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT,
1023
&btf, mod_btf);
1024
if (kern_type_id < 0) {
1025
pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
1026
tname);
1027
return kern_type_id;
1028
}
1029
kern_type = btf__type_by_id(btf, kern_type_id);
1030
1031
/* Find the corresponding "map_value" type that will be used
1032
* in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
1033
* find "struct bpf_struct_ops_tcp_congestion_ops" from the
1034
* btf_vmlinux.
1035
*/
1036
kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
1037
tname, BTF_KIND_STRUCT);
1038
if (kern_vtype_id < 0) {
1039
pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
1040
STRUCT_OPS_VALUE_PREFIX, tname);
1041
return kern_vtype_id;
1042
}
1043
kern_vtype = btf__type_by_id(btf, kern_vtype_id);
1044
1045
/* Find "struct tcp_congestion_ops" from
1046
* struct bpf_struct_ops_tcp_congestion_ops {
1047
* [ ... ]
1048
* struct tcp_congestion_ops data;
1049
* }
1050
*/
1051
kern_data_member = btf_members(kern_vtype);
1052
for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1053
if (kern_data_member->type == kern_type_id)
1054
break;
1055
}
1056
if (i == btf_vlen(kern_vtype)) {
1057
pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1058
tname, STRUCT_OPS_VALUE_PREFIX, tname);
1059
return -EINVAL;
1060
}
1061
1062
*type = kern_type;
1063
*type_id = kern_type_id;
1064
*vtype = kern_vtype;
1065
*vtype_id = kern_vtype_id;
1066
*data_member = kern_data_member;
1067
1068
return 0;
1069
}
1070
1071
static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1072
{
1073
return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1074
}
1075
1076
static bool is_valid_st_ops_program(struct bpf_object *obj,
1077
const struct bpf_program *prog)
1078
{
1079
int i;
1080
1081
for (i = 0; i < obj->nr_programs; i++) {
1082
if (&obj->programs[i] == prog)
1083
return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1084
}
1085
1086
return false;
1087
}
1088
1089
/* For each struct_ops program P, referenced from some struct_ops map M,
1090
* enable P.autoload if there are Ms for which M.autocreate is true,
1091
* disable P.autoload if for all Ms M.autocreate is false.
1092
* Don't change P.autoload for programs that are not referenced from any maps.
1093
*/
1094
static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1095
{
1096
struct bpf_program *prog, *slot_prog;
1097
struct bpf_map *map;
1098
int i, j, k, vlen;
1099
1100
for (i = 0; i < obj->nr_programs; ++i) {
1101
int should_load = false;
1102
int use_cnt = 0;
1103
1104
prog = &obj->programs[i];
1105
if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1106
continue;
1107
1108
for (j = 0; j < obj->nr_maps; ++j) {
1109
const struct btf_type *type;
1110
1111
map = &obj->maps[j];
1112
if (!bpf_map__is_struct_ops(map))
1113
continue;
1114
1115
type = btf__type_by_id(obj->btf, map->st_ops->type_id);
1116
vlen = btf_vlen(type);
1117
for (k = 0; k < vlen; ++k) {
1118
slot_prog = map->st_ops->progs[k];
1119
if (prog != slot_prog)
1120
continue;
1121
1122
use_cnt++;
1123
if (map->autocreate)
1124
should_load = true;
1125
}
1126
}
1127
if (use_cnt)
1128
prog->autoload = should_load;
1129
}
1130
1131
return 0;
1132
}
1133
1134
/* Init the map's fields that depend on kern_btf */
1135
static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1136
{
1137
const struct btf_member *member, *kern_member, *kern_data_member;
1138
const struct btf_type *type, *kern_type, *kern_vtype;
1139
__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1140
struct bpf_object *obj = map->obj;
1141
const struct btf *btf = obj->btf;
1142
struct bpf_struct_ops *st_ops;
1143
const struct btf *kern_btf;
1144
struct module_btf *mod_btf = NULL;
1145
void *data, *kern_data;
1146
const char *tname;
1147
int err;
1148
1149
st_ops = map->st_ops;
1150
type = btf__type_by_id(btf, st_ops->type_id);
1151
tname = btf__name_by_offset(btf, type->name_off);
1152
err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1153
&kern_type, &kern_type_id,
1154
&kern_vtype, &kern_vtype_id,
1155
&kern_data_member);
1156
if (err)
1157
return err;
1158
1159
kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1160
1161
pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1162
map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1163
1164
map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1165
map->def.value_size = kern_vtype->size;
1166
map->btf_vmlinux_value_type_id = kern_vtype_id;
1167
1168
st_ops->kern_vdata = calloc(1, kern_vtype->size);
1169
if (!st_ops->kern_vdata)
1170
return -ENOMEM;
1171
1172
data = st_ops->data;
1173
kern_data_off = kern_data_member->offset / 8;
1174
kern_data = st_ops->kern_vdata + kern_data_off;
1175
1176
member = btf_members(type);
1177
for (i = 0; i < btf_vlen(type); i++, member++) {
1178
const struct btf_type *mtype, *kern_mtype;
1179
__u32 mtype_id, kern_mtype_id;
1180
void *mdata, *kern_mdata;
1181
struct bpf_program *prog;
1182
__s64 msize, kern_msize;
1183
__u32 moff, kern_moff;
1184
__u32 kern_member_idx;
1185
const char *mname;
1186
1187
mname = btf__name_by_offset(btf, member->name_off);
1188
moff = member->offset / 8;
1189
mdata = data + moff;
1190
msize = btf__resolve_size(btf, member->type);
1191
if (msize < 0) {
1192
pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n",
1193
map->name, mname);
1194
return msize;
1195
}
1196
1197
kern_member = find_member_by_name(kern_btf, kern_type, mname);
1198
if (!kern_member) {
1199
if (!libbpf_is_mem_zeroed(mdata, msize)) {
1200
pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1201
map->name, mname);
1202
return -ENOTSUP;
1203
}
1204
1205
if (st_ops->progs[i]) {
1206
/* If we had declaratively set struct_ops callback, we need to
1207
* force its autoload to false, because it doesn't have
1208
* a chance of succeeding from POV of the current struct_ops map.
1209
* If this program is still referenced somewhere else, though,
1210
* then bpf_object_adjust_struct_ops_autoload() will update its
1211
* autoload accordingly.
1212
*/
1213
st_ops->progs[i]->autoload = false;
1214
st_ops->progs[i] = NULL;
1215
}
1216
1217
/* Skip all-zero/NULL fields if they are not present in the kernel BTF */
1218
pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n",
1219
map->name, mname);
1220
continue;
1221
}
1222
1223
kern_member_idx = kern_member - btf_members(kern_type);
1224
if (btf_member_bitfield_size(type, i) ||
1225
btf_member_bitfield_size(kern_type, kern_member_idx)) {
1226
pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1227
map->name, mname);
1228
return -ENOTSUP;
1229
}
1230
1231
kern_moff = kern_member->offset / 8;
1232
kern_mdata = kern_data + kern_moff;
1233
1234
mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1235
kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1236
&kern_mtype_id);
1237
if (BTF_INFO_KIND(mtype->info) !=
1238
BTF_INFO_KIND(kern_mtype->info)) {
1239
pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1240
map->name, mname, BTF_INFO_KIND(mtype->info),
1241
BTF_INFO_KIND(kern_mtype->info));
1242
return -ENOTSUP;
1243
}
1244
1245
if (btf_is_ptr(mtype)) {
1246
prog = *(void **)mdata;
1247
/* just like for !kern_member case above, reset declaratively
1248
* set (at compile time) program's autload to false,
1249
* if user replaced it with another program or NULL
1250
*/
1251
if (st_ops->progs[i] && st_ops->progs[i] != prog)
1252
st_ops->progs[i]->autoload = false;
1253
1254
/* Update the value from the shadow type */
1255
st_ops->progs[i] = prog;
1256
if (!prog)
1257
continue;
1258
1259
if (!is_valid_st_ops_program(obj, prog)) {
1260
pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1261
map->name, mname);
1262
return -ENOTSUP;
1263
}
1264
1265
kern_mtype = skip_mods_and_typedefs(kern_btf,
1266
kern_mtype->type,
1267
&kern_mtype_id);
1268
1269
/* mtype->type must be a func_proto which was
1270
* guaranteed in bpf_object__collect_st_ops_relos(),
1271
* so only check kern_mtype for func_proto here.
1272
*/
1273
if (!btf_is_func_proto(kern_mtype)) {
1274
pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1275
map->name, mname);
1276
return -ENOTSUP;
1277
}
1278
1279
if (mod_btf)
1280
prog->attach_btf_obj_fd = mod_btf->fd;
1281
1282
/* if we haven't yet processed this BPF program, record proper
1283
* attach_btf_id and member_idx
1284
*/
1285
if (!prog->attach_btf_id) {
1286
prog->attach_btf_id = kern_type_id;
1287
prog->expected_attach_type = kern_member_idx;
1288
}
1289
1290
/* struct_ops BPF prog can be re-used between multiple
1291
* .struct_ops & .struct_ops.link as long as it's the
1292
* same struct_ops struct definition and the same
1293
* function pointer field
1294
*/
1295
if (prog->attach_btf_id != kern_type_id) {
1296
pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1297
map->name, mname, prog->name, prog->sec_name, prog->type,
1298
prog->attach_btf_id, kern_type_id);
1299
return -EINVAL;
1300
}
1301
if (prog->expected_attach_type != kern_member_idx) {
1302
pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1303
map->name, mname, prog->name, prog->sec_name, prog->type,
1304
prog->expected_attach_type, kern_member_idx);
1305
return -EINVAL;
1306
}
1307
1308
st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1309
1310
pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1311
map->name, mname, prog->name, moff,
1312
kern_moff);
1313
1314
continue;
1315
}
1316
1317
kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1318
if (kern_msize < 0 || msize != kern_msize) {
1319
pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1320
map->name, mname, (ssize_t)msize,
1321
(ssize_t)kern_msize);
1322
return -ENOTSUP;
1323
}
1324
1325
pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1326
map->name, mname, (unsigned int)msize,
1327
moff, kern_moff);
1328
memcpy(kern_mdata, mdata, msize);
1329
}
1330
1331
return 0;
1332
}
1333
1334
static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1335
{
1336
struct bpf_map *map;
1337
size_t i;
1338
int err;
1339
1340
for (i = 0; i < obj->nr_maps; i++) {
1341
map = &obj->maps[i];
1342
1343
if (!bpf_map__is_struct_ops(map))
1344
continue;
1345
1346
if (!map->autocreate)
1347
continue;
1348
1349
err = bpf_map__init_kern_struct_ops(map);
1350
if (err)
1351
return err;
1352
}
1353
1354
return 0;
1355
}
1356
1357
static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1358
int shndx, Elf_Data *data)
1359
{
1360
const struct btf_type *type, *datasec;
1361
const struct btf_var_secinfo *vsi;
1362
struct bpf_struct_ops *st_ops;
1363
const char *tname, *var_name;
1364
__s32 type_id, datasec_id;
1365
const struct btf *btf;
1366
struct bpf_map *map;
1367
__u32 i;
1368
1369
if (shndx == -1)
1370
return 0;
1371
1372
btf = obj->btf;
1373
datasec_id = btf__find_by_name_kind(btf, sec_name,
1374
BTF_KIND_DATASEC);
1375
if (datasec_id < 0) {
1376
pr_warn("struct_ops init: DATASEC %s not found\n",
1377
sec_name);
1378
return -EINVAL;
1379
}
1380
1381
datasec = btf__type_by_id(btf, datasec_id);
1382
vsi = btf_var_secinfos(datasec);
1383
for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1384
type = btf__type_by_id(obj->btf, vsi->type);
1385
var_name = btf__name_by_offset(obj->btf, type->name_off);
1386
1387
type_id = btf__resolve_type(obj->btf, vsi->type);
1388
if (type_id < 0) {
1389
pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1390
vsi->type, sec_name);
1391
return -EINVAL;
1392
}
1393
1394
type = btf__type_by_id(obj->btf, type_id);
1395
tname = btf__name_by_offset(obj->btf, type->name_off);
1396
if (!tname[0]) {
1397
pr_warn("struct_ops init: anonymous type is not supported\n");
1398
return -ENOTSUP;
1399
}
1400
if (!btf_is_struct(type)) {
1401
pr_warn("struct_ops init: %s is not a struct\n", tname);
1402
return -EINVAL;
1403
}
1404
1405
map = bpf_object__add_map(obj);
1406
if (IS_ERR(map))
1407
return PTR_ERR(map);
1408
1409
map->sec_idx = shndx;
1410
map->sec_offset = vsi->offset;
1411
map->name = strdup(var_name);
1412
if (!map->name)
1413
return -ENOMEM;
1414
map->btf_value_type_id = type_id;
1415
1416
/* Follow same convention as for programs autoload:
1417
* SEC("?.struct_ops") means map is not created by default.
1418
*/
1419
if (sec_name[0] == '?') {
1420
map->autocreate = false;
1421
/* from now on forget there was ? in section name */
1422
sec_name++;
1423
}
1424
1425
map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1426
map->def.key_size = sizeof(int);
1427
map->def.value_size = type->size;
1428
map->def.max_entries = 1;
1429
map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1430
map->autoattach = true;
1431
1432
map->st_ops = calloc(1, sizeof(*map->st_ops));
1433
if (!map->st_ops)
1434
return -ENOMEM;
1435
st_ops = map->st_ops;
1436
st_ops->data = malloc(type->size);
1437
st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1438
st_ops->kern_func_off = malloc(btf_vlen(type) *
1439
sizeof(*st_ops->kern_func_off));
1440
if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1441
return -ENOMEM;
1442
1443
if (vsi->offset + type->size > data->d_size) {
1444
pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1445
var_name, sec_name);
1446
return -EINVAL;
1447
}
1448
1449
memcpy(st_ops->data,
1450
data->d_buf + vsi->offset,
1451
type->size);
1452
st_ops->type_id = type_id;
1453
1454
pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1455
tname, type_id, var_name, vsi->offset);
1456
}
1457
1458
return 0;
1459
}
1460
1461
static int bpf_object_init_struct_ops(struct bpf_object *obj)
1462
{
1463
const char *sec_name;
1464
int sec_idx, err;
1465
1466
for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1467
struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1468
1469
if (desc->sec_type != SEC_ST_OPS)
1470
continue;
1471
1472
sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1473
if (!sec_name)
1474
return -LIBBPF_ERRNO__FORMAT;
1475
1476
err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1477
if (err)
1478
return err;
1479
}
1480
1481
return 0;
1482
}
1483
1484
static struct bpf_object *bpf_object__new(const char *path,
1485
const void *obj_buf,
1486
size_t obj_buf_sz,
1487
const char *obj_name)
1488
{
1489
struct bpf_object *obj;
1490
char *end;
1491
1492
obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1493
if (!obj) {
1494
pr_warn("alloc memory failed for %s\n", path);
1495
return ERR_PTR(-ENOMEM);
1496
}
1497
1498
strcpy(obj->path, path);
1499
if (obj_name) {
1500
libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1501
} else {
1502
/* Using basename() GNU version which doesn't modify arg. */
1503
libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1504
end = strchr(obj->name, '.');
1505
if (end)
1506
*end = 0;
1507
}
1508
1509
obj->efile.fd = -1;
1510
/*
1511
* Caller of this function should also call
1512
* bpf_object__elf_finish() after data collection to return
1513
* obj_buf to user. If not, we should duplicate the buffer to
1514
* avoid user freeing them before elf finish.
1515
*/
1516
obj->efile.obj_buf = obj_buf;
1517
obj->efile.obj_buf_sz = obj_buf_sz;
1518
obj->efile.btf_maps_shndx = -1;
1519
obj->kconfig_map_idx = -1;
1520
obj->arena_map_idx = -1;
1521
1522
obj->kern_version = get_kernel_version();
1523
obj->state = OBJ_OPEN;
1524
1525
return obj;
1526
}
1527
1528
static void bpf_object__elf_finish(struct bpf_object *obj)
1529
{
1530
if (!obj->efile.elf)
1531
return;
1532
1533
elf_end(obj->efile.elf);
1534
obj->efile.elf = NULL;
1535
obj->efile.ehdr = NULL;
1536
obj->efile.symbols = NULL;
1537
obj->efile.arena_data = NULL;
1538
1539
zfree(&obj->efile.secs);
1540
obj->efile.sec_cnt = 0;
1541
zclose(obj->efile.fd);
1542
obj->efile.obj_buf = NULL;
1543
obj->efile.obj_buf_sz = 0;
1544
}
1545
1546
static int bpf_object__elf_init(struct bpf_object *obj)
1547
{
1548
Elf64_Ehdr *ehdr;
1549
int err = 0;
1550
Elf *elf;
1551
1552
if (obj->efile.elf) {
1553
pr_warn("elf: init internal error\n");
1554
return -LIBBPF_ERRNO__LIBELF;
1555
}
1556
1557
if (obj->efile.obj_buf_sz > 0) {
1558
/* obj_buf should have been validated by bpf_object__open_mem(). */
1559
elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1560
} else {
1561
obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1562
if (obj->efile.fd < 0) {
1563
err = -errno;
1564
pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err));
1565
return err;
1566
}
1567
1568
elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1569
}
1570
1571
if (!elf) {
1572
pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1573
err = -LIBBPF_ERRNO__LIBELF;
1574
goto errout;
1575
}
1576
1577
obj->efile.elf = elf;
1578
1579
if (elf_kind(elf) != ELF_K_ELF) {
1580
err = -LIBBPF_ERRNO__FORMAT;
1581
pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1582
goto errout;
1583
}
1584
1585
if (gelf_getclass(elf) != ELFCLASS64) {
1586
err = -LIBBPF_ERRNO__FORMAT;
1587
pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1588
goto errout;
1589
}
1590
1591
obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1592
if (!obj->efile.ehdr) {
1593
pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1594
err = -LIBBPF_ERRNO__FORMAT;
1595
goto errout;
1596
}
1597
1598
/* Validate ELF object endianness... */
1599
if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB &&
1600
ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
1601
err = -LIBBPF_ERRNO__ENDIAN;
1602
pr_warn("elf: '%s' has unknown byte order\n", obj->path);
1603
goto errout;
1604
}
1605
/* and save after bpf_object_open() frees ELF data */
1606
obj->byteorder = ehdr->e_ident[EI_DATA];
1607
1608
if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1609
pr_warn("elf: failed to get section names section index for %s: %s\n",
1610
obj->path, elf_errmsg(-1));
1611
err = -LIBBPF_ERRNO__FORMAT;
1612
goto errout;
1613
}
1614
1615
/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1616
if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1617
pr_warn("elf: failed to get section names strings from %s: %s\n",
1618
obj->path, elf_errmsg(-1));
1619
err = -LIBBPF_ERRNO__FORMAT;
1620
goto errout;
1621
}
1622
1623
/* Old LLVM set e_machine to EM_NONE */
1624
if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1625
pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1626
err = -LIBBPF_ERRNO__FORMAT;
1627
goto errout;
1628
}
1629
1630
return 0;
1631
errout:
1632
bpf_object__elf_finish(obj);
1633
return err;
1634
}
1635
1636
static bool is_native_endianness(struct bpf_object *obj)
1637
{
1638
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1639
return obj->byteorder == ELFDATA2LSB;
1640
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1641
return obj->byteorder == ELFDATA2MSB;
1642
#else
1643
# error "Unrecognized __BYTE_ORDER__"
1644
#endif
1645
}
1646
1647
static int
1648
bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1649
{
1650
if (!data) {
1651
pr_warn("invalid license section in %s\n", obj->path);
1652
return -LIBBPF_ERRNO__FORMAT;
1653
}
1654
/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1655
* go over allowed ELF data section buffer
1656
*/
1657
libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1658
pr_debug("license of %s is %s\n", obj->path, obj->license);
1659
return 0;
1660
}
1661
1662
static int
1663
bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1664
{
1665
__u32 kver;
1666
1667
if (!data || size != sizeof(kver)) {
1668
pr_warn("invalid kver section in %s\n", obj->path);
1669
return -LIBBPF_ERRNO__FORMAT;
1670
}
1671
memcpy(&kver, data, sizeof(kver));
1672
obj->kern_version = kver;
1673
pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1674
return 0;
1675
}
1676
1677
static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1678
{
1679
if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1680
type == BPF_MAP_TYPE_HASH_OF_MAPS)
1681
return true;
1682
return false;
1683
}
1684
1685
static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1686
{
1687
Elf_Data *data;
1688
Elf_Scn *scn;
1689
1690
if (!name)
1691
return -EINVAL;
1692
1693
scn = elf_sec_by_name(obj, name);
1694
data = elf_sec_data(obj, scn);
1695
if (data) {
1696
*size = data->d_size;
1697
return 0; /* found it */
1698
}
1699
1700
return -ENOENT;
1701
}
1702
1703
static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1704
{
1705
Elf_Data *symbols = obj->efile.symbols;
1706
const char *sname;
1707
size_t si;
1708
1709
for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1710
Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1711
1712
if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1713
continue;
1714
1715
if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1716
ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1717
continue;
1718
1719
sname = elf_sym_str(obj, sym->st_name);
1720
if (!sname) {
1721
pr_warn("failed to get sym name string for var %s\n", name);
1722
return ERR_PTR(-EIO);
1723
}
1724
if (strcmp(name, sname) == 0)
1725
return sym;
1726
}
1727
1728
return ERR_PTR(-ENOENT);
1729
}
1730
1731
#ifndef MFD_CLOEXEC
1732
#define MFD_CLOEXEC 0x0001U
1733
#endif
1734
#ifndef MFD_NOEXEC_SEAL
1735
#define MFD_NOEXEC_SEAL 0x0008U
1736
#endif
1737
1738
static int create_placeholder_fd(void)
1739
{
1740
unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL;
1741
const char *name = "libbpf-placeholder-fd";
1742
int fd;
1743
1744
fd = ensure_good_fd(sys_memfd_create(name, flags));
1745
if (fd >= 0)
1746
return fd;
1747
else if (errno != EINVAL)
1748
return -errno;
1749
1750
/* Possibly running on kernel without MFD_NOEXEC_SEAL */
1751
fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL));
1752
if (fd < 0)
1753
return -errno;
1754
return fd;
1755
}
1756
1757
static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1758
{
1759
struct bpf_map *map;
1760
int err;
1761
1762
err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1763
sizeof(*obj->maps), obj->nr_maps + 1);
1764
if (err)
1765
return ERR_PTR(err);
1766
1767
map = &obj->maps[obj->nr_maps++];
1768
map->obj = obj;
1769
/* Preallocate map FD without actually creating BPF map just yet.
1770
* These map FD "placeholders" will be reused later without changing
1771
* FD value when map is actually created in the kernel.
1772
*
1773
* This is useful to be able to perform BPF program relocations
1774
* without having to create BPF maps before that step. This allows us
1775
* to finalize and load BTF very late in BPF object's loading phase,
1776
* right before BPF maps have to be created and BPF programs have to
1777
* be loaded. By having these map FD placeholders we can perform all
1778
* the sanitizations, relocations, and any other adjustments before we
1779
* start creating actual BPF kernel objects (BTF, maps, progs).
1780
*/
1781
map->fd = create_placeholder_fd();
1782
if (map->fd < 0)
1783
return ERR_PTR(map->fd);
1784
map->inner_map_fd = -1;
1785
map->autocreate = true;
1786
1787
return map;
1788
}
1789
1790
static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1791
{
1792
const long page_sz = sysconf(_SC_PAGE_SIZE);
1793
size_t map_sz;
1794
1795
map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1796
map_sz = roundup(map_sz, page_sz);
1797
return map_sz;
1798
}
1799
1800
static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1801
{
1802
const long page_sz = sysconf(_SC_PAGE_SIZE);
1803
1804
switch (map->def.type) {
1805
case BPF_MAP_TYPE_ARRAY:
1806
return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1807
case BPF_MAP_TYPE_ARENA:
1808
return page_sz * map->def.max_entries;
1809
default:
1810
return 0; /* not supported */
1811
}
1812
}
1813
1814
static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1815
{
1816
void *mmaped;
1817
1818
if (!map->mmaped)
1819
return -EINVAL;
1820
1821
if (old_sz == new_sz)
1822
return 0;
1823
1824
mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1825
if (mmaped == MAP_FAILED)
1826
return -errno;
1827
1828
memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1829
munmap(map->mmaped, old_sz);
1830
map->mmaped = mmaped;
1831
return 0;
1832
}
1833
1834
static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1835
{
1836
char map_name[BPF_OBJ_NAME_LEN], *p;
1837
int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1838
1839
/* This is one of the more confusing parts of libbpf for various
1840
* reasons, some of which are historical. The original idea for naming
1841
* internal names was to include as much of BPF object name prefix as
1842
* possible, so that it can be distinguished from similar internal
1843
* maps of a different BPF object.
1844
* As an example, let's say we have bpf_object named 'my_object_name'
1845
* and internal map corresponding to '.rodata' ELF section. The final
1846
* map name advertised to user and to the kernel will be
1847
* 'my_objec.rodata', taking first 8 characters of object name and
1848
* entire 7 characters of '.rodata'.
1849
* Somewhat confusingly, if internal map ELF section name is shorter
1850
* than 7 characters, e.g., '.bss', we still reserve 7 characters
1851
* for the suffix, even though we only have 4 actual characters, and
1852
* resulting map will be called 'my_objec.bss', not even using all 15
1853
* characters allowed by the kernel. Oh well, at least the truncated
1854
* object name is somewhat consistent in this case. But if the map
1855
* name is '.kconfig', we'll still have entirety of '.kconfig' added
1856
* (8 chars) and thus will be left with only first 7 characters of the
1857
* object name ('my_obje'). Happy guessing, user, that the final map
1858
* name will be "my_obje.kconfig".
1859
* Now, with libbpf starting to support arbitrarily named .rodata.*
1860
* and .data.* data sections, it's possible that ELF section name is
1861
* longer than allowed 15 chars, so we now need to be careful to take
1862
* only up to 15 first characters of ELF name, taking no BPF object
1863
* name characters at all. So '.rodata.abracadabra' will result in
1864
* '.rodata.abracad' kernel and user-visible name.
1865
* We need to keep this convoluted logic intact for .data, .bss and
1866
* .rodata maps, but for new custom .data.custom and .rodata.custom
1867
* maps we use their ELF names as is, not prepending bpf_object name
1868
* in front. We still need to truncate them to 15 characters for the
1869
* kernel. Full name can be recovered for such maps by using DATASEC
1870
* BTF type associated with such map's value type, though.
1871
*/
1872
if (sfx_len >= BPF_OBJ_NAME_LEN)
1873
sfx_len = BPF_OBJ_NAME_LEN - 1;
1874
1875
/* if there are two or more dots in map name, it's a custom dot map */
1876
if (strchr(real_name + 1, '.') != NULL)
1877
pfx_len = 0;
1878
else
1879
pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1880
1881
snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1882
sfx_len, real_name);
1883
1884
/* sanities map name to characters allowed by kernel */
1885
for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1886
if (!isalnum(*p) && *p != '_' && *p != '.')
1887
*p = '_';
1888
1889
return strdup(map_name);
1890
}
1891
1892
static int
1893
map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1894
1895
/* Internal BPF map is mmap()'able only if at least one of corresponding
1896
* DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1897
* variable and it's not marked as __hidden (which turns it into, effectively,
1898
* a STATIC variable).
1899
*/
1900
static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1901
{
1902
const struct btf_type *t, *vt;
1903
struct btf_var_secinfo *vsi;
1904
int i, n;
1905
1906
if (!map->btf_value_type_id)
1907
return false;
1908
1909
t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1910
if (!btf_is_datasec(t))
1911
return false;
1912
1913
vsi = btf_var_secinfos(t);
1914
for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1915
vt = btf__type_by_id(obj->btf, vsi->type);
1916
if (!btf_is_var(vt))
1917
continue;
1918
1919
if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1920
return true;
1921
}
1922
1923
return false;
1924
}
1925
1926
static int
1927
bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1928
const char *real_name, int sec_idx, void *data, size_t data_sz)
1929
{
1930
struct bpf_map_def *def;
1931
struct bpf_map *map;
1932
size_t mmap_sz;
1933
int err;
1934
1935
map = bpf_object__add_map(obj);
1936
if (IS_ERR(map))
1937
return PTR_ERR(map);
1938
1939
map->libbpf_type = type;
1940
map->sec_idx = sec_idx;
1941
map->sec_offset = 0;
1942
map->real_name = strdup(real_name);
1943
map->name = internal_map_name(obj, real_name);
1944
if (!map->real_name || !map->name) {
1945
zfree(&map->real_name);
1946
zfree(&map->name);
1947
return -ENOMEM;
1948
}
1949
1950
def = &map->def;
1951
def->type = BPF_MAP_TYPE_ARRAY;
1952
def->key_size = sizeof(int);
1953
def->value_size = data_sz;
1954
def->max_entries = 1;
1955
def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1956
? BPF_F_RDONLY_PROG : 0;
1957
1958
/* failures are fine because of maps like .rodata.str1.1 */
1959
(void) map_fill_btf_type_info(obj, map);
1960
1961
if (map_is_mmapable(obj, map))
1962
def->map_flags |= BPF_F_MMAPABLE;
1963
1964
pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1965
map->name, map->sec_idx, map->sec_offset, def->map_flags);
1966
1967
mmap_sz = bpf_map_mmap_sz(map);
1968
map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1969
MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1970
if (map->mmaped == MAP_FAILED) {
1971
err = -errno;
1972
map->mmaped = NULL;
1973
pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err));
1974
zfree(&map->real_name);
1975
zfree(&map->name);
1976
return err;
1977
}
1978
1979
if (data)
1980
memcpy(map->mmaped, data, data_sz);
1981
1982
pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1983
return 0;
1984
}
1985
1986
static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1987
{
1988
struct elf_sec_desc *sec_desc;
1989
const char *sec_name;
1990
int err = 0, sec_idx;
1991
1992
/*
1993
* Populate obj->maps with libbpf internal maps.
1994
*/
1995
for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1996
sec_desc = &obj->efile.secs[sec_idx];
1997
1998
/* Skip recognized sections with size 0. */
1999
if (!sec_desc->data || sec_desc->data->d_size == 0)
2000
continue;
2001
2002
switch (sec_desc->sec_type) {
2003
case SEC_DATA:
2004
sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2005
err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
2006
sec_name, sec_idx,
2007
sec_desc->data->d_buf,
2008
sec_desc->data->d_size);
2009
break;
2010
case SEC_RODATA:
2011
obj->has_rodata = true;
2012
sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2013
err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
2014
sec_name, sec_idx,
2015
sec_desc->data->d_buf,
2016
sec_desc->data->d_size);
2017
break;
2018
case SEC_BSS:
2019
sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2020
err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
2021
sec_name, sec_idx,
2022
NULL,
2023
sec_desc->data->d_size);
2024
break;
2025
default:
2026
/* skip */
2027
break;
2028
}
2029
if (err)
2030
return err;
2031
}
2032
return 0;
2033
}
2034
2035
2036
static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
2037
const void *name)
2038
{
2039
int i;
2040
2041
for (i = 0; i < obj->nr_extern; i++) {
2042
if (strcmp(obj->externs[i].name, name) == 0)
2043
return &obj->externs[i];
2044
}
2045
return NULL;
2046
}
2047
2048
static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj,
2049
const void *name, int len)
2050
{
2051
const char *ext_name;
2052
int i;
2053
2054
for (i = 0; i < obj->nr_extern; i++) {
2055
ext_name = obj->externs[i].name;
2056
if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0)
2057
return &obj->externs[i];
2058
}
2059
return NULL;
2060
}
2061
2062
static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
2063
char value)
2064
{
2065
switch (ext->kcfg.type) {
2066
case KCFG_BOOL:
2067
if (value == 'm') {
2068
pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
2069
ext->name, value);
2070
return -EINVAL;
2071
}
2072
*(bool *)ext_val = value == 'y' ? true : false;
2073
break;
2074
case KCFG_TRISTATE:
2075
if (value == 'y')
2076
*(enum libbpf_tristate *)ext_val = TRI_YES;
2077
else if (value == 'm')
2078
*(enum libbpf_tristate *)ext_val = TRI_MODULE;
2079
else /* value == 'n' */
2080
*(enum libbpf_tristate *)ext_val = TRI_NO;
2081
break;
2082
case KCFG_CHAR:
2083
*(char *)ext_val = value;
2084
break;
2085
case KCFG_UNKNOWN:
2086
case KCFG_INT:
2087
case KCFG_CHAR_ARR:
2088
default:
2089
pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
2090
ext->name, value);
2091
return -EINVAL;
2092
}
2093
ext->is_set = true;
2094
return 0;
2095
}
2096
2097
static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
2098
const char *value)
2099
{
2100
size_t len;
2101
2102
if (ext->kcfg.type != KCFG_CHAR_ARR) {
2103
pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
2104
ext->name, value);
2105
return -EINVAL;
2106
}
2107
2108
len = strlen(value);
2109
if (len < 2 || value[len - 1] != '"') {
2110
pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2111
ext->name, value);
2112
return -EINVAL;
2113
}
2114
2115
/* strip quotes */
2116
len -= 2;
2117
if (len >= ext->kcfg.sz) {
2118
pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2119
ext->name, value, len, ext->kcfg.sz - 1);
2120
len = ext->kcfg.sz - 1;
2121
}
2122
memcpy(ext_val, value + 1, len);
2123
ext_val[len] = '\0';
2124
ext->is_set = true;
2125
return 0;
2126
}
2127
2128
static int parse_u64(const char *value, __u64 *res)
2129
{
2130
char *value_end;
2131
int err;
2132
2133
errno = 0;
2134
*res = strtoull(value, &value_end, 0);
2135
if (errno) {
2136
err = -errno;
2137
pr_warn("failed to parse '%s': %s\n", value, errstr(err));
2138
return err;
2139
}
2140
if (*value_end) {
2141
pr_warn("failed to parse '%s' as integer completely\n", value);
2142
return -EINVAL;
2143
}
2144
return 0;
2145
}
2146
2147
static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2148
{
2149
int bit_sz = ext->kcfg.sz * 8;
2150
2151
if (ext->kcfg.sz == 8)
2152
return true;
2153
2154
/* Validate that value stored in u64 fits in integer of `ext->sz`
2155
* bytes size without any loss of information. If the target integer
2156
* is signed, we rely on the following limits of integer type of
2157
* Y bits and subsequent transformation:
2158
*
2159
* -2^(Y-1) <= X <= 2^(Y-1) - 1
2160
* 0 <= X + 2^(Y-1) <= 2^Y - 1
2161
* 0 <= X + 2^(Y-1) < 2^Y
2162
*
2163
* For unsigned target integer, check that all the (64 - Y) bits are
2164
* zero.
2165
*/
2166
if (ext->kcfg.is_signed)
2167
return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2168
else
2169
return (v >> bit_sz) == 0;
2170
}
2171
2172
static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2173
__u64 value)
2174
{
2175
if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2176
ext->kcfg.type != KCFG_BOOL) {
2177
pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2178
ext->name, (unsigned long long)value);
2179
return -EINVAL;
2180
}
2181
if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2182
pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2183
ext->name, (unsigned long long)value);
2184
return -EINVAL;
2185
2186
}
2187
if (!is_kcfg_value_in_range(ext, value)) {
2188
pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2189
ext->name, (unsigned long long)value, ext->kcfg.sz);
2190
return -ERANGE;
2191
}
2192
switch (ext->kcfg.sz) {
2193
case 1:
2194
*(__u8 *)ext_val = value;
2195
break;
2196
case 2:
2197
*(__u16 *)ext_val = value;
2198
break;
2199
case 4:
2200
*(__u32 *)ext_val = value;
2201
break;
2202
case 8:
2203
*(__u64 *)ext_val = value;
2204
break;
2205
default:
2206
return -EINVAL;
2207
}
2208
ext->is_set = true;
2209
return 0;
2210
}
2211
2212
static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2213
char *buf, void *data)
2214
{
2215
struct extern_desc *ext;
2216
char *sep, *value;
2217
int len, err = 0;
2218
void *ext_val;
2219
__u64 num;
2220
2221
if (!str_has_pfx(buf, "CONFIG_"))
2222
return 0;
2223
2224
sep = strchr(buf, '=');
2225
if (!sep) {
2226
pr_warn("failed to parse '%s': no separator\n", buf);
2227
return -EINVAL;
2228
}
2229
2230
/* Trim ending '\n' */
2231
len = strlen(buf);
2232
if (buf[len - 1] == '\n')
2233
buf[len - 1] = '\0';
2234
/* Split on '=' and ensure that a value is present. */
2235
*sep = '\0';
2236
if (!sep[1]) {
2237
*sep = '=';
2238
pr_warn("failed to parse '%s': no value\n", buf);
2239
return -EINVAL;
2240
}
2241
2242
ext = find_extern_by_name(obj, buf);
2243
if (!ext || ext->is_set)
2244
return 0;
2245
2246
ext_val = data + ext->kcfg.data_off;
2247
value = sep + 1;
2248
2249
switch (*value) {
2250
case 'y': case 'n': case 'm':
2251
err = set_kcfg_value_tri(ext, ext_val, *value);
2252
break;
2253
case '"':
2254
err = set_kcfg_value_str(ext, ext_val, value);
2255
break;
2256
default:
2257
/* assume integer */
2258
err = parse_u64(value, &num);
2259
if (err) {
2260
pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2261
return err;
2262
}
2263
if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2264
pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2265
return -EINVAL;
2266
}
2267
err = set_kcfg_value_num(ext, ext_val, num);
2268
break;
2269
}
2270
if (err)
2271
return err;
2272
pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2273
return 0;
2274
}
2275
2276
static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2277
{
2278
char buf[PATH_MAX];
2279
struct utsname uts;
2280
int len, err = 0;
2281
gzFile file;
2282
2283
uname(&uts);
2284
len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2285
if (len < 0)
2286
return -EINVAL;
2287
else if (len >= PATH_MAX)
2288
return -ENAMETOOLONG;
2289
2290
/* gzopen also accepts uncompressed files. */
2291
file = gzopen(buf, "re");
2292
if (!file)
2293
file = gzopen("/proc/config.gz", "re");
2294
2295
if (!file) {
2296
pr_warn("failed to open system Kconfig\n");
2297
return -ENOENT;
2298
}
2299
2300
while (gzgets(file, buf, sizeof(buf))) {
2301
err = bpf_object__process_kconfig_line(obj, buf, data);
2302
if (err) {
2303
pr_warn("error parsing system Kconfig line '%s': %s\n",
2304
buf, errstr(err));
2305
goto out;
2306
}
2307
}
2308
2309
out:
2310
gzclose(file);
2311
return err;
2312
}
2313
2314
static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2315
const char *config, void *data)
2316
{
2317
char buf[PATH_MAX];
2318
int err = 0;
2319
FILE *file;
2320
2321
file = fmemopen((void *)config, strlen(config), "r");
2322
if (!file) {
2323
err = -errno;
2324
pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err));
2325
return err;
2326
}
2327
2328
while (fgets(buf, sizeof(buf), file)) {
2329
err = bpf_object__process_kconfig_line(obj, buf, data);
2330
if (err) {
2331
pr_warn("error parsing in-memory Kconfig line '%s': %s\n",
2332
buf, errstr(err));
2333
break;
2334
}
2335
}
2336
2337
fclose(file);
2338
return err;
2339
}
2340
2341
static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2342
{
2343
struct extern_desc *last_ext = NULL, *ext;
2344
size_t map_sz;
2345
int i, err;
2346
2347
for (i = 0; i < obj->nr_extern; i++) {
2348
ext = &obj->externs[i];
2349
if (ext->type == EXT_KCFG)
2350
last_ext = ext;
2351
}
2352
2353
if (!last_ext)
2354
return 0;
2355
2356
map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2357
err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2358
".kconfig", obj->efile.symbols_shndx,
2359
NULL, map_sz);
2360
if (err)
2361
return err;
2362
2363
obj->kconfig_map_idx = obj->nr_maps - 1;
2364
2365
return 0;
2366
}
2367
2368
const struct btf_type *
2369
skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2370
{
2371
const struct btf_type *t = btf__type_by_id(btf, id);
2372
2373
if (res_id)
2374
*res_id = id;
2375
2376
while (btf_is_mod(t) || btf_is_typedef(t)) {
2377
if (res_id)
2378
*res_id = t->type;
2379
t = btf__type_by_id(btf, t->type);
2380
}
2381
2382
return t;
2383
}
2384
2385
static const struct btf_type *
2386
resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2387
{
2388
const struct btf_type *t;
2389
2390
t = skip_mods_and_typedefs(btf, id, NULL);
2391
if (!btf_is_ptr(t))
2392
return NULL;
2393
2394
t = skip_mods_and_typedefs(btf, t->type, res_id);
2395
2396
return btf_is_func_proto(t) ? t : NULL;
2397
}
2398
2399
static const char *__btf_kind_str(__u16 kind)
2400
{
2401
switch (kind) {
2402
case BTF_KIND_UNKN: return "void";
2403
case BTF_KIND_INT: return "int";
2404
case BTF_KIND_PTR: return "ptr";
2405
case BTF_KIND_ARRAY: return "array";
2406
case BTF_KIND_STRUCT: return "struct";
2407
case BTF_KIND_UNION: return "union";
2408
case BTF_KIND_ENUM: return "enum";
2409
case BTF_KIND_FWD: return "fwd";
2410
case BTF_KIND_TYPEDEF: return "typedef";
2411
case BTF_KIND_VOLATILE: return "volatile";
2412
case BTF_KIND_CONST: return "const";
2413
case BTF_KIND_RESTRICT: return "restrict";
2414
case BTF_KIND_FUNC: return "func";
2415
case BTF_KIND_FUNC_PROTO: return "func_proto";
2416
case BTF_KIND_VAR: return "var";
2417
case BTF_KIND_DATASEC: return "datasec";
2418
case BTF_KIND_FLOAT: return "float";
2419
case BTF_KIND_DECL_TAG: return "decl_tag";
2420
case BTF_KIND_TYPE_TAG: return "type_tag";
2421
case BTF_KIND_ENUM64: return "enum64";
2422
default: return "unknown";
2423
}
2424
}
2425
2426
const char *btf_kind_str(const struct btf_type *t)
2427
{
2428
return __btf_kind_str(btf_kind(t));
2429
}
2430
2431
/*
2432
* Fetch integer attribute of BTF map definition. Such attributes are
2433
* represented using a pointer to an array, in which dimensionality of array
2434
* encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2435
* encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2436
* type definition, while using only sizeof(void *) space in ELF data section.
2437
*/
2438
static bool get_map_field_int(const char *map_name, const struct btf *btf,
2439
const struct btf_member *m, __u32 *res)
2440
{
2441
const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2442
const char *name = btf__name_by_offset(btf, m->name_off);
2443
const struct btf_array *arr_info;
2444
const struct btf_type *arr_t;
2445
2446
if (!btf_is_ptr(t)) {
2447
pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2448
map_name, name, btf_kind_str(t));
2449
return false;
2450
}
2451
2452
arr_t = btf__type_by_id(btf, t->type);
2453
if (!arr_t) {
2454
pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2455
map_name, name, t->type);
2456
return false;
2457
}
2458
if (!btf_is_array(arr_t)) {
2459
pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2460
map_name, name, btf_kind_str(arr_t));
2461
return false;
2462
}
2463
arr_info = btf_array(arr_t);
2464
*res = arr_info->nelems;
2465
return true;
2466
}
2467
2468
static bool get_map_field_long(const char *map_name, const struct btf *btf,
2469
const struct btf_member *m, __u64 *res)
2470
{
2471
const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2472
const char *name = btf__name_by_offset(btf, m->name_off);
2473
2474
if (btf_is_ptr(t)) {
2475
__u32 res32;
2476
bool ret;
2477
2478
ret = get_map_field_int(map_name, btf, m, &res32);
2479
if (ret)
2480
*res = (__u64)res32;
2481
return ret;
2482
}
2483
2484
if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2485
pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2486
map_name, name, btf_kind_str(t));
2487
return false;
2488
}
2489
2490
if (btf_vlen(t) != 1) {
2491
pr_warn("map '%s': attr '%s': invalid __ulong\n",
2492
map_name, name);
2493
return false;
2494
}
2495
2496
if (btf_is_enum(t)) {
2497
const struct btf_enum *e = btf_enum(t);
2498
2499
*res = e->val;
2500
} else {
2501
const struct btf_enum64 *e = btf_enum64(t);
2502
2503
*res = btf_enum64_value(e);
2504
}
2505
return true;
2506
}
2507
2508
static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2509
{
2510
int len;
2511
2512
len = snprintf(buf, buf_sz, "%s/%s", path, name);
2513
if (len < 0)
2514
return -EINVAL;
2515
if (len >= buf_sz)
2516
return -ENAMETOOLONG;
2517
2518
return 0;
2519
}
2520
2521
static int build_map_pin_path(struct bpf_map *map, const char *path)
2522
{
2523
char buf[PATH_MAX];
2524
int err;
2525
2526
if (!path)
2527
path = BPF_FS_DEFAULT_PATH;
2528
2529
err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2530
if (err)
2531
return err;
2532
2533
return bpf_map__set_pin_path(map, buf);
2534
}
2535
2536
/* should match definition in bpf_helpers.h */
2537
enum libbpf_pin_type {
2538
LIBBPF_PIN_NONE,
2539
/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2540
LIBBPF_PIN_BY_NAME,
2541
};
2542
2543
int parse_btf_map_def(const char *map_name, struct btf *btf,
2544
const struct btf_type *def_t, bool strict,
2545
struct btf_map_def *map_def, struct btf_map_def *inner_def)
2546
{
2547
const struct btf_type *t;
2548
const struct btf_member *m;
2549
bool is_inner = inner_def == NULL;
2550
int vlen, i;
2551
2552
vlen = btf_vlen(def_t);
2553
m = btf_members(def_t);
2554
for (i = 0; i < vlen; i++, m++) {
2555
const char *name = btf__name_by_offset(btf, m->name_off);
2556
2557
if (!name) {
2558
pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2559
return -EINVAL;
2560
}
2561
if (strcmp(name, "type") == 0) {
2562
if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2563
return -EINVAL;
2564
map_def->parts |= MAP_DEF_MAP_TYPE;
2565
} else if (strcmp(name, "max_entries") == 0) {
2566
if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2567
return -EINVAL;
2568
map_def->parts |= MAP_DEF_MAX_ENTRIES;
2569
} else if (strcmp(name, "map_flags") == 0) {
2570
if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2571
return -EINVAL;
2572
map_def->parts |= MAP_DEF_MAP_FLAGS;
2573
} else if (strcmp(name, "numa_node") == 0) {
2574
if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2575
return -EINVAL;
2576
map_def->parts |= MAP_DEF_NUMA_NODE;
2577
} else if (strcmp(name, "key_size") == 0) {
2578
__u32 sz;
2579
2580
if (!get_map_field_int(map_name, btf, m, &sz))
2581
return -EINVAL;
2582
if (map_def->key_size && map_def->key_size != sz) {
2583
pr_warn("map '%s': conflicting key size %u != %u.\n",
2584
map_name, map_def->key_size, sz);
2585
return -EINVAL;
2586
}
2587
map_def->key_size = sz;
2588
map_def->parts |= MAP_DEF_KEY_SIZE;
2589
} else if (strcmp(name, "key") == 0) {
2590
__s64 sz;
2591
2592
t = btf__type_by_id(btf, m->type);
2593
if (!t) {
2594
pr_warn("map '%s': key type [%d] not found.\n",
2595
map_name, m->type);
2596
return -EINVAL;
2597
}
2598
if (!btf_is_ptr(t)) {
2599
pr_warn("map '%s': key spec is not PTR: %s.\n",
2600
map_name, btf_kind_str(t));
2601
return -EINVAL;
2602
}
2603
sz = btf__resolve_size(btf, t->type);
2604
if (sz < 0) {
2605
pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2606
map_name, t->type, (ssize_t)sz);
2607
return sz;
2608
}
2609
if (map_def->key_size && map_def->key_size != sz) {
2610
pr_warn("map '%s': conflicting key size %u != %zd.\n",
2611
map_name, map_def->key_size, (ssize_t)sz);
2612
return -EINVAL;
2613
}
2614
map_def->key_size = sz;
2615
map_def->key_type_id = t->type;
2616
map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2617
} else if (strcmp(name, "value_size") == 0) {
2618
__u32 sz;
2619
2620
if (!get_map_field_int(map_name, btf, m, &sz))
2621
return -EINVAL;
2622
if (map_def->value_size && map_def->value_size != sz) {
2623
pr_warn("map '%s': conflicting value size %u != %u.\n",
2624
map_name, map_def->value_size, sz);
2625
return -EINVAL;
2626
}
2627
map_def->value_size = sz;
2628
map_def->parts |= MAP_DEF_VALUE_SIZE;
2629
} else if (strcmp(name, "value") == 0) {
2630
__s64 sz;
2631
2632
t = btf__type_by_id(btf, m->type);
2633
if (!t) {
2634
pr_warn("map '%s': value type [%d] not found.\n",
2635
map_name, m->type);
2636
return -EINVAL;
2637
}
2638
if (!btf_is_ptr(t)) {
2639
pr_warn("map '%s': value spec is not PTR: %s.\n",
2640
map_name, btf_kind_str(t));
2641
return -EINVAL;
2642
}
2643
sz = btf__resolve_size(btf, t->type);
2644
if (sz < 0) {
2645
pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2646
map_name, t->type, (ssize_t)sz);
2647
return sz;
2648
}
2649
if (map_def->value_size && map_def->value_size != sz) {
2650
pr_warn("map '%s': conflicting value size %u != %zd.\n",
2651
map_name, map_def->value_size, (ssize_t)sz);
2652
return -EINVAL;
2653
}
2654
map_def->value_size = sz;
2655
map_def->value_type_id = t->type;
2656
map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2657
}
2658
else if (strcmp(name, "values") == 0) {
2659
bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2660
bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2661
const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2662
char inner_map_name[128];
2663
int err;
2664
2665
if (is_inner) {
2666
pr_warn("map '%s': multi-level inner maps not supported.\n",
2667
map_name);
2668
return -ENOTSUP;
2669
}
2670
if (i != vlen - 1) {
2671
pr_warn("map '%s': '%s' member should be last.\n",
2672
map_name, name);
2673
return -EINVAL;
2674
}
2675
if (!is_map_in_map && !is_prog_array) {
2676
pr_warn("map '%s': should be map-in-map or prog-array.\n",
2677
map_name);
2678
return -ENOTSUP;
2679
}
2680
if (map_def->value_size && map_def->value_size != 4) {
2681
pr_warn("map '%s': conflicting value size %u != 4.\n",
2682
map_name, map_def->value_size);
2683
return -EINVAL;
2684
}
2685
map_def->value_size = 4;
2686
t = btf__type_by_id(btf, m->type);
2687
if (!t) {
2688
pr_warn("map '%s': %s type [%d] not found.\n",
2689
map_name, desc, m->type);
2690
return -EINVAL;
2691
}
2692
if (!btf_is_array(t) || btf_array(t)->nelems) {
2693
pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2694
map_name, desc);
2695
return -EINVAL;
2696
}
2697
t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2698
if (!btf_is_ptr(t)) {
2699
pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2700
map_name, desc, btf_kind_str(t));
2701
return -EINVAL;
2702
}
2703
t = skip_mods_and_typedefs(btf, t->type, NULL);
2704
if (is_prog_array) {
2705
if (!btf_is_func_proto(t)) {
2706
pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2707
map_name, btf_kind_str(t));
2708
return -EINVAL;
2709
}
2710
continue;
2711
}
2712
if (!btf_is_struct(t)) {
2713
pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2714
map_name, btf_kind_str(t));
2715
return -EINVAL;
2716
}
2717
2718
snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2719
err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2720
if (err)
2721
return err;
2722
2723
map_def->parts |= MAP_DEF_INNER_MAP;
2724
} else if (strcmp(name, "pinning") == 0) {
2725
__u32 val;
2726
2727
if (is_inner) {
2728
pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2729
return -EINVAL;
2730
}
2731
if (!get_map_field_int(map_name, btf, m, &val))
2732
return -EINVAL;
2733
if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2734
pr_warn("map '%s': invalid pinning value %u.\n",
2735
map_name, val);
2736
return -EINVAL;
2737
}
2738
map_def->pinning = val;
2739
map_def->parts |= MAP_DEF_PINNING;
2740
} else if (strcmp(name, "map_extra") == 0) {
2741
__u64 map_extra;
2742
2743
if (!get_map_field_long(map_name, btf, m, &map_extra))
2744
return -EINVAL;
2745
map_def->map_extra = map_extra;
2746
map_def->parts |= MAP_DEF_MAP_EXTRA;
2747
} else {
2748
if (strict) {
2749
pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2750
return -ENOTSUP;
2751
}
2752
pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2753
}
2754
}
2755
2756
if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2757
pr_warn("map '%s': map type isn't specified.\n", map_name);
2758
return -EINVAL;
2759
}
2760
2761
return 0;
2762
}
2763
2764
static size_t adjust_ringbuf_sz(size_t sz)
2765
{
2766
__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2767
__u32 mul;
2768
2769
/* if user forgot to set any size, make sure they see error */
2770
if (sz == 0)
2771
return 0;
2772
/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2773
* a power-of-2 multiple of kernel's page size. If user diligently
2774
* satisified these conditions, pass the size through.
