Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/lib/bpf/relo_core.c
26282 views
1
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
/* Copyright (c) 2019 Facebook */
3
4
#ifdef __KERNEL__
5
#include <linux/bpf.h>
6
#include <linux/btf.h>
7
#include <linux/string.h>
8
#include <linux/bpf_verifier.h>
9
#include "relo_core.h"
10
11
static const char *btf_kind_str(const struct btf_type *t)
12
{
13
return btf_type_str(t);
14
}
15
16
static bool is_ldimm64_insn(struct bpf_insn *insn)
17
{
18
return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
19
}
20
21
static const struct btf_type *
22
skip_mods_and_typedefs(const struct btf *btf, u32 id, u32 *res_id)
23
{
24
return btf_type_skip_modifiers(btf, id, res_id);
25
}
26
27
static const char *btf__name_by_offset(const struct btf *btf, u32 offset)
28
{
29
return btf_name_by_offset(btf, offset);
30
}
31
32
static s64 btf__resolve_size(const struct btf *btf, u32 type_id)
33
{
34
const struct btf_type *t;
35
int size;
36
37
t = btf_type_by_id(btf, type_id);
38
t = btf_resolve_size(btf, t, &size);
39
if (IS_ERR(t))
40
return PTR_ERR(t);
41
return size;
42
}
43
44
enum libbpf_print_level {
45
LIBBPF_WARN,
46
LIBBPF_INFO,
47
LIBBPF_DEBUG,
48
};
49
50
#undef pr_warn
51
#undef pr_info
52
#undef pr_debug
53
#define pr_warn(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
54
#define pr_info(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
55
#define pr_debug(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
56
#define libbpf_print(level, fmt, ...) bpf_log((void *)prog_name, fmt, ##__VA_ARGS__)
57
#else
58
#include <stdio.h>
59
#include <string.h>
60
#include <errno.h>
61
#include <ctype.h>
62
#include <linux/err.h>
63
64
#include "libbpf.h"
65
#include "bpf.h"
66
#include "btf.h"
67
#include "str_error.h"
68
#include "libbpf_internal.h"
69
#endif
70
71
static bool is_flex_arr(const struct btf *btf,
72
const struct bpf_core_accessor *acc,
73
const struct btf_array *arr)
74
{
75
const struct btf_type *t;
76
77
/* not a flexible array, if not inside a struct or has non-zero size */
78
if (!acc->name || arr->nelems > 0)
79
return false;
80
81
/* has to be the last member of enclosing struct */
82
t = btf_type_by_id(btf, acc->type_id);
83
return acc->idx == btf_vlen(t) - 1;
84
}
85
86
static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
87
{
88
switch (kind) {
89
case BPF_CORE_FIELD_BYTE_OFFSET: return "byte_off";
90
case BPF_CORE_FIELD_BYTE_SIZE: return "byte_sz";
91
case BPF_CORE_FIELD_EXISTS: return "field_exists";
92
case BPF_CORE_FIELD_SIGNED: return "signed";
93
case BPF_CORE_FIELD_LSHIFT_U64: return "lshift_u64";
94
case BPF_CORE_FIELD_RSHIFT_U64: return "rshift_u64";
95
case BPF_CORE_TYPE_ID_LOCAL: return "local_type_id";
96
case BPF_CORE_TYPE_ID_TARGET: return "target_type_id";
97
case BPF_CORE_TYPE_EXISTS: return "type_exists";
98
case BPF_CORE_TYPE_MATCHES: return "type_matches";
99
case BPF_CORE_TYPE_SIZE: return "type_size";
100
case BPF_CORE_ENUMVAL_EXISTS: return "enumval_exists";
101
case BPF_CORE_ENUMVAL_VALUE: return "enumval_value";
102
default: return "unknown";
103
}
104
}
105
106
static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
107
{
108
switch (kind) {
109
case BPF_CORE_FIELD_BYTE_OFFSET:
110
case BPF_CORE_FIELD_BYTE_SIZE:
111
case BPF_CORE_FIELD_EXISTS:
112
case BPF_CORE_FIELD_SIGNED:
113
case BPF_CORE_FIELD_LSHIFT_U64:
114
case BPF_CORE_FIELD_RSHIFT_U64:
115
return true;
116
default:
117
return false;
118
}
119
}
120
121
static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
122
{
123
switch (kind) {
124
case BPF_CORE_TYPE_ID_LOCAL:
125
case BPF_CORE_TYPE_ID_TARGET:
126
case BPF_CORE_TYPE_EXISTS:
127
case BPF_CORE_TYPE_MATCHES:
128
case BPF_CORE_TYPE_SIZE:
129
return true;
130
default:
131
return false;
132
}
133
}
134
135
static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
136
{
137
switch (kind) {
138
case BPF_CORE_ENUMVAL_EXISTS:
139
case BPF_CORE_ENUMVAL_VALUE:
140
return true;
141
default:
142
return false;
143
}
144
}
145
146
int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
147
const struct btf *targ_btf, __u32 targ_id, int level)
148
{
149
const struct btf_type *local_type, *targ_type;
150
int depth = 32; /* max recursion depth */
151
152
/* caller made sure that names match (ignoring flavor suffix) */
153
local_type = btf_type_by_id(local_btf, local_id);
154
targ_type = btf_type_by_id(targ_btf, targ_id);
155
if (!btf_kind_core_compat(local_type, targ_type))
156
return 0;
157
158
recur:
159
depth--;
160
if (depth < 0)
161
return -EINVAL;
162
163
local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
164
targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
165
if (!local_type || !targ_type)
166
return -EINVAL;
167
168
if (!btf_kind_core_compat(local_type, targ_type))
169
return 0;
170
171
switch (btf_kind(local_type)) {
172
case BTF_KIND_UNKN:
173
case BTF_KIND_STRUCT:
174
case BTF_KIND_UNION:
175
case BTF_KIND_ENUM:
176
case BTF_KIND_FWD:
177
case BTF_KIND_ENUM64:
178
return 1;
179
case BTF_KIND_INT:
180
/* just reject deprecated bitfield-like integers; all other
181
* integers are by default compatible between each other
182
*/
183
return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
184
case BTF_KIND_PTR:
185
local_id = local_type->type;
186
targ_id = targ_type->type;
187
goto recur;
188
case BTF_KIND_ARRAY:
189
local_id = btf_array(local_type)->type;
190
targ_id = btf_array(targ_type)->type;
191
goto recur;
192
case BTF_KIND_FUNC_PROTO: {
193
struct btf_param *local_p = btf_params(local_type);
194
struct btf_param *targ_p = btf_params(targ_type);
195
__u16 local_vlen = btf_vlen(local_type);
196
__u16 targ_vlen = btf_vlen(targ_type);
197
int i, err;
198
199
if (local_vlen != targ_vlen)
200
return 0;
201
202
for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
203
if (level <= 0)
204
return -EINVAL;
205
206
skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
207
skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
208
err = __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
209
level - 1);
210
if (err <= 0)
211
return err;
212
}
213
214
/* tail recurse for return type check */
215
skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
216
skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
217
goto recur;
218
}
219
default:
220
pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
221
btf_kind_str(local_type), local_id, targ_id);
222
return 0;
223
}
224
}
225
226
/*
227
* Turn bpf_core_relo into a low- and high-level spec representation,
228
* validating correctness along the way, as well as calculating resulting
229
* field bit offset, specified by accessor string. Low-level spec captures
230
* every single level of nestedness, including traversing anonymous
231
* struct/union members. High-level one only captures semantically meaningful
232
* "turning points": named fields and array indicies.
233
* E.g., for this case:
234
*
235
* struct sample {
236
* int __unimportant;
237
* struct {
238
* int __1;
239
* int __2;
240
* int a[7];
241
* };
242
* };
243
*
244
* struct sample *s = ...;
245
*
246
* int x = &s->a[3]; // access string = '0:1:2:3'
247
*
248
* Low-level spec has 1:1 mapping with each element of access string (it's
249
* just a parsed access string representation): [0, 1, 2, 3].
250
*
251
* High-level spec will capture only 3 points:
252
* - initial zero-index access by pointer (&s->... is the same as &s[0]...);
253
* - field 'a' access (corresponds to '2' in low-level spec);
254
* - array element #3 access (corresponds to '3' in low-level spec).
255
*
256
* Type-based relocations (TYPE_EXISTS/TYPE_MATCHES/TYPE_SIZE,
257
* TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
258
* spec and raw_spec are kept empty.
259
*
260
* Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
261
* string to specify enumerator's value index that need to be relocated.