2775
*/
2776
if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2777
return sz;
2778
2779
/* Otherwise find closest (page_sz * power_of_2) product bigger than
2780
* user-set size to satisfy both user size request and kernel
2781
* requirements and substitute correct max_entries for map creation.
2782
*/
2783
for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2784
if (mul * page_sz > sz)
2785
return mul * page_sz;
2786
}
2787
2788
/* if it's impossible to satisfy the conditions (i.e., user size is
2789
* very close to UINT_MAX but is not a power-of-2 multiple of
2790
* page_size) then just return original size and let kernel reject it
2791
*/
2792
return sz;
2793
}
2794
2795
static bool map_is_ringbuf(const struct bpf_map *map)
2796
{
2797
return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2798
map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2799
}
2800
2801
static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2802
{
2803
map->def.type = def->map_type;
2804
map->def.key_size = def->key_size;
2805
map->def.value_size = def->value_size;
2806
map->def.max_entries = def->max_entries;
2807
map->def.map_flags = def->map_flags;
2808
map->map_extra = def->map_extra;
2809
2810
map->numa_node = def->numa_node;
2811
map->btf_key_type_id = def->key_type_id;
2812
map->btf_value_type_id = def->value_type_id;
2813
2814
/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2815
if (map_is_ringbuf(map))
2816
map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2817
2818
if (def->parts & MAP_DEF_MAP_TYPE)
2819
pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2820
2821
if (def->parts & MAP_DEF_KEY_TYPE)
2822
pr_debug("map '%s': found key [%u], sz = %u.\n",
2823
map->name, def->key_type_id, def->key_size);
2824
else if (def->parts & MAP_DEF_KEY_SIZE)
2825
pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2826
2827
if (def->parts & MAP_DEF_VALUE_TYPE)
2828
pr_debug("map '%s': found value [%u], sz = %u.\n",
2829
map->name, def->value_type_id, def->value_size);
2830
else if (def->parts & MAP_DEF_VALUE_SIZE)
2831
pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2832
2833
if (def->parts & MAP_DEF_MAX_ENTRIES)
2834
pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2835
if (def->parts & MAP_DEF_MAP_FLAGS)
2836
pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2837
if (def->parts & MAP_DEF_MAP_EXTRA)
2838
pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2839
(unsigned long long)def->map_extra);
2840
if (def->parts & MAP_DEF_PINNING)
2841
pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2842
if (def->parts & MAP_DEF_NUMA_NODE)
2843
pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2844
2845
if (def->parts & MAP_DEF_INNER_MAP)
2846
pr_debug("map '%s': found inner map definition.\n", map->name);
2847
}
2848
2849
static const char *btf_var_linkage_str(__u32 linkage)
2850
{
2851
switch (linkage) {
2852
case BTF_VAR_STATIC: return "static";
2853
case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2854
case BTF_VAR_GLOBAL_EXTERN: return "extern";
2855
default: return "unknown";
2856
}
2857
}
2858
2859
static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2860
const struct btf_type *sec,
2861
int var_idx, int sec_idx,
2862
const Elf_Data *data, bool strict,
2863
const char *pin_root_path)
2864
{
2865
struct btf_map_def map_def = {}, inner_def = {};
2866
const struct btf_type *var, *def;
2867
const struct btf_var_secinfo *vi;
2868
const struct btf_var *var_extra;
2869
const char *map_name;
2870
struct bpf_map *map;
2871
int err;
2872
2873
vi = btf_var_secinfos(sec) + var_idx;
2874
var = btf__type_by_id(obj->btf, vi->type);
2875
var_extra = btf_var(var);
2876
map_name = btf__name_by_offset(obj->btf, var->name_off);
2877
2878
if (map_name == NULL || map_name[0] == '\0') {
2879
pr_warn("map #%d: empty name.\n", var_idx);
2880
return -EINVAL;
2881
}
2882
if ((__u64)vi->offset + vi->size > data->d_size) {
2883
pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2884
return -EINVAL;
2885
}
2886
if (!btf_is_var(var)) {
2887
pr_warn("map '%s': unexpected var kind %s.\n",
2888
map_name, btf_kind_str(var));
2889
return -EINVAL;
2890
}
2891
if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2892
pr_warn("map '%s': unsupported map linkage %s.\n",
2893
map_name, btf_var_linkage_str(var_extra->linkage));
2894
return -EOPNOTSUPP;
2895
}
2896
2897
def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2898
if (!btf_is_struct(def)) {
2899
pr_warn("map '%s': unexpected def kind %s.\n",
2900
map_name, btf_kind_str(var));
2901
return -EINVAL;
2902
}
2903
if (def->size > vi->size) {
2904
pr_warn("map '%s': invalid def size.\n", map_name);
2905
return -EINVAL;
2906
}
2907
2908
map = bpf_object__add_map(obj);
2909
if (IS_ERR(map))
2910
return PTR_ERR(map);
2911
map->name = strdup(map_name);
2912
if (!map->name) {
2913
pr_warn("map '%s': failed to alloc map name.\n", map_name);
2914
return -ENOMEM;
2915
}
2916
map->libbpf_type = LIBBPF_MAP_UNSPEC;
2917
map->def.type = BPF_MAP_TYPE_UNSPEC;
2918
map->sec_idx = sec_idx;
2919
map->sec_offset = vi->offset;
2920
map->btf_var_idx = var_idx;
2921
pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2922
map_name, map->sec_idx, map->sec_offset);
2923
2924
err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2925
if (err)
2926
return err;
2927
2928
fill_map_from_def(map, &map_def);
2929
2930
if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2931
err = build_map_pin_path(map, pin_root_path);
2932
if (err) {
2933
pr_warn("map '%s': couldn't build pin path.\n", map->name);
2934
return err;
2935
}
2936
}
2937
2938
if (map_def.parts & MAP_DEF_INNER_MAP) {
2939
map->inner_map = calloc(1, sizeof(*map->inner_map));
2940
if (!map->inner_map)
2941
return -ENOMEM;
2942
map->inner_map->fd = create_placeholder_fd();
2943
if (map->inner_map->fd < 0)
2944
return map->inner_map->fd;
2945
map->inner_map->sec_idx = sec_idx;
2946
map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2947
if (!map->inner_map->name)
2948
return -ENOMEM;
2949
sprintf(map->inner_map->name, "%s.inner", map_name);
2950
2951
fill_map_from_def(map->inner_map, &inner_def);
2952
}
2953
2954
err = map_fill_btf_type_info(obj, map);
2955
if (err)
2956
return err;
2957
2958
return 0;
2959
}
2960
2961
static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2962
const char *sec_name, int sec_idx,
2963
void *data, size_t data_sz)
2964
{
2965
const long page_sz = sysconf(_SC_PAGE_SIZE);
2966
size_t mmap_sz;
2967
2968
mmap_sz = bpf_map_mmap_sz(map);
2969
if (roundup(data_sz, page_sz) > mmap_sz) {
2970
pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2971
sec_name, mmap_sz, data_sz);
2972
return -E2BIG;
2973
}
2974
2975
obj->arena_data = malloc(data_sz);
2976
if (!obj->arena_data)
2977
return -ENOMEM;
2978
memcpy(obj->arena_data, data, data_sz);
2979
obj->arena_data_sz = data_sz;
2980
2981
/* make bpf_map__init_value() work for ARENA maps */
2982
map->mmaped = obj->arena_data;
2983
2984
return 0;
2985
}
2986
2987
static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2988
const char *pin_root_path)
2989
{
2990
const struct btf_type *sec = NULL;
2991
int nr_types, i, vlen, err;
2992
const struct btf_type *t;
2993
const char *name;
2994
Elf_Data *data;
2995
Elf_Scn *scn;
2996
2997
if (obj->efile.btf_maps_shndx < 0)
2998
return 0;
2999
3000
scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
3001
data = elf_sec_data(obj, scn);
3002
if (!scn || !data) {
3003
pr_warn("elf: failed to get %s map definitions for %s\n",
3004
MAPS_ELF_SEC, obj->path);
3005
return -EINVAL;
3006
}
3007
3008
nr_types = btf__type_cnt(obj->btf);
3009
for (i = 1; i < nr_types; i++) {
3010
t = btf__type_by_id(obj->btf, i);
3011
if (!btf_is_datasec(t))
3012
continue;
3013
name = btf__name_by_offset(obj->btf, t->name_off);
3014
if (strcmp(name, MAPS_ELF_SEC) == 0) {
3015
sec = t;
3016
obj->efile.btf_maps_sec_btf_id = i;
3017
break;
3018
}
3019
}
3020
3021
if (!sec) {
3022
pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
3023
return -ENOENT;
3024
}
3025
3026
vlen = btf_vlen(sec);
3027
for (i = 0; i < vlen; i++) {
3028
err = bpf_object__init_user_btf_map(obj, sec, i,
3029
obj->efile.btf_maps_shndx,
3030
data, strict,
3031
pin_root_path);
3032
if (err)
3033
return err;
3034
}
3035
3036
for (i = 0; i < obj->nr_maps; i++) {
3037
struct bpf_map *map = &obj->maps[i];
3038
3039
if (map->def.type != BPF_MAP_TYPE_ARENA)
3040
continue;
3041
3042
if (obj->arena_map_idx >= 0) {
3043
pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
3044
map->name, obj->maps[obj->arena_map_idx].name);
3045
return -EINVAL;
3046
}
3047
obj->arena_map_idx = i;
3048
3049
if (obj->efile.arena_data) {
3050
err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
3051
obj->efile.arena_data->d_buf,
3052
obj->efile.arena_data->d_size);
3053
if (err)
3054
return err;
3055
}
3056
}
3057
if (obj->efile.arena_data && obj->arena_map_idx < 0) {
3058
pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
3059
ARENA_SEC);
3060
return -ENOENT;
3061
}
3062
3063
return 0;
3064
}
3065
3066
static int bpf_object__init_maps(struct bpf_object *obj,
3067
const struct bpf_object_open_opts *opts)
3068
{
3069
const char *pin_root_path;
3070
bool strict;
3071
int err = 0;
3072
3073
strict = !OPTS_GET(opts, relaxed_maps, false);
3074
pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
3075
3076
err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
3077
err = err ?: bpf_object__init_global_data_maps(obj);
3078
err = err ?: bpf_object__init_kconfig_map(obj);
3079
err = err ?: bpf_object_init_struct_ops(obj);
3080
3081
return err;
3082
}
3083
3084
static bool section_have_execinstr(struct bpf_object *obj, int idx)
3085
{
3086
Elf64_Shdr *sh;
3087
3088
sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
3089
if (!sh)
3090
return false;
3091
3092
return sh->sh_flags & SHF_EXECINSTR;
3093
}
3094
3095
static bool starts_with_qmark(const char *s)
3096
{
3097
return s && s[0] == '?';
3098
}
3099
3100
static bool btf_needs_sanitization(struct bpf_object *obj)
3101
{
3102
bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3103
bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3104
bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3105
bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3106
bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3107
bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3108
bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3109
bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3110
3111
return !has_func || !has_datasec || !has_func_global || !has_float ||
3112
!has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3113
}
3114
3115
static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3116
{
3117
bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3118
bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3119
bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3120
bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3121
bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3122
bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3123
bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3124
bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3125
int enum64_placeholder_id = 0;
3126
struct btf_type *t;
3127
int i, j, vlen;
3128
3129
for (i = 1; i < btf__type_cnt(btf); i++) {
3130
t = (struct btf_type *)btf__type_by_id(btf, i);
3131
3132
if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3133
/* replace VAR/DECL_TAG with INT */
3134
t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3135
/*
3136
* using size = 1 is the safest choice, 4 will be too
3137
* big and cause kernel BTF validation failure if
3138
* original variable took less than 4 bytes
3139
*/
3140
t->size = 1;
3141
*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3142
} else if (!has_datasec && btf_is_datasec(t)) {
3143
/* replace DATASEC with STRUCT */
3144
const struct btf_var_secinfo *v = btf_var_secinfos(t);
3145
struct btf_member *m = btf_members(t);
3146
struct btf_type *vt;
3147
char *name;
3148
3149
name = (char *)btf__name_by_offset(btf, t->name_off);
3150
while (*name) {
3151
if (*name == '.' || *name == '?')
3152
*name = '_';
3153
name++;
3154
}
3155
3156
vlen = btf_vlen(t);
3157
t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3158
for (j = 0; j < vlen; j++, v++, m++) {
3159
/* order of field assignments is important */
3160
m->offset = v->offset * 8;
3161
m->type = v->type;
3162
/* preserve variable name as member name */
3163
vt = (void *)btf__type_by_id(btf, v->type);
3164
m->name_off = vt->name_off;
3165
}
3166
} else if (!has_qmark_datasec && btf_is_datasec(t) &&
3167
starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3168
/* replace '?' prefix with '_' for DATASEC names */
3169
char *name;
3170
3171
name = (char *)btf__name_by_offset(btf, t->name_off);
3172
if (name[0] == '?')
3173
name[0] = '_';
3174
} else if (!has_func && btf_is_func_proto(t)) {
3175
/* replace FUNC_PROTO with ENUM */
3176
vlen = btf_vlen(t);
3177
t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3178
t->size = sizeof(__u32); /* kernel enforced */
3179
} else if (!has_func && btf_is_func(t)) {
3180
/* replace FUNC with TYPEDEF */
3181
t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3182
} else if (!has_func_global && btf_is_func(t)) {
3183
/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3184
t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3185
} else if (!has_float && btf_is_float(t)) {
3186
/* replace FLOAT with an equally-sized empty STRUCT;
3187
* since C compilers do not accept e.g. "float" as a
3188
* valid struct name, make it anonymous
3189
*/
3190
t->name_off = 0;
3191
t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3192
} else if (!has_type_tag && btf_is_type_tag(t)) {
3193
/* replace TYPE_TAG with a CONST */
3194
t->name_off = 0;
3195
t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3196
} else if (!has_enum64 && btf_is_enum(t)) {
3197
/* clear the kflag */
3198
t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3199
} else if (!has_enum64 && btf_is_enum64(t)) {
3200
/* replace ENUM64 with a union */
3201
struct btf_member *m;
3202
3203
if (enum64_placeholder_id == 0) {
3204
enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3205
if (enum64_placeholder_id < 0)
3206
return enum64_placeholder_id;
3207
3208
t = (struct btf_type *)btf__type_by_id(btf, i);
3209
}
3210
3211
m = btf_members(t);
3212
vlen = btf_vlen(t);
3213
t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3214
for (j = 0; j < vlen; j++, m++) {
3215
m->type = enum64_placeholder_id;
3216
m->offset = 0;
3217
}
3218
}
3219
}
3220
3221
return 0;
3222
}
3223
3224
static bool libbpf_needs_btf(const struct bpf_object *obj)
3225
{
3226
return obj->efile.btf_maps_shndx >= 0 ||
3227
obj->efile.has_st_ops ||
3228
obj->nr_extern > 0;
3229
}
3230
3231
static bool kernel_needs_btf(const struct bpf_object *obj)
3232
{
3233
return obj->efile.has_st_ops;
3234
}
3235
3236
static int bpf_object__init_btf(struct bpf_object *obj,
3237
Elf_Data *btf_data,
3238
Elf_Data *btf_ext_data)
3239
{
3240
int err = -ENOENT;
3241
3242
if (btf_data) {
3243
obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3244
err = libbpf_get_error(obj->btf);
3245
if (err) {
3246
obj->btf = NULL;
3247
pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err));
3248
goto out;
3249
}
3250
/* enforce 8-byte pointers for BPF-targeted BTFs */
3251
btf__set_pointer_size(obj->btf, 8);
3252
}
3253
if (btf_ext_data) {
3254
struct btf_ext_info *ext_segs[3];
3255
int seg_num, sec_num;
3256
3257
if (!obj->btf) {
3258
pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3259
BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3260
goto out;
3261
}
3262
obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3263
err = libbpf_get_error(obj->btf_ext);
3264
if (err) {
3265
pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n",
3266
BTF_EXT_ELF_SEC, errstr(err));
3267
obj->btf_ext = NULL;
3268
goto out;
3269
}
3270
3271
/* setup .BTF.ext to ELF section mapping */
3272
ext_segs[0] = &obj->btf_ext->func_info;
3273
ext_segs[1] = &obj->btf_ext->line_info;
3274
ext_segs[2] = &obj->btf_ext->core_relo_info;
3275
for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3276
struct btf_ext_info *seg = ext_segs[seg_num];
3277
const struct btf_ext_info_sec *sec;
3278
const char *sec_name;
3279
Elf_Scn *scn;
3280
3281
if (seg->sec_cnt == 0)
3282
continue;
3283
3284
seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3285
if (!seg->sec_idxs) {
3286
err = -ENOMEM;
3287
goto out;
3288
}
3289
3290
sec_num = 0;
3291
for_each_btf_ext_sec(seg, sec) {
3292
/* preventively increment index to avoid doing
3293
* this before every continue below
3294
*/
3295
sec_num++;
3296
3297
sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3298
if (str_is_empty(sec_name))
3299
continue;
3300
scn = elf_sec_by_name(obj, sec_name);
3301
if (!scn)
3302
continue;
3303
3304
seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3305
}
3306
}
3307
}
3308
out:
3309
if (err && libbpf_needs_btf(obj)) {
3310
pr_warn("BTF is required, but is missing or corrupted.\n");
3311
return err;
3312
}
3313
return 0;
3314
}
3315
3316
static int compare_vsi_off(const void *_a, const void *_b)
3317
{
3318
const struct btf_var_secinfo *a = _a;
3319
const struct btf_var_secinfo *b = _b;
3320
3321
return a->offset - b->offset;
3322
}
3323
3324
static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3325
struct btf_type *t)
3326
{
3327
__u32 size = 0, i, vars = btf_vlen(t);
3328
const char *sec_name = btf__name_by_offset(btf, t->name_off);
3329
struct btf_var_secinfo *vsi;
3330
bool fixup_offsets = false;
3331
int err;
3332
3333
if (!sec_name) {
3334
pr_debug("No name found in string section for DATASEC kind.\n");
3335
return -ENOENT;
3336
}
3337
3338
/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3339
* variable offsets set at the previous step. Further, not every
3340
* extern BTF VAR has corresponding ELF symbol preserved, so we skip
3341
* all fixups altogether for such sections and go straight to sorting
3342
* VARs within their DATASEC.
3343
*/
3344
if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3345
goto sort_vars;
3346
3347
/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3348
* fix this up. But BPF static linker already fixes this up and fills
3349
* all the sizes and offsets during static linking. So this step has
3350
* to be optional. But the STV_HIDDEN handling is non-optional for any
3351
* non-extern DATASEC, so the variable fixup loop below handles both
3352
* functions at the same time, paying the cost of BTF VAR <-> ELF
3353
* symbol matching just once.
3354
*/
3355
if (t->size == 0) {
3356
err = find_elf_sec_sz(obj, sec_name, &size);
3357
if (err || !size) {
3358
pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n",
3359
sec_name, size, errstr(err));
3360
return -ENOENT;
3361
}
3362
3363
t->size = size;
3364
fixup_offsets = true;
3365
}
3366
3367
for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3368
const struct btf_type *t_var;
3369
struct btf_var *var;
3370
const char *var_name;
3371
Elf64_Sym *sym;
3372
3373
t_var = btf__type_by_id(btf, vsi->type);
3374
if (!t_var || !btf_is_var(t_var)) {
3375
pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3376
return -EINVAL;
3377
}
3378
3379
var = btf_var(t_var);
3380
if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3381
continue;
3382
3383
var_name = btf__name_by_offset(btf, t_var->name_off);
3384
if (!var_name) {
3385
pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3386
sec_name, i);
3387
return -ENOENT;
3388
}
3389
3390
sym = find_elf_var_sym(obj, var_name);
3391
if (IS_ERR(sym)) {
3392
pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3393
sec_name, var_name);
3394
return -ENOENT;
3395
}
3396
3397
if (fixup_offsets)
3398
vsi->offset = sym->st_value;
3399
3400
/* if variable is a global/weak symbol, but has restricted
3401
* (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3402
* as static. This follows similar logic for functions (BPF
3403
* subprogs) and influences libbpf's further decisions about
3404
* whether to make global data BPF array maps as
3405
* BPF_F_MMAPABLE.
3406
*/
3407
if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3408
|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3409
var->linkage = BTF_VAR_STATIC;
3410
}
3411
3412
sort_vars:
3413
qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3414
return 0;
3415
}
3416
3417
static int bpf_object_fixup_btf(struct bpf_object *obj)
3418
{
3419
int i, n, err = 0;
3420
3421
if (!obj->btf)
3422
return 0;
3423
3424
n = btf__type_cnt(obj->btf);
3425
for (i = 1; i < n; i++) {
3426
struct btf_type *t = btf_type_by_id(obj->btf, i);
3427
3428
/* Loader needs to fix up some of the things compiler
3429
* couldn't get its hands on while emitting BTF. This
3430
* is section size and global variable offset. We use
3431
* the info from the ELF itself for this purpose.
3432
*/
3433
if (btf_is_datasec(t)) {
3434
err = btf_fixup_datasec(obj, obj->btf, t);
3435
if (err)
3436
return err;
3437
}
3438
}
3439
3440
return 0;
3441
}
3442
3443
static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3444
{
3445
if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3446
prog->type == BPF_PROG_TYPE_LSM)
3447
return true;
3448
3449
/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3450
* also need vmlinux BTF
3451
*/
3452
if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3453
return true;
3454
3455
return false;
3456
}
3457
3458
static bool map_needs_vmlinux_btf(struct bpf_map *map)
3459
{
3460
return bpf_map__is_struct_ops(map);
3461
}
3462
3463
static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3464
{
3465
struct bpf_program *prog;
3466
struct bpf_map *map;
3467
int i;
3468
3469
/* CO-RE relocations need kernel BTF, only when btf_custom_path
3470
* is not specified
3471
*/
3472
if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3473
return true;
3474
3475
/* Support for typed ksyms needs kernel BTF */
3476
for (i = 0; i < obj->nr_extern; i++) {
3477
const struct extern_desc *ext;
3478
3479
ext = &obj->externs[i];
3480
if (ext->type == EXT_KSYM && ext->ksym.type_id)
3481
return true;
3482
}
3483
3484
bpf_object__for_each_program(prog, obj) {
3485
if (!prog->autoload)
3486
continue;
3487
if (prog_needs_vmlinux_btf(prog))
3488
return true;
3489
}
3490
3491
bpf_object__for_each_map(map, obj) {
3492
if (map_needs_vmlinux_btf(map))
3493
return true;
3494
}
3495
3496
return false;
3497
}
3498
3499
static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3500
{
3501
int err;
3502
3503
/* btf_vmlinux could be loaded earlier */
3504
if (obj->btf_vmlinux || obj->gen_loader)
3505
return 0;
3506
3507
if (!force && !obj_needs_vmlinux_btf(obj))
3508
return 0;
3509
3510
obj->btf_vmlinux = btf__load_vmlinux_btf();
3511
err = libbpf_get_error(obj->btf_vmlinux);
3512
if (err) {
3513
pr_warn("Error loading vmlinux BTF: %s\n", errstr(err));
3514
obj->btf_vmlinux = NULL;
3515
return err;
3516
}
3517
return 0;
3518
}
3519
3520
static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3521
{
3522
struct btf *kern_btf = obj->btf;
3523
bool btf_mandatory, sanitize;
3524
int i, err = 0;
3525
3526
if (!obj->btf)
3527
return 0;
3528
3529
if (!kernel_supports(obj, FEAT_BTF)) {
3530
if (kernel_needs_btf(obj)) {
3531
err = -EOPNOTSUPP;
3532
goto report;
3533
}
3534
pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3535
return 0;
3536
}
3537
3538
/* Even though some subprogs are global/weak, user might prefer more
3539
* permissive BPF verification process that BPF verifier performs for
3540
* static functions, taking into account more context from the caller
3541
* functions. In such case, they need to mark such subprogs with
3542
* __attribute__((visibility("hidden"))) and libbpf will adjust
3543
* corresponding FUNC BTF type to be marked as static and trigger more
3544
* involved BPF verification process.
3545
*/
3546
for (i = 0; i < obj->nr_programs; i++) {
3547
struct bpf_program *prog = &obj->programs[i];
3548
struct btf_type *t;
3549
const char *name;
3550
int j, n;
3551
3552
if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3553
continue;
3554
3555
n = btf__type_cnt(obj->btf);
3556
for (j = 1; j < n; j++) {
3557
t = btf_type_by_id(obj->btf, j);
3558
if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3559
continue;
3560
3561
name = btf__str_by_offset(obj->btf, t->name_off);
3562
if (strcmp(name, prog->name) != 0)
3563
continue;
3564
3565
t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3566
break;
3567
}
3568
}
3569
3570
sanitize = btf_needs_sanitization(obj);
3571
if (sanitize) {
3572
const void *raw_data;
3573
__u32 sz;
3574
3575
/* clone BTF to sanitize a copy and leave the original intact */
3576
raw_data = btf__raw_data(obj->btf, &sz);
3577
kern_btf = btf__new(raw_data, sz);
3578
err = libbpf_get_error(kern_btf);
3579
if (err)
3580
return err;
3581
3582
/* enforce 8-byte pointers for BPF-targeted BTFs */
3583
btf__set_pointer_size(obj->btf, 8);
3584
err = bpf_object__sanitize_btf(obj, kern_btf);
3585
if (err)
3586
return err;
3587
}
3588
3589
if (obj->gen_loader) {
3590
__u32 raw_size = 0;
3591
const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3592
3593
if (!raw_data)
3594
return -ENOMEM;
3595
bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3596
/* Pretend to have valid FD to pass various fd >= 0 checks.
3597
* This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3598
*/
3599
btf__set_fd(kern_btf, 0);
3600
} else {
3601
/* currently BPF_BTF_LOAD only supports log_level 1 */
3602
err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3603
obj->log_level ? 1 : 0, obj->token_fd);
3604
}
3605
if (sanitize) {
3606
if (!err) {
3607
/* move fd to libbpf's BTF */
3608
btf__set_fd(obj->btf, btf__fd(kern_btf));
3609
btf__set_fd(kern_btf, -1);
3610
}
3611
btf__free(kern_btf);
3612
}
3613
report:
3614
if (err) {
3615
btf_mandatory = kernel_needs_btf(obj);
3616
if (btf_mandatory) {
3617
pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n",
3618
errstr(err));
3619
} else {
3620
pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n",
3621
errstr(err));
3622
err = 0;
3623
}
3624
}
3625
return err;
3626
}
3627
3628
static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3629
{
3630
const char *name;
3631
3632
name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3633
if (!name) {
3634
pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3635
off, obj->path, elf_errmsg(-1));
3636
return NULL;
3637
}
3638
3639
return name;
3640
}
3641
3642
static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3643
{
3644
const char *name;
3645
3646
name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3647
if (!name) {
3648
pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3649
off, obj->path, elf_errmsg(-1));
3650
return NULL;
3651
}
3652
3653
return name;
3654
}
3655
3656
static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3657
{
3658
Elf_Scn *scn;
3659
3660
scn = elf_getscn(obj->efile.elf, idx);
3661
if (!scn) {
3662
pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3663
idx, obj->path, elf_errmsg(-1));
3664
return NULL;
3665
}
3666
return scn;
3667
}
3668
3669
static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3670
{
3671
Elf_Scn *scn = NULL;
3672
Elf *elf = obj->efile.elf;
3673
const char *sec_name;
3674
3675
while ((scn = elf_nextscn(elf, scn)) != NULL) {
3676
sec_name = elf_sec_name(obj, scn);
3677
if (!sec_name)
3678
return NULL;
3679
3680
if (strcmp(sec_name, name) != 0)
3681
continue;
3682
3683
return scn;
3684
}
3685
return NULL;
3686
}
3687
3688
static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3689
{
3690
Elf64_Shdr *shdr;
3691
3692
if (!scn)
3693
return NULL;
3694
3695
shdr = elf64_getshdr(scn);
3696
if (!shdr) {
3697
pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3698
elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3699
return NULL;
3700
}
3701
3702
return shdr;
3703
}
3704
3705
static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3706
{
3707
const char *name;
3708
Elf64_Shdr *sh;
3709
3710
if (!scn)
3711
return NULL;
3712
3713
sh = elf_sec_hdr(obj, scn);
3714
if (!sh)
3715
return NULL;
3716
3717
name = elf_sec_str(obj, sh->sh_name);
3718
if (!name) {
3719
pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3720
elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3721
return NULL;
3722
}
3723
3724
return name;
3725
}
3726
3727
static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3728
{
3729
Elf_Data *data;
3730
3731
if (!scn)
3732
return NULL;
3733
3734
data = elf_getdata(scn, 0);
3735
if (!data) {
3736
pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3737
elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3738
obj->path, elf_errmsg(-1));
3739
return NULL;
3740
}
3741
3742
return data;
3743
}
3744
3745
static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3746
{
3747
if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3748
return NULL;
3749
3750
return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3751
}
3752
3753
static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3754
{
3755
if (idx >= data->d_size / sizeof(Elf64_Rel))
3756
return NULL;
3757
3758
return (Elf64_Rel *)data->d_buf + idx;
3759
}
3760
3761
static bool is_sec_name_dwarf(const char *name)
3762
{
3763
/* approximation, but the actual list is too long */
3764
return str_has_pfx(name, ".debug_");
3765
}
3766
3767
static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3768
{
3769
/* no special handling of .strtab */
3770
if (hdr->sh_type == SHT_STRTAB)
3771
return true;
3772
3773
/* ignore .llvm_addrsig section as well */
3774
if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3775
return true;
3776
3777
/* no subprograms will lead to an empty .text section, ignore it */
3778
if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3779
strcmp(name, ".text") == 0)
3780
return true;
3781
3782
/* DWARF sections */
3783
if (is_sec_name_dwarf(name))
3784
return true;
3785
3786
if (str_has_pfx(name, ".rel")) {
3787
name += sizeof(".rel") - 1;
3788
/* DWARF section relocations */
3789
if (is_sec_name_dwarf(name))
3790
return true;
3791
3792
/* .BTF and .BTF.ext don't need relocations */
3793
if (strcmp(name, BTF_ELF_SEC) == 0 ||
3794
strcmp(name, BTF_EXT_ELF_SEC) == 0)
3795
return true;
3796
}
3797
3798
return false;
3799
}
3800
3801
static int cmp_progs(const void *_a, const void *_b)
3802
{
3803
const struct bpf_program *a = _a;
3804
const struct bpf_program *b = _b;
3805
3806
if (a->sec_idx != b->sec_idx)
3807
return a->sec_idx < b->sec_idx ? -1 : 1;
3808
3809
/* sec_insn_off can't be the same within the section */
3810
return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3811
}
3812
3813
static int bpf_object__elf_collect(struct bpf_object *obj)
3814
{
3815
struct elf_sec_desc *sec_desc;
3816
Elf *elf = obj->efile.elf;
3817
Elf_Data *btf_ext_data = NULL;
3818
Elf_Data *btf_data = NULL;
3819
int idx = 0, err = 0;
3820
const char *name;
3821
Elf_Data *data;
3822
Elf_Scn *scn;
3823
Elf64_Shdr *sh;
3824
3825
/* ELF section indices are 0-based, but sec #0 is special "invalid"
3826
* section. Since section count retrieved by elf_getshdrnum() does
3827
* include sec #0, it is already the necessary size of an array to keep
3828
* all the sections.
3829
*/
3830
if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3831
pr_warn("elf: failed to get the number of sections for %s: %s\n",
3832
obj->path, elf_errmsg(-1));
3833
return -LIBBPF_ERRNO__FORMAT;
3834
}
3835
obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3836
if (!obj->efile.secs)
3837
return -ENOMEM;
3838
3839
/* a bunch of ELF parsing functionality depends on processing symbols,
3840
* so do the first pass and find the symbol table
3841
*/
3842
scn = NULL;
3843
while ((scn = elf_nextscn(elf, scn)) != NULL) {
3844
sh = elf_sec_hdr(obj, scn);
3845
if (!sh)
3846
return -LIBBPF_ERRNO__FORMAT;
3847
3848
if (sh->sh_type == SHT_SYMTAB) {
3849
if (obj->efile.symbols) {
3850
pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3851
return -LIBBPF_ERRNO__FORMAT;
3852
}
3853
3854
data = elf_sec_data(obj, scn);
3855
if (!data)
3856
return -LIBBPF_ERRNO__FORMAT;
3857
3858
idx = elf_ndxscn(scn);
3859
3860
obj->efile.symbols = data;
3861
obj->efile.symbols_shndx = idx;
3862
obj->efile.strtabidx = sh->sh_link;
3863
}
3864
}
3865
3866
if (!obj->efile.symbols) {
3867
pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3868
obj->path);
3869
return -ENOENT;
3870
}
3871
3872
scn = NULL;
3873
while ((scn = elf_nextscn(elf, scn)) != NULL) {
3874
idx = elf_ndxscn(scn);
3875
sec_desc = &obj->efile.secs[idx];
3876
3877
sh = elf_sec_hdr(obj, scn);
3878
if (!sh)
3879
return -LIBBPF_ERRNO__FORMAT;
3880
3881
name = elf_sec_str(obj, sh->sh_name);
3882
if (!name)
3883
return -LIBBPF_ERRNO__FORMAT;
3884
3885
if (ignore_elf_section(sh, name))
3886
continue;
3887
3888
data = elf_sec_data(obj, scn);
3889
if (!data)
3890
return -LIBBPF_ERRNO__FORMAT;
3891
3892
pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3893
idx, name, (unsigned long)data->d_size,
3894
(int)sh->sh_link, (unsigned long)sh->sh_flags,
3895
(int)sh->sh_type);
3896
3897
if (strcmp(name, "license") == 0) {
3898
err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3899
if (err)
3900
return err;
3901
} else if (strcmp(name, "version") == 0) {
3902
err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3903
if (err)
3904
return err;
3905
} else if (strcmp(name, "maps") == 0) {
3906
pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3907
return -ENOTSUP;
3908
} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3909
obj->efile.btf_maps_shndx = idx;
3910
} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3911
if (sh->sh_type != SHT_PROGBITS)
3912
return -LIBBPF_ERRNO__FORMAT;
3913
btf_data = data;
3914
} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3915
if (sh->sh_type != SHT_PROGBITS)
3916
return -LIBBPF_ERRNO__FORMAT;
3917
btf_ext_data = data;
3918
} else if (sh->sh_type == SHT_SYMTAB) {
3919
/* already processed during the first pass above */
3920
} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3921
if (sh->sh_flags & SHF_EXECINSTR) {
3922
if (strcmp(name, ".text") == 0)
3923
obj->efile.text_shndx = idx;
3924
err = bpf_object__add_programs(obj, data, name, idx);
3925
if (err)
3926
return err;
3927
} else if (strcmp(name, DATA_SEC) == 0 ||
3928
str_has_pfx(name, DATA_SEC ".")) {
3929
sec_desc->sec_type = SEC_DATA;
3930
sec_desc->shdr = sh;
3931
sec_desc->data = data;
3932
} else if (strcmp(name, RODATA_SEC) == 0 ||
3933
str_has_pfx(name, RODATA_SEC ".")) {
3934
sec_desc->sec_type = SEC_RODATA;
3935
sec_desc->shdr = sh;
3936
sec_desc->data = data;
3937
} else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3938
strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3939
strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3940
strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3941
sec_desc->sec_type = SEC_ST_OPS;
3942
sec_desc->shdr = sh;
3943
sec_desc->data = data;
3944
obj->efile.has_st_ops = true;
3945
} else if (strcmp(name, ARENA_SEC) == 0) {
3946
obj->efile.arena_data = data;
3947
obj->efile.arena_data_shndx = idx;
3948
} else {
3949
pr_info("elf: skipping unrecognized data section(%d) %s\n",
3950
idx, name);
3951
}
3952
} else if (sh->sh_type == SHT_REL) {
3953
int targ_sec_idx = sh->sh_info; /* points to other section */
3954
3955
if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3956
targ_sec_idx >= obj->efile.sec_cnt)
3957
return -LIBBPF_ERRNO__FORMAT;
3958
3959
/* Only do relo for section with exec instructions */
3960
if (!section_have_execinstr(obj, targ_sec_idx) &&
3961
strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3962
strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3963
strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3964
strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3965
strcmp(name, ".rel" MAPS_ELF_SEC)) {
3966
pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3967
idx, name, targ_sec_idx,
3968
elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3969
continue;
3970
}
3971
3972
sec_desc->sec_type = SEC_RELO;
3973
sec_desc->shdr = sh;
3974
sec_desc->data = data;
3975
} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3976
str_has_pfx(name, BSS_SEC "."))) {
3977
sec_desc->sec_type = SEC_BSS;
3978
sec_desc->shdr = sh;
3979
sec_desc->data = data;
3980
} else {
3981
pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3982
(size_t)sh->sh_size);
3983
}
3984
}
3985
3986
if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3987
pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3988
return -LIBBPF_ERRNO__FORMAT;
3989
}
3990
3991
/* change BPF program insns to native endianness for introspection */
3992
if (!is_native_endianness(obj))
3993
bpf_object_bswap_progs(obj);
3994
3995
/* sort BPF programs by section name and in-section instruction offset
3996
* for faster search
3997
*/
3998
if (obj->nr_programs)
3999
qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
4000
4001
return bpf_object__init_btf(obj, btf_data, btf_ext_data);
4002
}
4003
4004
static bool sym_is_extern(const Elf64_Sym *sym)
4005
{
4006
int bind = ELF64_ST_BIND(sym->st_info);
4007
/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
4008
return sym->st_shndx == SHN_UNDEF &&
4009
(bind == STB_GLOBAL || bind == STB_WEAK) &&
4010
ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
4011
}
4012
4013
static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
4014
{
4015
int bind = ELF64_ST_BIND(sym->st_info);
4016
int type = ELF64_ST_TYPE(sym->st_info);
4017
4018
/* in .text section */
4019
if (sym->st_shndx != text_shndx)
4020
return false;
4021
4022
/* local function */
4023
if (bind == STB_LOCAL && type == STT_SECTION)
4024
return true;
4025
4026
/* global function */
4027
return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC;
4028
}
4029
4030
static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
4031
{
4032
const struct btf_type *t;
4033
const char *tname;
4034
int i, n;
4035
4036
if (!btf)
4037
return -ESRCH;
4038
4039
n = btf__type_cnt(btf);
4040
for (i = 1; i < n; i++) {
4041
t = btf__type_by_id(btf, i);
4042
4043
if (!btf_is_var(t) && !btf_is_func(t))
4044
continue;
4045
4046
tname = btf__name_by_offset(btf, t->name_off);
4047
if (strcmp(tname, ext_name))
4048
continue;
4049
4050
if (btf_is_var(t) &&
4051
btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
4052
return -EINVAL;
4053
4054
if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
4055
return -EINVAL;
4056
4057
return i;
4058
}
4059
4060
return -ENOENT;
4061
}
4062
4063
static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
4064
const struct btf_var_secinfo *vs;
4065
const struct btf_type *t;
4066
int i, j, n;
4067
4068
if (!btf)
4069
return -ESRCH;
4070
4071
n = btf__type_cnt(btf);
4072
for (i = 1; i < n; i++) {
4073
t = btf__type_by_id(btf, i);
4074
4075
if (!btf_is_datasec(t))
4076
continue;
4077
4078
vs = btf_var_secinfos(t);
4079
for (j = 0; j < btf_vlen(t); j++, vs++) {
4080
if (vs->type == ext_btf_id)
4081
return i;
4082
}
4083
}
4084
4085
return -ENOENT;
4086
}
4087
4088
static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4089
bool *is_signed)
4090
{
4091
const struct btf_type *t;
4092
const char *name;
4093
4094
t = skip_mods_and_typedefs(btf, id, NULL);
4095
name = btf__name_by_offset(btf, t->name_off);
4096
4097
if (is_signed)
4098
*is_signed = false;
4099
switch (btf_kind(t)) {
4100
case BTF_KIND_INT: {
4101
int enc = btf_int_encoding(t);
4102
4103
if (enc & BTF_INT_BOOL)
4104
return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4105
if (is_signed)
4106
*is_signed = enc & BTF_INT_SIGNED;
4107
if (t->size == 1)
4108
return KCFG_CHAR;
4109
if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4110
return KCFG_UNKNOWN;
4111
return KCFG_INT;
4112
}
4113
case BTF_KIND_ENUM:
4114
if (t->size != 4)
4115
return KCFG_UNKNOWN;
4116
if (strcmp(name, "libbpf_tristate"))
4117
return KCFG_UNKNOWN;
4118
return KCFG_TRISTATE;
4119
case BTF_KIND_ENUM64:
4120
if (strcmp(name, "libbpf_tristate"))
4121
return KCFG_UNKNOWN;
4122
return KCFG_TRISTATE;
4123
case BTF_KIND_ARRAY:
4124
if (btf_array(t)->nelems == 0)
4125
return KCFG_UNKNOWN;
4126
if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4127
return KCFG_UNKNOWN;
4128
return KCFG_CHAR_ARR;
4129
default:
4130
return KCFG_UNKNOWN;
4131
}
4132
}
4133
4134
static int cmp_externs(const void *_a, const void *_b)
4135
{
4136
const struct extern_desc *a = _a;
4137
const struct extern_desc *b = _b;
4138
4139
if (a->type != b->type)
4140
return a->type < b->type ? -1 : 1;
4141
4142
if (a->type == EXT_KCFG) {
4143
/* descending order by alignment requirements */
4144
if (a->kcfg.align != b->kcfg.align)
4145
return a->kcfg.align > b->kcfg.align ? -1 : 1;
4146
/* ascending order by size, within same alignment class */
4147
if (a->kcfg.sz != b->kcfg.sz)
4148
return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4149
}
4150
4151
/* resolve ties by name */
4152
return strcmp(a->name, b->name);
4153
}
4154
4155
static int find_int_btf_id(const struct btf *btf)
4156
{
4157
const struct btf_type *t;
4158
int i, n;
4159
4160
n = btf__type_cnt(btf);
4161
for (i = 1; i < n; i++) {
4162
t = btf__type_by_id(btf, i);
4163
4164
if (btf_is_int(t) && btf_int_bits(t) == 32)
4165
return i;
4166
}
4167
4168
return 0;
4169
}
4170
4171
static int add_dummy_ksym_var(struct btf *btf)
4172
{
4173
int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4174
const struct btf_var_secinfo *vs;
4175
const struct btf_type *sec;
4176
4177
if (!btf)
4178
return 0;
4179
4180
sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4181
BTF_KIND_DATASEC);
4182
if (sec_btf_id < 0)
4183
return 0;
4184
4185
sec = btf__type_by_id(btf, sec_btf_id);
4186
vs = btf_var_secinfos(sec);
4187
for (i = 0; i < btf_vlen(sec); i++, vs++) {
4188
const struct btf_type *vt;
4189
4190
vt = btf__type_by_id(btf, vs->type);
4191
if (btf_is_func(vt))
4192
break;
4193
}
4194
4195
/* No func in ksyms sec. No need to add dummy var. */
4196
if (i == btf_vlen(sec))
4197
return 0;
4198
4199
int_btf_id = find_int_btf_id(btf);
4200
dummy_var_btf_id = btf__add_var(btf,
4201
"dummy_ksym",
4202
BTF_VAR_GLOBAL_ALLOCATED,
4203
int_btf_id);
4204
if (dummy_var_btf_id < 0)
4205
pr_warn("cannot create a dummy_ksym var\n");
4206
4207
return dummy_var_btf_id;
4208
}
4209
4210
static int bpf_object__collect_externs(struct bpf_object *obj)
4211
{
4212
struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4213
const struct btf_type *t;
4214
struct extern_desc *ext;
4215
int i, n, off, dummy_var_btf_id;
4216
const char *ext_name, *sec_name;
4217
size_t ext_essent_len;
4218
Elf_Scn *scn;
4219
Elf64_Shdr *sh;
4220
4221
if (!obj->efile.symbols)
4222
return 0;
4223
4224
scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4225
sh = elf_sec_hdr(obj, scn);
4226
if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4227
return -LIBBPF_ERRNO__FORMAT;
4228
4229
dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4230
if (dummy_var_btf_id < 0)
4231
return dummy_var_btf_id;
4232
4233
n = sh->sh_size / sh->sh_entsize;
4234
pr_debug("looking for externs among %d symbols...\n", n);
4235
4236
for (i = 0; i < n; i++) {
4237
Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4238
4239
if (!sym)
4240
return -LIBBPF_ERRNO__FORMAT;
4241
if (!sym_is_extern(sym))
4242
continue;
4243
ext_name = elf_sym_str(obj, sym->st_name);
4244
if (!ext_name || !ext_name[0])
4245
continue;
4246
4247
ext = obj->externs;
4248
ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4249
if (!ext)
4250
return -ENOMEM;
4251
obj->externs = ext;
4252
ext = &ext[obj->nr_extern];
4253
memset(ext, 0, sizeof(*ext));
4254
obj->nr_extern++;
4255
4256
ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4257
if (ext->btf_id <= 0) {
4258
pr_warn("failed to find BTF for extern '%s': %d\n",
4259
ext_name, ext->btf_id);
4260
return ext->btf_id;
4261
}
4262
t = btf__type_by_id(obj->btf, ext->btf_id);
4263
ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off));
4264
if (!ext->name)
4265
return -ENOMEM;
4266
ext->sym_idx = i;
4267
ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4268
4269
ext_essent_len = bpf_core_essential_name_len(ext->name);
4270
ext->essent_name = NULL;
4271
if (ext_essent_len != strlen(ext->name)) {
4272
ext->essent_name = strndup(ext->name, ext_essent_len);
4273
if (!ext->essent_name)
4274
return -ENOMEM;
4275
}
4276
4277
ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4278
if (ext->sec_btf_id <= 0) {
4279
pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4280
ext_name, ext->btf_id, ext->sec_btf_id);
4281
return ext->sec_btf_id;
4282
}
4283
sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4284
sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4285
4286
if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4287
if (btf_is_func(t)) {
4288
pr_warn("extern function %s is unsupported under %s section\n",
4289
ext->name, KCONFIG_SEC);
4290
return -ENOTSUP;
4291
}
4292
kcfg_sec = sec;
4293
ext->type = EXT_KCFG;
4294
ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4295
if (ext->kcfg.sz <= 0) {
4296
pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4297
ext_name, ext->kcfg.sz);
4298
return ext->kcfg.sz;
4299
}
4300
ext->kcfg.align = btf__align_of(obj->btf, t->type);
4301
if (ext->kcfg.align <= 0) {
4302
pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4303
ext_name, ext->kcfg.align);
4304
return -EINVAL;
4305
}
4306
ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4307
&ext->kcfg.is_signed);
4308
if (ext->kcfg.type == KCFG_UNKNOWN) {
4309
pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4310
return -ENOTSUP;
4311
}
4312
} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4313
ksym_sec = sec;
4314
ext->type = EXT_KSYM;
4315
skip_mods_and_typedefs(obj->btf, t->type,
4316
&ext->ksym.type_id);
4317
} else {
4318
pr_warn("unrecognized extern section '%s'\n", sec_name);
4319
return -ENOTSUP;
4320
}
4321
}
4322
pr_debug("collected %d externs total\n", obj->nr_extern);
4323
4324
if (!obj->nr_extern)
4325
return 0;
4326
4327
/* sort externs by type, for kcfg ones also by (align, size, name) */
4328
qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4329
4330
/* for .ksyms section, we need to turn all externs into allocated
4331
* variables in BTF to pass kernel verification; we do this by
4332
* pretending that each extern is a 8-byte variable
4333
*/
4334
if (ksym_sec) {
4335
/* find existing 4-byte integer type in BTF to use for fake
4336
* extern variables in DATASEC
4337
*/
4338
int int_btf_id = find_int_btf_id(obj->btf);
4339
/* For extern function, a dummy_var added earlier
4340
* will be used to replace the vs->type and
4341
* its name string will be used to refill
4342
* the missing param's name.
4343
*/
4344
const struct btf_type *dummy_var;
4345
4346
dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4347
for (i = 0; i < obj->nr_extern; i++) {
4348
ext = &obj->externs[i];
4349
if (ext->type != EXT_KSYM)
4350
continue;
4351
pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4352
i, ext->sym_idx, ext->name);
4353
}
4354
4355
sec = ksym_sec;
4356
n = btf_vlen(sec);
4357
for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4358
struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4359
struct btf_type *vt;
4360
4361
vt = (void *)btf__type_by_id(obj->btf, vs->type);
4362
ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4363
ext = find_extern_by_name(obj, ext_name);
4364
if (!ext) {
4365
pr_warn("failed to find extern definition for BTF %s '%s'\n",
4366
btf_kind_str(vt), ext_name);
4367
return -ESRCH;
4368
}
4369
if (btf_is_func(vt)) {
4370
const struct btf_type *func_proto;
4371
struct btf_param *param;
4372
int j;
4373
4374
func_proto = btf__type_by_id(obj->btf,
4375
vt->type);
4376
param = btf_params(func_proto);
4377
/* Reuse the dummy_var string if the
4378
* func proto does not have param name.
4379
*/
4380
for (j = 0; j < btf_vlen(func_proto); j++)
4381
if (param[j].type && !param[j].name_off)
4382
param[j].name_off =
4383
dummy_var->name_off;
4384
vs->type = dummy_var_btf_id;
4385
vt->info &= ~0xffff;
4386
vt->info |= BTF_FUNC_GLOBAL;
4387
} else {
4388
btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4389
vt->type = int_btf_id;
4390
}
4391
vs->offset = off;
4392
vs->size = sizeof(int);
4393
}
4394
sec->size = off;
4395
}
4396
4397
if (kcfg_sec) {
4398
sec = kcfg_sec;
4399
/* for kcfg externs calculate their offsets within a .kconfig map */
4400
off = 0;
4401
for (i = 0; i < obj->nr_extern; i++) {
4402
ext = &obj->externs[i];
4403
if (ext->type != EXT_KCFG)
4404
continue;
4405
4406
ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4407
off = ext->kcfg.data_off + ext->kcfg.sz;
4408
pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4409
i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4410
}
4411
sec->size = off;
4412
n = btf_vlen(sec);
4413
for (i = 0; i < n; i++) {
4414
struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4415
4416
t = btf__type_by_id(obj->btf, vs->type);
4417
ext_name = btf__name_by_offset(obj->btf, t->name_off);
4418
ext = find_extern_by_name(obj, ext_name);
4419
if (!ext) {
4420
pr_warn("failed to find extern definition for BTF var '%s'\n",
4421
ext_name);
4422
return -ESRCH;
4423
}
4424
btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4425
vs->offset = ext->kcfg.data_off;
4426
}
4427
}
4428
return 0;
4429
}
4430
4431
static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4432
{
4433
return prog->sec_idx == obj->efile.text_shndx;
4434
}
4435
4436
struct bpf_program *
4437
bpf_object__find_program_by_name(const struct bpf_object *obj,
4438
const char *name)
4439
{
4440
struct bpf_program *prog;
4441
4442
bpf_object__for_each_program(prog, obj) {
4443
if (prog_is_subprog(obj, prog))
4444
continue;
4445
if (!strcmp(prog->name, name))
4446
return prog;
4447
}
4448
return errno = ENOENT, NULL;
4449
}
4450
4451
static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4452
int shndx)
4453
{
4454
switch (obj->efile.secs[shndx].sec_type) {
4455
case SEC_BSS:
4456
case SEC_DATA:
4457
case SEC_RODATA:
4458
return true;
4459
default:
4460
return false;
4461
}
4462
}
4463
4464
static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4465
int shndx)
4466
{
4467
return shndx == obj->efile.btf_maps_shndx;
4468
}
4469
4470
static enum libbpf_map_type
4471
bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4472
{
4473
if (shndx == obj->efile.symbols_shndx)
4474
return LIBBPF_MAP_KCONFIG;
4475
4476
switch (obj->efile.secs[shndx].sec_type) {
4477
case SEC_BSS:
4478
return LIBBPF_MAP_BSS;
4479
case SEC_DATA:
4480
return LIBBPF_MAP_DATA;
4481
case SEC_RODATA:
4482
return LIBBPF_MAP_RODATA;
4483
default:
4484
return LIBBPF_MAP_UNSPEC;
4485
}
4486
}
4487
4488
static int bpf_program__record_reloc(struct bpf_program *prog,
4489
struct reloc_desc *reloc_desc,
4490
__u32 insn_idx, const char *sym_name,
4491
const Elf64_Sym *sym, const Elf64_Rel *rel)
4492
{
4493
struct bpf_insn *insn = &prog->insns[insn_idx];
4494
size_t map_idx, nr_maps = prog->obj->nr_maps;
4495
struct bpf_object *obj = prog->obj;
4496
__u32 shdr_idx = sym->st_shndx;
4497
enum libbpf_map_type type;
4498
const char *sym_sec_name;
4499
struct bpf_map *map;
4500
4501
if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4502
pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4503
prog->name, sym_name, insn_idx, insn->code);
4504
return -LIBBPF_ERRNO__RELOC;
4505
}
4506
4507
if (sym_is_extern(sym)) {
4508
int sym_idx = ELF64_R_SYM(rel->r_info);
4509
int i, n = obj->nr_extern;
4510
struct extern_desc *ext;
4511
4512
for (i = 0; i < n; i++) {
4513
ext = &obj->externs[i];
4514
if (ext->sym_idx == sym_idx)
4515
break;
4516
}
4517
if (i >= n) {
4518
pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4519
prog->name, sym_name, sym_idx);
4520
return -LIBBPF_ERRNO__RELOC;
4521
}
4522
pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4523
prog->name, i, ext->name, ext->sym_idx, insn_idx);
4524
if (insn->code == (BPF_JMP | BPF_CALL))
4525
reloc_desc->type = RELO_EXTERN_CALL;
4526
else
4527
reloc_desc->type = RELO_EXTERN_LD64;
4528
reloc_desc->insn_idx = insn_idx;
4529
reloc_desc->ext_idx = i;
4530
return 0;
4531
}
4532
4533
/* sub-program call relocation */
4534
if (is_call_insn(insn)) {
4535
if (insn->src_reg != BPF_PSEUDO_CALL) {
4536
pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4537
return -LIBBPF_ERRNO__RELOC;
4538
}
4539
/* text_shndx can be 0, if no default "main" program exists */
4540
if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4541
sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4542
pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4543
prog->name, sym_name, sym_sec_name);
4544
return -LIBBPF_ERRNO__RELOC;
4545
}
4546
if (sym->st_value % BPF_INSN_SZ) {
4547
pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4548
prog->name, sym_name, (size_t)sym->st_value);
4549
return -LIBBPF_ERRNO__RELOC;
4550
}
4551
reloc_desc->type = RELO_CALL;
4552
reloc_desc->insn_idx = insn_idx;
4553
reloc_desc->sym_off = sym->st_value;
4554
return 0;
4555
}
4556
4557
if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4558
pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4559
prog->name, sym_name, shdr_idx);
4560
return -LIBBPF_ERRNO__RELOC;
4561
}
4562
4563
/* loading subprog addresses */
4564
if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4565
/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4566
* local_func: sym->st_value = 0, insn->imm = offset in the section.
4567
*/
4568
if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4569
pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4570
prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4571
return -LIBBPF_ERRNO__RELOC;
4572
}
4573
4574
reloc_desc->type = RELO_SUBPROG_ADDR;
4575
reloc_desc->insn_idx = insn_idx;
4576
reloc_desc->sym_off = sym->st_value;
4577
return 0;
4578
}
4579
4580
type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4581
sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4582
4583
/* arena data relocation */
4584
if (shdr_idx == obj->efile.arena_data_shndx) {
4585
if (obj->arena_map_idx < 0) {
4586
pr_warn("prog '%s': bad arena data relocation at insn %u, no arena maps defined\n",
4587
prog->name, insn_idx);
4588
return -LIBBPF_ERRNO__RELOC;
4589
}
4590
reloc_desc->type = RELO_DATA;
4591
reloc_desc->insn_idx = insn_idx;
4592
reloc_desc->map_idx = obj->arena_map_idx;
4593
reloc_desc->sym_off = sym->st_value;
4594
4595
map = &obj->maps[obj->arena_map_idx];
4596
pr_debug("prog '%s': found arena map %d (%s, sec %d, off %zu) for insn %u\n",
4597
prog->name, obj->arena_map_idx, map->name, map->sec_idx,
4598
map->sec_offset, insn_idx);
4599
return 0;
4600
}
4601
4602
/* generic map reference relocation */
4603
if (type == LIBBPF_MAP_UNSPEC) {
4604
if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4605
pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4606
prog->name, sym_name, sym_sec_name);
4607
return -LIBBPF_ERRNO__RELOC;
4608
}
4609
for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4610
map = &obj->maps[map_idx];
4611
if (map->libbpf_type != type ||
4612
map->sec_idx != sym->st_shndx ||
4613
map->sec_offset != sym->st_value)
4614
continue;
4615
pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4616
prog->name, map_idx, map->name, map->sec_idx,
4617
map->sec_offset, insn_idx);
4618
break;
4619
}
4620
if (map_idx >= nr_maps) {
4621
pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4622
prog->name, sym_sec_name, (size_t)sym->st_value);
4623
return -LIBBPF_ERRNO__RELOC;
4624
}
4625
reloc_desc->type = RELO_LD64;
4626
reloc_desc->insn_idx = insn_idx;
4627
reloc_desc->map_idx = map_idx;
4628
reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4629
return 0;
4630
}
4631
4632
/* global data map relocation */
4633
if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4634
pr_warn("prog '%s': bad data relo against section '%s'\n",
4635
prog->name, sym_sec_name);
4636
return -LIBBPF_ERRNO__RELOC;
4637
}
4638
for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4639
map = &obj->maps[map_idx];
4640
if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4641
continue;
4642
pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4643
prog->name, map_idx, map->name, map->sec_idx,
4644
map->sec_offset, insn_idx);
4645
break;
4646
}
4647
if (map_idx >= nr_maps) {
4648
pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4649
prog->name, sym_sec_name);
4650
return -LIBBPF_ERRNO__RELOC;
4651
}
4652
4653
reloc_desc->type = RELO_DATA;
4654
reloc_desc->insn_idx = insn_idx;
4655
reloc_desc->map_idx = map_idx;
4656
reloc_desc->sym_off = sym->st_value;
4657
return 0;
4658
}
4659
4660
static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4661
{
4662
return insn_idx >= prog->sec_insn_off &&
4663
insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4664
}
4665
4666
static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4667
size_t sec_idx, size_t insn_idx)
4668
{
4669
int l = 0, r = obj->nr_programs - 1, m;
4670
struct bpf_program *prog;
4671
4672
if (!obj->nr_programs)
4673
return NULL;
4674
4675
while (l < r) {
4676
m = l + (r - l + 1) / 2;
4677
prog = &obj->programs[m];
4678
4679
if (prog->sec_idx < sec_idx ||
4680
(prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4681
l = m;
4682
else
4683
r = m - 1;
4684
}
4685
/* matching program could be at index l, but it still might be the
4686
* wrong one, so we need to double check conditions for the last time
4687
*/
4688
prog = &obj->programs[l];
4689
if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4690
return prog;
4691
return NULL;
4692
}
4693
4694
static int
4695
bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4696
{
4697
const char *relo_sec_name, *sec_name;
4698
size_t sec_idx = shdr->sh_info, sym_idx;
4699
struct bpf_program *prog;
4700
struct reloc_desc *relos;
4701
int err, i, nrels;
4702
const char *sym_name;
4703
__u32 insn_idx;
4704
Elf_Scn *scn;
4705
Elf_Data *scn_data;
4706
Elf64_Sym *sym;
4707
Elf64_Rel *rel;
4708
4709
if (sec_idx >= obj->efile.sec_cnt)
4710
return -EINVAL;
4711
4712
scn = elf_sec_by_idx(obj, sec_idx);
4713
scn_data = elf_sec_data(obj, scn);
4714
if (!scn_data)
4715
return -LIBBPF_ERRNO__FORMAT;
4716
4717
relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4718
sec_name = elf_sec_name(obj, scn);
4719
if (!relo_sec_name || !sec_name)
4720
return -EINVAL;
4721
4722
pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4723
relo_sec_name, sec_idx, sec_name);
4724
nrels = shdr->sh_size / shdr->sh_entsize;
4725
4726
for (i = 0; i < nrels; i++) {
4727
rel = elf_rel_by_idx(data, i);
4728
if (!rel) {
4729
pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4730
return -LIBBPF_ERRNO__FORMAT;
4731
}
4732
4733
sym_idx = ELF64_R_SYM(rel->r_info);
4734
sym = elf_sym_by_idx(obj, sym_idx);
4735
if (!sym) {
4736
pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4737
relo_sec_name, sym_idx, i);
4738
return -LIBBPF_ERRNO__FORMAT;
4739
}
4740
4741
if (sym->st_shndx >= obj->efile.sec_cnt) {
4742
pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4743
relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4744
return -LIBBPF_ERRNO__FORMAT;
4745
}
4746
4747
if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4748
pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4749
relo_sec_name, (size_t)rel->r_offset, i);
4750
return -LIBBPF_ERRNO__FORMAT;
4751
}
4752
4753
insn_idx = rel->r_offset / BPF_INSN_SZ;
4754
/* relocations against static functions are recorded as
4755
* relocations against the section that contains a function;
4756
* in such case, symbol will be STT_SECTION and sym.st_name
4757
* will point to empty string (0), so fetch section name
4758
* instead
4759
*/
4760
if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4761
sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4762
else
4763
sym_name = elf_sym_str(obj, sym->st_name);
4764
sym_name = sym_name ?: "<?";
4765
4766
pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4767
relo_sec_name, i, insn_idx, sym_name);
4768
4769
prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4770
if (!prog) {
4771
pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4772
relo_sec_name, i, sec_name, insn_idx);
4773
continue;
4774
}
4775
4776
relos = libbpf_reallocarray(prog->reloc_desc,
4777
prog->nr_reloc + 1, sizeof(*relos));
4778
if (!relos)
4779
return -ENOMEM;
4780
prog->reloc_desc = relos;
4781
4782
/* adjust insn_idx to local BPF program frame of reference */
4783
insn_idx -= prog->sec_insn_off;
4784
err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4785
insn_idx, sym_name, sym, rel);
4786
if (err)
4787
return err;
4788
4789
prog->nr_reloc++;
4790
}
4791
return 0;
4792
}
4793
4794
static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4795
{
4796
int id;
4797
4798
if (!obj->btf)
4799
return -ENOENT;
4800
4801
/* if it's BTF-defined map, we don't need to search for type IDs.
4802
* For struct_ops map, it does not need btf_key_type_id and
4803
* btf_value_type_id.
4804
*/
4805
if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4806
return 0;
4807
4808
/*
4809
* LLVM annotates global data differently in BTF, that is,
4810
* only as '.data', '.bss' or '.rodata'.
4811
*/
4812
if (!bpf_map__is_internal(map))
4813
return -ENOENT;
4814
4815
id = btf__find_by_name(obj->btf, map->real_name);
4816
if (id < 0)
4817
return id;
4818
4819
map->btf_key_type_id = 0;
4820
map->btf_value_type_id = id;
4821
return 0;
4822
}
4823
4824
static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4825
{
4826
char file[PATH_MAX], buff[4096];
4827
FILE *fp;
4828
__u32 val;
4829
int err;
4830
4831
snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4832
memset(info, 0, sizeof(*info));
4833
4834
fp = fopen(file, "re");
4835
if (!fp) {
4836
err = -errno;
4837
pr_warn("failed to open %s: %s. No procfs support?\n", file,
4838
errstr(err));
4839
return err;
4840
}
4841
4842
while (fgets(buff, sizeof(buff), fp)) {
4843
if (sscanf(buff, "map_type:\t%u", &val) == 1)
4844
info->type = val;
4845
else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4846
info->key_size = val;
4847
else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4848
info->value_size = val;
4849
else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4850
info->max_entries = val;
4851
else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4852
info->map_flags = val;
4853
}
4854
4855
fclose(fp);
4856
4857
return 0;
4858
}
4859
4860
static bool map_is_created(const struct bpf_map *map)
4861
{
4862
return map->obj->state >= OBJ_PREPARED || map->reused;
4863
}
4864
4865
bool bpf_map__autocreate(const struct bpf_map *map)
4866
{
4867
return map->autocreate;
4868
}
4869
4870
int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4871
{
4872
if (map_is_created(map))
4873
return libbpf_err(-EBUSY);
4874
4875
map->autocreate = autocreate;
4876
return 0;
4877
}
4878
4879
int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach)
4880
{
4881
if (!bpf_map__is_struct_ops(map))
4882
return libbpf_err(-EINVAL);
4883
4884
map->autoattach = autoattach;
4885
return 0;
4886
}
4887
4888
bool bpf_map__autoattach(const struct bpf_map *map)
4889
{
4890
return map->autoattach;
4891
}
4892
4893
int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4894
{
4895
struct bpf_map_info info;
4896
__u32 len = sizeof(info), name_len;
4897
int new_fd, err;
4898
char *new_name;
4899
4900
memset(&info, 0, len);
4901
err = bpf_map_get_info_by_fd(fd, &info, &len);
4902
if (err && errno == EINVAL)
4903
err = bpf_get_map_info_from_fdinfo(fd, &info);
4904
if (err)
4905
return libbpf_err(err);
4906
4907
name_len = strlen(info.name);
4908
if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4909
new_name = strdup(map->name);
4910
else
4911
new_name = strdup(info.name);
4912
4913
if (!new_name)
4914
return libbpf_err(-errno);
4915
4916
/*
4917
* Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4918
* This is similar to what we do in ensure_good_fd(), but without
4919
* closing original FD.
4920
*/
4921
new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4922
if (new_fd < 0) {
4923
err = -errno;
4924
goto err_free_new_name;
4925
}
4926
4927
err = reuse_fd(map->fd, new_fd);
4928
if (err)
4929
goto err_free_new_name;
4930
4931
free(map->name);
4932
4933
map->name = new_name;
4934
map->def.type = info.type;
4935
map->def.key_size = info.key_size;
4936
map->def.value_size = info.value_size;
4937
map->def.max_entries = info.max_entries;
4938
map->def.map_flags = info.map_flags;
4939
map->btf_key_type_id = info.btf_key_type_id;
4940
map->btf_value_type_id = info.btf_value_type_id;
4941
map->reused = true;
4942
map->map_extra = info.map_extra;
4943
4944
return 0;
4945
4946
err_free_new_name:
4947
free(new_name);
4948
return libbpf_err(err);
4949
}
4950
4951
__u32 bpf_map__max_entries(const struct bpf_map *map)
4952
{
4953
return map->def.max_entries;
4954
}
4955
4956
struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4957
{
4958
if (!bpf_map_type__is_map_in_map(map->def.type))
4959
return errno = EINVAL, NULL;
4960
4961
return map->inner_map;
4962
}
4963
4964
int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4965
{
4966
if (map_is_created(map))
4967
return libbpf_err(-EBUSY);
4968
4969
map->def.max_entries = max_entries;
4970
4971
/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4972
if (map_is_ringbuf(map))
4973
map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4974
4975
return 0;
4976
}
4977
4978
static int bpf_object_prepare_token(struct bpf_object *obj)
4979
{
4980
const char *bpffs_path;
4981
int bpffs_fd = -1, token_fd, err;
4982
bool mandatory;
4983
enum libbpf_print_level level;
4984
4985
/* token is explicitly prevented */
4986
if (obj->token_path && obj->token_path[0] == '\0') {
4987
pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
4988
return 0;
4989
}
4990
4991
mandatory = obj->token_path != NULL;
4992
level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
4993
4994
bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
4995
bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
4996
if (bpffs_fd < 0) {
4997
err = -errno;
4998
__pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n",
4999
obj->name, errstr(err), bpffs_path,
5000
mandatory ? "" : ", skipping optional step...");
5001
return mandatory ? err : 0;
5002
}
5003
5004
token_fd = bpf_token_create(bpffs_fd, 0);
5005
close(bpffs_fd);
5006
if (token_fd < 0) {
5007
if (!mandatory && token_fd == -ENOENT) {
5008
pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
5009
obj->name, bpffs_path);
5010
return 0;
5011
}
5012
__pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
5013
obj->name, token_fd, bpffs_path,
5014
mandatory ? "" : ", skipping optional step...");
5015
return mandatory ? token_fd : 0;
5016
}
5017
5018
obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
5019
if (!obj->feat_cache) {
5020
close(token_fd);
5021
return -ENOMEM;
5022
}
5023
5024
obj->token_fd = token_fd;
5025
obj->feat_cache->token_fd = token_fd;
5026
5027
return 0;
5028
}
5029
5030
static int
5031
bpf_object__probe_loading(struct bpf_object *obj)
5032
{
5033
struct bpf_insn insns[] = {
5034
BPF_MOV64_IMM(BPF_REG_0, 0),
5035
BPF_EXIT_INSN(),
5036
};
5037
int ret, insn_cnt = ARRAY_SIZE(insns);
5038
LIBBPF_OPTS(bpf_prog_load_opts, opts,
5039
.token_fd = obj->token_fd,
5040
.prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
5041
);
5042
5043
if (obj->gen_loader)
5044
return 0;
5045
5046
ret = bump_rlimit_memlock();
5047
if (ret)
5048
pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n",
5049
errstr(ret));
5050
5051
/* make sure basic loading works */
5052
ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
5053
if (ret < 0)
5054
ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
5055
if (ret < 0) {
5056
ret = errno;
5057
pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n",
5058
__func__, errstr(ret));
5059
return -ret;
5060
}
5061
close(ret);
5062
5063
return 0;
5064
}
5065
5066
bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5067
{
5068
if (obj->gen_loader)
5069
/* To generate loader program assume the latest kernel
5070
* to avoid doing extra prog_load, map_create syscalls.
5071
*/
5072
return true;
5073
5074
if (obj->token_fd)
5075
return feat_supported(obj->feat_cache, feat_id);
5076
5077
return feat_supported(NULL, feat_id);
5078
}
5079
5080
static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5081
{
5082
struct bpf_map_info map_info;
5083
__u32 map_info_len = sizeof(map_info);
5084
int err;
5085
5086
memset(&map_info, 0, map_info_len);
5087
err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5088
if (err && errno == EINVAL)
5089
err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5090
if (err) {
5091
pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5092
errstr(err));
5093
return false;
5094
}
5095
5096
return (map_info.type == map->def.type &&
5097
map_info.key_size == map->def.key_size &&
5098
map_info.value_size == map->def.value_size &&
5099
map_info.max_entries == map->def.max_entries &&
5100
map_info.map_flags == map->def.map_flags &&
5101
map_info.map_extra == map->map_extra);
5102
}
5103
5104
static int
5105
bpf_object__reuse_map(struct bpf_map *map)
5106
{
5107
int err, pin_fd;
5108
5109
pin_fd = bpf_obj_get(map->pin_path);
5110
if (pin_fd < 0) {
5111
err = -errno;
5112
if (err == -ENOENT) {
5113
pr_debug("found no pinned map to reuse at '%s'\n",
5114
map->pin_path);
5115
return 0;
5116
}
5117
5118
pr_warn("couldn't retrieve pinned map '%s': %s\n",
5119
map->pin_path, errstr(err));
5120
return err;
5121
}
5122
5123
if (!map_is_reuse_compat(map, pin_fd)) {
5124
pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5125
map->pin_path);
5126
close(pin_fd);
5127
return -EINVAL;
5128
}
5129
5130
err = bpf_map__reuse_fd(map, pin_fd);
5131
close(pin_fd);
5132
if (err)
5133
return err;
5134
5135
map->pinned = true;
5136
pr_debug("reused pinned map at '%s'\n", map->pin_path);
5137
5138
return 0;
5139
}
5140
5141
static int
5142
bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5143
{
5144
enum libbpf_map_type map_type = map->libbpf_type;
5145
int err, zero = 0;
5146
size_t mmap_sz;
5147
5148
if (obj->gen_loader) {
5149
bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5150
map->mmaped, map->def.value_size);
5151
if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5152
bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5153
return 0;
5154
}
5155
5156
err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5157
if (err) {
5158
err = -errno;
5159
pr_warn("map '%s': failed to set initial contents: %s\n",
5160
bpf_map__name(map), errstr(err));
5161
return err;
5162
}
5163
5164
/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5165
if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5166
err = bpf_map_freeze(map->fd);
5167
if (err) {
5168
err = -errno;
5169
pr_warn("map '%s': failed to freeze as read-only: %s\n",
5170
bpf_map__name(map), errstr(err));
5171
return err;
5172
}
5173
}
5174
5175
/* Remap anonymous mmap()-ed "map initialization image" as
5176
* a BPF map-backed mmap()-ed memory, but preserving the same
5177
* memory address. This will cause kernel to change process'
5178
* page table to point to a different piece of kernel memory,
5179
* but from userspace point of view memory address (and its
5180
* contents, being identical at this point) will stay the
5181
* same. This mapping will be released by bpf_object__close()
5182
* as per normal clean up procedure.
5183
*/
5184
mmap_sz = bpf_map_mmap_sz(map);
5185
if (map->def.map_flags & BPF_F_MMAPABLE) {
5186
void *mmaped;
5187
int prot;
5188
5189
if (map->def.map_flags & BPF_F_RDONLY_PROG)
5190
prot = PROT_READ;
5191
else
5192
prot = PROT_READ | PROT_WRITE;
5193
mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0);
5194
if (mmaped == MAP_FAILED) {
5195
err = -errno;
5196
pr_warn("map '%s': failed to re-mmap() contents: %s\n",
5197
bpf_map__name(map), errstr(err));
5198
return err;
5199
}
5200
map->mmaped = mmaped;
5201
} else if (map->mmaped) {
5202
munmap(map->mmaped, mmap_sz);
5203
map->mmaped = NULL;
5204
}
5205
5206
return 0;
5207
}
5208
5209
static void bpf_map__destroy(struct bpf_map *map);
5210
5211
static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5212
{
5213
LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5214
struct bpf_map_def *def = &map->def;
5215
const char *map_name = NULL;
5216
int err = 0, map_fd;
5217
5218
if (kernel_supports(obj, FEAT_PROG_NAME))
5219
map_name = map->name;
5220
create_attr.map_ifindex = map->map_ifindex;
5221
create_attr.map_flags = def->map_flags;
5222
create_attr.numa_node = map->numa_node;
5223
create_attr.map_extra = map->map_extra;
5224
create_attr.token_fd = obj->token_fd;
5225
if (obj->token_fd)
5226
create_attr.map_flags |= BPF_F_TOKEN_FD;
5227
5228
if (bpf_map__is_struct_ops(map)) {
5229
create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5230
if (map->mod_btf_fd >= 0) {
5231
create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5232
create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5233
}
5234
}
5235
5236
if (obj->btf && btf__fd(obj->btf) >= 0) {
5237
create_attr.btf_fd = btf__fd(obj->btf);
5238
create_attr.btf_key_type_id = map->btf_key_type_id;
5239
create_attr.btf_value_type_id = map->btf_value_type_id;
5240
}
5241
5242
if (bpf_map_type__is_map_in_map(def->type)) {
5243
if (map->inner_map) {
5244
err = map_set_def_max_entries(map->inner_map);
5245
if (err)
5246
return err;
5247
err = bpf_object__create_map(obj, map->inner_map, true);
5248
if (err) {
5249
pr_warn("map '%s': failed to create inner map: %s\n",
5250
map->name, errstr(err));
5251
return err;
5252
}
5253
map->inner_map_fd = map->inner_map->fd;
5254
}
5255
if (map->inner_map_fd >= 0)
5256
create_attr.inner_map_fd = map->inner_map_fd;
5257
}
5258
5259
switch (def->type) {
5260
case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5261
case BPF_MAP_TYPE_CGROUP_ARRAY:
5262
case BPF_MAP_TYPE_STACK_TRACE:
5263
case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5264
case BPF_MAP_TYPE_HASH_OF_MAPS:
5265
case BPF_MAP_TYPE_DEVMAP:
5266
case BPF_MAP_TYPE_DEVMAP_HASH:
5267
case BPF_MAP_TYPE_CPUMAP:
5268
case BPF_MAP_TYPE_XSKMAP:
5269
case BPF_MAP_TYPE_SOCKMAP:
5270
case BPF_MAP_TYPE_SOCKHASH:
5271
case BPF_MAP_TYPE_QUEUE:
5272
case BPF_MAP_TYPE_STACK:
5273
case BPF_MAP_TYPE_ARENA:
5274
create_attr.btf_fd = 0;
5275
create_attr.btf_key_type_id = 0;
5276
create_attr.btf_value_type_id = 0;
5277
map->btf_key_type_id = 0;
5278
map->btf_value_type_id = 0;
5279
break;
5280
case BPF_MAP_TYPE_STRUCT_OPS:
5281
create_attr.btf_value_type_id = 0;
5282
break;
5283
default:
5284
break;
5285
}
5286
5287
if (obj->gen_loader) {
5288
bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5289
def->key_size, def->value_size, def->max_entries,
5290
&create_attr, is_inner ? -1 : map - obj->maps);
5291
/* We keep pretenting we have valid FD to pass various fd >= 0
5292
* checks by just keeping original placeholder FDs in place.
5293
* See bpf_object__add_map() comment.
5294
* This placeholder fd will not be used with any syscall and
5295
* will be reset to -1 eventually.
5296
*/
5297
map_fd = map->fd;
5298
} else {
5299
map_fd = bpf_map_create(def->type, map_name,
5300
def->key_size, def->value_size,
5301
def->max_entries, &create_attr);
5302
}
5303
if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5304
err = -errno;
5305
pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n",
5306
map->name, errstr(err));
5307
create_attr.btf_fd = 0;
5308
create_attr.btf_key_type_id = 0;
5309
create_attr.btf_value_type_id = 0;
5310
map->btf_key_type_id = 0;
5311
map->btf_value_type_id = 0;
5312
map_fd = bpf_map_create(def->type, map_name,
5313
def->key_size, def->value_size,
5314
def->max_entries, &create_attr);
5315
}
5316
5317
if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5318
if (obj->gen_loader)
5319
map->inner_map->fd = -1;
5320
bpf_map__destroy(map->inner_map);
5321
zfree(&map->inner_map);
5322
}
5323
5324
if (map_fd < 0)
5325
return map_fd;
5326
5327
/* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5328
if (map->fd == map_fd)
5329
return 0;
5330
5331
/* Keep placeholder FD value but now point it to the BPF map object.
5332
* This way everything that relied on this map's FD (e.g., relocated
5333
* ldimm64 instructions) will stay valid and won't need adjustments.
5334
* map->fd stays valid but now point to what map_fd points to.
5335
*/
5336
return reuse_fd(map->fd, map_fd);
5337
}
5338
5339
static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5340
{
5341
const struct bpf_map *targ_map;
5342
unsigned int i;
5343
int fd, err = 0;
5344
5345
for (i = 0; i < map->init_slots_sz; i++) {
5346
if (!map->init_slots[i])
5347
continue;
5348
5349
targ_map = map->init_slots[i];
5350
fd = targ_map->fd;
5351
5352
if (obj->gen_loader) {
5353
bpf_gen__populate_outer_map(obj->gen_loader,
5354
map - obj->maps, i,
5355
targ_map - obj->maps);
5356
} else {
5357
err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5358
}
5359
if (err) {
5360
err = -errno;
5361
pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n",
5362
map->name, i, targ_map->name, fd, errstr(err));
5363
return err;
5364
}
5365
pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5366
map->name, i, targ_map->name, fd);
5367
}
5368
5369
zfree(&map->init_slots);
5370
map->init_slots_sz = 0;
5371
5372
return 0;
5373
}
5374
5375
static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5376
{
5377
const struct bpf_program *targ_prog;
5378
unsigned int i;
5379
int fd, err;
5380
5381
if (obj->gen_loader)
5382
return -ENOTSUP;
5383
5384
for (i = 0; i < map->init_slots_sz; i++) {
5385
if (!map->init_slots[i])
5386
continue;
5387
5388
targ_prog = map->init_slots[i];
5389
fd = bpf_program__fd(targ_prog);
5390
5391
err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5392
if (err) {
5393
err = -errno;
5394
pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n",
5395
map->name, i, targ_prog->name, fd, errstr(err));
5396
return err;
5397
}
5398
pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5399
map->name, i, targ_prog->name, fd);
5400
}
5401
5402
zfree(&map->init_slots);
5403
map->init_slots_sz = 0;
5404
5405
return 0;
5406
}
5407
5408
static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5409
{
5410
struct bpf_map *map;
5411
int i, err;
5412
5413
for (i = 0; i < obj->nr_maps; i++) {
5414
map = &obj->maps[i];
5415
5416
if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5417
continue;
5418
5419
err = init_prog_array_slots(obj, map);
5420
if (err < 0)
5421
return err;
5422
}
5423
return 0;
5424
}
5425
5426
static int map_set_def_max_entries(struct bpf_map *map)
5427
{
5428
if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5429
int nr_cpus;
5430
5431
nr_cpus = libbpf_num_possible_cpus();
5432
if (nr_cpus < 0) {
5433
pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5434
map->name, nr_cpus);
5435
return nr_cpus;
5436
}
5437
pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5438
map->def.max_entries = nr_cpus;
5439
}
5440
5441
return 0;
5442
}
5443
5444
static int
5445
bpf_object__create_maps(struct bpf_object *obj)
5446
{
5447
struct bpf_map *map;
5448
unsigned int i, j;
5449
int err;
5450
bool retried;
5451
5452
for (i = 0; i < obj->nr_maps; i++) {
5453
map = &obj->maps[i];
5454
5455
/* To support old kernels, we skip creating global data maps
5456
* (.rodata, .data, .kconfig, etc); later on, during program
5457
* loading, if we detect that at least one of the to-be-loaded
5458
* programs is referencing any global data map, we'll error
5459
* out with program name and relocation index logged.
5460
* This approach allows to accommodate Clang emitting
5461
* unnecessary .rodata.str1.1 sections for string literals,
5462
* but also it allows to have CO-RE applications that use
5463
* global variables in some of BPF programs, but not others.
5464
* If those global variable-using programs are not loaded at
5465
* runtime due to bpf_program__set_autoload(prog, false),
5466
* bpf_object loading will succeed just fine even on old
5467
* kernels.
5468
*/
5469
if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5470
map->autocreate = false;
5471
5472
if (!map->autocreate) {
5473
pr_debug("map '%s': skipped auto-creating...\n", map->name);
5474
continue;
5475
}
5476
5477
err = map_set_def_max_entries(map);
5478
if (err)
5479
goto err_out;
5480
5481
retried = false;
5482
retry:
5483
if (map->pin_path) {
5484
err = bpf_object__reuse_map(map);
5485
if (err) {
5486
pr_warn("map '%s': error reusing pinned map\n",
5487
map->name);
5488
goto err_out;
5489
}
5490
if (retried && map->fd < 0) {
5491
pr_warn("map '%s': cannot find pinned map\n",
5492
map->name);
5493
err = -ENOENT;
5494
goto err_out;
5495
}
5496
}
5497
5498
if (map->reused) {
5499
pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5500
map->name, map->fd);
5501
} else {
5502
err = bpf_object__create_map(obj, map, false);
5503
if (err)
5504
goto err_out;
5505
5506
pr_debug("map '%s': created successfully, fd=%d\n",
5507
map->name, map->fd);
5508
5509
if (bpf_map__is_internal(map)) {
5510
err = bpf_object__populate_internal_map(obj, map);
5511
if (err < 0)
5512
goto err_out;
5513
} else if (map->def.type == BPF_MAP_TYPE_ARENA) {
5514
map->mmaped = mmap((void *)(long)map->map_extra,
5515
bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5516
map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5517
map->fd, 0);
5518
if (map->mmaped == MAP_FAILED) {
5519
err = -errno;
5520
map->mmaped = NULL;
5521
pr_warn("map '%s': failed to mmap arena: %s\n",
5522
map->name, errstr(err));
5523
return err;
5524
}
5525
if (obj->arena_data) {
5526
memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5527
zfree(&obj->arena_data);
5528
}
5529
}
5530
if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5531
err = init_map_in_map_slots(obj, map);
5532
if (err < 0)
5533
goto err_out;
5534
}
5535
}
5536
5537
if (map->pin_path && !map->pinned) {
5538
err = bpf_map__pin(map, NULL);
5539
if (err) {
5540
if (!retried && err == -EEXIST) {
5541
retried = true;
5542
goto retry;
5543
}
5544
pr_warn("map '%s': failed to auto-pin at '%s': %s\n",
5545
map->name, map->pin_path, errstr(err));
5546
goto err_out;
5547
}
5548
}
5549
}
5550
5551
return 0;
5552
5553
err_out:
5554
pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err));
5555
pr_perm_msg(err);
5556
for (j = 0; j < i; j++)
5557
zclose(obj->maps[j].fd);
5558
return err;
5559
}
5560
5561
static bool bpf_core_is_flavor_sep(const char *s)
5562
{
5563
/* check X___Y name pattern, where X and Y are not underscores */
5564
return s[0] != '_' && /* X */
5565
s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5566
s[4] != '_'; /* Y */
5567
}
5568
5569
/* Given 'some_struct_name___with_flavor' return the length of a name prefix
5570
* before last triple underscore. Struct name part after last triple
5571
* underscore is ignored by BPF CO-RE relocation during relocation matching.
5572
*/
5573
size_t bpf_core_essential_name_len(const char *name)
5574
{
5575
size_t n = strlen(name);
5576
int i;
5577
5578
for (i = n - 5; i >= 0; i--) {
5579
if (bpf_core_is_flavor_sep(name + i))
5580
return i + 1;
5581
}
5582
return n;
5583
}
5584
5585
void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5586
{
5587
if (!cands)
5588
return;
5589
5590
free(cands->cands);
5591
free(cands);
5592
}
5593
5594
int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5595
size_t local_essent_len,
5596
const struct btf *targ_btf,
5597
const char *targ_btf_name,
5598
int targ_start_id,
5599
struct bpf_core_cand_list *cands)
5600
{
5601
struct bpf_core_cand *new_cands, *cand;
5602
const struct btf_type *t, *local_t;
5603
const char *targ_name, *local_name;
5604
size_t targ_essent_len;
5605
int n, i;
5606
5607
local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5608
local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5609
5610
n = btf__type_cnt(targ_btf);
5611
for (i = targ_start_id; i < n; i++) {
5612
t = btf__type_by_id(targ_btf, i);
5613
if (!btf_kind_core_compat(t, local_t))
5614
continue;
5615
5616
targ_name = btf__name_by_offset(targ_btf, t->name_off);
5617
if (str_is_empty(targ_name))
5618
continue;
5619
5620
targ_essent_len = bpf_core_essential_name_len(targ_name);
5621
if (targ_essent_len != local_essent_len)
5622
continue;
5623
5624
if (strncmp(local_name, targ_name, local_essent_len) != 0)
5625
continue;
5626
5627
pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5628
local_cand->id, btf_kind_str(local_t),
5629
local_name, i, btf_kind_str(t), targ_name,
5630
targ_btf_name);
5631
new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5632
sizeof(*cands->cands));
5633
if (!new_cands)
5634
return -ENOMEM;
5635
5636
cand = &new_cands[cands->len];
5637
cand->btf = targ_btf;
5638
cand->id = i;
5639
5640
cands->cands = new_cands;
5641
cands->len++;
5642
}
5643
return 0;
5644
}
5645
5646
static int load_module_btfs(struct bpf_object *obj)
5647
{
5648
struct bpf_btf_info info;
5649
struct module_btf *mod_btf;
5650
struct btf *btf;
5651
char name[64];
5652
__u32 id = 0, len;
5653
int err, fd;
5654
5655
if (obj->btf_modules_loaded)
5656
return 0;
5657
5658
if (obj->gen_loader)
5659
return 0;
5660
5661
/* don't do this again, even if we find no module BTFs */
5662
obj->btf_modules_loaded = true;
5663
5664
/* kernel too old to support module BTFs */
5665
if (!kernel_supports(obj, FEAT_MODULE_BTF))
5666
return 0;
5667
5668
while (true) {
5669
err = bpf_btf_get_next_id(id, &id);
5670
if (err && errno == ENOENT)
5671
return 0;
5672
if (err && errno == EPERM) {
5673
pr_debug("skipping module BTFs loading, missing privileges\n");
5674
return 0;
5675
}
5676
if (err) {
5677
err = -errno;
5678
pr_warn("failed to iterate BTF objects: %s\n", errstr(err));
5679
return err;
5680
}
5681
5682
fd = bpf_btf_get_fd_by_id(id);
5683
if (fd < 0) {
5684
if (errno == ENOENT)
5685
continue; /* expected race: BTF was unloaded */
5686
err = -errno;
5687
pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err));
5688
return err;
5689
}
5690
5691
len = sizeof(info);
5692
memset(&info, 0, sizeof(info));
5693
info.name = ptr_to_u64(name);
5694
info.name_len = sizeof(name);
5695
5696
err = bpf_btf_get_info_by_fd(fd, &info, &len);
5697
if (err) {
5698
err = -errno;
5699
pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err));
5700
goto err_out;
5701
}
5702
5703
/* ignore non-module BTFs */
5704
if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5705
close(fd);
5706
continue;
5707
}
5708
5709
btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5710
err = libbpf_get_error(btf);
5711
if (err) {
5712
pr_warn("failed to load module [%s]'s BTF object #%d: %s\n",
5713
name, id, errstr(err));
5714
goto err_out;
5715
}
5716
5717
err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5718
sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5719
if (err)
5720
goto err_out;
5721
5722
mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5723
5724
mod_btf->btf = btf;
5725
mod_btf->id = id;
5726
mod_btf->fd = fd;
5727
mod_btf->name = strdup(name);
5728
if (!mod_btf->name) {
5729
err = -ENOMEM;
5730
goto err_out;
5731
}
5732
continue;
5733
5734
err_out:
5735
close(fd);
5736
return err;
5737
}
5738
5739
return 0;
5740
}
5741
5742
static struct bpf_core_cand_list *
5743
bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5744
{
5745
struct bpf_core_cand local_cand = {};
5746
struct bpf_core_cand_list *cands;
5747
const struct btf *main_btf;
5748
const struct btf_type *local_t;
5749
const char *local_name;
5750
size_t local_essent_len;
5751
int err, i;
5752
5753
local_cand.btf = local_btf;
5754
local_cand.id = local_type_id;
5755
local_t = btf__type_by_id(local_btf, local_type_id);
5756
if (!local_t)
5757
return ERR_PTR(-EINVAL);
5758
5759
local_name = btf__name_by_offset(local_btf, local_t->name_off);
5760
if (str_is_empty(local_name))
5761
return ERR_PTR(-EINVAL);
5762
local_essent_len = bpf_core_essential_name_len(local_name);
5763
5764
cands = calloc(1, sizeof(*cands));
5765
if (!cands)
5766
return ERR_PTR(-ENOMEM);
5767
5768
/* Attempt to find target candidates in vmlinux BTF first */
5769
main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5770
err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5771
if (err)
5772
goto err_out;
5773
5774
/* if vmlinux BTF has any candidate, don't got for module BTFs */
5775
if (cands->len)
5776
return cands;
5777
5778
/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5779
if (obj->btf_vmlinux_override)
5780
return cands;
5781
5782
/* now look through module BTFs, trying to still find candidates */
5783
err = load_module_btfs(obj);
5784
if (err)
5785
goto err_out;
5786
5787
for (i = 0; i < obj->btf_module_cnt; i++) {
5788
err = bpf_core_add_cands(&local_cand, local_essent_len,
5789
obj->btf_modules[i].btf,
5790
obj->btf_modules[i].name,
5791
btf__type_cnt(obj->btf_vmlinux),
5792
cands);
5793
if (err)
5794
goto err_out;
5795
}
5796
5797
return cands;
5798
err_out:
5799
bpf_core_free_cands(cands);
5800
return ERR_PTR(err);
5801
}
5802
5803
/* Check local and target types for compatibility. This check is used for
5804
* type-based CO-RE relocations and follow slightly different rules than
5805
* field-based relocations. This function assumes that root types were already
5806
* checked for name match. Beyond that initial root-level name check, names
5807
* are completely ignored. Compatibility rules are as follows:
5808
* - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5809
* kind should match for local and target types (i.e., STRUCT is not
5810
* compatible with UNION);
5811
* - for ENUMs, the size is ignored;
5812
* - for INT, size and signedness are ignored;
5813
* - for ARRAY, dimensionality is ignored, element types are checked for
5814
* compatibility recursively;
5815
* - CONST/VOLATILE/RESTRICT modifiers are ignored;
5816
* - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5817
* - FUNC_PROTOs are compatible if they have compatible signature: same
5818
* number of input args and compatible return and argument types.
5819
* These rules are not set in stone and probably will be adjusted as we get
5820
* more experience with using BPF CO-RE relocations.
5821
*/
5822
int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5823
const struct btf *targ_btf, __u32 targ_id)
5824
{
5825
return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5826
}
5827
5828
int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5829
const struct btf *targ_btf, __u32 targ_id)
5830
{
5831
return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5832
}
5833
5834
static size_t bpf_core_hash_fn(const long key, void *ctx)
5835
{
5836
return key;
5837
}
5838
5839
static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5840
{
5841
return k1 == k2;
5842
}
5843
5844
static int record_relo_core(struct bpf_program *prog,
5845
const struct bpf_core_relo *core_relo, int insn_idx)
5846
{
5847
struct reloc_desc *relos, *relo;
5848
5849
relos = libbpf_reallocarray(prog->reloc_desc,
5850
prog->nr_reloc + 1, sizeof(*relos));
5851
if (!relos)
5852
return -ENOMEM;
5853
relo = &relos[prog->nr_reloc];
5854
relo->type = RELO_CORE;
5855
relo->insn_idx = insn_idx;
5856
relo->core_relo = core_relo;
5857
prog->reloc_desc = relos;
5858
prog->nr_reloc++;
5859
return 0;
5860
}
5861
5862
static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5863
{
5864
struct reloc_desc *relo;
5865
int i;
5866
5867
for (i = 0; i < prog->nr_reloc; i++) {
5868
relo = &prog->reloc_desc[i];
5869
if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5870
continue;
5871
5872
return relo->core_relo;
5873
}
5874
5875
return NULL;
5876
}
5877
5878
static int bpf_core_resolve_relo(struct bpf_program *prog,
5879
const struct bpf_core_relo *relo,
5880
int relo_idx,
5881
const struct btf *local_btf,
5882
struct hashmap *cand_cache,
5883
struct bpf_core_relo_res *targ_res)
5884
{
5885
struct bpf_core_spec specs_scratch[3] = {};
5886
struct bpf_core_cand_list *cands = NULL;
5887
const char *prog_name = prog->name;
5888
const struct btf_type *local_type;
5889
const char *local_name;
5890
__u32 local_id = relo->type_id;
5891
int err;
5892
5893
local_type = btf__type_by_id(local_btf, local_id);
5894
if (!local_type)
5895
return -EINVAL;
5896
5897
local_name = btf__name_by_offset(local_btf, local_type->name_off);
5898
if (!local_name)
5899
return -EINVAL;
5900
5901
if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5902
!hashmap__find(cand_cache, local_id, &cands)) {
5903
cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5904
if (IS_ERR(cands)) {
5905
pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5906
prog_name, relo_idx, local_id, btf_kind_str(local_type),
5907
local_name, PTR_ERR(cands));
5908
return PTR_ERR(cands);
5909
}
5910
err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5911
if (err) {
5912
bpf_core_free_cands(cands);
5913
return err;
5914
}
5915
}
5916
5917
return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5918
targ_res);
5919
}
5920
5921
static int
5922
bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5923
{
5924
const struct btf_ext_info_sec *sec;
5925
struct bpf_core_relo_res targ_res;
5926
const struct bpf_core_relo *rec;
5927
const struct btf_ext_info *seg;
5928
struct hashmap_entry *entry;
5929
struct hashmap *cand_cache = NULL;
5930
struct bpf_program *prog;
5931
struct bpf_insn *insn;
5932
const char *sec_name;
5933
int i, err = 0, insn_idx, sec_idx, sec_num;
5934
5935
if (obj->btf_ext->core_relo_info.len == 0)
5936
return 0;
5937
5938
if (targ_btf_path) {
5939
obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5940
err = libbpf_get_error(obj->btf_vmlinux_override);
5941
if (err) {
5942
pr_warn("failed to parse target BTF: %s\n", errstr(err));
5943
return err;
5944
}
5945
}
5946
5947
cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5948
if (IS_ERR(cand_cache)) {
5949
err = PTR_ERR(cand_cache);
5950
goto out;
5951
}
5952
5953
seg = &obj->btf_ext->core_relo_info;
5954
sec_num = 0;
5955
for_each_btf_ext_sec(seg, sec) {
5956
sec_idx = seg->sec_idxs[sec_num];
5957
sec_num++;
5958
5959
sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5960
if (str_is_empty(sec_name)) {
5961
err = -EINVAL;
5962
goto out;
5963
}
5964
5965
pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5966
5967
for_each_btf_ext_rec(seg, sec, i, rec) {
5968
if (rec->insn_off % BPF_INSN_SZ)
5969
return -EINVAL;
5970
insn_idx = rec->insn_off / BPF_INSN_SZ;
5971
prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5972
if (!prog) {
5973
/* When __weak subprog is "overridden" by another instance
5974
* of the subprog from a different object file, linker still
5975
* appends all the .BTF.ext info that used to belong to that
5976
* eliminated subprogram.
5977
* This is similar to what x86-64 linker does for relocations.
5978
* So just ignore such relocations just like we ignore
5979
* subprog instructions when discovering subprograms.
5980
*/
5981
pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5982
sec_name, i, insn_idx);
5983
continue;
5984
}
5985
/* no need to apply CO-RE relocation if the program is
5986
* not going to be loaded
5987
*/
5988
if (!prog->autoload)
5989
continue;
5990
5991
/* adjust insn_idx from section frame of reference to the local
5992
* program's frame of reference; (sub-)program code is not yet
5993
* relocated, so it's enough to just subtract in-section offset
5994
*/
5995
insn_idx = insn_idx - prog->sec_insn_off;
5996
if (insn_idx >= prog->insns_cnt)
5997
return -EINVAL;
5998
insn = &prog->insns[insn_idx];
5999
6000
err = record_relo_core(prog, rec, insn_idx);
6001
if (err) {
6002
pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n",
6003
prog->name, i, errstr(err));
6004
goto out;
6005
}
6006
6007
if (prog->obj->gen_loader)
6008
continue;
6009
6010
err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
6011
if (err) {
6012
pr_warn("prog '%s': relo #%d: failed to relocate: %s\n",
6013
prog->name, i, errstr(err));
6014
goto out;
6015
}
6016
6017
err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
6018
if (err) {
6019
pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n",
6020
prog->name, i, insn_idx, errstr(err));
6021
goto out;
6022
}
6023
}
6024
}
6025
6026
out:
6027
/* obj->btf_vmlinux and module BTFs are freed after object load */
6028
btf__free(obj->btf_vmlinux_override);
6029
obj->btf_vmlinux_override = NULL;
6030
6031
if (!IS_ERR_OR_NULL(cand_cache)) {
6032
hashmap__for_each_entry(cand_cache, entry, i) {
6033
bpf_core_free_cands(entry->pvalue);
6034
}
6035
hashmap__free(cand_cache);
6036
}
6037
return err;
6038
}
6039
6040
/* base map load ldimm64 special constant, used also for log fixup logic */
6041
#define POISON_LDIMM64_MAP_BASE 2001000000
6042
#define POISON_LDIMM64_MAP_PFX "200100"
6043
6044
static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
6045
int insn_idx, struct bpf_insn *insn,
6046
int map_idx, const struct bpf_map *map)
6047
{
6048
int i;
6049
6050
pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
6051
prog->name, relo_idx, insn_idx, map_idx, map->name);
6052
6053
/* we turn single ldimm64 into two identical invalid calls */
6054
for (i = 0; i < 2; i++) {
6055
insn->code = BPF_JMP | BPF_CALL;
6056
insn->dst_reg = 0;
6057
insn->src_reg = 0;
6058
insn->off = 0;
6059
/* if this instruction is reachable (not a dead code),
6060
* verifier will complain with something like:
6061
* invalid func unknown#2001000123
6062
* where lower 123 is map index into obj->maps[] array
6063
*/
6064
insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
6065
6066
insn++;
6067
}
6068
}
6069
6070
/* unresolved kfunc call special constant, used also for log fixup logic */
6071
#define POISON_CALL_KFUNC_BASE 2002000000
6072
#define POISON_CALL_KFUNC_PFX "2002"
6073
6074
static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6075
int insn_idx, struct bpf_insn *insn,
6076
int ext_idx, const struct extern_desc *ext)
6077
{
6078
pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6079
prog->name, relo_idx, insn_idx, ext->name);
6080
6081
/* we turn kfunc call into invalid helper call with identifiable constant */
6082
insn->code = BPF_JMP | BPF_CALL;
6083
insn->dst_reg = 0;
6084
insn->src_reg = 0;
6085
insn->off = 0;
6086
/* if this instruction is reachable (not a dead code),
6087
* verifier will complain with something like:
6088
* invalid func unknown#2001000123
6089
* where lower 123 is extern index into obj->externs[] array
6090
*/
6091
insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6092
}
6093
6094
/* Relocate data references within program code:
6095
* - map references;
6096
* - global variable references;
6097
* - extern references.
6098
*/
6099
static int
6100
bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6101
{
6102
int i;
6103
6104
for (i = 0; i < prog->nr_reloc; i++) {
6105
struct reloc_desc *relo = &prog->reloc_desc[i];
6106
struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6107
const struct bpf_map *map;
6108
struct extern_desc *ext;
6109
6110
switch (relo->type) {
6111
case RELO_LD64:
6112
map = &obj->maps[relo->map_idx];
6113
if (obj->gen_loader) {
6114
insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6115
insn[0].imm = relo->map_idx;
6116
} else if (map->autocreate) {
6117
insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6118
insn[0].imm = map->fd;
6119
} else {
6120
poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6121
relo->map_idx, map);
6122
}
6123
break;
6124
case RELO_DATA:
6125
map = &obj->maps[relo->map_idx];
6126
insn[1].imm = insn[0].imm + relo->sym_off;
6127
if (obj->gen_loader) {
6128
insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6129
insn[0].imm = relo->map_idx;
6130
} else if (map->autocreate) {
6131
insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6132
insn[0].imm = map->fd;
6133
} else {
6134
poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6135
relo->map_idx, map);
6136
}
6137
break;
6138
case RELO_EXTERN_LD64:
6139
ext = &obj->externs[relo->ext_idx];
6140
if (ext->type == EXT_KCFG) {
6141
if (obj->gen_loader) {
6142
insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6143
insn[0].imm = obj->kconfig_map_idx;
6144
} else {
6145
insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6146
insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6147
}
6148
insn[1].imm = ext->kcfg.data_off;
6149
} else /* EXT_KSYM */ {
6150
if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6151
insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6152
insn[0].imm = ext->ksym.kernel_btf_id;
6153
insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6154
} else { /* typeless ksyms or unresolved typed ksyms */
6155
insn[0].imm = (__u32)ext->ksym.addr;
6156
insn[1].imm = ext->ksym.addr >> 32;
6157
}
6158
}
6159
break;
6160
case RELO_EXTERN_CALL:
6161
ext = &obj->externs[relo->ext_idx];
6162
insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6163
if (ext->is_set) {
6164
insn[0].imm = ext->ksym.kernel_btf_id;
6165
insn[0].off = ext->ksym.btf_fd_idx;
6166
} else { /* unresolved weak kfunc call */
6167
poison_kfunc_call(prog, i, relo->insn_idx, insn,
6168
relo->ext_idx, ext);
6169
}
6170
break;
6171
case RELO_SUBPROG_ADDR:
6172
if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6173
pr_warn("prog '%s': relo #%d: bad insn\n",
6174
prog->name, i);
6175
return -EINVAL;
6176
}
6177
/* handled already */
6178
break;
6179
case RELO_CALL:
6180
/* handled already */
6181
break;
6182
case RELO_CORE:
6183
/* will be handled by bpf_program_record_relos() */
6184
break;
6185
default:
6186
pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6187
prog->name, i, relo->type);
6188
return -EINVAL;
6189
}
6190
}
6191
6192
return 0;
6193
}
6194
6195
static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6196
const struct bpf_program *prog,
6197
const struct btf_ext_info *ext_info,
6198
void **prog_info, __u32 *prog_rec_cnt,
6199
__u32 *prog_rec_sz)
6200
{
6201
void *copy_start = NULL, *copy_end = NULL;
6202
void *rec, *rec_end, *new_prog_info;
6203
const struct btf_ext_info_sec *sec;
6204
size_t old_sz, new_sz;
6205
int i, sec_num, sec_idx, off_adj;
6206
6207
sec_num = 0;
6208
for_each_btf_ext_sec(ext_info, sec) {
6209
sec_idx = ext_info->sec_idxs[sec_num];
6210
sec_num++;
6211
if (prog->sec_idx != sec_idx)
6212
continue;
6213
6214
for_each_btf_ext_rec(ext_info, sec, i, rec) {
6215
__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6216
6217
if (insn_off < prog->sec_insn_off)
6218
continue;
6219
if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6220
break;
6221
6222
if (!copy_start)
6223
copy_start = rec;
6224
copy_end = rec + ext_info->rec_size;
6225
}
6226
6227
if (!copy_start)
6228
return -ENOENT;
6229
6230
/* append func/line info of a given (sub-)program to the main
6231
* program func/line info
6232
*/
6233
old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6234
new_sz = old_sz + (copy_end - copy_start);
6235
new_prog_info = realloc(*prog_info, new_sz);
6236
if (!new_prog_info)
6237
return -ENOMEM;
6238
*prog_info = new_prog_info;
6239
*prog_rec_cnt = new_sz / ext_info->rec_size;
6240
memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6241
6242
/* Kernel instruction offsets are in units of 8-byte
6243
* instructions, while .BTF.ext instruction offsets generated
6244
* by Clang are in units of bytes. So convert Clang offsets
6245
* into kernel offsets and adjust offset according to program
6246
* relocated position.
6247
*/
6248
off_adj = prog->sub_insn_off - prog->sec_insn_off;
6249
rec = new_prog_info + old_sz;
6250
rec_end = new_prog_info + new_sz;
6251
for (; rec < rec_end; rec += ext_info->rec_size) {
6252
__u32 *insn_off = rec;
6253
6254
*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6255
}
6256
*prog_rec_sz = ext_info->rec_size;
6257
return 0;
6258
}
6259
6260
return -ENOENT;
6261
}
6262
6263
static int
6264
reloc_prog_func_and_line_info(const struct bpf_object *obj,
6265
struct bpf_program *main_prog,
6266
const struct bpf_program *prog)
6267
{
6268
int err;
6269
6270
/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6271
* support func/line info
6272
*/
6273
if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6274
return 0;
6275
6276
/* only attempt func info relocation if main program's func_info
6277
* relocation was successful
6278
*/
6279
if (main_prog != prog && !main_prog->func_info)
6280
goto line_info;
6281
6282
err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6283
&main_prog->func_info,
6284
&main_prog->func_info_cnt,
6285
&main_prog->func_info_rec_size);
6286
if (err) {
6287
if (err != -ENOENT) {
6288
pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n",
6289
prog->name, errstr(err));
6290
return err;
6291
}
6292
if (main_prog->func_info) {
6293
/*
6294
* Some info has already been found but has problem
6295
* in the last btf_ext reloc. Must have to error out.
6296
*/
6297
pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6298
return err;
6299
}
6300
/* Have problem loading the very first info. Ignore the rest. */
6301
pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6302
prog->name);
6303
}
6304
6305
line_info:
6306
/* don't relocate line info if main program's relocation failed */
6307
if (main_prog != prog && !main_prog->line_info)
6308
return 0;
6309
6310
err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6311
&main_prog->line_info,
6312
&main_prog->line_info_cnt,
6313
&main_prog->line_info_rec_size);
6314
if (err) {
6315
if (err != -ENOENT) {
6316
pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n",
6317
prog->name, errstr(err));
6318
return err;
6319
}
6320
if (main_prog->line_info) {
6321
/*
6322
* Some info has already been found but has problem
6323
* in the last btf_ext reloc. Must have to error out.
6324
*/
6325
pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6326
return err;
6327
}
6328
/* Have problem loading the very first info. Ignore the rest. */
6329
pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6330
prog->name);
6331
}
6332
return 0;
6333
}
6334
6335
static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6336
{
6337
size_t insn_idx = *(const size_t *)key;
6338
const struct reloc_desc *relo = elem;
6339
6340
if (insn_idx == relo->insn_idx)
6341
return 0;
6342
return insn_idx < relo->insn_idx ? -1 : 1;
6343
}
6344
6345
static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6346
{
6347
if (!prog->nr_reloc)
6348
return NULL;
6349
return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6350
sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6351
}
6352
6353
static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6354
{
6355
int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6356
struct reloc_desc *relos;
6357
int i;
6358
6359
if (main_prog == subprog)
6360
return 0;
6361
relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6362
/* if new count is zero, reallocarray can return a valid NULL result;
6363
* in this case the previous pointer will be freed, so we *have to*
6364
* reassign old pointer to the new value (even if it's NULL)
6365
*/
6366
if (!relos && new_cnt)
6367
return -ENOMEM;
6368
if (subprog->nr_reloc)
6369
memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6370
sizeof(*relos) * subprog->nr_reloc);
6371
6372
for (i = main_prog->nr_reloc; i < new_cnt; i++)
6373
relos[i].insn_idx += subprog->sub_insn_off;
6374
/* After insn_idx adjustment the 'relos' array is still sorted
6375
* by insn_idx and doesn't break bsearch.
6376
*/
6377
main_prog->reloc_desc = relos;
6378
main_prog->nr_reloc = new_cnt;
6379
return 0;
6380
}
6381
6382
static int
6383
bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6384
struct bpf_program *subprog)
6385
{
6386
struct bpf_insn *insns;
6387
size_t new_cnt;
6388
int err;
6389
6390
subprog->sub_insn_off = main_prog->insns_cnt;
6391
6392
new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6393
insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6394
if (!insns) {
6395
pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6396
return -ENOMEM;
6397
}
6398
main_prog->insns = insns;
6399
main_prog->insns_cnt = new_cnt;
6400
6401
memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6402
subprog->insns_cnt * sizeof(*insns));
6403
6404
pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6405
main_prog->name, subprog->insns_cnt, subprog->name);
6406
6407
/* The subprog insns are now appended. Append its relos too. */
6408
err = append_subprog_relos(main_prog, subprog);
6409
if (err)
6410
return err;
6411
return 0;
6412
}
6413
6414
static int
6415
bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6416
struct bpf_program *prog)
6417
{
6418
size_t sub_insn_idx, insn_idx;
6419
struct bpf_program *subprog;
6420
struct reloc_desc *relo;
6421
struct bpf_insn *insn;
6422
int err;
6423
6424
err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6425
if (err)
6426
return err;
6427
6428
for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6429
insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6430
if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6431
continue;
6432
6433
relo = find_prog_insn_relo(prog, insn_idx);
6434
if (relo && relo->type == RELO_EXTERN_CALL)
6435
/* kfunc relocations will be handled later
6436
* in bpf_object__relocate_data()
6437
*/
6438
continue;
6439
if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6440
pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6441
prog->name, insn_idx, relo->type);
6442
return -LIBBPF_ERRNO__RELOC;
6443
}
6444
if (relo) {
6445
/* sub-program instruction index is a combination of
6446
* an offset of a symbol pointed to by relocation and
6447
* call instruction's imm field; for global functions,
6448
* call always has imm = -1, but for static functions
6449
* relocation is against STT_SECTION and insn->imm
6450
* points to a start of a static function
6451
*
6452
* for subprog addr relocation, the relo->sym_off + insn->imm is
6453
* the byte offset in the corresponding section.
6454
*/
6455
if (relo->type == RELO_CALL)
6456
sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6457
else
6458
sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6459
} else if (insn_is_pseudo_func(insn)) {
6460
/*
6461
* RELO_SUBPROG_ADDR relo is always emitted even if both
6462
* functions are in the same section, so it shouldn't reach here.
6463
*/
6464
pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6465
prog->name, insn_idx);
6466
return -LIBBPF_ERRNO__RELOC;
6467
} else {
6468
/* if subprogram call is to a static function within
6469
* the same ELF section, there won't be any relocation
6470
* emitted, but it also means there is no additional
6471
* offset necessary, insns->imm is relative to
6472
* instruction's original position within the section
6473
*/
6474
sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6475
}
6476
6477
/* we enforce that sub-programs should be in .text section */
6478
subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6479
if (!subprog) {
6480
pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6481
prog->name);
6482
return -LIBBPF_ERRNO__RELOC;
6483
}
6484
6485
/* if it's the first call instruction calling into this
6486
* subprogram (meaning this subprog hasn't been processed
6487
* yet) within the context of current main program:
6488
* - append it at the end of main program's instructions blog;
6489
* - process is recursively, while current program is put on hold;
6490
* - if that subprogram calls some other not yet processes
6491
* subprogram, same thing will happen recursively until
6492
* there are no more unprocesses subprograms left to append
6493
* and relocate.
6494
*/
6495
if (subprog->sub_insn_off == 0) {
6496
err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6497
if (err)
6498
return err;
6499
err = bpf_object__reloc_code(obj, main_prog, subprog);
6500
if (err)
6501
return err;
6502
}
6503
6504
/* main_prog->insns memory could have been re-allocated, so
6505
* calculate pointer again
6506
*/
6507
insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6508
/* calculate correct instruction position within current main
6509
* prog; each main prog can have a different set of
6510
* subprograms appended (potentially in different order as
6511
* well), so position of any subprog can be different for
6512
* different main programs
6513
*/
6514
insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6515
6516
pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6517
prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6518
}
6519
6520
return 0;
6521
}
6522
6523
/*
6524
* Relocate sub-program calls.
6525
*
6526
* Algorithm operates as follows. Each entry-point BPF program (referred to as
6527
* main prog) is processed separately. For each subprog (non-entry functions,
6528
* that can be called from either entry progs or other subprogs) gets their
6529
* sub_insn_off reset to zero. This serves as indicator that this subprogram
6530
* hasn't been yet appended and relocated within current main prog. Once its
6531
* relocated, sub_insn_off will point at the position within current main prog
6532
* where given subprog was appended. This will further be used to relocate all
6533
* the call instructions jumping into this subprog.
6534
*
6535
* We start with main program and process all call instructions. If the call
6536
* is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6537
* is zero), subprog instructions are appended at the end of main program's
6538
* instruction array. Then main program is "put on hold" while we recursively
6539
* process newly appended subprogram. If that subprogram calls into another
6540
* subprogram that hasn't been appended, new subprogram is appended again to
6541
* the *main* prog's instructions (subprog's instructions are always left
6542
* untouched, as they need to be in unmodified state for subsequent main progs
6543
* and subprog instructions are always sent only as part of a main prog) and
6544
* the process continues recursively. Once all the subprogs called from a main
6545
* prog or any of its subprogs are appended (and relocated), all their
6546
* positions within finalized instructions array are known, so it's easy to
6547
* rewrite call instructions with correct relative offsets, corresponding to
6548
* desired target subprog.
6549
*
6550
* Its important to realize that some subprogs might not be called from some
6551
* main prog and any of its called/used subprogs. Those will keep their
6552
* subprog->sub_insn_off as zero at all times and won't be appended to current
6553
* main prog and won't be relocated within the context of current main prog.
6554
* They might still be used from other main progs later.
6555
*
6556
* Visually this process can be shown as below. Suppose we have two main
6557
* programs mainA and mainB and BPF object contains three subprogs: subA,
6558
* subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6559
* subC both call subB:
6560
*
6561
* +--------+ +-------+
6562
* | v v |
6563
* +--+---+ +--+-+-+ +---+--+
6564
* | subA | | subB | | subC |
6565
* +--+---+ +------+ +---+--+
6566
* ^ ^
6567
* | |
6568
* +---+-------+ +------+----+
6569
* | mainA | | mainB |
6570
* +-----------+ +-----------+
6571
*
6572
* We'll start relocating mainA, will find subA, append it and start
6573
* processing sub A recursively:
6574
*
6575
* +-----------+------+
6576
* | mainA | subA |
6577
* +-----------+------+
6578
*
6579
* At this point we notice that subB is used from subA, so we append it and
6580
* relocate (there are no further subcalls from subB):
6581
*
6582
* +-----------+------+------+
6583
* | mainA | subA | subB |
6584
* +-----------+------+------+
6585
*
6586
* At this point, we relocate subA calls, then go one level up and finish with
6587
* relocatin mainA calls. mainA is done.
6588
*
6589
* For mainB process is similar but results in different order. We start with
6590
* mainB and skip subA and subB, as mainB never calls them (at least
6591
* directly), but we see subC is needed, so we append and start processing it:
6592
*
6593
* +-----------+------+
6594
* | mainB | subC |
6595
* +-----------+------+
6596
* Now we see subC needs subB, so we go back to it, append and relocate it:
6597
*
6598
* +-----------+------+------+
6599
* | mainB | subC | subB |
6600
* +-----------+------+------+
6601
*
6602
* At this point we unwind recursion, relocate calls in subC, then in mainB.
6603
*/
6604
static int
6605
bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6606
{
6607
struct bpf_program *subprog;
6608
int i, err;
6609
6610
/* mark all subprogs as not relocated (yet) within the context of
6611
* current main program
6612
*/
6613
for (i = 0; i < obj->nr_programs; i++) {
6614
subprog = &obj->programs[i];
6615
if (!prog_is_subprog(obj, subprog))
6616
continue;
6617
6618
subprog->sub_insn_off = 0;
6619
}
6620
6621
err = bpf_object__reloc_code(obj, prog, prog);
6622
if (err)
6623
return err;
6624
6625
return 0;
6626
}
6627
6628
static void
6629
bpf_object__free_relocs(struct bpf_object *obj)
6630
{
6631
struct bpf_program *prog;
6632
int i;
6633
6634
/* free up relocation descriptors */
6635
for (i = 0; i < obj->nr_programs; i++) {
6636
prog = &obj->programs[i];
6637
zfree(&prog->reloc_desc);
6638
prog->nr_reloc = 0;
6639
}
6640
}
6641
6642
static int cmp_relocs(const void *_a, const void *_b)
6643
{
6644
const struct reloc_desc *a = _a;
6645
const struct reloc_desc *b = _b;
6646
6647
if (a->insn_idx != b->insn_idx)
6648
return a->insn_idx < b->insn_idx ? -1 : 1;
6649
6650
/* no two relocations should have the same insn_idx, but ... */
6651
if (a->type != b->type)
6652
return a->type < b->type ? -1 : 1;
6653
6654
return 0;
6655
}
6656
6657
static void bpf_object__sort_relos(struct bpf_object *obj)
6658
{
6659
int i;
6660
6661
for (i = 0; i < obj->nr_programs; i++) {
6662
struct bpf_program *p = &obj->programs[i];
6663
6664
if (!p->nr_reloc)
6665
continue;
6666
6667
qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6668
}
6669
}
6670
6671
static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6672
{
6673
const char *str = "exception_callback:";
6674
size_t pfx_len = strlen(str);
6675
int i, j, n;
6676
6677
if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6678
return 0;
6679
6680
n = btf__type_cnt(obj->btf);
6681
for (i = 1; i < n; i++) {
6682
const char *name;
6683
struct btf_type *t;
6684
6685
t = btf_type_by_id(obj->btf, i);
6686
if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6687
continue;
6688
6689
name = btf__str_by_offset(obj->btf, t->name_off);
6690
if (strncmp(name, str, pfx_len) != 0)
6691
continue;
6692
6693
t = btf_type_by_id(obj->btf, t->type);
6694
if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6695
pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6696
prog->name);
6697
return -EINVAL;
6698
}
6699
if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6700
continue;
6701
/* Multiple callbacks are specified for the same prog,
6702
* the verifier will eventually return an error for this
6703
* case, hence simply skip appending a subprog.
6704
*/
6705
if (prog->exception_cb_idx >= 0) {
6706
prog->exception_cb_idx = -1;
6707
break;
6708
}
6709
6710
name += pfx_len;
6711
if (str_is_empty(name)) {
6712
pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6713
prog->name);
6714
return -EINVAL;
6715
}
6716
6717
for (j = 0; j < obj->nr_programs; j++) {
6718
struct bpf_program *subprog = &obj->programs[j];
6719
6720
if (!prog_is_subprog(obj, subprog))
6721
continue;
6722
if (strcmp(name, subprog->name) != 0)
6723
continue;
6724
/* Enforce non-hidden, as from verifier point of
6725
* view it expects global functions, whereas the
6726
* mark_btf_static fixes up linkage as static.
6727
*/
6728
if (!subprog->sym_global || subprog->mark_btf_static) {
6729
pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6730
prog->name, subprog->name);
6731
return -EINVAL;
6732
}
6733
/* Let's see if we already saw a static exception callback with the same name */
6734
if (prog->exception_cb_idx >= 0) {
6735
pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6736
prog->name, subprog->name);
6737
return -EINVAL;
6738
}
6739
prog->exception_cb_idx = j;
6740
break;
6741
}
6742
6743
if (prog->exception_cb_idx >= 0)
6744
continue;
6745
6746
pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6747
return -ENOENT;
6748
}
6749
6750
return 0;
6751
}
6752
6753
static struct {
6754
enum bpf_prog_type prog_type;
6755
const char *ctx_name;
6756
} global_ctx_map[] = {
6757
{ BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" },
6758
{ BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" },
6759
{ BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" },
6760
{ BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" },
6761
{ BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" },
6762
{ BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" },
6763
{ BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" },
6764
{ BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" },
6765
{ BPF_PROG_TYPE_LWT_IN, "__sk_buff" },
6766
{ BPF_PROG_TYPE_LWT_OUT, "__sk_buff" },
6767
{ BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" },
6768
{ BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" },
6769
{ BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" },
6770
{ BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" },
6771
{ BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" },
6772
{ BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6773
{ BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" },
6774
{ BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" },
6775
{ BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" },
6776
{ BPF_PROG_TYPE_SK_MSG, "sk_msg_md" },
6777
{ BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" },
6778
{ BPF_PROG_TYPE_SK_SKB, "__sk_buff" },
6779
{ BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" },
6780
{ BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" },
6781
{ BPF_PROG_TYPE_XDP, "xdp_md" },
6782
/* all other program types don't have "named" context structs */
6783
};
6784
6785
/* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6786
* for below __builtin_types_compatible_p() checks;
6787
* with this approach we don't need any extra arch-specific #ifdef guards
6788
*/
6789
struct pt_regs;
6790
struct user_pt_regs;
6791
struct user_regs_struct;
6792
6793
static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6794
const char *subprog_name, int arg_idx,
6795
int arg_type_id, const char *ctx_name)
6796
{
6797
const struct btf_type *t;
6798
const char *tname;
6799
6800
/* check if existing parameter already matches verifier expectations */
6801
t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6802
if (!btf_is_ptr(t))
6803
goto out_warn;
6804
6805
/* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6806
* and perf_event programs, so check this case early on and forget
6807
* about it for subsequent checks
6808
*/
6809
while (btf_is_mod(t))
6810
t = btf__type_by_id(btf, t->type);
6811
if (btf_is_typedef(t) &&
6812
(prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6813
tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6814
if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6815
return false; /* canonical type for kprobe/perf_event */
6816
}
6817
6818
/* now we can ignore typedefs moving forward */
6819
t = skip_mods_and_typedefs(btf, t->type, NULL);
6820
6821
/* if it's `void *`, definitely fix up BTF info */
6822
if (btf_is_void(t))
6823
return true;
6824
6825
/* if it's already proper canonical type, no need to fix up */
6826
tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6827
if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6828
return false;
6829
6830
/* special cases */
6831
switch (prog->type) {
6832
case BPF_PROG_TYPE_KPROBE:
6833
/* `struct pt_regs *` is expected, but we need to fix up */
6834
if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6835
return true;
6836
break;
6837
case BPF_PROG_TYPE_PERF_EVENT:
6838
if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6839
btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6840
return true;
6841
if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6842
btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6843
return true;
6844
if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6845
btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6846
return true;
6847
break;
6848
case BPF_PROG_TYPE_RAW_TRACEPOINT:
6849
case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6850
/* allow u64* as ctx */
6851
if (btf_is_int(t) && t->size == 8)
6852
return true;
6853
break;
6854
default:
6855
break;
6856
}
6857
6858
out_warn:
6859
pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6860
prog->name, subprog_name, arg_idx, ctx_name);
6861
return false;
6862
}
6863
6864
static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6865
{
6866
int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6867
int i, err, arg_cnt, fn_name_off, linkage;
6868
struct btf_type *fn_t, *fn_proto_t, *t;
6869
struct btf_param *p;
6870
6871
/* caller already validated FUNC -> FUNC_PROTO validity */
6872
fn_t = btf_type_by_id(btf, orig_fn_id);
6873
fn_proto_t = btf_type_by_id(btf, fn_t->type);
6874
6875
/* Note that each btf__add_xxx() operation invalidates
6876
* all btf_type and string pointers, so we need to be
6877
* very careful when cloning BTF types. BTF type
6878
* pointers have to be always refetched. And to avoid
6879
* problems with invalidated string pointers, we
6880
* add empty strings initially, then just fix up
6881
* name_off offsets in place. Offsets are stable for
6882
* existing strings, so that works out.
6883
*/
6884
fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6885
linkage = btf_func_linkage(fn_t);
6886
orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6887
ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6888
arg_cnt = btf_vlen(fn_proto_t);
6889
6890
/* clone FUNC_PROTO and its params */
6891
fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6892
if (fn_proto_id < 0)
6893
return -EINVAL;
6894
6895
for (i = 0; i < arg_cnt; i++) {
6896
int name_off;
6897
6898
/* copy original parameter data */
6899
t = btf_type_by_id(btf, orig_proto_id);
6900
p = &btf_params(t)[i];
6901
name_off = p->name_off;
6902
6903
err = btf__add_func_param(btf, "", p->type);
6904
if (err)
6905
return err;
6906
6907
fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6908
p = &btf_params(fn_proto_t)[i];
6909
p->name_off = name_off; /* use remembered str offset */
6910
}
6911
6912
/* clone FUNC now, btf__add_func() enforces non-empty name, so use
6913
* entry program's name as a placeholder, which we replace immediately
6914
* with original name_off
6915
*/
6916
fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6917
if (fn_id < 0)
6918
return -EINVAL;
6919
6920
fn_t = btf_type_by_id(btf, fn_id);
6921
fn_t->name_off = fn_name_off; /* reuse original string */
6922
6923
return fn_id;
6924
}
6925
6926
/* Check if main program or global subprog's function prototype has `arg:ctx`
6927
* argument tags, and, if necessary, substitute correct type to match what BPF
6928
* verifier would expect, taking into account specific program type. This
6929
* allows to support __arg_ctx tag transparently on old kernels that don't yet
6930
* have a native support for it in the verifier, making user's life much
6931
* easier.
6932
*/
6933
static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6934
{
6935
const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6936
struct bpf_func_info_min *func_rec;
6937
struct btf_type *fn_t, *fn_proto_t;
6938
struct btf *btf = obj->btf;
6939
const struct btf_type *t;
6940
struct btf_param *p;
6941
int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6942
int i, n, arg_idx, arg_cnt, err, rec_idx;
6943
int *orig_ids;
6944
6945
/* no .BTF.ext, no problem */
6946
if (!obj->btf_ext || !prog->func_info)
6947
return 0;
6948
6949
/* don't do any fix ups if kernel natively supports __arg_ctx */
6950
if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
6951
return 0;
6952
6953
/* some BPF program types just don't have named context structs, so
6954
* this fallback mechanism doesn't work for them
6955
*/
6956
for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6957
if (global_ctx_map[i].prog_type != prog->type)
6958
continue;
6959
ctx_name = global_ctx_map[i].ctx_name;
6960
break;
6961
}
6962
if (!ctx_name)
6963
return 0;
6964
6965
/* remember original func BTF IDs to detect if we already cloned them */
6966
orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6967
if (!orig_ids)
6968
return -ENOMEM;
6969
for (i = 0; i < prog->func_info_cnt; i++) {
6970
func_rec = prog->func_info + prog->func_info_rec_size * i;
6971
orig_ids[i] = func_rec->type_id;
6972
}
6973
6974
/* go through each DECL_TAG with "arg:ctx" and see if it points to one
6975
* of our subprogs; if yes and subprog is global and needs adjustment,
6976
* clone and adjust FUNC -> FUNC_PROTO combo
6977
*/
6978
for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6979
/* only DECL_TAG with "arg:ctx" value are interesting */
6980
t = btf__type_by_id(btf, i);
6981
if (!btf_is_decl_tag(t))
6982
continue;
6983
if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6984
continue;
6985
6986
/* only global funcs need adjustment, if at all */
6987
orig_fn_id = t->type;
6988
fn_t = btf_type_by_id(btf, orig_fn_id);
6989
if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6990
continue;
6991
6992
/* sanity check FUNC -> FUNC_PROTO chain, just in case */
6993
fn_proto_t = btf_type_by_id(btf, fn_t->type);
6994
if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6995
continue;
6996
6997
/* find corresponding func_info record */
6998
func_rec = NULL;
6999
for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
7000
if (orig_ids[rec_idx] == t->type) {
7001
func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
7002
break;
7003
}
7004
}
7005
/* current main program doesn't call into this subprog */
7006
if (!func_rec)
7007
continue;
7008
7009
/* some more sanity checking of DECL_TAG */
7010
arg_cnt = btf_vlen(fn_proto_t);
7011
arg_idx = btf_decl_tag(t)->component_idx;
7012
if (arg_idx < 0 || arg_idx >= arg_cnt)
7013
continue;
7014
7015
/* check if we should fix up argument type */
7016
p = &btf_params(fn_proto_t)[arg_idx];
7017
fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
7018
if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
7019
continue;
7020
7021
/* clone fn/fn_proto, unless we already did it for another arg */
7022
if (func_rec->type_id == orig_fn_id) {
7023
int fn_id;
7024
7025
fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
7026
if (fn_id < 0) {
7027
err = fn_id;
7028
goto err_out;
7029
}
7030
7031
/* point func_info record to a cloned FUNC type */
7032
func_rec->type_id = fn_id;
7033
}
7034
7035
/* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
7036
* we do it just once per main BPF program, as all global
7037
* funcs share the same program type, so need only PTR ->
7038
* STRUCT type chain
7039
*/
7040
if (ptr_id == 0) {
7041
struct_id = btf__add_struct(btf, ctx_name, 0);
7042
ptr_id = btf__add_ptr(btf, struct_id);
7043
if (ptr_id < 0 || struct_id < 0) {
7044
err = -EINVAL;
7045
goto err_out;
7046
}
7047
}
7048
7049
/* for completeness, clone DECL_TAG and point it to cloned param */
7050
tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
7051
if (tag_id < 0) {
7052
err = -EINVAL;
7053
goto err_out;
7054
}
7055
7056
/* all the BTF manipulations invalidated pointers, refetch them */
7057
fn_t = btf_type_by_id(btf, func_rec->type_id);
7058
fn_proto_t = btf_type_by_id(btf, fn_t->type);
7059
7060
/* fix up type ID pointed to by param */
7061
p = &btf_params(fn_proto_t)[arg_idx];
7062
p->type = ptr_id;
7063
}
7064
7065
free(orig_ids);
7066
return 0;
7067
err_out:
7068
free(orig_ids);
7069
return err;
7070
}
7071
7072
static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
7073
{
7074
struct bpf_program *prog;
7075
size_t i, j;
7076
int err;
7077
7078
if (obj->btf_ext) {
7079
err = bpf_object__relocate_core(obj, targ_btf_path);
7080
if (err) {
7081
pr_warn("failed to perform CO-RE relocations: %s\n",
7082
errstr(err));
7083
return err;
7084
}
7085
bpf_object__sort_relos(obj);
7086
}
7087
7088
/* Before relocating calls pre-process relocations and mark
7089
* few ld_imm64 instructions that points to subprogs.
7090
* Otherwise bpf_object__reloc_code() later would have to consider
7091
* all ld_imm64 insns as relocation candidates. That would
7092
* reduce relocation speed, since amount of find_prog_insn_relo()
7093
* would increase and most of them will fail to find a relo.
7094
*/
7095
for (i = 0; i < obj->nr_programs; i++) {
7096
prog = &obj->programs[i];
7097
for (j = 0; j < prog->nr_reloc; j++) {
7098
struct reloc_desc *relo = &prog->reloc_desc[j];
7099
struct bpf_insn *insn = &prog->insns[relo->insn_idx];
7100
7101
/* mark the insn, so it's recognized by insn_is_pseudo_func() */
7102
if (relo->type == RELO_SUBPROG_ADDR)
7103
insn[0].src_reg = BPF_PSEUDO_FUNC;
7104
}
7105
}
7106
7107
/* relocate subprogram calls and append used subprograms to main
7108
* programs; each copy of subprogram code needs to be relocated
7109
* differently for each main program, because its code location might
7110
* have changed.
7111
* Append subprog relos to main programs to allow data relos to be
7112
* processed after text is completely relocated.
7113
*/
7114
for (i = 0; i < obj->nr_programs; i++) {
7115
prog = &obj->programs[i];
7116
/* sub-program's sub-calls are relocated within the context of
7117
* its main program only
7118
*/
7119
if (prog_is_subprog(obj, prog))
7120
continue;
7121
if (!prog->autoload)
7122
continue;
7123
7124
err = bpf_object__relocate_calls(obj, prog);
7125
if (err) {
7126
pr_warn("prog '%s': failed to relocate calls: %s\n",
7127
prog->name, errstr(err));
7128
return err;
7129
}
7130
7131
err = bpf_prog_assign_exc_cb(obj, prog);
7132
if (err)
7133
return err;
7134
/* Now, also append exception callback if it has not been done already. */
7135
if (prog->exception_cb_idx >= 0) {
7136
struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7137
7138
/* Calling exception callback directly is disallowed, which the
7139
* verifier will reject later. In case it was processed already,
7140
* we can skip this step, otherwise for all other valid cases we
7141
* have to append exception callback now.
7142
*/
7143
if (subprog->sub_insn_off == 0) {
7144
err = bpf_object__append_subprog_code(obj, prog, subprog);
7145
if (err)
7146
return err;
7147
err = bpf_object__reloc_code(obj, prog, subprog);
7148
if (err)
7149
return err;
7150
}
7151
}
7152
}
7153
for (i = 0; i < obj->nr_programs; i++) {
7154
prog = &obj->programs[i];
7155
if (prog_is_subprog(obj, prog))
7156
continue;
7157
if (!prog->autoload)
7158
continue;
7159
7160
/* Process data relos for main programs */
7161
err = bpf_object__relocate_data(obj, prog);
7162
if (err) {
7163
pr_warn("prog '%s': failed to relocate data references: %s\n",
7164
prog->name, errstr(err));
7165
return err;
7166
}
7167
7168
/* Fix up .BTF.ext information, if necessary */
7169
err = bpf_program_fixup_func_info(obj, prog);
7170
if (err) {
7171
pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n",
7172
prog->name, errstr(err));
7173
return err;
7174
}
7175
}
7176
7177
return 0;
7178
}
7179
7180
static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7181
Elf64_Shdr *shdr, Elf_Data *data);
7182
7183
static int bpf_object__collect_map_relos(struct bpf_object *obj,
7184
Elf64_Shdr *shdr, Elf_Data *data)
7185
{
7186
const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7187
int i, j, nrels, new_sz;
7188
const struct btf_var_secinfo *vi = NULL;
7189
const struct btf_type *sec, *var, *def;
7190
struct bpf_map *map = NULL, *targ_map = NULL;
7191
struct bpf_program *targ_prog = NULL;
7192
bool is_prog_array, is_map_in_map;
7193
const struct btf_member *member;
7194
const char *name, *mname, *type;
7195
unsigned int moff;
7196
Elf64_Sym *sym;
7197
Elf64_Rel *rel;
7198
void *tmp;
7199
7200
if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7201
return -EINVAL;
7202
sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7203
if (!sec)
7204
return -EINVAL;
7205
7206
nrels = shdr->sh_size / shdr->sh_entsize;
7207
for (i = 0; i < nrels; i++) {
7208
rel = elf_rel_by_idx(data, i);
7209
if (!rel) {
7210
pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7211
return -LIBBPF_ERRNO__FORMAT;
7212
}
7213
7214
sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7215
if (!sym) {
7216
pr_warn(".maps relo #%d: symbol %zx not found\n",
7217
i, (size_t)ELF64_R_SYM(rel->r_info));
7218
return -LIBBPF_ERRNO__FORMAT;
7219
}
7220
name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7221
7222
pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7223
i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7224
(size_t)rel->r_offset, sym->st_name, name);
7225
7226
for (j = 0; j < obj->nr_maps; j++) {
7227
map = &obj->maps[j];
7228
if (map->sec_idx != obj->efile.btf_maps_shndx)
7229
continue;
7230
7231
vi = btf_var_secinfos(sec) + map->btf_var_idx;
7232
if (vi->offset <= rel->r_offset &&
7233
rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7234
break;
7235
}
7236
if (j == obj->nr_maps) {
7237
pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7238
i, name, (size_t)rel->r_offset);
7239
return -EINVAL;
7240
}
7241
7242
is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7243
is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7244
type = is_map_in_map ? "map" : "prog";
7245
if (is_map_in_map) {
7246
if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7247
pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7248
i, name);
7249
return -LIBBPF_ERRNO__RELOC;
7250
}
7251
if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7252
map->def.key_size != sizeof(int)) {
7253
pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7254
i, map->name, sizeof(int));
7255
return -EINVAL;
7256
}
7257
targ_map = bpf_object__find_map_by_name(obj, name);
7258
if (!targ_map) {
7259
pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7260
i, name);
7261
return -ESRCH;
7262
}
7263
} else if (is_prog_array) {
7264
targ_prog = bpf_object__find_program_by_name(obj, name);
7265
if (!targ_prog) {
7266
pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7267
i, name);
7268
return -ESRCH;
7269
}
7270
if (targ_prog->sec_idx != sym->st_shndx ||
7271
targ_prog->sec_insn_off * 8 != sym->st_value ||
7272
prog_is_subprog(obj, targ_prog)) {
7273
pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7274
i, name);
7275
return -LIBBPF_ERRNO__RELOC;
7276
}
7277
} else {
7278
return -EINVAL;
7279
}
7280
7281
var = btf__type_by_id(obj->btf, vi->type);
7282
def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7283
if (btf_vlen(def) == 0)
7284
return -EINVAL;
7285
member = btf_members(def) + btf_vlen(def) - 1;
7286
mname = btf__name_by_offset(obj->btf, member->name_off);
7287
if (strcmp(mname, "values"))
7288
return -EINVAL;
7289
7290
moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7291
if (rel->r_offset - vi->offset < moff)
7292
return -EINVAL;
7293
7294
moff = rel->r_offset - vi->offset - moff;
7295
/* here we use BPF pointer size, which is always 64 bit, as we
7296
* are parsing ELF that was built for BPF target
7297
*/
7298
if (moff % bpf_ptr_sz)
7299
return -EINVAL;
7300
moff /= bpf_ptr_sz;
7301
if (moff >= map->init_slots_sz) {
7302
new_sz = moff + 1;
7303
tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7304
if (!tmp)
7305
return -ENOMEM;
7306
map->init_slots = tmp;
7307
memset(map->init_slots + map->init_slots_sz, 0,
7308
(new_sz - map->init_slots_sz) * host_ptr_sz);
7309
map->init_slots_sz = new_sz;
7310
}
7311
map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7312
7313
pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7314
i, map->name, moff, type, name);
7315
}
7316
7317
return 0;
7318
}
7319
7320
static int bpf_object__collect_relos(struct bpf_object *obj)
7321
{
7322
int i, err;
7323
7324
for (i = 0; i < obj->efile.sec_cnt; i++) {
7325
struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7326
Elf64_Shdr *shdr;
7327
Elf_Data *data;
7328
int idx;
7329
7330
if (sec_desc->sec_type != SEC_RELO)
7331
continue;
7332
7333
shdr = sec_desc->shdr;
7334
data = sec_desc->data;
7335
idx = shdr->sh_info;
7336
7337
if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7338
pr_warn("internal error at %d\n", __LINE__);
7339
return -LIBBPF_ERRNO__INTERNAL;
7340
}
7341
7342
if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7343
err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7344
else if (idx == obj->efile.btf_maps_shndx)
7345
err = bpf_object__collect_map_relos(obj, shdr, data);
7346
else
7347
err = bpf_object__collect_prog_relos(obj, shdr, data);
7348
if (err)
7349
return err;
7350
}
7351
7352
bpf_object__sort_relos(obj);
7353
return 0;
7354
}
7355
7356
static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7357
{
7358
if (BPF_CLASS(insn->code) == BPF_JMP &&
7359
BPF_OP(insn->code) == BPF_CALL &&
7360
BPF_SRC(insn->code) == BPF_K &&
7361
insn->src_reg == 0 &&
7362
insn->dst_reg == 0) {
7363
*func_id = insn->imm;
7364
return true;
7365
}
7366
return false;
7367
}
7368
7369
static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7370
{
7371
struct bpf_insn *insn = prog->insns;
7372
enum bpf_func_id func_id;
7373
int i;
7374
7375
if (obj->gen_loader)
7376
return 0;
7377
7378
for (i = 0; i < prog->insns_cnt; i++, insn++) {
7379
if (!insn_is_helper_call(insn, &func_id))
7380
continue;
7381
7382
/* on kernels that don't yet support
7383
* bpf_probe_read_{kernel,user}[_str] helpers, fall back
7384
* to bpf_probe_read() which works well for old kernels
7385
*/
7386
switch (func_id) {
7387
case BPF_FUNC_probe_read_kernel:
7388
case BPF_FUNC_probe_read_user:
7389
if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7390
insn->imm = BPF_FUNC_probe_read;
7391
break;
7392
case BPF_FUNC_probe_read_kernel_str:
7393
case BPF_FUNC_probe_read_user_str:
7394
if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7395
insn->imm = BPF_FUNC_probe_read_str;
7396
break;
7397
default:
7398
break;
7399
}
7400
}
7401
return 0;
7402
}
7403
7404
static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7405
int *btf_obj_fd, int *btf_type_id);
7406
7407
/* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
7408
static int libbpf_prepare_prog_load(struct bpf_program *prog,
7409
struct bpf_prog_load_opts *opts, long cookie)
7410
{
7411
enum sec_def_flags def = cookie;
7412
7413
/* old kernels might not support specifying expected_attach_type */
7414
if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7415
opts->expected_attach_type = 0;
7416
7417
if (def & SEC_SLEEPABLE)
7418
opts->prog_flags |= BPF_F_SLEEPABLE;
7419
7420
if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7421
opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7422
7423
/* special check for usdt to use uprobe_multi link */
7424
if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) {
7425
/* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type
7426
* in prog, and expected_attach_type we set in kernel is from opts, so we
7427
* update both.
7428
*/
7429
prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7430
opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7431
}
7432
7433
if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7434
int btf_obj_fd = 0, btf_type_id = 0, err;
7435
const char *attach_name;
7436
7437
attach_name = strchr(prog->sec_name, '/');
7438
if (!attach_name) {
7439
/* if BPF program is annotated with just SEC("fentry")
7440
* (or similar) without declaratively specifying
7441
* target, then it is expected that target will be
7442
* specified with bpf_program__set_attach_target() at
7443
* runtime before BPF object load step. If not, then
7444
* there is nothing to load into the kernel as BPF
7445
* verifier won't be able to validate BPF program
7446
* correctness anyways.
7447
*/
7448
pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7449
prog->name);
7450
return -EINVAL;
7451
}
7452
attach_name++; /* skip over / */
7453
7454
err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7455
if (err)
7456
return err;
7457
7458
/* cache resolved BTF FD and BTF type ID in the prog */
7459
prog->attach_btf_obj_fd = btf_obj_fd;
7460
prog->attach_btf_id = btf_type_id;
7461
7462
/* but by now libbpf common logic is not utilizing
7463
* prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7464
* this callback is called after opts were populated by
7465
* libbpf, so this callback has to update opts explicitly here
7466
*/
7467
opts->attach_btf_obj_fd = btf_obj_fd;
7468
opts->attach_btf_id = btf_type_id;
7469
}
7470
return 0;
7471
}
7472
7473
static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7474
7475
static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7476
struct bpf_insn *insns, int insns_cnt,
7477
const char *license, __u32 kern_version, int *prog_fd)
7478
{
7479
LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7480
const char *prog_name = NULL;
7481
size_t log_buf_size = 0;
7482
char *log_buf = NULL, *tmp;
7483
bool own_log_buf = true;
7484
__u32 log_level = prog->log_level;
7485
int ret, err;
7486
7487
/* Be more helpful by rejecting programs that can't be validated early
7488
* with more meaningful and actionable error message.
7489
*/
7490
switch (prog->type) {
7491
case BPF_PROG_TYPE_UNSPEC:
7492
/*
7493
* The program type must be set. Most likely we couldn't find a proper
7494
* section definition at load time, and thus we didn't infer the type.
7495
*/
7496
pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7497
prog->name, prog->sec_name);
7498
return -EINVAL;
7499
case BPF_PROG_TYPE_STRUCT_OPS:
7500
if (prog->attach_btf_id == 0) {
7501
pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n",
7502
prog->name);
7503
return -EINVAL;
7504
}
7505
break;
7506
default:
7507
break;
7508
}
7509
7510
if (!insns || !insns_cnt)
7511
return -EINVAL;
7512
7513
if (kernel_supports(obj, FEAT_PROG_NAME))
7514
prog_name = prog->name;
7515
load_attr.attach_prog_fd = prog->attach_prog_fd;
7516
load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7517
load_attr.attach_btf_id = prog->attach_btf_id;
7518
load_attr.kern_version = kern_version;
7519
load_attr.prog_ifindex = prog->prog_ifindex;
7520
load_attr.expected_attach_type = prog->expected_attach_type;
7521
7522
/* specify func_info/line_info only if kernel supports them */
7523
if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7524
load_attr.prog_btf_fd = btf__fd(obj->btf);
7525
load_attr.func_info = prog->func_info;
7526
load_attr.func_info_rec_size = prog->func_info_rec_size;
7527
load_attr.func_info_cnt = prog->func_info_cnt;
7528
load_attr.line_info = prog->line_info;
7529
load_attr.line_info_rec_size = prog->line_info_rec_size;
7530
load_attr.line_info_cnt = prog->line_info_cnt;
7531
}
7532
load_attr.log_level = log_level;
7533
load_attr.prog_flags = prog->prog_flags;
7534
load_attr.fd_array = obj->fd_array;
7535
7536
load_attr.token_fd = obj->token_fd;
7537
if (obj->token_fd)
7538
load_attr.prog_flags |= BPF_F_TOKEN_FD;
7539
7540
/* adjust load_attr if sec_def provides custom preload callback */
7541
if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7542
err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7543
if (err < 0) {
7544
pr_warn("prog '%s': failed to prepare load attributes: %s\n",
7545
prog->name, errstr(err));
7546
return err;
7547
}
7548
insns = prog->insns;
7549
insns_cnt = prog->insns_cnt;
7550
}
7551
7552
if (obj->gen_loader) {
7553
bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7554
license, insns, insns_cnt, &load_attr,
7555
prog - obj->programs);
7556
*prog_fd = -1;
7557
return 0;
7558
}
7559
7560
retry_load:
7561
/* if log_level is zero, we don't request logs initially even if
7562
* custom log_buf is specified; if the program load fails, then we'll
7563
* bump log_level to 1 and use either custom log_buf or we'll allocate
7564
* our own and retry the load to get details on what failed
7565
*/
7566
if (log_level) {
7567
if (prog->log_buf) {
7568
log_buf = prog->log_buf;
7569
log_buf_size = prog->log_size;
7570
own_log_buf = false;
7571
} else if (obj->log_buf) {
7572
log_buf = obj->log_buf;
7573
log_buf_size = obj->log_size;
7574
own_log_buf = false;
7575
} else {
7576
log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7577
tmp = realloc(log_buf, log_buf_size);
7578
if (!tmp) {
7579
ret = -ENOMEM;
7580
goto out;
7581
}
7582
log_buf = tmp;
7583
log_buf[0] = '\0';
7584
own_log_buf = true;
7585
}
7586
}
7587
7588
load_attr.log_buf = log_buf;
7589
load_attr.log_size = log_buf_size;
7590
load_attr.log_level = log_level;
7591
7592
ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7593
if (ret >= 0) {
7594
if (log_level && own_log_buf) {
7595
pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7596
prog->name, log_buf);
7597
}
7598
7599
if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7600
struct bpf_map *map;
7601
int i;
7602
7603
for (i = 0; i < obj->nr_maps; i++) {
7604
map = &prog->obj->maps[i];
7605
if (map->libbpf_type != LIBBPF_MAP_RODATA)
7606
continue;
7607
7608
if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7609
pr_warn("prog '%s': failed to bind map '%s': %s\n",
7610
prog->name, map->real_name, errstr(errno));
7611
/* Don't fail hard if can't bind rodata. */
7612
}
7613
}
7614
}
7615
7616
*prog_fd = ret;
7617
ret = 0;
7618
goto out;
7619
}
7620
7621
if (log_level == 0) {
7622
log_level = 1;
7623
goto retry_load;
7624
}
7625
/* On ENOSPC, increase log buffer size and retry, unless custom
7626
* log_buf is specified.
7627
* Be careful to not overflow u32, though. Kernel's log buf size limit
7628
* isn't part of UAPI so it can always be bumped to full 4GB. So don't
7629
* multiply by 2 unless we are sure we'll fit within 32 bits.
7630
* Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7631
*/
7632
if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7633
goto retry_load;
7634
7635
ret = -errno;
7636
7637
/* post-process verifier log to improve error descriptions */
7638
fixup_verifier_log(prog, log_buf, log_buf_size);
7639
7640
pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno));
7641
pr_perm_msg(ret);
7642
7643
if (own_log_buf && log_buf && log_buf[0] != '\0') {
7644
pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7645
prog->name, log_buf);
7646
}
7647
7648
out:
7649
if (own_log_buf)
7650
free(log_buf);
7651
return ret;
7652
}
7653
7654
static char *find_prev_line(char *buf, char *cur)
7655
{
7656
char *p;
7657
7658
if (cur == buf) /* end of a log buf */
7659
return NULL;
7660
7661
p = cur - 1;
7662
while (p - 1 >= buf && *(p - 1) != '\n')
7663
p--;
7664
7665
return p;
7666
}
7667
7668
static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7669
char *orig, size_t orig_sz, const char *patch)
7670
{
7671
/* size of the remaining log content to the right from the to-be-replaced part */
7672
size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7673
size_t patch_sz = strlen(patch);
7674
7675
if (patch_sz != orig_sz) {
7676
/* If patch line(s) are longer than original piece of verifier log,
7677
* shift log contents by (patch_sz - orig_sz) bytes to the right
7678
* starting from after to-be-replaced part of the log.
7679
*
7680
* If patch line(s) are shorter than original piece of verifier log,
7681
* shift log contents by (orig_sz - patch_sz) bytes to the left
7682
* starting from after to-be-replaced part of the log
7683
*
7684
* We need to be careful about not overflowing available
7685
* buf_sz capacity. If that's the case, we'll truncate the end
7686
* of the original log, as necessary.
7687
*/
7688
if (patch_sz > orig_sz) {
7689
if (orig + patch_sz >= buf + buf_sz) {
7690
/* patch is big enough to cover remaining space completely */
7691
patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7692
rem_sz = 0;
7693
} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7694
/* patch causes part of remaining log to be truncated */
7695
rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7696
}
7697
}
7698
/* shift remaining log to the right by calculated amount */
7699
memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7700
}
7701
7702
memcpy(orig, patch, patch_sz);
7703
}
7704
7705
static void fixup_log_failed_core_relo(struct bpf_program *prog,
7706
char *buf, size_t buf_sz, size_t log_sz,
7707
char *line1, char *line2, char *line3)
7708
{
7709
/* Expected log for failed and not properly guarded CO-RE relocation:
7710
* line1 -> 123: (85) call unknown#195896080
7711
* line2 -> invalid func unknown#195896080
7712
* line3 -> <anything else or end of buffer>
7713
*
7714
* "123" is the index of the instruction that was poisoned. We extract
7715
* instruction index to find corresponding CO-RE relocation and
7716
* replace this part of the log with more relevant information about
7717
* failed CO-RE relocation.
7718
*/
7719
const struct bpf_core_relo *relo;
7720
struct bpf_core_spec spec;
7721
char patch[512], spec_buf[256];
7722
int insn_idx, err, spec_len;
7723
7724
if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7725
return;
7726
7727
relo = find_relo_core(prog, insn_idx);
7728
if (!relo)
7729
return;
7730
7731
err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7732
if (err)
7733
return;
7734
7735
spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7736
snprintf(patch, sizeof(patch),
7737
"%d: <invalid CO-RE relocation>\n"
7738
"failed to resolve CO-RE relocation %s%s\n",
7739
insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7740
7741
patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7742
}
7743
7744
static void fixup_log_missing_map_load(struct bpf_program *prog,
7745
char *buf, size_t buf_sz, size_t log_sz,
7746
char *line1, char *line2, char *line3)
7747
{
7748
/* Expected log for failed and not properly guarded map reference:
7749
* line1 -> 123: (85) call unknown#2001000345
7750
* line2 -> invalid func unknown#2001000345
7751
* line3 -> <anything else or end of buffer>
7752
*
7753
* "123" is the index of the instruction that was poisoned.
7754
* "345" in "2001000345" is a map index in obj->maps to fetch map name.
7755
*/
7756
struct bpf_object *obj = prog->obj;
7757
const struct bpf_map *map;
7758
int insn_idx, map_idx;
7759
char patch[128];
7760
7761
if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7762
return;
7763
7764
map_idx -= POISON_LDIMM64_MAP_BASE;
7765
if (map_idx < 0 || map_idx >= obj->nr_maps)
7766
return;
7767
map = &obj->maps[map_idx];
7768
7769
snprintf(patch, sizeof(patch),
7770
"%d: <invalid BPF map reference>\n"
7771
"BPF map '%s' is referenced but wasn't created\n",
7772
insn_idx, map->name);
7773
7774
patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7775
}
7776
7777
static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7778
char *buf, size_t buf_sz, size_t log_sz,
7779
char *line1, char *line2, char *line3)
7780
{
7781
/* Expected log for failed and not properly guarded kfunc call:
7782
* line1 -> 123: (85) call unknown#2002000345
7783
* line2 -> invalid func unknown#2002000345
7784
* line3 -> <anything else or end of buffer>
7785
*
7786
* "123" is the index of the instruction that was poisoned.
7787
* "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7788
*/
7789
struct bpf_object *obj = prog->obj;
7790
const struct extern_desc *ext;
7791
int insn_idx, ext_idx;
7792
char patch[128];
7793
7794
if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7795
return;
7796
7797
ext_idx -= POISON_CALL_KFUNC_BASE;
7798
if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7799
return;
7800
ext = &obj->externs[ext_idx];
7801
7802
snprintf(patch, sizeof(patch),
7803
"%d: <invalid kfunc call>\n"
7804
"kfunc '%s' is referenced but wasn't resolved\n",
7805
insn_idx, ext->name);
7806
7807
patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7808
}
7809
7810
static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7811
{
7812
/* look for familiar error patterns in last N lines of the log */
7813
const size_t max_last_line_cnt = 10;
7814
char *prev_line, *cur_line, *next_line;
7815
size_t log_sz;
7816
int i;
7817
7818
if (!buf)
7819
return;
7820
7821
log_sz = strlen(buf) + 1;
7822
next_line = buf + log_sz - 1;
7823
7824
for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7825
cur_line = find_prev_line(buf, next_line);
7826
if (!cur_line)
7827
return;
7828
7829
if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7830
prev_line = find_prev_line(buf, cur_line);
7831
if (!prev_line)
7832
continue;
7833
7834
/* failed CO-RE relocation case */
7835
fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7836
prev_line, cur_line, next_line);
7837
return;
7838
} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7839
prev_line = find_prev_line(buf, cur_line);
7840
if (!prev_line)
7841
continue;
7842
7843
/* reference to uncreated BPF map */
7844
fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7845
prev_line, cur_line, next_line);
7846
return;
7847
} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7848
prev_line = find_prev_line(buf, cur_line);
7849
if (!prev_line)
7850
continue;
7851
7852
/* reference to unresolved kfunc */
7853
fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7854
prev_line, cur_line, next_line);
7855
return;
7856
}
7857
}
7858
}
7859
7860
static int bpf_program_record_relos(struct bpf_program *prog)
7861
{
7862
struct bpf_object *obj = prog->obj;
7863
int i;
7864
7865
for (i = 0; i < prog->nr_reloc; i++) {
7866
struct reloc_desc *relo = &prog->reloc_desc[i];
7867
struct extern_desc *ext = &obj->externs[relo->ext_idx];
7868
int kind;
7869
7870
switch (relo->type) {
7871
case RELO_EXTERN_LD64:
7872
if (ext->type != EXT_KSYM)
7873
continue;
7874
kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7875
BTF_KIND_VAR : BTF_KIND_FUNC;
7876
bpf_gen__record_extern(obj->gen_loader, ext->name,
7877
ext->is_weak, !ext->ksym.type_id,
7878
true, kind, relo->insn_idx);
7879
break;
7880
case RELO_EXTERN_CALL:
7881
bpf_gen__record_extern(obj->gen_loader, ext->name,
7882
ext->is_weak, false, false, BTF_KIND_FUNC,
7883
relo->insn_idx);
7884
break;
7885
case RELO_CORE: {
7886
struct bpf_core_relo cr = {
7887
.insn_off = relo->insn_idx * 8,
7888
.type_id = relo->core_relo->type_id,
7889
.access_str_off = relo->core_relo->access_str_off,
7890
.kind = relo->core_relo->kind,
7891
};
7892
7893
bpf_gen__record_relo_core(obj->gen_loader, &cr);
7894
break;
7895
}
7896
default:
7897
continue;
7898
}
7899
}
7900
return 0;
7901
}
7902
7903
static int
7904
bpf_object__load_progs(struct bpf_object *obj, int log_level)
7905
{
7906
struct bpf_program *prog;
7907
size_t i;
7908
int err;
7909
7910
for (i = 0; i < obj->nr_programs; i++) {
7911
prog = &obj->programs[i];
7912
if (prog_is_subprog(obj, prog))
7913
continue;
7914
if (!prog->autoload) {
7915
pr_debug("prog '%s': skipped loading\n", prog->name);
7916
continue;
7917
}
7918
prog->log_level |= log_level;
7919
7920
if (obj->gen_loader)
7921
bpf_program_record_relos(prog);
7922
7923
err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7924
obj->license, obj->kern_version, &prog->fd);
7925
if (err) {
7926
pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err));
7927
return err;
7928
}
7929
}
7930
7931
bpf_object__free_relocs(obj);
7932
return 0;
7933
}
7934
7935
static int bpf_object_prepare_progs(struct bpf_object *obj)
7936
{
7937
struct bpf_program *prog;
7938
size_t i;
7939
int err;
7940
7941
for (i = 0; i < obj->nr_programs; i++) {
7942
prog = &obj->programs[i];
7943
err = bpf_object__sanitize_prog(obj, prog);
7944
if (err)
7945
return err;
7946
}
7947
return 0;
7948
}
7949
7950
static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7951
7952
static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7953
{
7954
struct bpf_program *prog;
7955
int err;
7956
7957
bpf_object__for_each_program(prog, obj) {
7958
prog->sec_def = find_sec_def(prog->sec_name);
7959
if (!prog->sec_def) {
7960
/* couldn't guess, but user might manually specify */
7961
pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7962
prog->name, prog->sec_name);
7963
continue;
7964
}
7965
7966
prog->type = prog->sec_def->prog_type;
7967
prog->expected_attach_type = prog->sec_def->expected_attach_type;
7968
7969
/* sec_def can have custom callback which should be called
7970
* after bpf_program is initialized to adjust its properties
7971
*/
7972
if (prog->sec_def->prog_setup_fn) {
7973
err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7974
if (err < 0) {
7975
pr_warn("prog '%s': failed to initialize: %s\n",
7976
prog->name, errstr(err));
7977
return err;
7978
}
7979
}
7980
}
7981
7982
return 0;
7983
}
7984
7985
static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7986
const char *obj_name,
7987
const struct bpf_object_open_opts *opts)
7988
{
7989
const char *kconfig, *btf_tmp_path, *token_path;
7990
struct bpf_object *obj;
7991
int err;
7992
char *log_buf;
7993
size_t log_size;
7994
__u32 log_level;
7995
7996
if (obj_buf && !obj_name)
7997
return ERR_PTR(-EINVAL);
7998
7999
if (elf_version(EV_CURRENT) == EV_NONE) {
8000
pr_warn("failed to init libelf for %s\n",
8001
path ? : "(mem buf)");
8002
return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
8003
}
8004
8005
if (!OPTS_VALID(opts, bpf_object_open_opts))
8006
return ERR_PTR(-EINVAL);
8007
8008
obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name;
8009
if (obj_buf) {
8010
path = obj_name;
8011
pr_debug("loading object '%s' from buffer\n", obj_name);
8012
} else {
8013
pr_debug("loading object from %s\n", path);
8014
}
8015
8016
log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
8017
log_size = OPTS_GET(opts, kernel_log_size, 0);
8018
log_level = OPTS_GET(opts, kernel_log_level, 0);
8019
if (log_size > UINT_MAX)
8020
return ERR_PTR(-EINVAL);
8021
if (log_size && !log_buf)
8022
return ERR_PTR(-EINVAL);
8023
8024
token_path = OPTS_GET(opts, bpf_token_path, NULL);
8025
/* if user didn't specify bpf_token_path explicitly, check if
8026
* LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
8027
* option
8028
*/
8029
if (!token_path)
8030
token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
8031
if (token_path && strlen(token_path) >= PATH_MAX)
8032
return ERR_PTR(-ENAMETOOLONG);
8033
8034
obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
8035
if (IS_ERR(obj))
8036
return obj;
8037
8038
obj->log_buf = log_buf;
8039
obj->log_size = log_size;
8040
obj->log_level = log_level;
8041
8042
if (token_path) {
8043
obj->token_path = strdup(token_path);
8044
if (!obj->token_path) {
8045
err = -ENOMEM;
8046
goto out;
8047
}
8048
}
8049
8050
btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
8051
if (btf_tmp_path) {
8052
if (strlen(btf_tmp_path) >= PATH_MAX) {
8053
err = -ENAMETOOLONG;
8054
goto out;
8055
}
8056
obj->btf_custom_path = strdup(btf_tmp_path);
8057
if (!obj->btf_custom_path) {
8058
err = -ENOMEM;
8059
goto out;
8060
}
8061
}
8062
8063
kconfig = OPTS_GET(opts, kconfig, NULL);
8064
if (kconfig) {
8065
obj->kconfig = strdup(kconfig);
8066
if (!obj->kconfig) {
8067
err = -ENOMEM;
8068
goto out;
8069
}
8070
}
8071
8072
err = bpf_object__elf_init(obj);
8073
err = err ? : bpf_object__elf_collect(obj);
8074
err = err ? : bpf_object__collect_externs(obj);
8075
err = err ? : bpf_object_fixup_btf(obj);
8076
err = err ? : bpf_object__init_maps(obj, opts);
8077
err = err ? : bpf_object_init_progs(obj, opts);
8078
err = err ? : bpf_object__collect_relos(obj);
8079
if (err)
8080
goto out;
8081
8082
bpf_object__elf_finish(obj);
8083
8084
return obj;
8085
out:
8086
bpf_object__close(obj);
8087
return ERR_PTR(err);
8088
}
8089
8090
struct bpf_object *
8091
bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
8092
{
8093
if (!path)
8094
return libbpf_err_ptr(-EINVAL);
8095
8096
return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts));
8097
}
8098
8099
struct bpf_object *bpf_object__open(const char *path)
8100
{
8101
return bpf_object__open_file(path, NULL);
8102
}
8103
8104
struct bpf_object *
8105
bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
8106
const struct bpf_object_open_opts *opts)
8107
{
8108
char tmp_name[64];
8109
8110
if (!obj_buf || obj_buf_sz == 0)
8111
return libbpf_err_ptr(-EINVAL);
8112
8113
/* create a (quite useless) default "name" for this memory buffer object */
8114
snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz);
8115
8116
return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts));
8117
}
8118
8119
static int bpf_object_unload(struct bpf_object *obj)
8120
{
8121
size_t i;
8122
8123
if (!obj)
8124
return libbpf_err(-EINVAL);
8125
8126
for (i = 0; i < obj->nr_maps; i++) {
8127
zclose(obj->maps[i].fd);
8128
if (obj->maps[i].st_ops)
8129
zfree(&obj->maps[i].st_ops->kern_vdata);
8130
}
8131
8132
for (i = 0; i < obj->nr_programs; i++)
8133
bpf_program__unload(&obj->programs[i]);
8134
8135
return 0;
8136
}
8137
8138
static int bpf_object__sanitize_maps(struct bpf_object *obj)
8139
{
8140
struct bpf_map *m;
8141
8142
bpf_object__for_each_map(m, obj) {
8143
if (!bpf_map__is_internal(m))
8144
continue;
8145
if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8146
m->def.map_flags &= ~BPF_F_MMAPABLE;
8147
}
8148
8149
return 0;
8150
}
8151
8152
typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type,
8153
const char *sym_name, void *ctx);
8154
8155
static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8156
{
8157
char sym_type, sym_name[500];
8158
unsigned long long sym_addr;
8159
int ret, err = 0;
8160
FILE *f;
8161
8162
f = fopen("/proc/kallsyms", "re");
8163
if (!f) {
8164
err = -errno;
8165
pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err));
8166
return err;
8167
}
8168
8169
while (true) {
8170
ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8171
&sym_addr, &sym_type, sym_name);
8172
if (ret == EOF && feof(f))
8173
break;
8174
if (ret != 3) {
8175
pr_warn("failed to read kallsyms entry: %d\n", ret);
8176
err = -EINVAL;
8177
break;
8178
}
8179
8180
err = cb(sym_addr, sym_type, sym_name, ctx);
8181
if (err)
8182
break;
8183
}
8184
8185
fclose(f);
8186
return err;
8187
}
8188
8189
static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8190
const char *sym_name, void *ctx)
8191
{
8192
struct bpf_object *obj = ctx;
8193
const struct btf_type *t;
8194
struct extern_desc *ext;
8195
char *res;
8196
8197
res = strstr(sym_name, ".llvm.");
8198
if (sym_type == 'd' && res)
8199
ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name);
8200
else
8201
ext = find_extern_by_name(obj, sym_name);
8202
if (!ext || ext->type != EXT_KSYM)
8203
return 0;
8204
8205
t = btf__type_by_id(obj->btf, ext->btf_id);
8206
if (!btf_is_var(t))
8207
return 0;
8208
8209
if (ext->is_set && ext->ksym.addr != sym_addr) {
8210
pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8211
sym_name, ext->ksym.addr, sym_addr);
8212
return -EINVAL;
8213
}
8214
if (!ext->is_set) {
8215
ext->is_set = true;
8216
ext->ksym.addr = sym_addr;
8217
pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8218
}
8219
return 0;
8220
}
8221
8222
static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8223
{
8224
return libbpf_kallsyms_parse(kallsyms_cb, obj);
8225
}
8226
8227
static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8228
__u16 kind, struct btf **res_btf,
8229
struct module_btf **res_mod_btf)
8230
{
8231
struct module_btf *mod_btf;
8232
struct btf *btf;
8233
int i, id, err;
8234
8235
btf = obj->btf_vmlinux;
8236
mod_btf = NULL;
8237
id = btf__find_by_name_kind(btf, ksym_name, kind);
8238
8239
if (id == -ENOENT) {
8240
err = load_module_btfs(obj);
8241
if (err)
8242
return err;
8243
8244
for (i = 0; i < obj->btf_module_cnt; i++) {
8245
/* we assume module_btf's BTF FD is always >0 */
8246
mod_btf = &obj->btf_modules[i];
8247
btf = mod_btf->btf;
8248
id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8249
if (id != -ENOENT)
8250
break;
8251
}
8252
}
8253
if (id <= 0)
8254
return -ESRCH;
8255
8256
*res_btf = btf;
8257
*res_mod_btf = mod_btf;
8258
return id;
8259
}
8260
8261
static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8262
struct extern_desc *ext)
8263
{
8264
const struct btf_type *targ_var, *targ_type;
8265
__u32 targ_type_id, local_type_id;
8266
struct module_btf *mod_btf = NULL;
8267
const char *targ_var_name;
8268
struct btf *btf = NULL;
8269
int id, err;
8270
8271
id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8272
if (id < 0) {
8273
if (id == -ESRCH && ext->is_weak)
8274
return 0;
8275
pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8276
ext->name);
8277
return id;
8278
}
8279
8280
/* find local type_id */
8281
local_type_id = ext->ksym.type_id;
8282
8283
/* find target type_id */
8284
targ_var = btf__type_by_id(btf, id);
8285
targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8286
targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8287
8288
err = bpf_core_types_are_compat(obj->btf, local_type_id,
8289
btf, targ_type_id);
8290
if (err <= 0) {
8291
const struct btf_type *local_type;
8292
const char *targ_name, *local_name;
8293
8294
local_type = btf__type_by_id(obj->btf, local_type_id);
8295
local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8296
targ_name = btf__name_by_offset(btf, targ_type->name_off);
8297
8298
pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8299
ext->name, local_type_id,
8300
btf_kind_str(local_type), local_name, targ_type_id,
8301
btf_kind_str(targ_type), targ_name);
8302
return -EINVAL;
8303
}
8304
8305
ext->is_set = true;
8306
ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8307
ext->ksym.kernel_btf_id = id;
8308
pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8309
ext->name, id, btf_kind_str(targ_var), targ_var_name);
8310
8311
return 0;
8312
}
8313
8314
static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8315
struct extern_desc *ext)
8316
{
8317
int local_func_proto_id, kfunc_proto_id, kfunc_id;
8318
struct module_btf *mod_btf = NULL;
8319
const struct btf_type *kern_func;
8320
struct btf *kern_btf = NULL;
8321
int ret;
8322
8323
local_func_proto_id = ext->ksym.type_id;
8324
8325
kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8326
&mod_btf);
8327
if (kfunc_id < 0) {
8328
if (kfunc_id == -ESRCH && ext->is_weak)
8329
return 0;
8330
pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8331
ext->name);
8332
return kfunc_id;
8333
}
8334
8335
kern_func = btf__type_by_id(kern_btf, kfunc_id);
8336
kfunc_proto_id = kern_func->type;
8337
8338
ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8339
kern_btf, kfunc_proto_id);
8340
if (ret <= 0) {
8341
if (ext->is_weak)
8342
return 0;
8343
8344
pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8345
ext->name, local_func_proto_id,
8346
mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8347
return -EINVAL;
8348
}
8349
8350
/* set index for module BTF fd in fd_array, if unset */
8351
if (mod_btf && !mod_btf->fd_array_idx) {
8352
/* insn->off is s16 */
8353
if (obj->fd_array_cnt == INT16_MAX) {
8354
pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8355
ext->name, mod_btf->fd_array_idx);
8356
return -E2BIG;
8357
}
8358
/* Cannot use index 0 for module BTF fd */
8359
if (!obj->fd_array_cnt)
8360
obj->fd_array_cnt = 1;
8361
8362
ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8363
obj->fd_array_cnt + 1);
8364
if (ret)
8365
return ret;
8366
mod_btf->fd_array_idx = obj->fd_array_cnt;
8367
/* we assume module BTF FD is always >0 */
8368
obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8369
}
8370
8371
ext->is_set = true;
8372
ext->ksym.kernel_btf_id = kfunc_id;
8373
ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8374
/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8375
* populates FD into ld_imm64 insn when it's used to point to kfunc.
8376
* {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8377
* {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8378
*/
8379
ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8380
pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8381
ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8382
8383
return 0;
8384
}
8385
8386
static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8387
{
8388
const struct btf_type *t;
8389
struct extern_desc *ext;
8390
int i, err;
8391
8392
for (i = 0; i < obj->nr_extern; i++) {
8393
ext = &obj->externs[i];
8394
if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8395
continue;
8396
8397
if (obj->gen_loader) {
8398
ext->is_set = true;
8399
ext->ksym.kernel_btf_obj_fd = 0;
8400
ext->ksym.kernel_btf_id = 0;
8401
continue;
8402
}
8403
t = btf__type_by_id(obj->btf, ext->btf_id);
8404
if (btf_is_var(t))
8405
err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8406
else
8407
err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8408
if (err)
8409
return err;
8410
}
8411
return 0;
8412
}
8413
8414
static int bpf_object__resolve_externs(struct bpf_object *obj,
8415
const char *extra_kconfig)
8416
{
8417
bool need_config = false, need_kallsyms = false;
8418
bool need_vmlinux_btf = false;
8419
struct extern_desc *ext;
8420
void *kcfg_data = NULL;
8421
int err, i;
8422
8423
if (obj->nr_extern == 0)
8424
return 0;
8425
8426
if (obj->kconfig_map_idx >= 0)
8427
kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8428
8429
for (i = 0; i < obj->nr_extern; i++) {
8430
ext = &obj->externs[i];
8431
8432
if (ext->type == EXT_KSYM) {
8433
if (ext->ksym.type_id)
8434
need_vmlinux_btf = true;
8435
else
8436
need_kallsyms = true;
8437
continue;
8438
} else if (ext->type == EXT_KCFG) {
8439
void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8440
__u64 value = 0;
8441
8442
/* Kconfig externs need actual /proc/config.gz */
8443
if (str_has_pfx(ext->name, "CONFIG_")) {
8444
need_config = true;
8445
continue;
8446
}
8447
8448
/* Virtual kcfg externs are customly handled by libbpf */
8449
if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8450
value = get_kernel_version();
8451
if (!value) {
8452
pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8453
return -EINVAL;
8454
}
8455
} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8456
value = kernel_supports(obj, FEAT_BPF_COOKIE);
8457
} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8458
value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8459
} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8460
/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8461
* __kconfig externs, where LINUX_ ones are virtual and filled out
8462
* customly by libbpf (their values don't come from Kconfig).
8463
* If LINUX_xxx variable is not recognized by libbpf, but is marked
8464
* __weak, it defaults to zero value, just like for CONFIG_xxx
8465
* externs.
8466
*/
8467
pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8468
return -EINVAL;
8469
}
8470
8471
err = set_kcfg_value_num(ext, ext_ptr, value);
8472
if (err)
8473
return err;
8474
pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8475
ext->name, (long long)value);
8476
} else {
8477
pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8478
return -EINVAL;
8479
}
8480
}
8481
if (need_config && extra_kconfig) {
8482
err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8483
if (err)
8484
return -EINVAL;
8485
need_config = false;
8486
for (i = 0; i < obj->nr_extern; i++) {
8487
ext = &obj->externs[i];
8488
if (ext->type == EXT_KCFG && !ext->is_set) {
8489
need_config = true;
8490
break;
8491
}
8492
}
8493
}
8494
if (need_config) {
8495
err = bpf_object__read_kconfig_file(obj, kcfg_data);
8496
if (err)
8497
return -EINVAL;
8498
}
8499
if (need_kallsyms) {
8500
err = bpf_object__read_kallsyms_file(obj);
8501
if (err)
8502
return -EINVAL;
8503
}
8504
if (need_vmlinux_btf) {
8505
err = bpf_object__resolve_ksyms_btf_id(obj);
8506
if (err)
8507
return -EINVAL;
8508
}
8509
for (i = 0; i < obj->nr_extern; i++) {
8510
ext = &obj->externs[i];
8511
8512
if (!ext->is_set && !ext->is_weak) {
8513
pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8514
return -ESRCH;
8515
} else if (!ext->is_set) {
8516
pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8517
ext->name);
8518
}
8519
}
8520
8521
return 0;
8522
}
8523
8524
static void bpf_map_prepare_vdata(const struct bpf_map *map)
8525
{
8526
const struct btf_type *type;
8527
struct bpf_struct_ops *st_ops;
8528
__u32 i;
8529
8530
st_ops = map->st_ops;
8531
type = btf__type_by_id(map->obj->btf, st_ops->type_id);
8532
for (i = 0; i < btf_vlen(type); i++) {
8533
struct bpf_program *prog = st_ops->progs[i];
8534
void *kern_data;
8535
int prog_fd;
8536
8537
if (!prog)
8538
continue;
8539
8540
prog_fd = bpf_program__fd(prog);
8541
kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8542
*(unsigned long *)kern_data = prog_fd;
8543
}
8544
}
8545
8546
static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8547
{
8548
struct bpf_map *map;
8549
int i;
8550
8551
for (i = 0; i < obj->nr_maps; i++) {
8552
map = &obj->maps[i];
8553
8554
if (!bpf_map__is_struct_ops(map))
8555
continue;
8556
8557
if (!map->autocreate)
8558
continue;
8559
8560
bpf_map_prepare_vdata(map);
8561
}
8562
8563
return 0;
8564
}
8565
8566
static void bpf_object_unpin(struct bpf_object *obj)
8567
{
8568
int i;
8569
8570
/* unpin any maps that were auto-pinned during load */
8571
for (i = 0; i < obj->nr_maps; i++)
8572
if (obj->maps[i].pinned && !obj->maps[i].reused)
8573
bpf_map__unpin(&obj->maps[i], NULL);
8574
}
8575
8576
static void bpf_object_post_load_cleanup(struct bpf_object *obj)
8577
{
8578
int i;
8579
8580
/* clean up fd_array */
8581
zfree(&obj->fd_array);
8582
8583
/* clean up module BTFs */
8584
for (i = 0; i < obj->btf_module_cnt; i++) {
8585
close(obj->btf_modules[i].fd);
8586
btf__free(obj->btf_modules[i].btf);
8587
free(obj->btf_modules[i].name);
8588
}
8589
obj->btf_module_cnt = 0;
8590
zfree(&obj->btf_modules);
8591
8592
/* clean up vmlinux BTF */
8593
btf__free(obj->btf_vmlinux);
8594
obj->btf_vmlinux = NULL;
8595
}
8596
8597
static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path)
8598
{
8599
int err;
8600
8601
if (obj->state >= OBJ_PREPARED) {
8602
pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name);
8603
return -EINVAL;
8604
}
8605
8606
err = bpf_object_prepare_token(obj);
8607
err = err ? : bpf_object__probe_loading(obj);
8608
err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8609
err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8610
err = err ? : bpf_object__sanitize_maps(obj);
8611
err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8612
err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8613
err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8614
err = err ? : bpf_object__sanitize_and_load_btf(obj);
8615
err = err ? : bpf_object__create_maps(obj);
8616
err = err ? : bpf_object_prepare_progs(obj);
8617
8618
if (err) {
8619
bpf_object_unpin(obj);
8620
bpf_object_unload(obj);
8621
obj->state = OBJ_LOADED;
8622
return err;
8623
}
8624
8625
obj->state = OBJ_PREPARED;
8626
return 0;
8627
}
8628
8629
static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8630
{
8631
int err;
8632
8633
if (!obj)
8634
return libbpf_err(-EINVAL);
8635
8636
if (obj->state >= OBJ_LOADED) {
8637
pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8638
return libbpf_err(-EINVAL);
8639
}
8640
8641
/* Disallow kernel loading programs of non-native endianness but
8642
* permit cross-endian creation of "light skeleton".
8643
*/
8644
if (obj->gen_loader) {
8645
bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8646
} else if (!is_native_endianness(obj)) {
8647
pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name);
8648
return libbpf_err(-LIBBPF_ERRNO__ENDIAN);
8649
}
8650
8651
if (obj->state < OBJ_PREPARED) {
8652
err = bpf_object_prepare(obj, target_btf_path);
8653
if (err)
8654
return libbpf_err(err);
8655
}
8656
err = bpf_object__load_progs(obj, extra_log_level);
8657
err = err ? : bpf_object_init_prog_arrays(obj);
8658
err = err ? : bpf_object_prepare_struct_ops(obj);
8659
8660
if (obj->gen_loader) {
8661
/* reset FDs */
8662
if (obj->btf)
8663
btf__set_fd(obj->btf, -1);
8664
if (!err)
8665
err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8666
}
8667
8668
bpf_object_post_load_cleanup(obj);
8669
obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */
8670
8671
if (err) {
8672
bpf_object_unpin(obj);
8673
bpf_object_unload(obj);
8674
pr_warn("failed to load object '%s'\n", obj->path);
8675
return libbpf_err(err);
8676
}
8677
8678
return 0;
8679
}
8680
8681
int bpf_object__prepare(struct bpf_object *obj)
8682
{
8683
return libbpf_err(bpf_object_prepare(obj, NULL));
8684
}
8685
8686
int bpf_object__load(struct bpf_object *obj)
8687
{
8688
return bpf_object_load(obj, 0, NULL);
8689
}
8690
8691
static int make_parent_dir(const char *path)
8692
{
8693
char *dname, *dir;
8694
int err = 0;
8695
8696
dname = strdup(path);
8697
if (dname == NULL)
8698
return -ENOMEM;
8699
8700
dir = dirname(dname);
8701
if (mkdir(dir, 0700) && errno != EEXIST)
8702
err = -errno;
8703
8704
free(dname);
8705
if (err) {
8706
pr_warn("failed to mkdir %s: %s\n", path, errstr(err));
8707
}
8708
return err;
8709
}
8710
8711
static int check_path(const char *path)
8712
{
8713
struct statfs st_fs;
8714
char *dname, *dir;
8715
int err = 0;
8716
8717
if (path == NULL)
8718
return -EINVAL;
8719
8720
dname = strdup(path);
8721
if (dname == NULL)
8722
return -ENOMEM;
8723
8724
dir = dirname(dname);
8725
if (statfs(dir, &st_fs)) {
8726
pr_warn("failed to statfs %s: %s\n", dir, errstr(errno));
8727
err = -errno;
8728
}
8729
free(dname);
8730
8731
if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8732
pr_warn("specified path %s is not on BPF FS\n", path);
8733
err = -EINVAL;
8734
}
8735
8736
return err;
8737
}
8738
8739
int bpf_program__pin(struct bpf_program *prog, const char *path)
8740
{
8741
int err;
8742
8743
if (prog->fd < 0) {
8744
pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8745
return libbpf_err(-EINVAL);
8746
}
8747
8748
err = make_parent_dir(path);
8749
if (err)
8750
return libbpf_err(err);
8751
8752
err = check_path(path);
8753
if (err)
8754
return libbpf_err(err);
8755
8756
if (bpf_obj_pin(prog->fd, path)) {
8757
err = -errno;
8758
pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err));
8759
return libbpf_err(err);
8760
}
8761
8762
pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8763
return 0;
8764
}
8765
8766
int bpf_program__unpin(struct bpf_program *prog, const char *path)
8767
{
8768
int err;
8769
8770
if (prog->fd < 0) {
8771
pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8772
return libbpf_err(-EINVAL);
8773
}
8774
8775
err = check_path(path);
8776
if (err)
8777
return libbpf_err(err);
8778
8779
err = unlink(path);
8780
if (err)
8781
return libbpf_err(-errno);
8782
8783
pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8784
return 0;
8785
}
8786
8787
int bpf_map__pin(struct bpf_map *map, const char *path)
8788
{
8789
int err;
8790
8791
if (map == NULL) {
8792
pr_warn("invalid map pointer\n");
8793
return libbpf_err(-EINVAL);
8794
}
8795
8796
if (map->fd < 0) {
8797
pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name);
8798
return libbpf_err(-EINVAL);
8799
}
8800
8801
if (map->pin_path) {
8802
if (path && strcmp(path, map->pin_path)) {
8803
pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8804
bpf_map__name(map), map->pin_path, path);
8805
return libbpf_err(-EINVAL);
8806
} else if (map->pinned) {
8807
pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8808
bpf_map__name(map), map->pin_path);
8809
return 0;
8810
}
8811
} else {
8812
if (!path) {
8813
pr_warn("missing a path to pin map '%s' at\n",
8814
bpf_map__name(map));
8815
return libbpf_err(-EINVAL);
8816
} else if (map->pinned) {
8817
pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8818
return libbpf_err(-EEXIST);
8819
}
8820
8821
map->pin_path = strdup(path);
8822
if (!map->pin_path) {
8823
err = -errno;
8824
goto out_err;
8825
}
8826
}
8827
8828
err = make_parent_dir(map->pin_path);
8829
if (err)
8830
return libbpf_err(err);
8831
8832
err = check_path(map->pin_path);
8833
if (err)
8834
return libbpf_err(err);
8835
8836
if (bpf_obj_pin(map->fd, map->pin_path)) {
8837
err = -errno;
8838
goto out_err;
8839
}
8840
8841
map->pinned = true;
8842
pr_debug("pinned map '%s'\n", map->pin_path);
8843
8844
return 0;
8845
8846
out_err:
8847
pr_warn("failed to pin map: %s\n", errstr(err));
8848
return libbpf_err(err);
8849
}
8850
8851
int bpf_map__unpin(struct bpf_map *map, const char *path)
8852
{
8853
int err;
8854
8855
if (map == NULL) {
8856
pr_warn("invalid map pointer\n");
8857
return libbpf_err(-EINVAL);
8858
}
8859
8860
if (map->pin_path) {
8861
if (path && strcmp(path, map->pin_path)) {
8862
pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8863
bpf_map__name(map), map->pin_path, path);
8864
return libbpf_err(-EINVAL);
8865
}
8866
path = map->pin_path;
8867
} else if (!path) {
8868
pr_warn("no path to unpin map '%s' from\n",
8869
bpf_map__name(map));
8870
return libbpf_err(-EINVAL);
8871
}
8872
8873
err = check_path(path);
8874
if (err)
8875
return libbpf_err(err);
8876
8877
err = unlink(path);
8878
if (err != 0)
8879
return libbpf_err(-errno);
8880
8881
map->pinned = false;
8882
pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8883
8884
return 0;
8885
}
8886
8887
int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8888
{
8889
char *new = NULL;
8890
8891
if (path) {
8892
new = strdup(path);
8893
if (!new)
8894
return libbpf_err(-errno);
8895
}
8896
8897
free(map->pin_path);
8898
map->pin_path = new;
8899
return 0;
8900
}
8901
8902
__alias(bpf_map__pin_path)
8903
const char *bpf_map__get_pin_path(const struct bpf_map *map);
8904
8905
const char *bpf_map__pin_path(const struct bpf_map *map)
8906
{
8907
return map->pin_path;
8908
}
8909
8910
bool bpf_map__is_pinned(const struct bpf_map *map)
8911
{
8912
return map->pinned;
8913
}
8914
8915
static void sanitize_pin_path(char *s)
8916
{
8917
/* bpffs disallows periods in path names */
8918
while (*s) {
8919
if (*s == '.')
8920
*s = '_';
8921
s++;
8922
}
8923
}
8924
8925
int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8926
{
8927
struct bpf_map *map;
8928
int err;
8929
8930
if (!obj)
8931
return libbpf_err(-ENOENT);
8932
8933
if (obj->state < OBJ_PREPARED) {
8934
pr_warn("object not yet loaded; load it first\n");
8935
return libbpf_err(-ENOENT);
8936
}
8937
8938
bpf_object__for_each_map(map, obj) {
8939
char *pin_path = NULL;
8940
char buf[PATH_MAX];
8941
8942
if (!map->autocreate)
8943
continue;
8944
8945
if (path) {
8946
err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8947
if (err)
8948
goto err_unpin_maps;
8949
sanitize_pin_path(buf);
8950
pin_path = buf;
8951
} else if (!map->pin_path) {
8952
continue;
8953
}
8954
8955
err = bpf_map__pin(map, pin_path);
8956
if (err)
8957
goto err_unpin_maps;
8958
}
8959
8960
return 0;
8961
8962
err_unpin_maps:
8963
while ((map = bpf_object__prev_map(obj, map))) {
8964
if (!map->pin_path)
8965
continue;
8966
8967
bpf_map__unpin(map, NULL);
8968
}
8969
8970
return libbpf_err(err);
8971
}
8972
8973
int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8974
{
8975
struct bpf_map *map;
8976
int err;
8977
8978
if (!obj)
8979
return libbpf_err(-ENOENT);
8980
8981
bpf_object__for_each_map(map, obj) {
8982
char *pin_path = NULL;
8983
char buf[PATH_MAX];
8984
8985
if (path) {
8986
err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8987
if (err)
8988
return libbpf_err(err);
8989
sanitize_pin_path(buf);
8990
pin_path = buf;
8991
} else if (!map->pin_path) {
8992
continue;
8993
}
8994
8995
err = bpf_map__unpin(map, pin_path);
8996
if (err)
8997
return libbpf_err(err);
8998
}
8999
9000
return 0;
9001
}
9002
9003
int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
9004
{
9005
struct bpf_program *prog;
9006
char buf[PATH_MAX];
9007
int err;
9008
9009
if (!obj)
9010
return libbpf_err(-ENOENT);
9011
9012
if (obj->state < OBJ_LOADED) {
9013
pr_warn("object not yet loaded; load it first\n");
9014
return libbpf_err(-ENOENT);
9015
}
9016
9017
bpf_object__for_each_program(prog, obj) {
9018
err = pathname_concat(buf, sizeof(buf), path, prog->name);
9019
if (err)
9020
goto err_unpin_programs;
9021
9022
err = bpf_program__pin(prog, buf);
9023
if (err)
9024
goto err_unpin_programs;
9025
}
9026
9027
return 0;
9028
9029
err_unpin_programs:
9030
while ((prog = bpf_object__prev_program(obj, prog))) {
9031
if (pathname_concat(buf, sizeof(buf), path, prog->name))
9032
continue;
9033
9034
bpf_program__unpin(prog, buf);
9035
}
9036
9037
return libbpf_err(err);
9038
}
9039
9040
int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
9041
{
9042
struct bpf_program *prog;
9043
int err;
9044
9045
if (!obj)
9046
return libbpf_err(-ENOENT);
9047
9048
bpf_object__for_each_program(prog, obj) {
9049
char buf[PATH_MAX];
9050
9051
err = pathname_concat(buf, sizeof(buf), path, prog->name);
9052
if (err)
9053
return libbpf_err(err);
9054
9055
err = bpf_program__unpin(prog, buf);
9056
if (err)
9057
return libbpf_err(err);
9058
}
9059
9060
return 0;
9061
}
9062
9063
int bpf_object__pin(struct bpf_object *obj, const char *path)
9064
{
9065
int err;
9066
9067
err = bpf_object__pin_maps(obj, path);
9068
if (err)
9069
return libbpf_err(err);
9070
9071
err = bpf_object__pin_programs(obj, path);
9072
if (err) {
9073
bpf_object__unpin_maps(obj, path);
9074
return libbpf_err(err);
9075
}
9076
9077
return 0;
9078
}
9079
9080
int bpf_object__unpin(struct bpf_object *obj, const char *path)
9081
{
9082
int err;
9083
9084
err = bpf_object__unpin_programs(obj, path);
9085
if (err)
9086
return libbpf_err(err);
9087
9088
err = bpf_object__unpin_maps(obj, path);
9089
if (err)
9090
return libbpf_err(err);
9091
9092
return 0;
9093
}
9094
9095
static void bpf_map__destroy(struct bpf_map *map)
9096
{
9097
if (map->inner_map) {
9098
bpf_map__destroy(map->inner_map);
9099
zfree(&map->inner_map);
9100
}
9101
9102
zfree(&map->init_slots);
9103
map->init_slots_sz = 0;
9104
9105
if (map->mmaped && map->mmaped != map->obj->arena_data)
9106
munmap(map->mmaped, bpf_map_mmap_sz(map));
9107
map->mmaped = NULL;
9108
9109
if (map->st_ops) {
9110
zfree(&map->st_ops->data);
9111
zfree(&map->st_ops->progs);
9112
zfree(&map->st_ops->kern_func_off);
9113
zfree(&map->st_ops);
9114
}
9115
9116
zfree(&map->name);
9117
zfree(&map->real_name);
9118
zfree(&map->pin_path);
9119
9120
if (map->fd >= 0)
9121
zclose(map->fd);
9122
}
9123
9124
void bpf_object__close(struct bpf_object *obj)
9125
{
9126
size_t i;
9127
9128
if (IS_ERR_OR_NULL(obj))
9129
return;
9130
9131
/*
9132
* if user called bpf_object__prepare() without ever getting to
9133
* bpf_object__load(), we need to clean up stuff that is normally
9134
* cleaned up at the end of loading step
9135
*/
9136
bpf_object_post_load_cleanup(obj);
9137
9138
usdt_manager_free(obj->usdt_man);
9139
obj->usdt_man = NULL;
9140
9141
bpf_gen__free(obj->gen_loader);
9142
bpf_object__elf_finish(obj);
9143
bpf_object_unload(obj);
9144
btf__free(obj->btf);
9145
btf__free(obj->btf_vmlinux);
9146
btf_ext__free(obj->btf_ext);
9147
9148
for (i = 0; i < obj->nr_maps; i++)
9149
bpf_map__destroy(&obj->maps[i]);
9150
9151
zfree(&obj->btf_custom_path);
9152
zfree(&obj->kconfig);
9153
9154
for (i = 0; i < obj->nr_extern; i++) {
9155
zfree(&obj->externs[i].name);
9156
zfree(&obj->externs[i].essent_name);
9157
}
9158
9159
zfree(&obj->externs);
9160
obj->nr_extern = 0;
9161
9162
zfree(&obj->maps);
9163
obj->nr_maps = 0;
9164
9165
if (obj->programs && obj->nr_programs) {
9166
for (i = 0; i < obj->nr_programs; i++)
9167
bpf_program__exit(&obj->programs[i]);
9168
}
9169
zfree(&obj->programs);
9170
9171
zfree(&obj->feat_cache);
9172
zfree(&obj->token_path);
9173
if (obj->token_fd > 0)
9174
close(obj->token_fd);
9175
9176
zfree(&obj->arena_data);
9177
9178
free(obj);
9179
}
9180
9181
const char *bpf_object__name(const struct bpf_object *obj)
9182
{
9183
return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9184
}
9185
9186
unsigned int bpf_object__kversion(const struct bpf_object *obj)
9187
{
9188
return obj ? obj->kern_version : 0;
9189
}
9190
9191
int bpf_object__token_fd(const struct bpf_object *obj)
9192
{
9193
return obj->token_fd ?: -1;
9194
}
9195
9196
struct btf *bpf_object__btf(const struct bpf_object *obj)
9197
{
9198
return obj ? obj->btf : NULL;
9199
}
9200
9201
int bpf_object__btf_fd(const struct bpf_object *obj)
9202
{
9203
return obj->btf ? btf__fd(obj->btf) : -1;
9204
}
9205
9206
int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9207
{
9208
if (obj->state >= OBJ_LOADED)
9209
return libbpf_err(-EINVAL);
9210
9211
obj->kern_version = kern_version;
9212
9213
return 0;
9214
}
9215
9216
int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9217
{
9218
struct bpf_gen *gen;
9219
9220
if (!opts)
9221
return libbpf_err(-EFAULT);
9222
if (!OPTS_VALID(opts, gen_loader_opts))
9223
return libbpf_err(-EINVAL);
9224
gen = calloc(1, sizeof(*gen));
9225
if (!gen)
9226
return libbpf_err(-ENOMEM);
9227
gen->opts = opts;
9228
gen->swapped_endian = !is_native_endianness(obj);
9229
obj->gen_loader = gen;
9230
return 0;
9231
}
9232
9233
static struct bpf_program *
9234
__bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9235
bool forward)
9236
{
9237
size_t nr_programs = obj->nr_programs;
9238
ssize_t idx;
9239
9240
if (!nr_programs)
9241
return NULL;
9242
9243
if (!p)
9244
/* Iter from the beginning */
9245
return forward ? &obj->programs[0] :
9246
&obj->programs[nr_programs - 1];
9247
9248
if (p->obj != obj) {
9249
pr_warn("error: program handler doesn't match object\n");
9250
return errno = EINVAL, NULL;
9251
}
9252
9253
idx = (p - obj->programs) + (forward ? 1 : -1);
9254
if (idx >= obj->nr_programs || idx < 0)
9255
return NULL;
9256
return &obj->programs[idx];
9257
}
9258
9259
struct bpf_program *
9260
bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9261
{
9262
struct bpf_program *prog = prev;
9263
9264
do {
9265
prog = __bpf_program__iter(prog, obj, true);
9266
} while (prog && prog_is_subprog(obj, prog));
9267
9268
return prog;
9269
}
9270
9271
struct bpf_program *
9272
bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9273
{
9274
struct bpf_program *prog = next;
9275
9276
do {
9277
prog = __bpf_program__iter(prog, obj, false);
9278
} while (prog && prog_is_subprog(obj, prog));
9279
9280
return prog;
9281
}
9282
9283
void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9284
{
9285
prog->prog_ifindex = ifindex;
9286
}
9287
9288
const char *bpf_program__name(const struct bpf_program *prog)
9289
{
9290
return prog->name;
9291
}
9292
9293
const char *bpf_program__section_name(const struct bpf_program *prog)
9294
{
9295
return prog->sec_name;
9296
}
9297
9298
bool bpf_program__autoload(const struct bpf_program *prog)
9299
{
9300
return prog->autoload;
9301
}
9302
9303
int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9304
{
9305
if (prog->obj->state >= OBJ_LOADED)
9306
return libbpf_err(-EINVAL);
9307
9308
prog->autoload = autoload;
9309
return 0;
9310
}
9311
9312
bool bpf_program__autoattach(const struct bpf_program *prog)
9313
{
9314
return prog->autoattach;
9315
}
9316
9317
void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9318
{
9319
prog->autoattach = autoattach;
9320
}
9321
9322
const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9323
{
9324
return prog->insns;
9325
}
9326
9327
size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9328
{
9329
return prog->insns_cnt;
9330
}
9331
9332
int bpf_program__set_insns(struct bpf_program *prog,
9333
struct bpf_insn *new_insns, size_t new_insn_cnt)
9334
{
9335
struct bpf_insn *insns;
9336
9337
if (prog->obj->state >= OBJ_LOADED)
9338
return libbpf_err(-EBUSY);
9339
9340
insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9341
/* NULL is a valid return from reallocarray if the new count is zero */
9342
if (!insns && new_insn_cnt) {
9343
pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9344
return libbpf_err(-ENOMEM);
9345
}
9346
memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9347
9348
prog->insns = insns;
9349
prog->insns_cnt = new_insn_cnt;
9350
return 0;
9351
}
9352
9353
int bpf_program__fd(const struct bpf_program *prog)
9354
{
9355
if (!prog)
9356
return libbpf_err(-EINVAL);
9357
9358
if (prog->fd < 0)
9359
return libbpf_err(-ENOENT);
9360
9361
return prog->fd;
9362
}
9363
9364
__alias(bpf_program__type)
9365
enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9366
9367
enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9368
{
9369
return prog->type;
9370
}
9371
9372
static size_t custom_sec_def_cnt;
9373
static struct bpf_sec_def *custom_sec_defs;
9374
static struct bpf_sec_def custom_fallback_def;
9375
static bool has_custom_fallback_def;
9376
static int last_custom_sec_def_handler_id;
9377
9378
int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9379
{
9380
if (prog->obj->state >= OBJ_LOADED)
9381
return libbpf_err(-EBUSY);
9382
9383
/* if type is not changed, do nothing */
9384
if (prog->type == type)
9385
return 0;
9386
9387
prog->type = type;
9388
9389
/* If a program type was changed, we need to reset associated SEC()
9390
* handler, as it will be invalid now. The only exception is a generic
9391
* fallback handler, which by definition is program type-agnostic and
9392
* is a catch-all custom handler, optionally set by the application,
9393
* so should be able to handle any type of BPF program.
9394
*/
9395
if (prog->sec_def != &custom_fallback_def)
9396
prog->sec_def = NULL;
9397
return 0;
9398
}
9399
9400
__alias(bpf_program__expected_attach_type)
9401
enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9402
9403
enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9404
{
9405
return prog->expected_attach_type;
9406
}
9407
9408
int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9409
enum bpf_attach_type type)
9410
{
9411
if (prog->obj->state >= OBJ_LOADED)
9412
return libbpf_err(-EBUSY);
9413
9414
prog->expected_attach_type = type;
9415
return 0;
9416
}
9417
9418
__u32 bpf_program__flags(const struct bpf_program *prog)
9419
{
9420
return prog->prog_flags;
9421
}
9422
9423
int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9424
{
9425
if (prog->obj->state >= OBJ_LOADED)
9426
return libbpf_err(-EBUSY);
9427
9428
prog->prog_flags = flags;
9429
return 0;
9430
}
9431
9432
__u32 bpf_program__log_level(const struct bpf_program *prog)
9433
{
9434
return prog->log_level;
9435
}
9436
9437
int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9438
{
9439
if (prog->obj->state >= OBJ_LOADED)
9440
return libbpf_err(-EBUSY);
9441
9442
prog->log_level = log_level;
9443
return 0;
9444
}
9445
9446
const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9447
{
9448
*log_size = prog->log_size;
9449
return prog->log_buf;
9450
}
9451
9452
int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9453
{
9454
if (log_size && !log_buf)
9455
return libbpf_err(-EINVAL);
9456
if (prog->log_size > UINT_MAX)
9457
return libbpf_err(-EINVAL);
9458
if (prog->obj->state >= OBJ_LOADED)
9459
return libbpf_err(-EBUSY);
9460
9461
prog->log_buf = log_buf;
9462
prog->log_size = log_size;
9463
return 0;
9464
}
9465
9466
struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog)
9467
{
9468
if (prog->func_info_rec_size != sizeof(struct bpf_func_info))
9469
return libbpf_err_ptr(-EOPNOTSUPP);
9470
return prog->func_info;
9471
}
9472
9473
__u32 bpf_program__func_info_cnt(const struct bpf_program *prog)
9474
{
9475
return prog->func_info_cnt;
9476
}
9477
9478
struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog)
9479
{
9480
if (prog->line_info_rec_size != sizeof(struct bpf_line_info))
9481
return libbpf_err_ptr(-EOPNOTSUPP);
9482
return prog->line_info;
9483
}
9484
9485
__u32 bpf_program__line_info_cnt(const struct bpf_program *prog)
9486
{
9487
return prog->line_info_cnt;
9488
}
9489
9490
#define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
9491
.sec = (char *)sec_pfx, \
9492
.prog_type = BPF_PROG_TYPE_##ptype, \
9493
.expected_attach_type = atype, \
9494
.cookie = (long)(flags), \
9495
.prog_prepare_load_fn = libbpf_prepare_prog_load, \
9496
__VA_ARGS__ \
9497
}
9498
9499
static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9500
static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9501
static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9502
static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9503
static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9504
static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9505
static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9506
static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9507
static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9508
static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9509
static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9510
static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9511
9512
static const struct bpf_sec_def section_defs[] = {
9513
SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
9514
SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9515
SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9516
SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9517
SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9518
SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9519
SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9520
SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9521
SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9522
SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9523
SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9524
SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session),
9525
SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9526
SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9527
SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi),
9528
SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9529
SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9530
SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi),
9531
SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9532
SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9533
SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt),
9534
SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9535
SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9536
SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */
9537
SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9538
SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9539
SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9540
SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9541
SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9542
SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9543
SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9544
SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9545
SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9546
SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9547
SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9548
SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9549
SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9550
SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9551
SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9552
SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9553
SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9554
SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9555
SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9556
SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9557
SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
9558
SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9559
SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9560
SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9561
SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9562
SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9563
SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
9564
SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9565
SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9566
SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9567
SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9568
SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
9569
SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9570
SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
9571
SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
9572
SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
9573
SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
9574
SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
9575
SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9576
SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9577
SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9578
SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT),
9579
SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
9580
SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9581
SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9582
SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9583
SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9584
SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9585
SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
9586
SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9587
SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9588
SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9589
SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9590
SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9591
SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9592
SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9593
SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9594
SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9595
SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9596
SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9597
SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9598
SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9599
SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9600
SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9601
SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9602
SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9603
SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9604
SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9605
SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9606
SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9607
SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9608
SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9609
SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9610
SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9611
SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9612
SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
9613
SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE),
9614
SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9615
SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE),
9616
};
9617
9618
int libbpf_register_prog_handler(const char *sec,
9619
enum bpf_prog_type prog_type,
9620
enum bpf_attach_type exp_attach_type,
9621
const struct libbpf_prog_handler_opts *opts)
9622
{
9623
struct bpf_sec_def *sec_def;
9624
9625
if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9626
return libbpf_err(-EINVAL);
9627
9628
if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9629
return libbpf_err(-E2BIG);
9630
9631
if (sec) {
9632
sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9633
sizeof(*sec_def));
9634
if (!sec_def)
9635
return libbpf_err(-ENOMEM);
9636
9637
custom_sec_defs = sec_def;
9638
sec_def = &custom_sec_defs[custom_sec_def_cnt];
9639
} else {
9640
if (has_custom_fallback_def)
9641
return libbpf_err(-EBUSY);
9642
9643
sec_def = &custom_fallback_def;
9644
}
9645
9646
sec_def->sec = sec ? strdup(sec) : NULL;
9647
if (sec && !sec_def->sec)
9648
return libbpf_err(-ENOMEM);
9649
9650
sec_def->prog_type = prog_type;
9651
sec_def->expected_attach_type = exp_attach_type;
9652
sec_def->cookie = OPTS_GET(opts, cookie, 0);
9653
9654
sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9655
sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9656
sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9657
9658
sec_def->handler_id = ++last_custom_sec_def_handler_id;
9659
9660
if (sec)
9661
custom_sec_def_cnt++;
9662
else
9663
has_custom_fallback_def = true;
9664
9665
return sec_def->handler_id;
9666
}
9667
9668
int libbpf_unregister_prog_handler(int handler_id)
9669
{
9670
struct bpf_sec_def *sec_defs;
9671
int i;
9672
9673
if (handler_id <= 0)
9674
return libbpf_err(-EINVAL);
9675
9676
if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9677
memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9678
has_custom_fallback_def = false;
9679
return 0;
9680
}
9681
9682
for (i = 0; i < custom_sec_def_cnt; i++) {
9683
if (custom_sec_defs[i].handler_id == handler_id)
9684
break;
9685
}
9686
9687
if (i == custom_sec_def_cnt)
9688
return libbpf_err(-ENOENT);
9689
9690
free(custom_sec_defs[i].sec);
9691
for (i = i + 1; i < custom_sec_def_cnt; i++)
9692
custom_sec_defs[i - 1] = custom_sec_defs[i];
9693
custom_sec_def_cnt--;
9694
9695
/* try to shrink the array, but it's ok if we couldn't */
9696
sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9697
/* if new count is zero, reallocarray can return a valid NULL result;
9698
* in this case the previous pointer will be freed, so we *have to*
9699
* reassign old pointer to the new value (even if it's NULL)
9700
*/
9701
if (sec_defs || custom_sec_def_cnt == 0)
9702
custom_sec_defs = sec_defs;
9703
9704
return 0;
9705
}
9706
9707
static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9708
{
9709
size_t len = strlen(sec_def->sec);
9710
9711
/* "type/" always has to have proper SEC("type/extras") form */
9712
if (sec_def->sec[len - 1] == '/') {
9713
if (str_has_pfx(sec_name, sec_def->sec))
9714
return true;
9715
return false;
9716
}
9717
9718
/* "type+" means it can be either exact SEC("type") or
9719
* well-formed SEC("type/extras") with proper '/' separator
9720
*/
9721
if (sec_def->sec[len - 1] == '+') {
9722
len--;
9723
/* not even a prefix */
9724
if (strncmp(sec_name, sec_def->sec, len) != 0)
9725
return false;
9726
/* exact match or has '/' separator */
9727
if (sec_name[len] == '\0' || sec_name[len] == '/')
9728
return true;
9729
return false;
9730
}
9731
9732
return strcmp(sec_name, sec_def->sec) == 0;
9733
}
9734
9735
static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9736
{
9737
const struct bpf_sec_def *sec_def;
9738
int i, n;
9739
9740
n = custom_sec_def_cnt;
9741
for (i = 0; i < n; i++) {
9742
sec_def = &custom_sec_defs[i];
9743
if (sec_def_matches(sec_def, sec_name))
9744
return sec_def;
9745
}
9746
9747
n = ARRAY_SIZE(section_defs);
9748
for (i = 0; i < n; i++) {
9749
sec_def = &section_defs[i];
9750
if (sec_def_matches(sec_def, sec_name))
9751
return sec_def;
9752
}
9753
9754
if (has_custom_fallback_def)
9755
return &custom_fallback_def;
9756
9757
return NULL;
9758
}
9759
9760
#define MAX_TYPE_NAME_SIZE 32
9761
9762
static char *libbpf_get_type_names(bool attach_type)
9763
{
9764
int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9765
char *buf;
9766
9767
buf = malloc(len);
9768
if (!buf)
9769
return NULL;
9770
9771
buf[0] = '\0';
9772
/* Forge string buf with all available names */
9773
for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9774
const struct bpf_sec_def *sec_def = &section_defs[i];
9775
9776
if (attach_type) {
9777
if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9778
continue;
9779
9780
if (!(sec_def->cookie & SEC_ATTACHABLE))
9781
continue;
9782
}
9783
9784
if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9785
free(buf);
9786
return NULL;
9787
}
9788
strcat(buf, " ");
9789
strcat(buf, section_defs[i].sec);
9790
}
9791
9792
return buf;
9793
}
9794
9795
int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9796
enum bpf_attach_type *expected_attach_type)
9797
{
9798
const struct bpf_sec_def *sec_def;
9799
char *type_names;
9800
9801
if (!name)
9802
return libbpf_err(-EINVAL);
9803
9804
sec_def = find_sec_def(name);
9805
if (sec_def) {
9806
*prog_type = sec_def->prog_type;
9807
*expected_attach_type = sec_def->expected_attach_type;
9808
return 0;
9809
}
9810
9811
pr_debug("failed to guess program type from ELF section '%s'\n", name);
9812
type_names = libbpf_get_type_names(false);
9813
if (type_names != NULL) {
9814
pr_debug("supported section(type) names are:%s\n", type_names);
9815
free(type_names);
9816
}
9817
9818
return libbpf_err(-ESRCH);
9819
}
9820
9821
const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9822
{
9823
if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9824
return NULL;
9825
9826
return attach_type_name[t];
9827
}
9828
9829
const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9830
{
9831
if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9832
return NULL;
9833
9834
return link_type_name[t];
9835
}
9836
9837
const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9838
{
9839
if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9840
return NULL;
9841
9842
return map_type_name[t];
9843
}
9844
9845
const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9846
{
9847
if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9848
return NULL;
9849
9850
return prog_type_name[t];
9851
}
9852
9853
static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9854
int sec_idx,
9855
size_t offset)
9856
{
9857
struct bpf_map *map;
9858
size_t i;
9859
9860
for (i = 0; i < obj->nr_maps; i++) {
9861
map = &obj->maps[i];
9862
if (!bpf_map__is_struct_ops(map))
9863
continue;
9864
if (map->sec_idx == sec_idx &&
9865
map->sec_offset <= offset &&
9866
offset - map->sec_offset < map->def.value_size)
9867
return map;
9868
}
9869
9870
return NULL;
9871
}
9872
9873
/* Collect the reloc from ELF, populate the st_ops->progs[], and update
9874
* st_ops->data for shadow type.
9875
*/
9876
static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9877
Elf64_Shdr *shdr, Elf_Data *data)
9878
{
9879
const struct btf_type *type;
9880
const struct btf_member *member;
9881
struct bpf_struct_ops *st_ops;
9882
struct bpf_program *prog;
9883
unsigned int shdr_idx;
9884
const struct btf *btf;
9885
struct bpf_map *map;
9886
unsigned int moff, insn_idx;
9887
const char *name;
9888
__u32 member_idx;
9889
Elf64_Sym *sym;
9890
Elf64_Rel *rel;
9891
int i, nrels;
9892
9893
btf = obj->btf;
9894
nrels = shdr->sh_size / shdr->sh_entsize;
9895
for (i = 0; i < nrels; i++) {
9896
rel = elf_rel_by_idx(data, i);
9897
if (!rel) {
9898
pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9899
return -LIBBPF_ERRNO__FORMAT;
9900
}
9901
9902
sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9903
if (!sym) {
9904
pr_warn("struct_ops reloc: symbol %zx not found\n",
9905
(size_t)ELF64_R_SYM(rel->r_info));
9906
return -LIBBPF_ERRNO__FORMAT;
9907
}
9908
9909
name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9910
map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9911
if (!map) {
9912
pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9913
(size_t)rel->r_offset);
9914
return -EINVAL;
9915
}
9916
9917
moff = rel->r_offset - map->sec_offset;
9918
shdr_idx = sym->st_shndx;
9919
st_ops = map->st_ops;
9920
pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9921
map->name,
9922
(long long)(rel->r_info >> 32),
9923
(long long)sym->st_value,
9924
shdr_idx, (size_t)rel->r_offset,
9925
map->sec_offset, sym->st_name, name);
9926
9927
if (shdr_idx >= SHN_LORESERVE) {
9928
pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9929
map->name, (size_t)rel->r_offset, shdr_idx);
9930
return -LIBBPF_ERRNO__RELOC;
9931
}
9932
if (sym->st_value % BPF_INSN_SZ) {
9933
pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9934
map->name, (unsigned long long)sym->st_value);
9935
return -LIBBPF_ERRNO__FORMAT;
9936
}
9937
insn_idx = sym->st_value / BPF_INSN_SZ;
9938
9939
type = btf__type_by_id(btf, st_ops->type_id);
9940
member = find_member_by_offset(type, moff * 8);
9941
if (!member) {
9942
pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9943
map->name, moff);
9944
return -EINVAL;
9945
}
9946
member_idx = member - btf_members(type);
9947
name = btf__name_by_offset(btf, member->name_off);
9948
9949
if (!resolve_func_ptr(btf, member->type, NULL)) {
9950
pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9951
map->name, name);
9952
return -EINVAL;
9953
}
9954
9955
prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9956
if (!prog) {
9957
pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9958
map->name, shdr_idx, name);
9959
return -EINVAL;
9960
}
9961
9962
/* prevent the use of BPF prog with invalid type */
9963
if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9964
pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9965
map->name, prog->name);
9966
return -EINVAL;
9967
}
9968
9969
st_ops->progs[member_idx] = prog;
9970
9971
/* st_ops->data will be exposed to users, being returned by
9972
* bpf_map__initial_value() as a pointer to the shadow
9973
* type. All function pointers in the original struct type
9974
* should be converted to a pointer to struct bpf_program
9975
* in the shadow type.
9976
*/
9977
*((struct bpf_program **)(st_ops->data + moff)) = prog;
9978
}
9979
9980
return 0;
9981
}
9982
9983
#define BTF_TRACE_PREFIX "btf_trace_"
9984
#define BTF_LSM_PREFIX "bpf_lsm_"
9985
#define BTF_ITER_PREFIX "bpf_iter_"
9986
#define BTF_MAX_NAME_SIZE 128
9987
9988
void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9989
const char **prefix, int *kind)
9990
{
9991
switch (attach_type) {
9992
case BPF_TRACE_RAW_TP:
9993
*prefix = BTF_TRACE_PREFIX;
9994
*kind = BTF_KIND_TYPEDEF;
9995
break;
9996
case BPF_LSM_MAC:
9997
case BPF_LSM_CGROUP:
9998
*prefix = BTF_LSM_PREFIX;
9999
*kind = BTF_KIND_FUNC;
10000
break;
10001
case BPF_TRACE_ITER:
10002
*prefix = BTF_ITER_PREFIX;
10003
*kind = BTF_KIND_FUNC;
10004
break;
10005
default:
10006
*prefix = "";
10007
*kind = BTF_KIND_FUNC;
10008
}
10009
}
10010
10011
static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
10012
const char *name, __u32 kind)
10013
{
10014
char btf_type_name[BTF_MAX_NAME_SIZE];
10015
int ret;
10016
10017
ret = snprintf(btf_type_name, sizeof(btf_type_name),
10018
"%s%s", prefix, name);
10019
/* snprintf returns the number of characters written excluding the
10020
* terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
10021
* indicates truncation.
10022
*/
10023
if (ret < 0 || ret >= sizeof(btf_type_name))
10024
return -ENAMETOOLONG;
10025
return btf__find_by_name_kind(btf, btf_type_name, kind);
10026
}
10027
10028
static inline int find_attach_btf_id(struct btf *btf, const char *name,
10029
enum bpf_attach_type attach_type)
10030
{
10031
const char *prefix;
10032
int kind;
10033
10034
btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
10035
return find_btf_by_prefix_kind(btf, prefix, name, kind);
10036
}
10037
10038
int libbpf_find_vmlinux_btf_id(const char *name,
10039
enum bpf_attach_type attach_type)
10040
{
10041
struct btf *btf;
10042
int err;
10043
10044
btf = btf__load_vmlinux_btf();
10045
err = libbpf_get_error(btf);
10046
if (err) {
10047
pr_warn("vmlinux BTF is not found\n");
10048
return libbpf_err(err);
10049
}
10050
10051
err = find_attach_btf_id(btf, name, attach_type);
10052
if (err <= 0)
10053
pr_warn("%s is not found in vmlinux BTF\n", name);
10054
10055
btf__free(btf);
10056
return libbpf_err(err);
10057
}
10058
10059
static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd)
10060
{
10061
struct bpf_prog_info info;
10062
__u32 info_len = sizeof(info);
10063
struct btf *btf;
10064
int err;
10065
10066
memset(&info, 0, info_len);
10067
err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
10068
if (err) {
10069
pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n",
10070
attach_prog_fd, errstr(err));
10071
return err;
10072
}
10073
10074
err = -EINVAL;
10075
if (!info.btf_id) {
10076
pr_warn("The target program doesn't have BTF\n");
10077
goto out;
10078
}
10079
btf = btf_load_from_kernel(info.btf_id, NULL, token_fd);
10080
err = libbpf_get_error(btf);
10081
if (err) {
10082
pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err));
10083
goto out;
10084
}
10085
err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
10086
btf__free(btf);
10087
if (err <= 0) {
10088
pr_warn("%s is not found in prog's BTF\n", name);
10089
goto out;
10090
}
10091
out:
10092
return err;
10093
}
10094
10095
static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
10096
enum bpf_attach_type attach_type,
10097
int *btf_obj_fd, int *btf_type_id)
10098
{
10099
int ret, i, mod_len = 0;
10100
const char *fn_name, *mod_name = NULL;
10101
10102
fn_name = strchr(attach_name, ':');
10103
if (fn_name) {
10104
mod_name = attach_name;
10105
mod_len = fn_name - mod_name;
10106
fn_name++;
10107
}
10108
10109
if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) {
10110
ret = find_attach_btf_id(obj->btf_vmlinux,
10111
mod_name ? fn_name : attach_name,
10112
attach_type);
10113
if (ret > 0) {
10114
*btf_obj_fd = 0; /* vmlinux BTF */
10115
*btf_type_id = ret;
10116
return 0;
10117
}
10118
if (ret != -ENOENT)
10119
return ret;
10120
}
10121
10122
ret = load_module_btfs(obj);
10123
if (ret)
10124
return ret;
10125
10126
for (i = 0; i < obj->btf_module_cnt; i++) {
10127
const struct module_btf *mod = &obj->btf_modules[i];
10128
10129
if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0)
10130
continue;
10131
10132
ret = find_attach_btf_id(mod->btf,
10133
mod_name ? fn_name : attach_name,
10134
attach_type);
10135
if (ret > 0) {
10136
*btf_obj_fd = mod->fd;
10137
*btf_type_id = ret;
10138
return 0;
10139
}
10140
if (ret == -ENOENT)
10141
continue;
10142
10143
return ret;
10144
}
10145
10146
return -ESRCH;
10147
}
10148
10149
static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
10150
int *btf_obj_fd, int *btf_type_id)
10151
{
10152
enum bpf_attach_type attach_type = prog->expected_attach_type;
10153
__u32 attach_prog_fd = prog->attach_prog_fd;
10154
int err = 0;
10155
10156
/* BPF program's BTF ID */
10157
if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
10158
if (!attach_prog_fd) {
10159
pr_warn("prog '%s': attach program FD is not set\n", prog->name);
10160
return -EINVAL;
10161
}
10162
err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd);
10163
if (err < 0) {
10164
pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n",
10165
prog->name, attach_prog_fd, attach_name, errstr(err));
10166
return err;
10167
}
10168
*btf_obj_fd = 0;
10169
*btf_type_id = err;
10170
return 0;
10171
}
10172
10173
/* kernel/module BTF ID */
10174
if (prog->obj->gen_loader) {
10175
bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
10176
*btf_obj_fd = 0;
10177
*btf_type_id = 1;
10178
} else {
10179
err = find_kernel_btf_id(prog->obj, attach_name,
10180
attach_type, btf_obj_fd,
10181
btf_type_id);
10182
}
10183
if (err) {
10184
pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n",
10185
prog->name, attach_name, errstr(err));
10186
return err;
10187
}
10188
return 0;
10189
}
10190
10191
int libbpf_attach_type_by_name(const char *name,
10192
enum bpf_attach_type *attach_type)
10193
{
10194
char *type_names;
10195
const struct bpf_sec_def *sec_def;
10196
10197
if (!name)
10198
return libbpf_err(-EINVAL);
10199
10200
sec_def = find_sec_def(name);
10201
if (!sec_def) {
10202
pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
10203
type_names = libbpf_get_type_names(true);
10204
if (type_names != NULL) {
10205
pr_debug("attachable section(type) names are:%s\n", type_names);
10206
free(type_names);
10207
}
10208
10209
return libbpf_err(-EINVAL);
10210
}
10211
10212
if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10213
return libbpf_err(-EINVAL);
10214
if (!(sec_def->cookie & SEC_ATTACHABLE))
10215
return libbpf_err(-EINVAL);
10216
10217
*attach_type = sec_def->expected_attach_type;
10218
return 0;
10219
}
10220
10221
int bpf_map__fd(const struct bpf_map *map)
10222
{
10223
if (!map)
10224
return libbpf_err(-EINVAL);
10225
if (!map_is_created(map))
10226
return -1;
10227
return map->fd;
10228
}
10229
10230
static bool map_uses_real_name(const struct bpf_map *map)
10231
{
10232
/* Since libbpf started to support custom .data.* and .rodata.* maps,
10233
* their user-visible name differs from kernel-visible name. Users see
10234
* such map's corresponding ELF section name as a map name.
10235
* This check distinguishes .data/.rodata from .data.* and .rodata.*
10236
* maps to know which name has to be returned to the user.
10237
*/
10238
if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10239
return true;
10240
if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10241
return true;
10242
return false;
10243
}
10244
10245
const char *bpf_map__name(const struct bpf_map *map)
10246
{
10247
if (!map)
10248
return NULL;
10249
10250
if (map_uses_real_name(map))
10251
return map->real_name;
10252
10253
return map->name;
10254
}
10255
10256
enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10257
{
10258
return map->def.type;
10259
}
10260
10261
int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10262
{
10263
if (map_is_created(map))
10264
return libbpf_err(-EBUSY);
10265
map->def.type = type;
10266
return 0;
10267
}
10268
10269
__u32 bpf_map__map_flags(const struct bpf_map *map)
10270
{
10271
return map->def.map_flags;
10272
}
10273
10274
int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10275
{
10276
if (map_is_created(map))
10277
return libbpf_err(-EBUSY);
10278
map->def.map_flags = flags;
10279
return 0;
10280
}
10281
10282
__u64 bpf_map__map_extra(const struct bpf_map *map)
10283
{
10284
return map->map_extra;
10285
}
10286
10287
int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10288
{
10289
if (map_is_created(map))
10290
return libbpf_err(-EBUSY);
10291
map->map_extra = map_extra;
10292
return 0;
10293
}
10294
10295
__u32 bpf_map__numa_node(const struct bpf_map *map)
10296
{
10297
return map->numa_node;
10298
}
10299
10300
int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10301
{
10302
if (map_is_created(map))
10303
return libbpf_err(-EBUSY);
10304
map->numa_node = numa_node;
10305
return 0;
10306
}
10307
10308
__u32 bpf_map__key_size(const struct bpf_map *map)
10309
{
10310
return map->def.key_size;
10311
}
10312
10313
int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10314
{
10315
if (map_is_created(map))
10316
return libbpf_err(-EBUSY);
10317
map->def.key_size = size;
10318
return 0;
10319
}
10320
10321
__u32 bpf_map__value_size(const struct bpf_map *map)
10322
{
10323
return map->def.value_size;
10324
}
10325
10326
static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10327
{
10328
struct btf *btf;
10329
struct btf_type *datasec_type, *var_type;
10330
struct btf_var_secinfo *var;
10331
const struct btf_type *array_type;
10332
const struct btf_array *array;
10333
int vlen, element_sz, new_array_id;
10334
__u32 nr_elements;
10335
10336
/* check btf existence */
10337
btf = bpf_object__btf(map->obj);
10338
if (!btf)
10339
return -ENOENT;
10340
10341
/* verify map is datasec */
10342
datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10343
if (!btf_is_datasec(datasec_type)) {
10344
pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10345
bpf_map__name(map));
10346
return -EINVAL;
10347
}
10348
10349
/* verify datasec has at least one var */
10350
vlen = btf_vlen(datasec_type);
10351
if (vlen == 0) {
10352
pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10353
bpf_map__name(map));
10354
return -EINVAL;
10355
}
10356
10357
/* verify last var in the datasec is an array */
10358
var = &btf_var_secinfos(datasec_type)[vlen - 1];
10359
var_type = btf_type_by_id(btf, var->type);
10360
array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10361
if (!btf_is_array(array_type)) {
10362
pr_warn("map '%s': cannot be resized, last var must be an array\n",
10363
bpf_map__name(map));
10364
return -EINVAL;
10365
}
10366
10367
/* verify request size aligns with array */
10368
array = btf_array(array_type);
10369
element_sz = btf__resolve_size(btf, array->type);
10370
if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10371
pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10372
bpf_map__name(map), element_sz, size);
10373
return -EINVAL;
10374
}
10375
10376
/* create a new array based on the existing array, but with new length */
10377
nr_elements = (size - var->offset) / element_sz;
10378
new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10379
if (new_array_id < 0)
10380
return new_array_id;
10381
10382
/* adding a new btf type invalidates existing pointers to btf objects,
10383
* so refresh pointers before proceeding
10384
*/
10385
datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10386
var = &btf_var_secinfos(datasec_type)[vlen - 1];
10387
var_type = btf_type_by_id(btf, var->type);
10388
10389
/* finally update btf info */
10390
datasec_type->size = size;
10391
var->size = size - var->offset;
10392
var_type->type = new_array_id;
10393
10394
return 0;
10395
}
10396
10397
int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10398
{
10399
if (map_is_created(map))
10400
return libbpf_err(-EBUSY);
10401
10402
if (map->mmaped) {
10403
size_t mmap_old_sz, mmap_new_sz;
10404
int err;
10405
10406
if (map->def.type != BPF_MAP_TYPE_ARRAY)
10407
return libbpf_err(-EOPNOTSUPP);
10408
10409
mmap_old_sz = bpf_map_mmap_sz(map);
10410
mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10411
err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10412
if (err) {
10413
pr_warn("map '%s': failed to resize memory-mapped region: %s\n",
10414
bpf_map__name(map), errstr(err));
10415
return libbpf_err(err);
10416
}
10417
err = map_btf_datasec_resize(map, size);
10418
if (err && err != -ENOENT) {
10419
pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n",
10420
bpf_map__name(map), errstr(err));
10421
map->btf_value_type_id = 0;
10422
map->btf_key_type_id = 0;
10423
}
10424
}
10425
10426
map->def.value_size = size;
10427
return 0;
10428
}
10429
10430
__u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10431
{
10432
return map ? map->btf_key_type_id : 0;
10433
}
10434
10435
__u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10436
{
10437
return map ? map->btf_value_type_id : 0;
10438
}
10439
10440
int bpf_map__set_initial_value(struct bpf_map *map,
10441
const void *data, size_t size)
10442
{
10443
size_t actual_sz;
10444
10445
if (map_is_created(map))
10446
return libbpf_err(-EBUSY);
10447
10448
if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10449
return libbpf_err(-EINVAL);
10450
10451
if (map->def.type == BPF_MAP_TYPE_ARENA)
10452
actual_sz = map->obj->arena_data_sz;
10453
else
10454
actual_sz = map->def.value_size;
10455
if (size != actual_sz)
10456
return libbpf_err(-EINVAL);
10457
10458
memcpy(map->mmaped, data, size);
10459
return 0;
10460
}
10461
10462
void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10463
{
10464
if (bpf_map__is_struct_ops(map)) {
10465
if (psize)
10466
*psize = map->def.value_size;
10467
return map->st_ops->data;
10468
}
10469
10470
if (!map->mmaped)
10471
return NULL;
10472
10473
if (map->def.type == BPF_MAP_TYPE_ARENA)
10474
*psize = map->obj->arena_data_sz;
10475
else
10476
*psize = map->def.value_size;
10477
10478
return map->mmaped;
10479
}
10480
10481
bool bpf_map__is_internal(const struct bpf_map *map)
10482
{
10483
return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10484
}
10485
10486
__u32 bpf_map__ifindex(const struct bpf_map *map)
10487
{
10488
return map->map_ifindex;
10489
}
10490
10491
int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10492
{
10493
if (map_is_created(map))
10494
return libbpf_err(-EBUSY);
10495
map->map_ifindex = ifindex;
10496
return 0;
10497
}
10498
10499
int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10500
{
10501
if (!bpf_map_type__is_map_in_map(map->def.type)) {
10502
pr_warn("error: unsupported map type\n");
10503
return libbpf_err(-EINVAL);
10504
}
10505
if (map->inner_map_fd != -1) {
10506
pr_warn("error: inner_map_fd already specified\n");
10507
return libbpf_err(-EINVAL);
10508
}
10509
if (map->inner_map) {
10510
bpf_map__destroy(map->inner_map);
10511
zfree(&map->inner_map);
10512
}
10513
map->inner_map_fd = fd;
10514
return 0;
10515
}
10516
10517
static struct bpf_map *
10518
__bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10519
{
10520
ssize_t idx;
10521
struct bpf_map *s, *e;
10522
10523
if (!obj || !obj->maps)
10524
return errno = EINVAL, NULL;
10525
10526
s = obj->maps;
10527
e = obj->maps + obj->nr_maps;
10528
10529
if ((m < s) || (m >= e)) {
10530
pr_warn("error in %s: map handler doesn't belong to object\n",
10531
__func__);
10532
return errno = EINVAL, NULL;
10533
}
10534
10535
idx = (m - obj->maps) + i;
10536
if (idx >= obj->nr_maps || idx < 0)
10537
return NULL;
10538
return &obj->maps[idx];
10539
}
10540
10541
struct bpf_map *
10542
bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10543
{
10544
if (prev == NULL && obj != NULL)
10545
return obj->maps;
10546
10547
return __bpf_map__iter(prev, obj, 1);
10548
}
10549
10550
struct bpf_map *
10551
bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10552
{
10553
if (next == NULL && obj != NULL) {
10554
if (!obj->nr_maps)
10555
return NULL;
10556
return obj->maps + obj->nr_maps - 1;
10557
}
10558
10559
return __bpf_map__iter(next, obj, -1);
10560
}
10561
10562
struct bpf_map *
10563
bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10564
{
10565
struct bpf_map *pos;
10566
10567
bpf_object__for_each_map(pos, obj) {
10568
/* if it's a special internal map name (which always starts
10569
* with dot) then check if that special name matches the
10570
* real map name (ELF section name)
10571
*/
10572
if (name[0] == '.') {
10573
if (pos->real_name && strcmp(pos->real_name, name) == 0)
10574
return pos;
10575
continue;
10576
}
10577
/* otherwise map name has to be an exact match */
10578
if (map_uses_real_name(pos)) {
10579
if (strcmp(pos->real_name, name) == 0)
10580
return pos;
10581
continue;
10582
}
10583
if (strcmp(pos->name, name) == 0)
10584
return pos;
10585
}
10586
return errno = ENOENT, NULL;
10587
}
10588
10589
int
10590
bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10591
{
10592
return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10593
}
10594
10595
static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10596
size_t value_sz, bool check_value_sz)
10597
{
10598
if (!map_is_created(map)) /* map is not yet created */
10599
return -ENOENT;
10600
10601
if (map->def.key_size != key_sz) {
10602
pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10603
map->name, key_sz, map->def.key_size);
10604
return -EINVAL;
10605
}
10606
10607
if (map->fd < 0) {
10608
pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
10609
return -EINVAL;
10610
}
10611
10612
if (!check_value_sz)
10613
return 0;
10614
10615
switch (map->def.type) {
10616
case BPF_MAP_TYPE_PERCPU_ARRAY:
10617
case BPF_MAP_TYPE_PERCPU_HASH:
10618
case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10619
case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10620
int num_cpu = libbpf_num_possible_cpus();
10621
size_t elem_sz = roundup(map->def.value_size, 8);
10622
10623
if (value_sz != num_cpu * elem_sz) {
10624
pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10625
map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10626
return -EINVAL;
10627
}
10628
break;
10629
}
10630
default:
10631
if (map->def.value_size != value_sz) {
10632
pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10633
map->name, value_sz, map->def.value_size);
10634
return -EINVAL;
10635
}
10636
break;
10637
}
10638
return 0;
10639
}
10640
10641
int bpf_map__lookup_elem(const struct bpf_map *map,
10642
const void *key, size_t key_sz,
10643
void *value, size_t value_sz, __u64 flags)
10644
{
10645
int err;
10646
10647
err = validate_map_op(map, key_sz, value_sz, true);
10648
if (err)
10649
return libbpf_err(err);
10650
10651
return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10652
}
10653
10654
int bpf_map__update_elem(const struct bpf_map *map,
10655
const void *key, size_t key_sz,
10656
const void *value, size_t value_sz, __u64 flags)
10657
{
10658
int err;
10659
10660
err = validate_map_op(map, key_sz, value_sz, true);
10661
if (err)
10662
return libbpf_err(err);
10663
10664
return bpf_map_update_elem(map->fd, key, value, flags);
10665
}
10666
10667
int bpf_map__delete_elem(const struct bpf_map *map,
10668
const void *key, size_t key_sz, __u64 flags)
10669
{
10670
int err;
10671
10672
err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10673
if (err)
10674
return libbpf_err(err);
10675
10676
return bpf_map_delete_elem_flags(map->fd, key, flags);
10677
}
10678
10679
int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10680
const void *key, size_t key_sz,
10681
void *value, size_t value_sz, __u64 flags)
10682
{
10683
int err;
10684
10685
err = validate_map_op(map, key_sz, value_sz, true);
10686
if (err)
10687
return libbpf_err(err);
10688
10689
return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10690
}
10691
10692
int bpf_map__get_next_key(const struct bpf_map *map,
10693
const void *cur_key, void *next_key, size_t key_sz)
10694
{
10695
int err;
10696
10697
err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10698
if (err)
10699
return libbpf_err(err);
10700
10701
return bpf_map_get_next_key(map->fd, cur_key, next_key);
10702
}
10703
10704
long libbpf_get_error(const void *ptr)
10705
{
10706
if (!IS_ERR_OR_NULL(ptr))
10707
return 0;
10708
10709
if (IS_ERR(ptr))
10710
errno = -PTR_ERR(ptr);
10711
10712
/* If ptr == NULL, then errno should be already set by the failing
10713
* API, because libbpf never returns NULL on success and it now always
10714
* sets errno on error. So no extra errno handling for ptr == NULL
10715
* case.
10716
*/
10717
return -errno;
10718
}
10719
10720
/* Replace link's underlying BPF program with the new one */
10721
int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10722
{
10723
int ret;
10724
int prog_fd = bpf_program__fd(prog);
10725
10726
if (prog_fd < 0) {
10727
pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n",
10728
prog->name);
10729
return libbpf_err(-EINVAL);
10730
}
10731
10732
ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL);
10733
return libbpf_err_errno(ret);
10734
}
10735
10736
/* Release "ownership" of underlying BPF resource (typically, BPF program
10737
* attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10738
* link, when destructed through bpf_link__destroy() call won't attempt to
10739
* detach/unregisted that BPF resource. This is useful in situations where,
10740
* say, attached BPF program has to outlive userspace program that attached it
10741
* in the system. Depending on type of BPF program, though, there might be
10742
* additional steps (like pinning BPF program in BPF FS) necessary to ensure
10743
* exit of userspace program doesn't trigger automatic detachment and clean up
10744
* inside the kernel.
10745
*/
10746
void bpf_link__disconnect(struct bpf_link *link)
10747
{
10748
link->disconnected = true;
10749
}
10750
10751
int bpf_link__destroy(struct bpf_link *link)
10752
{
10753
int err = 0;
10754
10755
if (IS_ERR_OR_NULL(link))
10756
return 0;
10757
10758
if (!link->disconnected && link->detach)
10759
err = link->detach(link);
10760
if (link->pin_path)
10761
free(link->pin_path);
10762
if (link->dealloc)
10763
link->dealloc(link);
10764
else
10765
free(link);
10766
10767
return libbpf_err(err);
10768
}
10769
10770
int bpf_link__fd(const struct bpf_link *link)
10771
{
10772
return link->fd;
10773
}
10774
10775
const char *bpf_link__pin_path(const struct bpf_link *link)
10776
{
10777
return link->pin_path;
10778
}
10779
10780
static int bpf_link__detach_fd(struct bpf_link *link)
10781
{
10782
return libbpf_err_errno(close(link->fd));
10783
}
10784
10785
struct bpf_link *bpf_link__open(const char *path)
10786
{
10787
struct bpf_link *link;
10788
int fd;
10789
10790
fd = bpf_obj_get(path);
10791
if (fd < 0) {
10792
fd = -errno;
10793
pr_warn("failed to open link at %s: %d\n", path, fd);
10794
return libbpf_err_ptr(fd);
10795
}
10796
10797
link = calloc(1, sizeof(*link));
10798
if (!link) {
10799
close(fd);
10800
return libbpf_err_ptr(-ENOMEM);
10801
}
10802
link->detach = &bpf_link__detach_fd;
10803
link->fd = fd;
10804
10805
link->pin_path = strdup(path);
10806
if (!link->pin_path) {
10807
bpf_link__destroy(link);
10808
return libbpf_err_ptr(-ENOMEM);
10809
}
10810
10811
return link;
10812
}
10813
10814
int bpf_link__detach(struct bpf_link *link)
10815
{
10816
return bpf_link_detach(link->fd) ? -errno : 0;
10817
}
10818
10819
int bpf_link__pin(struct bpf_link *link, const char *path)
10820
{
10821
int err;
10822
10823
if (link->pin_path)
10824
return libbpf_err(-EBUSY);
10825
err = make_parent_dir(path);
10826
if (err)
10827
return libbpf_err(err);
10828
err = check_path(path);
10829
if (err)
10830
return libbpf_err(err);
10831
10832
link->pin_path = strdup(path);
10833
if (!link->pin_path)
10834
return libbpf_err(-ENOMEM);
10835
10836
if (bpf_obj_pin(link->fd, link->pin_path)) {
10837
err = -errno;
10838
zfree(&link->pin_path);
10839
return libbpf_err(err);
10840
}
10841
10842
pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10843
return 0;
10844
}
10845
10846
int bpf_link__unpin(struct bpf_link *link)
10847
{
10848
int err;
10849
10850
if (!link->pin_path)
10851
return libbpf_err(-EINVAL);
10852
10853
err = unlink(link->pin_path);
10854
if (err != 0)
10855
return -errno;
10856
10857
pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10858
zfree(&link->pin_path);
10859
return 0;
10860
}
10861
10862
struct bpf_link_perf {
10863
struct bpf_link link;
10864
int perf_event_fd;
10865
/* legacy kprobe support: keep track of probe identifier and type */
10866
char *legacy_probe_name;
10867
bool legacy_is_kprobe;
10868
bool legacy_is_retprobe;
10869
};
10870
10871
static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10872
static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10873
10874
static int bpf_link_perf_detach(struct bpf_link *link)
10875
{
10876
struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10877
int err = 0;
10878
10879
if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10880
err = -errno;
10881
10882
if (perf_link->perf_event_fd != link->fd)
10883
close(perf_link->perf_event_fd);
10884
close(link->fd);
10885
10886
/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10887
if (perf_link->legacy_probe_name) {
10888
if (perf_link->legacy_is_kprobe) {
10889
err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10890
perf_link->legacy_is_retprobe);
10891
} else {
10892
err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10893
perf_link->legacy_is_retprobe);
10894
}
10895
}
10896
10897
return err;
10898
}
10899
10900
static void bpf_link_perf_dealloc(struct bpf_link *link)
10901
{
10902
struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10903
10904
free(perf_link->legacy_probe_name);
10905
free(perf_link);
10906
}
10907
10908
struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10909
const struct bpf_perf_event_opts *opts)
10910
{
10911
struct bpf_link_perf *link;
10912
int prog_fd, link_fd = -1, err;
10913
bool force_ioctl_attach;
10914
10915
if (!OPTS_VALID(opts, bpf_perf_event_opts))
10916
return libbpf_err_ptr(-EINVAL);
10917
10918
if (pfd < 0) {
10919
pr_warn("prog '%s': invalid perf event FD %d\n",
10920
prog->name, pfd);
10921
return libbpf_err_ptr(-EINVAL);
10922
}
10923
prog_fd = bpf_program__fd(prog);
10924
if (prog_fd < 0) {
10925
pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
10926
prog->name);
10927
return libbpf_err_ptr(-EINVAL);
10928
}
10929
10930
link = calloc(1, sizeof(*link));
10931
if (!link)
10932
return libbpf_err_ptr(-ENOMEM);
10933
link->link.detach = &bpf_link_perf_detach;
10934
link->link.dealloc = &bpf_link_perf_dealloc;
10935
link->perf_event_fd = pfd;
10936
10937
force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10938
if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10939
DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10940
.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10941
10942
link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10943
if (link_fd < 0) {
10944
err = -errno;
10945
pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n",
10946
prog->name, pfd, errstr(err));
10947
goto err_out;
10948
}
10949
link->link.fd = link_fd;
10950
} else {
10951
if (OPTS_GET(opts, bpf_cookie, 0)) {
10952
pr_warn("prog '%s': user context value is not supported\n", prog->name);
10953
err = -EOPNOTSUPP;
10954
goto err_out;
10955
}
10956
10957
if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10958
err = -errno;
10959
pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10960
prog->name, pfd, errstr(err));
10961
if (err == -EPROTO)
10962
pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10963
prog->name, pfd);
10964
goto err_out;
10965
}
10966
link->link.fd = pfd;
10967
}
10968
10969
if (!OPTS_GET(opts, dont_enable, false)) {
10970
if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10971
err = -errno;
10972
pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10973
prog->name, pfd, errstr(err));
10974
goto err_out;
10975
}
10976
}
10977
10978
return &link->link;
10979
err_out:
10980
if (link_fd >= 0)
10981
close(link_fd);
10982
free(link);
10983
return libbpf_err_ptr(err);
10984
}
10985
10986
struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10987
{
10988
return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10989
}
10990
10991
/*
10992
* this function is expected to parse integer in the range of [0, 2^31-1] from
10993
* given file using scanf format string fmt. If actual parsed value is
10994
* negative, the result might be indistinguishable from error
10995
*/
10996
static int parse_uint_from_file(const char *file, const char *fmt)
10997
{
10998
int err, ret;
10999
FILE *f;
11000
11001
f = fopen(file, "re");
11002
if (!f) {
11003
err = -errno;
11004
pr_debug("failed to open '%s': %s\n", file, errstr(err));
11005
return err;
11006
}
11007
err = fscanf(f, fmt, &ret);
11008
if (err != 1) {
11009
err = err == EOF ? -EIO : -errno;
11010
pr_debug("failed to parse '%s': %s\n", file, errstr(err));
11011
fclose(f);
11012
return err;
11013
}
11014
fclose(f);
11015
return ret;
11016
}
11017
11018
static int determine_kprobe_perf_type(void)
11019
{
11020
const char *file = "/sys/bus/event_source/devices/kprobe/type";
11021
11022
return parse_uint_from_file(file, "%d\n");
11023
}
11024
11025
static int determine_uprobe_perf_type(void)
11026
{
11027
const char *file = "/sys/bus/event_source/devices/uprobe/type";
11028
11029
return parse_uint_from_file(file, "%d\n");
11030
}
11031
11032
static int determine_kprobe_retprobe_bit(void)
11033
{
11034
const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
11035
11036
return parse_uint_from_file(file, "config:%d\n");
11037
}
11038
11039
static int determine_uprobe_retprobe_bit(void)
11040
{
11041
const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
11042
11043
return parse_uint_from_file(file, "config:%d\n");
11044
}
11045
11046
#define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
11047
#define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
11048
11049
static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
11050
uint64_t offset, int pid, size_t ref_ctr_off)
11051
{
11052
const size_t attr_sz = sizeof(struct perf_event_attr);
11053
struct perf_event_attr attr;
11054
int type, pfd;
11055
11056
if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
11057
return -EINVAL;
11058
11059
memset(&attr, 0, attr_sz);
11060
11061
type = uprobe ? determine_uprobe_perf_type()
11062
: determine_kprobe_perf_type();
11063
if (type < 0) {
11064
pr_warn("failed to determine %s perf type: %s\n",
11065
uprobe ? "uprobe" : "kprobe",
11066
errstr(type));
11067
return type;
11068
}
11069
if (retprobe) {
11070
int bit = uprobe ? determine_uprobe_retprobe_bit()
11071
: determine_kprobe_retprobe_bit();
11072
11073
if (bit < 0) {
11074
pr_warn("failed to determine %s retprobe bit: %s\n",
11075
uprobe ? "uprobe" : "kprobe",
11076
errstr(bit));
11077
return bit;
11078
}
11079
attr.config |= 1 << bit;
11080
}
11081
attr.size = attr_sz;
11082
attr.type = type;
11083
attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11084
attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
11085
attr.config2 = offset; /* kprobe_addr or probe_offset */
11086
11087
/* pid filter is meaningful only for uprobes */
11088
pfd = syscall(__NR_perf_event_open, &attr,
11089
pid < 0 ? -1 : pid /* pid */,
11090
pid == -1 ? 0 : -1 /* cpu */,
11091
-1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11092
return pfd >= 0 ? pfd : -errno;
11093
}
11094
11095
static int append_to_file(const char *file, const char *fmt, ...)
11096
{
11097
int fd, n, err = 0;
11098
va_list ap;
11099
char buf[1024];
11100
11101
va_start(ap, fmt);
11102
n = vsnprintf(buf, sizeof(buf), fmt, ap);
11103
va_end(ap);
11104
11105
if (n < 0 || n >= sizeof(buf))
11106
return -EINVAL;
11107
11108
fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
11109
if (fd < 0)
11110
return -errno;
11111
11112
if (write(fd, buf, n) < 0)
11113
err = -errno;
11114
11115
close(fd);
11116
return err;
11117
}
11118
11119
#define DEBUGFS "/sys/kernel/debug/tracing"
11120
#define TRACEFS "/sys/kernel/tracing"
11121
11122
static bool use_debugfs(void)
11123
{
11124
static int has_debugfs = -1;
11125
11126
if (has_debugfs < 0)
11127
has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
11128
11129
return has_debugfs == 1;
11130
}
11131
11132
static const char *tracefs_path(void)
11133
{
11134
return use_debugfs() ? DEBUGFS : TRACEFS;
11135
}
11136
11137
static const char *tracefs_kprobe_events(void)
11138
{
11139
return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
11140
}
11141
11142
static const char *tracefs_uprobe_events(void)
11143
{
11144
return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
11145
}
11146
11147
static const char *tracefs_available_filter_functions(void)
11148
{
11149
return use_debugfs() ? DEBUGFS"/available_filter_functions"
11150
: TRACEFS"/available_filter_functions";
11151
}
11152
11153
static const char *tracefs_available_filter_functions_addrs(void)
11154
{
11155
return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
11156
: TRACEFS"/available_filter_functions_addrs";
11157
}
11158
11159
static void gen_probe_legacy_event_name(char *buf, size_t buf_sz,
11160
const char *name, size_t offset)
11161
{
11162
static int index = 0;
11163
int i;
11164
11165
snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(),
11166
__sync_fetch_and_add(&index, 1), name, offset);
11167
11168
/* sanitize name in the probe name */
11169
for (i = 0; buf[i]; i++) {
11170
if (!isalnum(buf[i]))
11171
buf[i] = '_';
11172
}
11173
}
11174
11175
static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
11176
const char *kfunc_name, size_t offset)
11177
{
11178
return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
11179
retprobe ? 'r' : 'p',
11180
retprobe ? "kretprobes" : "kprobes",
11181
probe_name, kfunc_name, offset);
11182
}
11183
11184
static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
11185
{
11186
return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
11187
retprobe ? "kretprobes" : "kprobes", probe_name);
11188
}
11189
11190
static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11191
{
11192
char file[256];
11193
11194
snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11195
tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
11196
11197
return parse_uint_from_file(file, "%d\n");
11198
}
11199
11200
static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
11201
const char *kfunc_name, size_t offset, int pid)
11202
{
11203
const size_t attr_sz = sizeof(struct perf_event_attr);
11204
struct perf_event_attr attr;
11205
int type, pfd, err;
11206
11207
err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
11208
if (err < 0) {
11209
pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
11210
kfunc_name, offset,
11211
errstr(err));
11212
return err;
11213
}
11214
type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
11215
if (type < 0) {
11216
err = type;
11217
pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
11218
kfunc_name, offset,
11219
errstr(err));
11220
goto err_clean_legacy;
11221
}
11222
11223
memset(&attr, 0, attr_sz);
11224
attr.size = attr_sz;
11225
attr.config = type;
11226
attr.type = PERF_TYPE_TRACEPOINT;
11227
11228
pfd = syscall(__NR_perf_event_open, &attr,
11229
pid < 0 ? -1 : pid, /* pid */
11230
pid == -1 ? 0 : -1, /* cpu */
11231
-1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11232
if (pfd < 0) {
11233
err = -errno;
11234
pr_warn("legacy kprobe perf_event_open() failed: %s\n",
11235
errstr(err));
11236
goto err_clean_legacy;
11237
}
11238
return pfd;
11239
11240
err_clean_legacy:
11241
/* Clear the newly added legacy kprobe_event */
11242
remove_kprobe_event_legacy(probe_name, retprobe);
11243
return err;
11244
}
11245
11246
static const char *arch_specific_syscall_pfx(void)
11247
{
11248
#if defined(__x86_64__)
11249
return "x64";
11250
#elif defined(__i386__)
11251
return "ia32";
11252
#elif defined(__s390x__)
11253
return "s390x";
11254
#elif defined(__s390__)
11255
return "s390";
11256
#elif defined(__arm__)
11257
return "arm";
11258
#elif defined(__aarch64__)
11259
return "arm64";
11260
#elif defined(__mips__)
11261
return "mips";
11262
#elif defined(__riscv)
11263
return "riscv";
11264
#elif defined(__powerpc__)
11265
return "powerpc";
11266
#elif defined(__powerpc64__)
11267
return "powerpc64";
11268
#else
11269
return NULL;
11270
#endif
11271
}
11272
11273
int probe_kern_syscall_wrapper(int token_fd)
11274
{
11275
char syscall_name[64];
11276
const char *ksys_pfx;
11277
11278
ksys_pfx = arch_specific_syscall_pfx();
11279
if (!ksys_pfx)
11280
return 0;
11281
11282
snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11283
11284
if (determine_kprobe_perf_type() >= 0) {
11285
int pfd;
11286
11287
pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11288
if (pfd >= 0)
11289
close(pfd);
11290
11291
return pfd >= 0 ? 1 : 0;
11292
} else { /* legacy mode */
11293
char probe_name[MAX_EVENT_NAME_LEN];
11294
11295
gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11296
if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11297
return 0;
11298
11299
(void)remove_kprobe_event_legacy(probe_name, false);
11300
return 1;
11301
}
11302
}
11303
11304
struct bpf_link *
11305
bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11306
const char *func_name,
11307
const struct bpf_kprobe_opts *opts)
11308
{
11309
DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11310
enum probe_attach_mode attach_mode;
11311
char *legacy_probe = NULL;
11312
struct bpf_link *link;
11313
size_t offset;
11314
bool retprobe, legacy;
11315
int pfd, err;
11316
11317
if (!OPTS_VALID(opts, bpf_kprobe_opts))
11318
return libbpf_err_ptr(-EINVAL);
11319
11320
attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11321
retprobe = OPTS_GET(opts, retprobe, false);
11322
offset = OPTS_GET(opts, offset, 0);
11323
pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11324
11325
legacy = determine_kprobe_perf_type() < 0;
11326
switch (attach_mode) {
11327
case PROBE_ATTACH_MODE_LEGACY:
11328
legacy = true;
11329
pe_opts.force_ioctl_attach = true;
11330
break;
11331
case PROBE_ATTACH_MODE_PERF:
11332
if (legacy)
11333
return libbpf_err_ptr(-ENOTSUP);
11334
pe_opts.force_ioctl_attach = true;
11335
break;
11336
case PROBE_ATTACH_MODE_LINK:
11337
if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11338
return libbpf_err_ptr(-ENOTSUP);
11339
break;
11340
case PROBE_ATTACH_MODE_DEFAULT:
11341
break;
11342
default:
11343
return libbpf_err_ptr(-EINVAL);
11344
}
11345
11346
if (!legacy) {
11347
pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11348
func_name, offset,
11349
-1 /* pid */, 0 /* ref_ctr_off */);
11350
} else {
11351
char probe_name[MAX_EVENT_NAME_LEN];
11352
11353
gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
11354
func_name, offset);
11355
11356
legacy_probe = strdup(probe_name);
11357
if (!legacy_probe)
11358
return libbpf_err_ptr(-ENOMEM);
11359
11360
pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11361
offset, -1 /* pid */);
11362
}
11363
if (pfd < 0) {
11364
err = -errno;
11365
pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11366
prog->name, retprobe ? "kretprobe" : "kprobe",
11367
func_name, offset,
11368
errstr(err));
11369
goto err_out;
11370
}
11371
link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11372
err = libbpf_get_error(link);
11373
if (err) {
11374
close(pfd);
11375
pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11376
prog->name, retprobe ? "kretprobe" : "kprobe",
11377
func_name, offset,
11378
errstr(err));
11379
goto err_clean_legacy;
11380
}
11381
if (legacy) {
11382
struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11383
11384
perf_link->legacy_probe_name = legacy_probe;
11385
perf_link->legacy_is_kprobe = true;
11386
perf_link->legacy_is_retprobe = retprobe;
11387
}
11388
11389
return link;
11390
11391
err_clean_legacy:
11392
if (legacy)
11393
remove_kprobe_event_legacy(legacy_probe, retprobe);
11394
err_out:
11395
free(legacy_probe);
11396
return libbpf_err_ptr(err);
11397
}
11398
11399
struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11400
bool retprobe,
11401
const char *func_name)
11402
{
11403
DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11404
.retprobe = retprobe,
11405
);
11406
11407
return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11408
}
11409
11410
struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11411
const char *syscall_name,
11412
const struct bpf_ksyscall_opts *opts)
11413
{
11414
LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11415
char func_name[128];
11416
11417
if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11418
return libbpf_err_ptr(-EINVAL);
11419
11420
if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11421
/* arch_specific_syscall_pfx() should never return NULL here
11422
* because it is guarded by kernel_supports(). However, since
11423
* compiler does not know that we have an explicit conditional
11424
* as well.
11425
*/
11426
snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11427
arch_specific_syscall_pfx() ? : "", syscall_name);
11428
} else {
11429
snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11430
}
11431
11432
kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11433
kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11434
11435
return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11436
}
11437
11438
/* Adapted from perf/util/string.c */
11439
bool glob_match(const char *str, const char *pat)
11440
{
11441
while (*str && *pat && *pat != '*') {
11442
if (*pat == '?') { /* Matches any single character */
11443
str++;
11444
pat++;
11445
continue;
11446
}
11447
if (*str != *pat)
11448
return false;
11449
str++;
11450
pat++;
11451
}
11452
/* Check wild card */
11453
if (*pat == '*') {
11454
while (*pat == '*')
11455
pat++;
11456
if (!*pat) /* Tail wild card matches all */
11457
return true;
11458
while (*str)
11459
if (glob_match(str++, pat))
11460
return true;
11461
}
11462
return !*str && !*pat;
11463
}
11464
11465
struct kprobe_multi_resolve {
11466
const char *pattern;
11467
unsigned long *addrs;
11468
size_t cap;
11469
size_t cnt;
11470
};
11471
11472
struct avail_kallsyms_data {
11473
char **syms;
11474
size_t cnt;
11475
struct kprobe_multi_resolve *res;
11476
};
11477
11478
static int avail_func_cmp(const void *a, const void *b)
11479
{
11480
return strcmp(*(const char **)a, *(const char **)b);
11481
}
11482
11483
static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11484
const char *sym_name, void *ctx)
11485
{
11486
struct avail_kallsyms_data *data = ctx;
11487
struct kprobe_multi_resolve *res = data->res;
11488
int err;
11489
11490
if (!glob_match(sym_name, res->pattern))
11491
return 0;
11492
11493
if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) {
11494
/* Some versions of kernel strip out .llvm.<hash> suffix from
11495
* function names reported in available_filter_functions, but
11496
* don't do so for kallsyms. While this is clearly a kernel
11497
* bug (fixed by [0]) we try to accommodate that in libbpf to
11498
* make multi-kprobe usability a bit better: if no match is
11499
* found, we will strip .llvm. suffix and try one more time.
11500
*
11501
* [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG")
11502
*/
11503
char sym_trim[256], *psym_trim = sym_trim, *sym_sfx;
11504
11505
if (!(sym_sfx = strstr(sym_name, ".llvm.")))
11506
return 0;
11507
11508
/* psym_trim vs sym_trim dance is done to avoid pointer vs array
11509
* coercion differences and get proper `const char **` pointer
11510
* which avail_func_cmp() expects
11511
*/
11512
snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name);
11513
if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11514
return 0;
11515
}
11516
11517
err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11518
if (err)
11519
return err;
11520
11521
res->addrs[res->cnt++] = (unsigned long)sym_addr;
11522
return 0;
11523
}
11524
11525
static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11526
{
11527
const char *available_functions_file = tracefs_available_filter_functions();
11528
struct avail_kallsyms_data data;
11529
char sym_name[500];
11530
FILE *f;
11531
int err = 0, ret, i;
11532
char **syms = NULL;
11533
size_t cap = 0, cnt = 0;
11534
11535
f = fopen(available_functions_file, "re");
11536
if (!f) {
11537
err = -errno;
11538
pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err));
11539
return err;
11540
}
11541
11542
while (true) {
11543
char *name;
11544
11545
ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11546
if (ret == EOF && feof(f))
11547
break;
11548
11549
if (ret != 1) {
11550
pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11551
err = -EINVAL;
11552
goto cleanup;
11553
}
11554
11555
if (!glob_match(sym_name, res->pattern))
11556
continue;
11557
11558
err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11559
if (err)
11560
goto cleanup;
11561
11562
name = strdup(sym_name);
11563
if (!name) {
11564
err = -errno;
11565
goto cleanup;
11566
}
11567
11568
syms[cnt++] = name;
11569
}
11570
11571
/* no entries found, bail out */
11572
if (cnt == 0) {
11573
err = -ENOENT;
11574
goto cleanup;
11575
}
11576
11577
/* sort available functions */
11578
qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11579
11580
data.syms = syms;
11581
data.res = res;
11582
data.cnt = cnt;
11583
libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11584
11585
if (res->cnt == 0)
11586
err = -ENOENT;
11587
11588
cleanup:
11589
for (i = 0; i < cnt; i++)
11590
free((char *)syms[i]);
11591
free(syms);
11592
11593
fclose(f);
11594
return err;
11595
}
11596
11597
static bool has_available_filter_functions_addrs(void)
11598
{
11599
return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11600
}
11601
11602
static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11603
{
11604
const char *available_path = tracefs_available_filter_functions_addrs();
11605
char sym_name[500];
11606
FILE *f;
11607
int ret, err = 0;
11608
unsigned long long sym_addr;
11609
11610
f = fopen(available_path, "re");
11611
if (!f) {
11612
err = -errno;
11613
pr_warn("failed to open %s: %s\n", available_path, errstr(err));
11614
return err;
11615
}
11616
11617
while (true) {
11618
ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11619
if (ret == EOF && feof(f))
11620
break;
11621
11622
if (ret != 2) {
11623
pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11624
ret);
11625
err = -EINVAL;
11626
goto cleanup;
11627
}
11628
11629
if (!glob_match(sym_name, res->pattern))
11630
continue;
11631
11632
err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11633
sizeof(*res->addrs), res->cnt + 1);
11634
if (err)
11635
goto cleanup;
11636
11637
res->addrs[res->cnt++] = (unsigned long)sym_addr;
11638
}
11639
11640
if (res->cnt == 0)
11641
err = -ENOENT;
11642
11643
cleanup:
11644
fclose(f);
11645
return err;
11646
}
11647
11648
struct bpf_link *
11649
bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11650
const char *pattern,
11651
const struct bpf_kprobe_multi_opts *opts)
11652
{
11653
LIBBPF_OPTS(bpf_link_create_opts, lopts);
11654
struct kprobe_multi_resolve res = {
11655
.pattern = pattern,
11656
};
11657
enum bpf_attach_type attach_type;
11658
struct bpf_link *link = NULL;
11659
const unsigned long *addrs;
11660
int err, link_fd, prog_fd;
11661
bool retprobe, session, unique_match;
11662
const __u64 *cookies;
11663
const char **syms;
11664
size_t cnt;
11665
11666
if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11667
return libbpf_err_ptr(-EINVAL);
11668
11669
prog_fd = bpf_program__fd(prog);
11670
if (prog_fd < 0) {
11671
pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11672
prog->name);
11673
return libbpf_err_ptr(-EINVAL);
11674
}
11675
11676
syms = OPTS_GET(opts, syms, false);
11677
addrs = OPTS_GET(opts, addrs, false);
11678
cnt = OPTS_GET(opts, cnt, false);
11679
cookies = OPTS_GET(opts, cookies, false);
11680
unique_match = OPTS_GET(opts, unique_match, false);
11681
11682
if (!pattern && !addrs && !syms)
11683
return libbpf_err_ptr(-EINVAL);
11684
if (pattern && (addrs || syms || cookies || cnt))
11685
return libbpf_err_ptr(-EINVAL);
11686
if (!pattern && !cnt)
11687
return libbpf_err_ptr(-EINVAL);
11688
if (!pattern && unique_match)
11689
return libbpf_err_ptr(-EINVAL);
11690
if (addrs && syms)
11691
return libbpf_err_ptr(-EINVAL);
11692
11693
if (pattern) {
11694
if (has_available_filter_functions_addrs())
11695
err = libbpf_available_kprobes_parse(&res);
11696
else
11697
err = libbpf_available_kallsyms_parse(&res);
11698
if (err)
11699
goto error;
11700
11701
if (unique_match && res.cnt != 1) {
11702
pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n",
11703
prog->name, pattern, res.cnt);
11704
err = -EINVAL;
11705
goto error;
11706
}
11707
11708
addrs = res.addrs;
11709
cnt = res.cnt;
11710
}
11711
11712
retprobe = OPTS_GET(opts, retprobe, false);
11713
session = OPTS_GET(opts, session, false);
11714
11715
if (retprobe && session)
11716
return libbpf_err_ptr(-EINVAL);
11717
11718
attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI;
11719
11720
lopts.kprobe_multi.syms = syms;
11721
lopts.kprobe_multi.addrs = addrs;
11722
lopts.kprobe_multi.cookies = cookies;
11723
lopts.kprobe_multi.cnt = cnt;
11724
lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11725
11726
link = calloc(1, sizeof(*link));
11727
if (!link) {
11728
err = -ENOMEM;
11729
goto error;
11730
}
11731
link->detach = &bpf_link__detach_fd;
11732
11733
link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
11734
if (link_fd < 0) {
11735
err = -errno;
11736
pr_warn("prog '%s': failed to attach: %s\n",
11737
prog->name, errstr(err));
11738
goto error;
11739
}
11740
link->fd = link_fd;
11741
free(res.addrs);
11742
return link;
11743
11744
error:
11745
free(link);
11746
free(res.addrs);
11747
return libbpf_err_ptr(err);
11748
}
11749
11750
static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11751
{
11752
DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11753
unsigned long offset = 0;
11754
const char *func_name;
11755
char *func;
11756
int n;
11757
11758
*link = NULL;
11759
11760
/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11761
if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11762
return 0;
11763
11764
opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11765
if (opts.retprobe)
11766
func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11767
else
11768
func_name = prog->sec_name + sizeof("kprobe/") - 1;
11769
11770
n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11771
if (n < 1) {
11772
pr_warn("kprobe name is invalid: %s\n", func_name);
11773
return -EINVAL;
11774
}
11775
if (opts.retprobe && offset != 0) {
11776
free(func);
11777
pr_warn("kretprobes do not support offset specification\n");
11778
return -EINVAL;
11779
}
11780
11781
opts.offset = offset;
11782
*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11783
free(func);
11784
return libbpf_get_error(*link);
11785
}
11786
11787
static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11788
{
11789
LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11790
const char *syscall_name;
11791
11792
*link = NULL;
11793
11794
/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11795
if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11796
return 0;
11797
11798
opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11799
if (opts.retprobe)
11800
syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11801
else
11802
syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11803
11804
*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11805
return *link ? 0 : -errno;
11806
}
11807
11808
static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11809
{
11810
LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11811
const char *spec;
11812
char *pattern;
11813
int n;
11814
11815
*link = NULL;
11816
11817
/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11818
if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11819
strcmp(prog->sec_name, "kretprobe.multi") == 0)
11820
return 0;
11821
11822
opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11823
if (opts.retprobe)
11824
spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11825
else
11826
spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11827
11828
n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11829
if (n < 1) {
11830
pr_warn("kprobe multi pattern is invalid: %s\n", spec);
11831
return -EINVAL;
11832
}
11833
11834
*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11835
free(pattern);
11836
return libbpf_get_error(*link);
11837
}
11838
11839
static int attach_kprobe_session(const struct bpf_program *prog, long cookie,
11840
struct bpf_link **link)
11841
{
11842
LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true);
11843
const char *spec;
11844
char *pattern;
11845
int n;
11846
11847
*link = NULL;
11848
11849
/* no auto-attach for SEC("kprobe.session") */
11850
if (strcmp(prog->sec_name, "kprobe.session") == 0)
11851
return 0;
11852
11853
spec = prog->sec_name + sizeof("kprobe.session/") - 1;
11854
n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11855
if (n < 1) {
11856
pr_warn("kprobe session pattern is invalid: %s\n", spec);
11857
return -EINVAL;
11858
}
11859
11860
*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11861
free(pattern);
11862
return *link ? 0 : -errno;
11863
}
11864
11865
static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11866
{
11867
char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11868
LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11869
int n, ret = -EINVAL;
11870
11871
*link = NULL;
11872
11873
n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11874
&probe_type, &binary_path, &func_name);
11875
switch (n) {
11876
case 1:
11877
/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11878
ret = 0;
11879
break;
11880
case 3:
11881
opts.session = str_has_pfx(probe_type, "uprobe.session");
11882
opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi");
11883
11884
*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11885
ret = libbpf_get_error(*link);
11886
break;
11887
default:
11888
pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11889
prog->sec_name);
11890
break;
11891
}
11892
free(probe_type);
11893
free(binary_path);
11894
free(func_name);
11895
return ret;
11896
}
11897
11898
static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11899
const char *binary_path, size_t offset)
11900
{
11901
return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11902
retprobe ? 'r' : 'p',
11903
retprobe ? "uretprobes" : "uprobes",
11904
probe_name, binary_path, offset);
11905
}
11906
11907
static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11908
{
11909
return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11910
retprobe ? "uretprobes" : "uprobes", probe_name);
11911
}
11912
11913
static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11914
{
11915
char file[512];
11916
11917
snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11918
tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11919
11920
return parse_uint_from_file(file, "%d\n");
11921
}
11922
11923
static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11924
const char *binary_path, size_t offset, int pid)
11925
{
11926
const size_t attr_sz = sizeof(struct perf_event_attr);
11927
struct perf_event_attr attr;
11928
int type, pfd, err;
11929
11930
err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11931
if (err < 0) {
11932
pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n",
11933
binary_path, (size_t)offset, errstr(err));
11934
return err;
11935
}
11936
type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11937
if (type < 0) {
11938
err = type;
11939
pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n",
11940
binary_path, offset, errstr(err));
11941
goto err_clean_legacy;
11942
}
11943
11944
memset(&attr, 0, attr_sz);
11945
attr.size = attr_sz;
11946
attr.config = type;
11947
attr.type = PERF_TYPE_TRACEPOINT;
11948
11949
pfd = syscall(__NR_perf_event_open, &attr,
11950
pid < 0 ? -1 : pid, /* pid */
11951
pid == -1 ? 0 : -1, /* cpu */
11952
-1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11953
if (pfd < 0) {
11954
err = -errno;
11955
pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err));
11956
goto err_clean_legacy;
11957
}
11958
return pfd;
11959
11960
err_clean_legacy:
11961
/* Clear the newly added legacy uprobe_event */
11962
remove_uprobe_event_legacy(probe_name, retprobe);
11963
return err;
11964
}
11965
11966
/* Find offset of function name in archive specified by path. Currently
11967
* supported are .zip files that do not compress their contents, as used on
11968
* Android in the form of APKs, for example. "file_name" is the name of the ELF
11969
* file inside the archive. "func_name" matches symbol name or name@@LIB for
11970
* library functions.
11971
*
11972
* An overview of the APK format specifically provided here:
11973
* https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11974
*/
11975
static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11976
const char *func_name)
11977
{
11978
struct zip_archive *archive;
11979
struct zip_entry entry;
11980
long ret;
11981
Elf *elf;
11982
11983
archive = zip_archive_open(archive_path);
11984
if (IS_ERR(archive)) {
11985
ret = PTR_ERR(archive);
11986
pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11987
return ret;
11988
}
11989
11990
ret = zip_archive_find_entry(archive, file_name, &entry);
11991
if (ret) {
11992
pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11993
archive_path, ret);
11994
goto out;
11995
}
11996
pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11997
(unsigned long)entry.data_offset);
11998
11999
if (entry.compression) {
12000
pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
12001
archive_path);
12002
ret = -LIBBPF_ERRNO__FORMAT;
12003
goto out;
12004
}
12005
12006
elf = elf_memory((void *)entry.data, entry.data_length);
12007
if (!elf) {
12008
pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
12009
elf_errmsg(-1));
12010
ret = -LIBBPF_ERRNO__LIBELF;
12011
goto out;
12012
}
12013
12014
ret = elf_find_func_offset(elf, file_name, func_name);
12015
if (ret > 0) {
12016
pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
12017
func_name, file_name, archive_path, entry.data_offset, ret,
12018
ret + entry.data_offset);
12019
ret += entry.data_offset;
12020
}
12021
elf_end(elf);
12022
12023
out:
12024
zip_archive_close(archive);
12025
return ret;
12026
}
12027
12028
static const char *arch_specific_lib_paths(void)
12029
{
12030
/*
12031
* Based on https://packages.debian.org/sid/libc6.
12032
*
12033
* Assume that the traced program is built for the same architecture
12034
* as libbpf, which should cover the vast majority of cases.
12035
*/
12036
#if defined(__x86_64__)
12037
return "/lib/x86_64-linux-gnu";
12038
#elif defined(__i386__)
12039
return "/lib/i386-linux-gnu";
12040
#elif defined(__s390x__)
12041
return "/lib/s390x-linux-gnu";
12042
#elif defined(__s390__)
12043
return "/lib/s390-linux-gnu";
12044
#elif defined(__arm__) && defined(__SOFTFP__)
12045
return "/lib/arm-linux-gnueabi";
12046
#elif defined(__arm__) && !defined(__SOFTFP__)
12047
return "/lib/arm-linux-gnueabihf";
12048
#elif defined(__aarch64__)
12049
return "/lib/aarch64-linux-gnu";
12050
#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
12051
return "/lib/mips64el-linux-gnuabi64";
12052
#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
12053
return "/lib/mipsel-linux-gnu";
12054
#elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
12055
return "/lib/powerpc64le-linux-gnu";
12056
#elif defined(__sparc__) && defined(__arch64__)
12057
return "/lib/sparc64-linux-gnu";
12058
#elif defined(__riscv) && __riscv_xlen == 64
12059
return "/lib/riscv64-linux-gnu";
12060
#else
12061
return NULL;
12062
#endif
12063
}
12064
12065
/* Get full path to program/shared library. */
12066
static int resolve_full_path(const char *file, char *result, size_t result_sz)
12067
{
12068
const char *search_paths[3] = {};
12069
int i, perm;
12070
12071
if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
12072
search_paths[0] = getenv("LD_LIBRARY_PATH");
12073
search_paths[1] = "/usr/lib64:/usr/lib";
12074
search_paths[2] = arch_specific_lib_paths();
12075
perm = R_OK;
12076
} else {
12077
search_paths[0] = getenv("PATH");
12078
search_paths[1] = "/usr/bin:/usr/sbin";
12079
perm = R_OK | X_OK;
12080
}
12081
12082
for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
12083
const char *s;
12084
12085
if (!search_paths[i])
12086
continue;
12087
for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
12088
char *next_path;
12089
int seg_len;
12090
12091
if (s[0] == ':')
12092
s++;
12093
next_path = strchr(s, ':');
12094
seg_len = next_path ? next_path - s : strlen(s);
12095
if (!seg_len)
12096
continue;
12097
snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
12098
/* ensure it has required permissions */
12099
if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
12100
continue;
12101
pr_debug("resolved '%s' to '%s'\n", file, result);
12102
return 0;
12103
}
12104
}
12105
return -ENOENT;
12106
}
12107
12108
struct bpf_link *
12109
bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
12110
pid_t pid,
12111
const char *path,
12112
const char *func_pattern,
12113
const struct bpf_uprobe_multi_opts *opts)
12114
{
12115
const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
12116
LIBBPF_OPTS(bpf_link_create_opts, lopts);
12117
unsigned long *resolved_offsets = NULL;
12118
enum bpf_attach_type attach_type;
12119
int err = 0, link_fd, prog_fd;
12120
struct bpf_link *link = NULL;
12121
char full_path[PATH_MAX];
12122
bool retprobe, session;
12123
const __u64 *cookies;
12124
const char **syms;
12125
size_t cnt;
12126
12127
if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
12128
return libbpf_err_ptr(-EINVAL);
12129
12130
prog_fd = bpf_program__fd(prog);
12131
if (prog_fd < 0) {
12132
pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12133
prog->name);
12134
return libbpf_err_ptr(-EINVAL);
12135
}
12136
12137
syms = OPTS_GET(opts, syms, NULL);
12138
offsets = OPTS_GET(opts, offsets, NULL);
12139
ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
12140
cookies = OPTS_GET(opts, cookies, NULL);
12141
cnt = OPTS_GET(opts, cnt, 0);
12142
retprobe = OPTS_GET(opts, retprobe, false);
12143
session = OPTS_GET(opts, session, false);
12144
12145
/*
12146
* User can specify 2 mutually exclusive set of inputs:
12147
*
12148
* 1) use only path/func_pattern/pid arguments
12149
*
12150
* 2) use path/pid with allowed combinations of:
12151
* syms/offsets/ref_ctr_offsets/cookies/cnt
12152
*
12153
* - syms and offsets are mutually exclusive
12154
* - ref_ctr_offsets and cookies are optional
12155
*
12156
* Any other usage results in error.
12157
*/
12158
12159
if (!path)
12160
return libbpf_err_ptr(-EINVAL);
12161
if (!func_pattern && cnt == 0)
12162
return libbpf_err_ptr(-EINVAL);
12163
12164
if (func_pattern) {
12165
if (syms || offsets || ref_ctr_offsets || cookies || cnt)
12166
return libbpf_err_ptr(-EINVAL);
12167
} else {
12168
if (!!syms == !!offsets)
12169
return libbpf_err_ptr(-EINVAL);
12170
}
12171
12172
if (retprobe && session)
12173
return libbpf_err_ptr(-EINVAL);
12174
12175
if (func_pattern) {
12176
if (!strchr(path, '/')) {
12177
err = resolve_full_path(path, full_path, sizeof(full_path));
12178
if (err) {
12179
pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12180
prog->name, path, errstr(err));
12181
return libbpf_err_ptr(err);
12182
}
12183
path = full_path;
12184
}
12185
12186
err = elf_resolve_pattern_offsets(path, func_pattern,
12187
&resolved_offsets, &cnt);
12188
if (err < 0)
12189
return libbpf_err_ptr(err);
12190
offsets = resolved_offsets;
12191
} else if (syms) {
12192
err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
12193
if (err < 0)
12194
return libbpf_err_ptr(err);
12195
offsets = resolved_offsets;
12196
}
12197
12198
attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI;
12199
12200
lopts.uprobe_multi.path = path;
12201
lopts.uprobe_multi.offsets = offsets;
12202
lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
12203
lopts.uprobe_multi.cookies = cookies;
12204
lopts.uprobe_multi.cnt = cnt;
12205
lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0;
12206
12207
if (pid == 0)
12208
pid = getpid();
12209
if (pid > 0)
12210
lopts.uprobe_multi.pid = pid;
12211
12212
link = calloc(1, sizeof(*link));
12213
if (!link) {
12214
err = -ENOMEM;
12215
goto error;
12216
}
12217
link->detach = &bpf_link__detach_fd;
12218
12219
link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
12220
if (link_fd < 0) {
12221
err = -errno;
12222
pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
12223
prog->name, errstr(err));
12224
goto error;
12225
}
12226
link->fd = link_fd;
12227
free(resolved_offsets);
12228
return link;
12229
12230
error:
12231
free(resolved_offsets);
12232
free(link);
12233
return libbpf_err_ptr(err);
12234
}
12235
12236
LIBBPF_API struct bpf_link *
12237
bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
12238
const char *binary_path, size_t func_offset,
12239
const struct bpf_uprobe_opts *opts)
12240
{
12241
const char *archive_path = NULL, *archive_sep = NULL;
12242
char *legacy_probe = NULL;
12243
DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12244
enum probe_attach_mode attach_mode;
12245
char full_path[PATH_MAX];
12246
struct bpf_link *link;
12247
size_t ref_ctr_off;
12248
int pfd, err;
12249
bool retprobe, legacy;
12250
const char *func_name;
12251
12252
if (!OPTS_VALID(opts, bpf_uprobe_opts))
12253
return libbpf_err_ptr(-EINVAL);
12254
12255
attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
12256
retprobe = OPTS_GET(opts, retprobe, false);
12257
ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
12258
pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12259
12260
if (!binary_path)
12261
return libbpf_err_ptr(-EINVAL);
12262
12263
/* Check if "binary_path" refers to an archive. */
12264
archive_sep = strstr(binary_path, "!/");
12265
if (archive_sep) {
12266
full_path[0] = '\0';
12267
libbpf_strlcpy(full_path, binary_path,
12268
min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
12269
archive_path = full_path;
12270
binary_path = archive_sep + 2;
12271
} else if (!strchr(binary_path, '/')) {
12272
err = resolve_full_path(binary_path, full_path, sizeof(full_path));
12273
if (err) {
12274
pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12275
prog->name, binary_path, errstr(err));
12276
return libbpf_err_ptr(err);
12277
}
12278
binary_path = full_path;
12279
}
12280
func_name = OPTS_GET(opts, func_name, NULL);
12281
if (func_name) {
12282
long sym_off;
12283
12284
if (archive_path) {
12285
sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
12286
func_name);
12287
binary_path = archive_path;
12288
} else {
12289
sym_off = elf_find_func_offset_from_file(binary_path, func_name);
12290
}
12291
if (sym_off < 0)
12292
return libbpf_err_ptr(sym_off);
12293
func_offset += sym_off;
12294
}
12295
12296
legacy = determine_uprobe_perf_type() < 0;
12297
switch (attach_mode) {
12298
case PROBE_ATTACH_MODE_LEGACY:
12299
legacy = true;
12300
pe_opts.force_ioctl_attach = true;
12301
break;
12302
case PROBE_ATTACH_MODE_PERF:
12303
if (legacy)
12304
return libbpf_err_ptr(-ENOTSUP);
12305
pe_opts.force_ioctl_attach = true;
12306
break;
12307
case PROBE_ATTACH_MODE_LINK:
12308
if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
12309
return libbpf_err_ptr(-ENOTSUP);
12310
break;
12311
case PROBE_ATTACH_MODE_DEFAULT:
12312
break;
12313
default:
12314
return libbpf_err_ptr(-EINVAL);
12315
}
12316
12317
if (!legacy) {
12318
pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12319
func_offset, pid, ref_ctr_off);
12320
} else {
12321
char probe_name[MAX_EVENT_NAME_LEN];
12322
12323
if (ref_ctr_off)
12324
return libbpf_err_ptr(-EINVAL);
12325
12326
gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
12327
strrchr(binary_path, '/') ? : binary_path,
12328
func_offset);
12329
12330
legacy_probe = strdup(probe_name);
12331
if (!legacy_probe)
12332
return libbpf_err_ptr(-ENOMEM);
12333
12334
pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12335
binary_path, func_offset, pid);
12336
}
12337
if (pfd < 0) {
12338
err = -errno;
12339
pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12340
prog->name, retprobe ? "uretprobe" : "uprobe",
12341
binary_path, func_offset,
12342
errstr(err));
12343
goto err_out;
12344
}
12345
12346
link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12347
err = libbpf_get_error(link);
12348
if (err) {
12349
close(pfd);
12350
pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12351
prog->name, retprobe ? "uretprobe" : "uprobe",
12352
binary_path, func_offset,
12353
errstr(err));
12354
goto err_clean_legacy;
12355
}
12356
if (legacy) {
12357
struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12358
12359
perf_link->legacy_probe_name = legacy_probe;
12360
perf_link->legacy_is_kprobe = false;
12361
perf_link->legacy_is_retprobe = retprobe;
12362
}
12363
return link;
12364
12365
err_clean_legacy:
12366
if (legacy)
12367
remove_uprobe_event_legacy(legacy_probe, retprobe);
12368
err_out:
12369
free(legacy_probe);
12370
return libbpf_err_ptr(err);
12371
}
12372
12373
/* Format of u[ret]probe section definition supporting auto-attach:
12374
* u[ret]probe/binary:function[+offset]
12375
*
12376
* binary can be an absolute/relative path or a filename; the latter is resolved to a
12377
* full binary path via bpf_program__attach_uprobe_opts.
12378
*
12379
* Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12380
* specified (and auto-attach is not possible) or the above format is specified for
12381
* auto-attach.
12382
*/
12383
static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12384
{
12385
DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12386
char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12387
int n, c, ret = -EINVAL;
12388
long offset = 0;
12389
12390
*link = NULL;
12391
12392
n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12393
&probe_type, &binary_path, &func_name);
12394
switch (n) {
12395
case 1:
12396
/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12397
ret = 0;
12398
break;
12399
case 2:
12400
pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12401
prog->name, prog->sec_name);
12402
break;
12403
case 3:
12404
/* check if user specifies `+offset`, if yes, this should be
12405
* the last part of the string, make sure sscanf read to EOL
12406
*/
12407
func_off = strrchr(func_name, '+');
12408
if (func_off) {
12409
n = sscanf(func_off, "+%li%n", &offset, &c);
12410
if (n == 1 && *(func_off + c) == '\0')
12411
func_off[0] = '\0';
12412
else
12413
offset = 0;
12414
}
12415
opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12416
strcmp(probe_type, "uretprobe.s") == 0;
12417
if (opts.retprobe && offset != 0) {
12418
pr_warn("prog '%s': uretprobes do not support offset specification\n",
12419
prog->name);
12420
break;
12421
}
12422
opts.func_name = func_name;
12423
*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12424
ret = libbpf_get_error(*link);
12425
break;
12426
default:
12427
pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12428
prog->sec_name);
12429
break;
12430
}
12431
free(probe_type);
12432
free(binary_path);
12433
free(func_name);
12434
12435
return ret;
12436
}
12437
12438
struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12439
bool retprobe, pid_t pid,
12440
const char *binary_path,
12441
size_t func_offset)
12442
{
12443
DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12444
12445
return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12446
}
12447
12448
struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12449
pid_t pid, const char *binary_path,
12450
const char *usdt_provider, const char *usdt_name,
12451
const struct bpf_usdt_opts *opts)
12452
{
12453
char resolved_path[512];
12454
struct bpf_object *obj = prog->obj;
12455
struct bpf_link *link;
12456
__u64 usdt_cookie;
12457
int err;
12458
12459
if (!OPTS_VALID(opts, bpf_uprobe_opts))
12460
return libbpf_err_ptr(-EINVAL);
12461
12462
if (bpf_program__fd(prog) < 0) {
12463
pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12464
prog->name);
12465
return libbpf_err_ptr(-EINVAL);
12466
}
12467
12468
if (!binary_path)
12469
return libbpf_err_ptr(-EINVAL);
12470
12471
if (!strchr(binary_path, '/')) {
12472
err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12473
if (err) {
12474
pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12475
prog->name, binary_path, errstr(err));
12476
return libbpf_err_ptr(err);
12477
}
12478
binary_path = resolved_path;
12479
}
12480
12481
/* USDT manager is instantiated lazily on first USDT attach. It will
12482
* be destroyed together with BPF object in bpf_object__close().
12483
*/
12484
if (IS_ERR(obj->usdt_man))
12485
return libbpf_ptr(obj->usdt_man);
12486
if (!obj->usdt_man) {
12487
obj->usdt_man = usdt_manager_new(obj);
12488
if (IS_ERR(obj->usdt_man))
12489
return libbpf_ptr(obj->usdt_man);
12490
}
12491
12492
usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12493
link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12494
usdt_provider, usdt_name, usdt_cookie);
12495
err = libbpf_get_error(link);
12496
if (err)
12497
return libbpf_err_ptr(err);
12498
return link;
12499
}
12500
12501
static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12502
{
12503
char *path = NULL, *provider = NULL, *name = NULL;
12504
const char *sec_name;
12505
int n, err;
12506
12507
sec_name = bpf_program__section_name(prog);
12508
if (strcmp(sec_name, "usdt") == 0) {
12509
/* no auto-attach for just SEC("usdt") */
12510
*link = NULL;
12511
return 0;
12512
}
12513
12514
n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12515
if (n != 3) {
12516
pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12517
sec_name);
12518
err = -EINVAL;
12519
} else {
12520
*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12521
provider, name, NULL);
12522
err = libbpf_get_error(*link);
12523
}
12524
free(path);
12525
free(provider);
12526
free(name);
12527
return err;
12528
}
12529
12530
static int determine_tracepoint_id(const char *tp_category,
12531
const char *tp_name)
12532
{
12533
char file[PATH_MAX];
12534
int ret;
12535
12536
ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12537
tracefs_path(), tp_category, tp_name);
12538
if (ret < 0)
12539
return -errno;
12540
if (ret >= sizeof(file)) {
12541
pr_debug("tracepoint %s/%s path is too long\n",
12542
tp_category, tp_name);
12543
return -E2BIG;
12544
}
12545
return parse_uint_from_file(file, "%d\n");
12546
}
12547
12548
static int perf_event_open_tracepoint(const char *tp_category,
12549
const char *tp_name)
12550
{
12551
const size_t attr_sz = sizeof(struct perf_event_attr);
12552
struct perf_event_attr attr;
12553
int tp_id, pfd, err;
12554
12555
tp_id = determine_tracepoint_id(tp_category, tp_name);
12556
if (tp_id < 0) {
12557
pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12558
tp_category, tp_name,
12559
errstr(tp_id));
12560
return tp_id;
12561
}
12562
12563
memset(&attr, 0, attr_sz);
12564
attr.type = PERF_TYPE_TRACEPOINT;
12565
attr.size = attr_sz;
12566
attr.config = tp_id;
12567
12568
pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12569
-1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12570
if (pfd < 0) {
12571
err = -errno;
12572
pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12573
tp_category, tp_name,
12574
errstr(err));
12575
return err;
12576
}
12577
return pfd;
12578
}
12579
12580
struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12581
const char *tp_category,
12582
const char *tp_name,
12583
const struct bpf_tracepoint_opts *opts)
12584
{
12585
DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12586
struct bpf_link *link;
12587
int pfd, err;
12588
12589
if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12590
return libbpf_err_ptr(-EINVAL);
12591
12592
pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12593
12594
pfd = perf_event_open_tracepoint(tp_category, tp_name);
12595
if (pfd < 0) {
12596
pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12597
prog->name, tp_category, tp_name,
12598
errstr(pfd));
12599
return libbpf_err_ptr(pfd);
12600
}
12601
link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12602
err = libbpf_get_error(link);
12603
if (err) {
12604
close(pfd);
12605
pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12606
prog->name, tp_category, tp_name,
12607
errstr(err));
12608
return libbpf_err_ptr(err);
12609
}
12610
return link;
12611
}
12612
12613
struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12614
const char *tp_category,
12615
const char *tp_name)
12616
{
12617
return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12618
}
12619
12620
static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12621
{
12622
char *sec_name, *tp_cat, *tp_name;
12623
12624
*link = NULL;
12625
12626
/* no auto-attach for SEC("tp") or SEC("tracepoint") */
12627
if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12628
return 0;
12629
12630
sec_name = strdup(prog->sec_name);
12631
if (!sec_name)
12632
return -ENOMEM;
12633
12634
/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12635
if (str_has_pfx(prog->sec_name, "tp/"))
12636
tp_cat = sec_name + sizeof("tp/") - 1;
12637
else
12638
tp_cat = sec_name + sizeof("tracepoint/") - 1;
12639
tp_name = strchr(tp_cat, '/');
12640
if (!tp_name) {
12641
free(sec_name);
12642
return -EINVAL;
12643
}
12644
*tp_name = '\0';
12645
tp_name++;
12646
12647
*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12648
free(sec_name);
12649
return libbpf_get_error(*link);
12650
}
12651
12652
struct bpf_link *
12653
bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog,
12654
const char *tp_name,
12655
struct bpf_raw_tracepoint_opts *opts)
12656
{
12657
LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts);
12658
struct bpf_link *link;
12659
int prog_fd, pfd;
12660
12661
if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts))
12662
return libbpf_err_ptr(-EINVAL);
12663
12664
prog_fd = bpf_program__fd(prog);
12665
if (prog_fd < 0) {
12666
pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12667
return libbpf_err_ptr(-EINVAL);
12668
}
12669
12670
link = calloc(1, sizeof(*link));
12671
if (!link)
12672
return libbpf_err_ptr(-ENOMEM);
12673
link->detach = &bpf_link__detach_fd;
12674
12675
raw_opts.tp_name = tp_name;
12676
raw_opts.cookie = OPTS_GET(opts, cookie, 0);
12677
pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts);
12678
if (pfd < 0) {
12679
pfd = -errno;
12680
free(link);
12681
pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12682
prog->name, tp_name, errstr(pfd));
12683
return libbpf_err_ptr(pfd);
12684
}
12685
link->fd = pfd;
12686
return link;
12687
}
12688
12689
struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12690
const char *tp_name)
12691
{
12692
return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL);
12693
}
12694
12695
static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12696
{
12697
static const char *const prefixes[] = {
12698
"raw_tp",
12699
"raw_tracepoint",
12700
"raw_tp.w",
12701
"raw_tracepoint.w",
12702
};
12703
size_t i;
12704
const char *tp_name = NULL;
12705
12706
*link = NULL;
12707
12708
for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12709
size_t pfx_len;
12710
12711
if (!str_has_pfx(prog->sec_name, prefixes[i]))
12712
continue;
12713
12714
pfx_len = strlen(prefixes[i]);
12715
/* no auto-attach case of, e.g., SEC("raw_tp") */
12716
if (prog->sec_name[pfx_len] == '\0')
12717
return 0;
12718
12719
if (prog->sec_name[pfx_len] != '/')
12720
continue;
12721
12722
tp_name = prog->sec_name + pfx_len + 1;
12723
break;
12724
}
12725
12726
if (!tp_name) {
12727
pr_warn("prog '%s': invalid section name '%s'\n",
12728
prog->name, prog->sec_name);
12729
return -EINVAL;
12730
}
12731
12732
*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12733
return libbpf_get_error(*link);
12734
}
12735
12736
/* Common logic for all BPF program types that attach to a btf_id */
12737
static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12738
const struct bpf_trace_opts *opts)
12739
{
12740
LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12741
struct bpf_link *link;
12742
int prog_fd, pfd;
12743
12744
if (!OPTS_VALID(opts, bpf_trace_opts))
12745
return libbpf_err_ptr(-EINVAL);
12746
12747
prog_fd = bpf_program__fd(prog);
12748
if (prog_fd < 0) {
12749
pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12750
return libbpf_err_ptr(-EINVAL);
12751
}
12752
12753
link = calloc(1, sizeof(*link));
12754
if (!link)
12755
return libbpf_err_ptr(-ENOMEM);
12756
link->detach = &bpf_link__detach_fd;
12757
12758
/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12759
link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12760
pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12761
if (pfd < 0) {
12762
pfd = -errno;
12763
free(link);
12764
pr_warn("prog '%s': failed to attach: %s\n",
12765
prog->name, errstr(pfd));
12766
return libbpf_err_ptr(pfd);
12767
}
12768
link->fd = pfd;
12769
return link;
12770
}
12771
12772
struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12773
{
12774
return bpf_program__attach_btf_id(prog, NULL);
12775
}
12776
12777
struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12778
const struct bpf_trace_opts *opts)
12779
{
12780
return bpf_program__attach_btf_id(prog, opts);
12781
}
12782
12783
struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12784
{
12785
return bpf_program__attach_btf_id(prog, NULL);
12786
}
12787
12788
static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12789
{
12790
*link = bpf_program__attach_trace(prog);
12791
return libbpf_get_error(*link);
12792
}
12793
12794
static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12795
{
12796
*link = bpf_program__attach_lsm(prog);
12797
return libbpf_get_error(*link);
12798
}
12799
12800
static struct bpf_link *
12801
bpf_program_attach_fd(const struct bpf_program *prog,
12802
int target_fd, const char *target_name,
12803
const struct bpf_link_create_opts *opts)
12804
{
12805
enum bpf_attach_type attach_type;
12806
struct bpf_link *link;
12807
int prog_fd, link_fd;
12808
12809
prog_fd = bpf_program__fd(prog);
12810
if (prog_fd < 0) {
12811
pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12812
return libbpf_err_ptr(-EINVAL);
12813
}
12814
12815
link = calloc(1, sizeof(*link));
12816
if (!link)
12817
return libbpf_err_ptr(-ENOMEM);
12818
link->detach = &bpf_link__detach_fd;
12819
12820
attach_type = bpf_program__expected_attach_type(prog);
12821
link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12822
if (link_fd < 0) {
12823
link_fd = -errno;
12824
free(link);
12825
pr_warn("prog '%s': failed to attach to %s: %s\n",
12826
prog->name, target_name,
12827
errstr(link_fd));
12828
return libbpf_err_ptr(link_fd);
12829
}
12830
link->fd = link_fd;
12831
return link;
12832
}
12833
12834
struct bpf_link *
12835
bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12836
{
12837
return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12838
}
12839
12840
struct bpf_link *
12841
bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12842
{
12843
return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12844
}
12845
12846
struct bpf_link *
12847
bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd)
12848
{
12849
return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL);
12850
}
12851
12852
struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12853
{
12854
/* target_fd/target_ifindex use the same field in LINK_CREATE */
12855
return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12856
}
12857
12858
struct bpf_link *
12859
bpf_program__attach_cgroup_opts(const struct bpf_program *prog, int cgroup_fd,
12860
const struct bpf_cgroup_opts *opts)
12861
{
12862
LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12863
__u32 relative_id;
12864
int relative_fd;
12865
12866
if (!OPTS_VALID(opts, bpf_cgroup_opts))
12867
return libbpf_err_ptr(-EINVAL);
12868
12869
relative_id = OPTS_GET(opts, relative_id, 0);
12870
relative_fd = OPTS_GET(opts, relative_fd, 0);
12871
12872
if (relative_fd && relative_id) {
12873
pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12874
prog->name);
12875
return libbpf_err_ptr(-EINVAL);
12876
}
12877
12878
link_create_opts.cgroup.expected_revision = OPTS_GET(opts, expected_revision, 0);
12879
link_create_opts.cgroup.relative_fd = relative_fd;
12880
link_create_opts.cgroup.relative_id = relative_id;
12881
link_create_opts.flags = OPTS_GET(opts, flags, 0);
12882
12883
return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", &link_create_opts);
12884
}
12885
12886
struct bpf_link *
12887
bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12888
const struct bpf_tcx_opts *opts)
12889
{
12890
LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12891
__u32 relative_id;
12892
int relative_fd;
12893
12894
if (!OPTS_VALID(opts, bpf_tcx_opts))
12895
return libbpf_err_ptr(-EINVAL);
12896
12897
relative_id = OPTS_GET(opts, relative_id, 0);
12898
relative_fd = OPTS_GET(opts, relative_fd, 0);
12899
12900
/* validate we don't have unexpected combinations of non-zero fields */
12901
if (!ifindex) {
12902
pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12903
prog->name);
12904
return libbpf_err_ptr(-EINVAL);
12905
}
12906
if (relative_fd && relative_id) {
12907
pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12908
prog->name);
12909
return libbpf_err_ptr(-EINVAL);
12910
}
12911
12912
link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12913
link_create_opts.tcx.relative_fd = relative_fd;
12914
link_create_opts.tcx.relative_id = relative_id;
12915
link_create_opts.flags = OPTS_GET(opts, flags, 0);
12916
12917
/* target_fd/target_ifindex use the same field in LINK_CREATE */
12918
return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12919
}
12920
12921
struct bpf_link *
12922
bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12923
const struct bpf_netkit_opts *opts)
12924
{
12925
LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12926
__u32 relative_id;
12927
int relative_fd;
12928
12929
if (!OPTS_VALID(opts, bpf_netkit_opts))
12930
return libbpf_err_ptr(-EINVAL);
12931
12932
relative_id = OPTS_GET(opts, relative_id, 0);
12933
relative_fd = OPTS_GET(opts, relative_fd, 0);
12934
12935
/* validate we don't have unexpected combinations of non-zero fields */
12936
if (!ifindex) {
12937
pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12938
prog->name);
12939
return libbpf_err_ptr(-EINVAL);
12940
}
12941
if (relative_fd && relative_id) {
12942
pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12943
prog->name);
12944
return libbpf_err_ptr(-EINVAL);
12945
}
12946
12947
link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12948
link_create_opts.netkit.relative_fd = relative_fd;
12949
link_create_opts.netkit.relative_id = relative_id;
12950
link_create_opts.flags = OPTS_GET(opts, flags, 0);
12951
12952
return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12953
}
12954
12955
struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12956
int target_fd,
12957
const char *attach_func_name)
12958
{
12959
int btf_id;
12960
12961
if (!!target_fd != !!attach_func_name) {
12962
pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12963
prog->name);
12964
return libbpf_err_ptr(-EINVAL);
12965
}
12966
12967
if (prog->type != BPF_PROG_TYPE_EXT) {
12968
pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n",
12969
prog->name);
12970
return libbpf_err_ptr(-EINVAL);
12971
}
12972
12973
if (target_fd) {
12974
LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12975
12976
btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd);
12977
if (btf_id < 0)
12978
return libbpf_err_ptr(btf_id);
12979
12980
target_opts.target_btf_id = btf_id;
12981
12982
return bpf_program_attach_fd(prog, target_fd, "freplace",
12983
&target_opts);
12984
} else {
12985
/* no target, so use raw_tracepoint_open for compatibility
12986
* with old kernels
12987
*/
12988
return bpf_program__attach_trace(prog);
12989
}
12990
}
12991
12992
struct bpf_link *
12993
bpf_program__attach_iter(const struct bpf_program *prog,
12994
const struct bpf_iter_attach_opts *opts)
12995
{
12996
DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12997
struct bpf_link *link;
12998
int prog_fd, link_fd;
12999
__u32 target_fd = 0;
13000
13001
if (!OPTS_VALID(opts, bpf_iter_attach_opts))
13002
return libbpf_err_ptr(-EINVAL);
13003
13004
link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
13005
link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
13006
13007
prog_fd = bpf_program__fd(prog);
13008
if (prog_fd < 0) {
13009
pr_warn("prog '%s': can't attach before loaded\n", prog->name);
13010
return libbpf_err_ptr(-EINVAL);
13011
}
13012
13013
link = calloc(1, sizeof(*link));
13014
if (!link)
13015
return libbpf_err_ptr(-ENOMEM);
13016
link->detach = &bpf_link__detach_fd;
13017
13018
link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
13019
&link_create_opts);
13020
if (link_fd < 0) {
13021
link_fd = -errno;
13022
free(link);
13023
pr_warn("prog '%s': failed to attach to iterator: %s\n",
13024
prog->name, errstr(link_fd));
13025
return libbpf_err_ptr(link_fd);
13026
}
13027
link->fd = link_fd;
13028
return link;
13029
}
13030
13031
static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
13032
{
13033
*link = bpf_program__attach_iter(prog, NULL);
13034
return libbpf_get_error(*link);
13035
}
13036
13037
struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
13038
const struct bpf_netfilter_opts *opts)
13039
{
13040
LIBBPF_OPTS(bpf_link_create_opts, lopts);
13041
struct bpf_link *link;
13042
int prog_fd, link_fd;
13043
13044
if (!OPTS_VALID(opts, bpf_netfilter_opts))
13045
return libbpf_err_ptr(-EINVAL);
13046
13047
prog_fd = bpf_program__fd(prog);
13048
if (prog_fd < 0) {
13049
pr_warn("prog '%s': can't attach before loaded\n", prog->name);
13050
return libbpf_err_ptr(-EINVAL);
13051
}
13052
13053
link = calloc(1, sizeof(*link));
13054
if (!link)
13055
return libbpf_err_ptr(-ENOMEM);
13056
13057
link->detach = &bpf_link__detach_fd;
13058
13059
lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
13060
lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
13061
lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
13062
lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
13063
13064
link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
13065
if (link_fd < 0) {
13066
link_fd = -errno;
13067
free(link);
13068
pr_warn("prog '%s': failed to attach to netfilter: %s\n",
13069
prog->name, errstr(link_fd));
13070
return libbpf_err_ptr(link_fd);
13071
}
13072
link->fd = link_fd;
13073
13074
return link;
13075
}
13076
13077
struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
13078
{
13079
struct bpf_link *link = NULL;
13080
int err;
13081
13082
if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13083
return libbpf_err_ptr(-EOPNOTSUPP);
13084
13085
if (bpf_program__fd(prog) < 0) {
13086
pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
13087
prog->name);
13088
return libbpf_err_ptr(-EINVAL);
13089
}
13090
13091
err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
13092
if (err)
13093
return libbpf_err_ptr(err);
13094
13095
/* When calling bpf_program__attach() explicitly, auto-attach support
13096
* is expected to work, so NULL returned link is considered an error.
13097
* This is different for skeleton's attach, see comment in
13098
* bpf_object__attach_skeleton().
13099
*/
13100
if (!link)
13101
return libbpf_err_ptr(-EOPNOTSUPP);
13102
13103
return link;
13104
}
13105
13106
struct bpf_link_struct_ops {
13107
struct bpf_link link;
13108
int map_fd;
13109
};
13110
13111
static int bpf_link__detach_struct_ops(struct bpf_link *link)
13112
{
13113
struct bpf_link_struct_ops *st_link;
13114
__u32 zero = 0;
13115
13116
st_link = container_of(link, struct bpf_link_struct_ops, link);
13117
13118
if (st_link->map_fd < 0)
13119
/* w/o a real link */
13120
return bpf_map_delete_elem(link->fd, &zero);
13121
13122
return close(link->fd);
13123
}
13124
13125
struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
13126
{
13127
struct bpf_link_struct_ops *link;
13128
__u32 zero = 0;
13129
int err, fd;
13130
13131
if (!bpf_map__is_struct_ops(map)) {
13132
pr_warn("map '%s': can't attach non-struct_ops map\n", map->name);
13133
return libbpf_err_ptr(-EINVAL);
13134
}
13135
13136
if (map->fd < 0) {
13137
pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name);
13138
return libbpf_err_ptr(-EINVAL);
13139
}
13140
13141
link = calloc(1, sizeof(*link));
13142
if (!link)
13143
return libbpf_err_ptr(-EINVAL);
13144
13145
/* kern_vdata should be prepared during the loading phase. */
13146
err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13147
/* It can be EBUSY if the map has been used to create or
13148
* update a link before. We don't allow updating the value of
13149
* a struct_ops once it is set. That ensures that the value
13150
* never changed. So, it is safe to skip EBUSY.
13151
*/
13152
if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
13153
free(link);
13154
return libbpf_err_ptr(err);
13155
}
13156
13157
link->link.detach = bpf_link__detach_struct_ops;
13158
13159
if (!(map->def.map_flags & BPF_F_LINK)) {
13160
/* w/o a real link */
13161
link->link.fd = map->fd;
13162
link->map_fd = -1;
13163
return &link->link;
13164
}
13165
13166
fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
13167
if (fd < 0) {
13168
free(link);
13169
return libbpf_err_ptr(fd);
13170
}
13171
13172
link->link.fd = fd;
13173
link->map_fd = map->fd;
13174
13175
return &link->link;
13176
}
13177
13178
/*
13179
* Swap the back struct_ops of a link with a new struct_ops map.
13180
*/
13181
int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
13182
{
13183
struct bpf_link_struct_ops *st_ops_link;
13184
__u32 zero = 0;
13185
int err;
13186
13187
if (!bpf_map__is_struct_ops(map))
13188
return libbpf_err(-EINVAL);
13189
13190
if (map->fd < 0) {
13191
pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
13192
return libbpf_err(-EINVAL);
13193
}
13194
13195
st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
13196
/* Ensure the type of a link is correct */
13197
if (st_ops_link->map_fd < 0)
13198
return libbpf_err(-EINVAL);
13199
13200
err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13201
/* It can be EBUSY if the map has been used to create or
13202
* update a link before. We don't allow updating the value of
13203
* a struct_ops once it is set. That ensures that the value
13204
* never changed. So, it is safe to skip EBUSY.
13205
*/
13206
if (err && err != -EBUSY)
13207
return err;
13208
13209
err = bpf_link_update(link->fd, map->fd, NULL);
13210
if (err < 0)
13211
return err;
13212
13213
st_ops_link->map_fd = map->fd;
13214
13215
return 0;
13216
}
13217
13218
typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
13219
void *private_data);
13220
13221
static enum bpf_perf_event_ret
13222
perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
13223
void **copy_mem, size_t *copy_size,
13224
bpf_perf_event_print_t fn, void *private_data)
13225
{
13226
struct perf_event_mmap_page *header = mmap_mem;
13227
__u64 data_head = ring_buffer_read_head(header);
13228
__u64 data_tail = header->data_tail;
13229
void *base = ((__u8 *)header) + page_size;
13230
int ret = LIBBPF_PERF_EVENT_CONT;
13231
struct perf_event_header *ehdr;
13232
size_t ehdr_size;
13233
13234
while (data_head != data_tail) {
13235
ehdr = base + (data_tail & (mmap_size - 1));
13236
ehdr_size = ehdr->size;
13237
13238
if (((void *)ehdr) + ehdr_size > base + mmap_size) {
13239
void *copy_start = ehdr;
13240
size_t len_first = base + mmap_size - copy_start;
13241
size_t len_secnd = ehdr_size - len_first;
13242
13243
if (*copy_size < ehdr_size) {
13244
free(*copy_mem);
13245
*copy_mem = malloc(ehdr_size);
13246
if (!*copy_mem) {
13247
*copy_size = 0;
13248
ret = LIBBPF_PERF_EVENT_ERROR;
13249
break;
13250
}
13251
*copy_size = ehdr_size;
13252
}
13253
13254
memcpy(*copy_mem, copy_start, len_first);
13255
memcpy(*copy_mem + len_first, base, len_secnd);
13256
ehdr = *copy_mem;
13257
}
13258
13259
ret = fn(ehdr, private_data);
13260
data_tail += ehdr_size;
13261
if (ret != LIBBPF_PERF_EVENT_CONT)
13262
break;
13263
}
13264
13265
ring_buffer_write_tail(header, data_tail);
13266
return libbpf_err(ret);
13267
}
13268
13269
struct perf_buffer;
13270
13271
struct perf_buffer_params {
13272
struct perf_event_attr *attr;
13273
/* if event_cb is specified, it takes precendence */
13274
perf_buffer_event_fn event_cb;
13275
/* sample_cb and lost_cb are higher-level common-case callbacks */
13276
perf_buffer_sample_fn sample_cb;
13277
perf_buffer_lost_fn lost_cb;
13278
void *ctx;
13279
int cpu_cnt;
13280
int *cpus;
13281
int *map_keys;
13282
};
13283
13284
struct perf_cpu_buf {
13285
struct perf_buffer *pb;
13286
void *base; /* mmap()'ed memory */
13287
void *buf; /* for reconstructing segmented data */
13288
size_t buf_size;
13289
int fd;
13290
int cpu;
13291
int map_key;
13292
};
13293
13294
struct perf_buffer {
13295
perf_buffer_event_fn event_cb;
13296
perf_buffer_sample_fn sample_cb;
13297
perf_buffer_lost_fn lost_cb;
13298
void *ctx; /* passed into callbacks */
13299
13300
size_t page_size;
13301
size_t mmap_size;
13302
struct perf_cpu_buf **cpu_bufs;
13303
struct epoll_event *events;
13304
int cpu_cnt; /* number of allocated CPU buffers */
13305
int epoll_fd; /* perf event FD */
13306
int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
13307
};
13308
13309
static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
13310
struct perf_cpu_buf *cpu_buf)
13311
{
13312
if (!cpu_buf)
13313
return;
13314
if (cpu_buf->base &&
13315
munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
13316
pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
13317
if (cpu_buf->fd >= 0) {
13318
ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
13319
close(cpu_buf->fd);
13320
}
13321
free(cpu_buf->buf);
13322
free(cpu_buf);
13323
}
13324
13325
void perf_buffer__free(struct perf_buffer *pb)
13326
{
13327
int i;
13328
13329
if (IS_ERR_OR_NULL(pb))
13330
return;
13331
if (pb->cpu_bufs) {
13332
for (i = 0; i < pb->cpu_cnt; i++) {
13333
struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13334
13335
if (!cpu_buf)
13336
continue;
13337
13338
bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
13339
perf_buffer__free_cpu_buf(pb, cpu_buf);
13340
}
13341
free(pb->cpu_bufs);
13342
}
13343
if (pb->epoll_fd >= 0)
13344
close(pb->epoll_fd);
13345
free(pb->events);
13346
free(pb);
13347
}
13348
13349
static struct perf_cpu_buf *
13350
perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
13351
int cpu, int map_key)
13352
{
13353
struct perf_cpu_buf *cpu_buf;
13354
int err;
13355
13356
cpu_buf = calloc(1, sizeof(*cpu_buf));
13357
if (!cpu_buf)
13358
return ERR_PTR(-ENOMEM);
13359
13360
cpu_buf->pb = pb;
13361
cpu_buf->cpu = cpu;
13362
cpu_buf->map_key = map_key;
13363
13364
cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
13365
-1, PERF_FLAG_FD_CLOEXEC);
13366
if (cpu_buf->fd < 0) {
13367
err = -errno;
13368
pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
13369
cpu, errstr(err));
13370
goto error;
13371
}
13372
13373
cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13374
PROT_READ | PROT_WRITE, MAP_SHARED,
13375
cpu_buf->fd, 0);
13376
if (cpu_buf->base == MAP_FAILED) {
13377
cpu_buf->base = NULL;
13378
err = -errno;
13379
pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13380
cpu, errstr(err));
13381
goto error;
13382
}
13383
13384
if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13385
err = -errno;
13386
pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13387
cpu, errstr(err));
13388
goto error;
13389
}
13390
13391
return cpu_buf;
13392
13393
error:
13394
perf_buffer__free_cpu_buf(pb, cpu_buf);
13395
return (struct perf_cpu_buf *)ERR_PTR(err);
13396
}
13397
13398
static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13399
struct perf_buffer_params *p);
13400
13401
struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13402
perf_buffer_sample_fn sample_cb,
13403
perf_buffer_lost_fn lost_cb,
13404
void *ctx,
13405
const struct perf_buffer_opts *opts)
13406
{
13407
const size_t attr_sz = sizeof(struct perf_event_attr);
13408
struct perf_buffer_params p = {};
13409
struct perf_event_attr attr;
13410
__u32 sample_period;
13411
13412
if (!OPTS_VALID(opts, perf_buffer_opts))
13413
return libbpf_err_ptr(-EINVAL);
13414
13415
sample_period = OPTS_GET(opts, sample_period, 1);
13416
if (!sample_period)
13417
sample_period = 1;
13418
13419
memset(&attr, 0, attr_sz);
13420
attr.size = attr_sz;
13421
attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13422
attr.type = PERF_TYPE_SOFTWARE;
13423
attr.sample_type = PERF_SAMPLE_RAW;
13424
attr.wakeup_events = sample_period;
13425
13426
p.attr = &attr;
13427
p.sample_cb = sample_cb;
13428
p.lost_cb = lost_cb;
13429
p.ctx = ctx;
13430
13431
return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13432
}
13433
13434
struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13435
struct perf_event_attr *attr,
13436
perf_buffer_event_fn event_cb, void *ctx,
13437
const struct perf_buffer_raw_opts *opts)
13438
{
13439
struct perf_buffer_params p = {};
13440
13441
if (!attr)
13442
return libbpf_err_ptr(-EINVAL);
13443
13444
if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13445
return libbpf_err_ptr(-EINVAL);
13446
13447
p.attr = attr;
13448
p.event_cb = event_cb;
13449
p.ctx = ctx;
13450
p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13451
p.cpus = OPTS_GET(opts, cpus, NULL);
13452
p.map_keys = OPTS_GET(opts, map_keys, NULL);
13453
13454
return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13455
}
13456
13457
static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13458
struct perf_buffer_params *p)
13459
{
13460
const char *online_cpus_file = "/sys/devices/system/cpu/online";
13461
struct bpf_map_info map;
13462
struct perf_buffer *pb;
13463
bool *online = NULL;
13464
__u32 map_info_len;
13465
int err, i, j, n;
13466
13467
if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13468
pr_warn("page count should be power of two, but is %zu\n",
13469
page_cnt);
13470
return ERR_PTR(-EINVAL);
13471
}
13472
13473
/* best-effort sanity checks */
13474
memset(&map, 0, sizeof(map));
13475
map_info_len = sizeof(map);
13476
err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13477
if (err) {
13478
err = -errno;
13479
/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13480
* -EBADFD, -EFAULT, or -E2BIG on real error
13481
*/
13482
if (err != -EINVAL) {
13483
pr_warn("failed to get map info for map FD %d: %s\n",
13484
map_fd, errstr(err));
13485
return ERR_PTR(err);
13486
}
13487
pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13488
map_fd);
13489
} else {
13490
if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13491
pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13492
map.name);
13493
return ERR_PTR(-EINVAL);
13494
}
13495
}
13496
13497
pb = calloc(1, sizeof(*pb));
13498
if (!pb)
13499
return ERR_PTR(-ENOMEM);
13500
13501
pb->event_cb = p->event_cb;
13502
pb->sample_cb = p->sample_cb;
13503
pb->lost_cb = p->lost_cb;
13504
pb->ctx = p->ctx;
13505
13506
pb->page_size = getpagesize();
13507
pb->mmap_size = pb->page_size * page_cnt;
13508
pb->map_fd = map_fd;
13509
13510
pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13511
if (pb->epoll_fd < 0) {
13512
err = -errno;
13513
pr_warn("failed to create epoll instance: %s\n",
13514
errstr(err));
13515
goto error;
13516
}
13517
13518
if (p->cpu_cnt > 0) {
13519
pb->cpu_cnt = p->cpu_cnt;
13520
} else {
13521
pb->cpu_cnt = libbpf_num_possible_cpus();
13522
if (pb->cpu_cnt < 0) {
13523
err = pb->cpu_cnt;
13524
goto error;
13525
}
13526
if (map.max_entries && map.max_entries < pb->cpu_cnt)
13527
pb->cpu_cnt = map.max_entries;
13528
}
13529
13530
pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13531
if (!pb->events) {
13532
err = -ENOMEM;
13533
pr_warn("failed to allocate events: out of memory\n");
13534
goto error;
13535
}
13536
pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13537
if (!pb->cpu_bufs) {
13538
err = -ENOMEM;
13539
pr_warn("failed to allocate buffers: out of memory\n");
13540
goto error;
13541
}
13542
13543
err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13544
if (err) {
13545
pr_warn("failed to get online CPU mask: %s\n", errstr(err));
13546
goto error;
13547
}
13548
13549
for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13550
struct perf_cpu_buf *cpu_buf;
13551
int cpu, map_key;
13552
13553
cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13554
map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13555
13556
/* in case user didn't explicitly requested particular CPUs to
13557
* be attached to, skip offline/not present CPUs
13558
*/
13559
if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13560
continue;
13561
13562
cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13563
if (IS_ERR(cpu_buf)) {
13564
err = PTR_ERR(cpu_buf);
13565
goto error;
13566
}
13567
13568
pb->cpu_bufs[j] = cpu_buf;
13569
13570
err = bpf_map_update_elem(pb->map_fd, &map_key,
13571
&cpu_buf->fd, 0);
13572
if (err) {
13573
err = -errno;
13574
pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13575
cpu, map_key, cpu_buf->fd,
13576
errstr(err));
13577
goto error;
13578
}
13579
13580
pb->events[j].events = EPOLLIN;
13581
pb->events[j].data.ptr = cpu_buf;
13582
if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13583
&pb->events[j]) < 0) {
13584
err = -errno;
13585
pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13586
cpu, cpu_buf->fd,
13587
errstr(err));
13588
goto error;
13589
}
13590
j++;
13591
}
13592
pb->cpu_cnt = j;
13593
free(online);
13594
13595
return pb;
13596
13597
error:
13598
free(online);
13599
if (pb)
13600
perf_buffer__free(pb);
13601
return ERR_PTR(err);
13602
}
13603
13604
struct perf_sample_raw {
13605
struct perf_event_header header;
13606
uint32_t size;
13607
char data[];
13608
};
13609
13610
struct perf_sample_lost {
13611
struct perf_event_header header;
13612
uint64_t id;
13613
uint64_t lost;
13614
uint64_t sample_id;
13615
};
13616
13617
static enum bpf_perf_event_ret
13618
perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13619
{
13620
struct perf_cpu_buf *cpu_buf = ctx;
13621
struct perf_buffer *pb = cpu_buf->pb;
13622
void *data = e;
13623
13624
/* user wants full control over parsing perf event */
13625
if (pb->event_cb)
13626
return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13627
13628
switch (e->type) {
13629
case PERF_RECORD_SAMPLE: {
13630
struct perf_sample_raw *s = data;
13631
13632
if (pb->sample_cb)
13633
pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13634
break;
13635
}
13636
case PERF_RECORD_LOST: {
13637
struct perf_sample_lost *s = data;
13638
13639
if (pb->lost_cb)
13640
pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13641
break;
13642
}
13643
default:
13644
pr_warn("unknown perf sample type %d\n", e->type);
13645
return LIBBPF_PERF_EVENT_ERROR;
13646
}
13647
return LIBBPF_PERF_EVENT_CONT;
13648
}
13649
13650
static int perf_buffer__process_records(struct perf_buffer *pb,
13651
struct perf_cpu_buf *cpu_buf)
13652
{
13653
enum bpf_perf_event_ret ret;
13654
13655
ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13656
pb->page_size, &cpu_buf->buf,
13657
&cpu_buf->buf_size,
13658
perf_buffer__process_record, cpu_buf);
13659
if (ret != LIBBPF_PERF_EVENT_CONT)
13660
return ret;
13661
return 0;
13662
}
13663
13664
int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13665
{
13666
return pb->epoll_fd;
13667
}
13668
13669
int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13670
{
13671
int i, cnt, err;
13672
13673
cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13674
if (cnt < 0)
13675
return -errno;
13676
13677
for (i = 0; i < cnt; i++) {
13678
struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13679
13680
err = perf_buffer__process_records(pb, cpu_buf);
13681
if (err) {
13682
pr_warn("error while processing records: %s\n", errstr(err));
13683
return libbpf_err(err);
13684
}
13685
}
13686
return cnt;
13687
}
13688
13689
/* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13690
* manager.
13691
*/
13692
size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13693
{
13694
return pb->cpu_cnt;
13695
}
13696
13697
/*
13698
* Return perf_event FD of a ring buffer in *buf_idx* slot of
13699
* PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13700
* select()/poll()/epoll() Linux syscalls.
13701
*/
13702
int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13703
{
13704
struct perf_cpu_buf *cpu_buf;
13705
13706
if (buf_idx >= pb->cpu_cnt)
13707
return libbpf_err(-EINVAL);
13708
13709
cpu_buf = pb->cpu_bufs[buf_idx];
13710
if (!cpu_buf)
13711
return libbpf_err(-ENOENT);
13712
13713
return cpu_buf->fd;
13714
}
13715
13716
int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13717
{
13718
struct perf_cpu_buf *cpu_buf;
13719
13720
if (buf_idx >= pb->cpu_cnt)
13721
return libbpf_err(-EINVAL);
13722
13723
cpu_buf = pb->cpu_bufs[buf_idx];
13724
if (!cpu_buf)
13725
return libbpf_err(-ENOENT);
13726
13727
*buf = cpu_buf->base;
13728
*buf_size = pb->mmap_size;
13729
return 0;
13730
}
13731
13732
/*
13733
* Consume data from perf ring buffer corresponding to slot *buf_idx* in
13734
* PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13735
* consume, do nothing and return success.
13736
* Returns:
13737
* - 0 on success;
13738
* - <0 on failure.
13739
*/
13740
int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13741
{
13742
struct perf_cpu_buf *cpu_buf;
13743
13744
if (buf_idx >= pb->cpu_cnt)
13745
return libbpf_err(-EINVAL);
13746
13747
cpu_buf = pb->cpu_bufs[buf_idx];
13748
if (!cpu_buf)
13749
return libbpf_err(-ENOENT);
13750
13751
return perf_buffer__process_records(pb, cpu_buf);
13752
}
13753
13754
int perf_buffer__consume(struct perf_buffer *pb)
13755
{
13756
int i, err;
13757
13758
for (i = 0; i < pb->cpu_cnt; i++) {
13759
struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13760
13761
if (!cpu_buf)
13762
continue;
13763
13764
err = perf_buffer__process_records(pb, cpu_buf);
13765
if (err) {
13766
pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n",
13767
i, errstr(err));
13768
return libbpf_err(err);
13769
}
13770
}
13771
return 0;
13772
}
13773
13774
int bpf_program__set_attach_target(struct bpf_program *prog,
13775
int attach_prog_fd,
13776
const char *attach_func_name)
13777
{
13778
int btf_obj_fd = 0, btf_id = 0, err;
13779
13780
if (!prog || attach_prog_fd < 0)
13781
return libbpf_err(-EINVAL);
13782
13783
if (prog->obj->state >= OBJ_LOADED)
13784
return libbpf_err(-EINVAL);
13785
13786
if (attach_prog_fd && !attach_func_name) {
13787
/* remember attach_prog_fd and let bpf_program__load() find
13788
* BTF ID during the program load
13789
*/
13790
prog->attach_prog_fd = attach_prog_fd;
13791
return 0;
13792
}
13793
13794
if (attach_prog_fd) {
13795
btf_id = libbpf_find_prog_btf_id(attach_func_name,
13796
attach_prog_fd, prog->obj->token_fd);
13797
if (btf_id < 0)
13798
return libbpf_err(btf_id);
13799
} else {
13800
if (!attach_func_name)
13801
return libbpf_err(-EINVAL);
13802
13803
/* load btf_vmlinux, if not yet */
13804
err = bpf_object__load_vmlinux_btf(prog->obj, true);
13805
if (err)
13806
return libbpf_err(err);
13807
err = find_kernel_btf_id(prog->obj, attach_func_name,
13808
prog->expected_attach_type,
13809
&btf_obj_fd, &btf_id);
13810
if (err)
13811
return libbpf_err(err);
13812
}
13813
13814
prog->attach_btf_id = btf_id;
13815
prog->attach_btf_obj_fd = btf_obj_fd;
13816
prog->attach_prog_fd = attach_prog_fd;
13817
return 0;
13818
}
13819
13820
int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13821
{
13822
int err = 0, n, len, start, end = -1;
13823
bool *tmp;
13824
13825
*mask = NULL;
13826
*mask_sz = 0;
13827
13828
/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13829
while (*s) {
13830
if (*s == ',' || *s == '\n') {
13831
s++;
13832
continue;
13833
}
13834
n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13835
if (n <= 0 || n > 2) {
13836
pr_warn("Failed to get CPU range %s: %d\n", s, n);
13837
err = -EINVAL;
13838
goto cleanup;
13839
} else if (n == 1) {
13840
end = start;
13841
}
13842
if (start < 0 || start > end) {
13843
pr_warn("Invalid CPU range [%d,%d] in %s\n",
13844
start, end, s);
13845
err = -EINVAL;
13846
goto cleanup;
13847
}
13848
tmp = realloc(*mask, end + 1);
13849
if (!tmp) {
13850
err = -ENOMEM;
13851
goto cleanup;
13852
}
13853
*mask = tmp;
13854
memset(tmp + *mask_sz, 0, start - *mask_sz);
13855
memset(tmp + start, 1, end - start + 1);
13856
*mask_sz = end + 1;
13857
s += len;
13858
}
13859
if (!*mask_sz) {
13860
pr_warn("Empty CPU range\n");
13861
return -EINVAL;
13862
}
13863
return 0;
13864
cleanup:
13865
free(*mask);
13866
*mask = NULL;
13867
return err;
13868
}
13869
13870
int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13871
{
13872
int fd, err = 0, len;
13873
char buf[128];
13874
13875
fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13876
if (fd < 0) {
13877
err = -errno;
13878
pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err));
13879
return err;
13880
}
13881
len = read(fd, buf, sizeof(buf));
13882
close(fd);
13883
if (len <= 0) {
13884
err = len ? -errno : -EINVAL;
13885
pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err));
13886
return err;
13887
}
13888
if (len >= sizeof(buf)) {
13889
pr_warn("CPU mask is too big in file %s\n", fcpu);
13890
return -E2BIG;
13891
}
13892
buf[len] = '\0';
13893
13894
return parse_cpu_mask_str(buf, mask, mask_sz);
13895
}
13896
13897
int libbpf_num_possible_cpus(void)
13898
{
13899
static const char *fcpu = "/sys/devices/system/cpu/possible";
13900
static int cpus;
13901
int err, n, i, tmp_cpus;
13902
bool *mask;
13903
13904
tmp_cpus = READ_ONCE(cpus);
13905
if (tmp_cpus > 0)
13906
return tmp_cpus;
13907
13908
err = parse_cpu_mask_file(fcpu, &mask, &n);
13909
if (err)
13910
return libbpf_err(err);
13911
13912
tmp_cpus = 0;
13913
for (i = 0; i < n; i++) {
13914
if (mask[i])
13915
tmp_cpus++;
13916
}
13917
free(mask);
13918
13919
WRITE_ONCE(cpus, tmp_cpus);
13920
return tmp_cpus;
13921
}
13922
13923
static int populate_skeleton_maps(const struct bpf_object *obj,
13924
struct bpf_map_skeleton *maps,
13925
size_t map_cnt, size_t map_skel_sz)
13926
{
13927
int i;
13928
13929
for (i = 0; i < map_cnt; i++) {
13930
struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz;
13931
struct bpf_map **map = map_skel->map;
13932
const char *name = map_skel->name;
13933
void **mmaped = map_skel->mmaped;
13934
13935
*map = bpf_object__find_map_by_name(obj, name);
13936
if (!*map) {
13937
pr_warn("failed to find skeleton map '%s'\n", name);
13938
return -ESRCH;
13939
}
13940
13941
/* externs shouldn't be pre-setup from user code */
13942
if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13943
*mmaped = (*map)->mmaped;
13944
}
13945
return 0;
13946
}
13947
13948
static int populate_skeleton_progs(const struct bpf_object *obj,
13949
struct bpf_prog_skeleton *progs,
13950
size_t prog_cnt, size_t prog_skel_sz)
13951
{
13952
int i;
13953
13954
for (i = 0; i < prog_cnt; i++) {
13955
struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz;
13956
struct bpf_program **prog = prog_skel->prog;
13957
const char *name = prog_skel->name;
13958
13959
*prog = bpf_object__find_program_by_name(obj, name);
13960
if (!*prog) {
13961
pr_warn("failed to find skeleton program '%s'\n", name);
13962
return -ESRCH;
13963
}
13964
}
13965
return 0;
13966
}
13967
13968
int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13969
const struct bpf_object_open_opts *opts)
13970
{
13971
struct bpf_object *obj;
13972
int err;
13973
13974
obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts);
13975
if (IS_ERR(obj)) {
13976
err = PTR_ERR(obj);
13977
pr_warn("failed to initialize skeleton BPF object '%s': %s\n",
13978
s->name, errstr(err));
13979
return libbpf_err(err);
13980
}
13981
13982
*s->obj = obj;
13983
err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz);
13984
if (err) {
13985
pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err));
13986
return libbpf_err(err);
13987
}
13988
13989
err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13990
if (err) {
13991
pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err));
13992
return libbpf_err(err);
13993
}
13994
13995
return 0;
13996
}
13997
13998
int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13999
{
14000
int err, len, var_idx, i;
14001
const char *var_name;
14002
const struct bpf_map *map;
14003
struct btf *btf;
14004
__u32 map_type_id;
14005
const struct btf_type *map_type, *var_type;
14006
const struct bpf_var_skeleton *var_skel;
14007
struct btf_var_secinfo *var;
14008
14009
if (!s->obj)
14010
return libbpf_err(-EINVAL);
14011
14012
btf = bpf_object__btf(s->obj);
14013
if (!btf) {
14014
pr_warn("subskeletons require BTF at runtime (object %s)\n",
14015
bpf_object__name(s->obj));
14016
return libbpf_err(-errno);
14017
}
14018
14019
err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz);
14020
if (err) {
14021
pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
14022
return libbpf_err(err);
14023
}
14024
14025
err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz);
14026
if (err) {
14027
pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
14028
return libbpf_err(err);
14029
}
14030
14031
for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
14032
var_skel = (void *)s->vars + var_idx * s->var_skel_sz;
14033
map = *var_skel->map;
14034
map_type_id = bpf_map__btf_value_type_id(map);
14035
map_type = btf__type_by_id(btf, map_type_id);
14036
14037
if (!btf_is_datasec(map_type)) {
14038
pr_warn("type for map '%1$s' is not a datasec: %2$s\n",
14039
bpf_map__name(map),
14040
__btf_kind_str(btf_kind(map_type)));
14041
return libbpf_err(-EINVAL);
14042
}
14043
14044
len = btf_vlen(map_type);
14045
var = btf_var_secinfos(map_type);
14046
for (i = 0; i < len; i++, var++) {
14047
var_type = btf__type_by_id(btf, var->type);
14048
var_name = btf__name_by_offset(btf, var_type->name_off);
14049
if (strcmp(var_name, var_skel->name) == 0) {
14050
*var_skel->addr = map->mmaped + var->offset;
14051
break;
14052
}
14053
}
14054
}
14055
return 0;
14056
}
14057
14058
void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
14059
{
14060
if (!s)
14061
return;
14062
free(s->maps);
14063
free(s->progs);
14064
free(s->vars);
14065
free(s);
14066
}
14067
14068
int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
14069
{
14070
int i, err;
14071
14072
err = bpf_object__load(*s->obj);
14073
if (err) {
14074
pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err));
14075
return libbpf_err(err);
14076
}
14077
14078
for (i = 0; i < s->map_cnt; i++) {
14079
struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14080
struct bpf_map *map = *map_skel->map;
14081
14082
if (!map_skel->mmaped)
14083
continue;
14084
14085
*map_skel->mmaped = map->mmaped;
14086
}
14087
14088
return 0;
14089
}
14090
14091
int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
14092
{
14093
int i, err;
14094
14095
for (i = 0; i < s->prog_cnt; i++) {
14096
struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14097
struct bpf_program *prog = *prog_skel->prog;
14098
struct bpf_link **link = prog_skel->link;
14099
14100
if (!prog->autoload || !prog->autoattach)
14101
continue;
14102
14103
/* auto-attaching not supported for this program */
14104
if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
14105
continue;
14106
14107
/* if user already set the link manually, don't attempt auto-attach */
14108
if (*link)
14109
continue;
14110
14111
err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
14112
if (err) {
14113
pr_warn("prog '%s': failed to auto-attach: %s\n",
14114
bpf_program__name(prog), errstr(err));
14115
return libbpf_err(err);
14116
}
14117
14118
/* It's possible that for some SEC() definitions auto-attach
14119
* is supported in some cases (e.g., if definition completely
14120
* specifies target information), but is not in other cases.
14121
* SEC("uprobe") is one such case. If user specified target
14122
* binary and function name, such BPF program can be
14123
* auto-attached. But if not, it shouldn't trigger skeleton's
14124
* attach to fail. It should just be skipped.
14125
* attach_fn signals such case with returning 0 (no error) and
14126
* setting link to NULL.
14127
*/
14128
}
14129
14130
14131
for (i = 0; i < s->map_cnt; i++) {
14132
struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14133
struct bpf_map *map = *map_skel->map;
14134
struct bpf_link **link;
14135
14136
if (!map->autocreate || !map->autoattach)
14137
continue;
14138
14139
/* only struct_ops maps can be attached */
14140
if (!bpf_map__is_struct_ops(map))
14141
continue;
14142
14143
/* skeleton is created with earlier version of bpftool, notify user */
14144
if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) {
14145
pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n",
14146
bpf_map__name(map));
14147
continue;
14148
}
14149
14150
link = map_skel->link;
14151
if (!link) {
14152
pr_warn("map '%s': BPF map skeleton link is uninitialized\n",
14153
bpf_map__name(map));
14154
continue;
14155
}
14156
14157
if (*link)
14158
continue;
14159
14160
*link = bpf_map__attach_struct_ops(map);
14161
if (!*link) {
14162
err = -errno;
14163
pr_warn("map '%s': failed to auto-attach: %s\n",
14164
bpf_map__name(map), errstr(err));
14165
return libbpf_err(err);
14166
}
14167
}
14168
14169
return 0;
14170
}
14171
14172
void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
14173
{
14174
int i;
14175
14176
for (i = 0; i < s->prog_cnt; i++) {
14177
struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14178
struct bpf_link **link = prog_skel->link;
14179
14180
bpf_link__destroy(*link);
14181
*link = NULL;
14182
}
14183
14184
if (s->map_skel_sz < sizeof(struct bpf_map_skeleton))
14185
return;
14186
14187
for (i = 0; i < s->map_cnt; i++) {
14188
struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14189
struct bpf_link **link = map_skel->link;
14190
14191
if (link) {
14192
bpf_link__destroy(*link);
14193
*link = NULL;
14194
}
14195
}
14196
}
14197
14198
void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
14199
{
14200
if (!s)
14201
return;
14202
14203
bpf_object__detach_skeleton(s);
14204
if (s->obj)
14205
bpf_object__close(*s->obj);
14206
free(s->maps);
14207
free(s->progs);
14208
free(s);
14209
}
14210
14211