262
*/
263
int bpf_core_parse_spec(const char *prog_name, const struct btf *btf,
264
const struct bpf_core_relo *relo,
265
struct bpf_core_spec *spec)
266
{
267
int access_idx, parsed_len, i;
268
struct bpf_core_accessor *acc;
269
const struct btf_type *t;
270
const char *name, *spec_str;
271
__u32 id, name_off;
272
__s64 sz;
273
274
spec_str = btf__name_by_offset(btf, relo->access_str_off);
275
if (str_is_empty(spec_str) || *spec_str == ':')
276
return -EINVAL;
277
278
memset(spec, 0, sizeof(*spec));
279
spec->btf = btf;
280
spec->root_type_id = relo->type_id;
281
spec->relo_kind = relo->kind;
282
283
/* type-based relocations don't have a field access string */
284
if (core_relo_is_type_based(relo->kind)) {
285
if (strcmp(spec_str, "0"))
286
return -EINVAL;
287
return 0;
288
}
289
290
/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
291
while (*spec_str) {
292
if (*spec_str == ':')
293
++spec_str;
294
if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
295
return -EINVAL;
296
if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
297
return -E2BIG;
298
spec_str += parsed_len;
299
spec->raw_spec[spec->raw_len++] = access_idx;
300
}
301
302
if (spec->raw_len == 0)
303
return -EINVAL;
304
305
t = skip_mods_and_typedefs(btf, relo->type_id, &id);
306
if (!t)
307
return -EINVAL;
308
309
access_idx = spec->raw_spec[0];
310
acc = &spec->spec[0];
311
acc->type_id = id;
312
acc->idx = access_idx;
313
spec->len++;
314
315
if (core_relo_is_enumval_based(relo->kind)) {
316
if (!btf_is_any_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
317
return -EINVAL;
318
319
/* record enumerator name in a first accessor */
320
name_off = btf_is_enum(t) ? btf_enum(t)[access_idx].name_off
321
: btf_enum64(t)[access_idx].name_off;
322
acc->name = btf__name_by_offset(btf, name_off);
323
return 0;
324
}
325
326
if (!core_relo_is_field_based(relo->kind))
327
return -EINVAL;
328
329
sz = btf__resolve_size(btf, id);
330
if (sz < 0)
331
return sz;
332
spec->bit_offset = access_idx * sz * 8;
333
334
for (i = 1; i < spec->raw_len; i++) {
335
t = skip_mods_and_typedefs(btf, id, &id);
336
if (!t)
337
return -EINVAL;
338
339
access_idx = spec->raw_spec[i];
340
acc = &spec->spec[spec->len];
341
342
if (btf_is_composite(t)) {
343
const struct btf_member *m;
344
__u32 bit_offset;
345
346
if (access_idx >= btf_vlen(t))
347
return -EINVAL;
348
349
bit_offset = btf_member_bit_offset(t, access_idx);
350
spec->bit_offset += bit_offset;
351
352
m = btf_members(t) + access_idx;
353
if (m->name_off) {
354
name = btf__name_by_offset(btf, m->name_off);
355
if (str_is_empty(name))
356
return -EINVAL;
357
358
acc->type_id = id;
359
acc->idx = access_idx;
360
acc->name = name;
361
spec->len++;
362
}
363
364
id = m->type;
365
} else if (btf_is_array(t)) {
366
const struct btf_array *a = btf_array(t);
367
bool flex;
368
369
t = skip_mods_and_typedefs(btf, a->type, &id);
370
if (!t)
371
return -EINVAL;
372
373
flex = is_flex_arr(btf, acc - 1, a);
374
if (!flex && access_idx >= a->nelems)
375
return -EINVAL;
376
377
spec->spec[spec->len].type_id = id;
378
spec->spec[spec->len].idx = access_idx;
379
spec->len++;
380
381
sz = btf__resolve_size(btf, id);
382
if (sz < 0)
383
return sz;
384
spec->bit_offset += access_idx * sz * 8;
385
} else {
386
pr_warn("prog '%s': relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
387
prog_name, relo->type_id, spec_str, i, id, btf_kind_str(t));
388
return -EINVAL;
389
}
390
}
391
392
return 0;
393
}
394
395
/* Check two types for compatibility for the purpose of field access
396
* relocation. const/volatile/restrict and typedefs are skipped to ensure we
397
* are relocating semantically compatible entities:
398
* - any two STRUCTs/UNIONs are compatible and can be mixed;
399
* - any two FWDs are compatible, if their names match (modulo flavor suffix);
400
* - any two PTRs are always compatible;
401
* - for ENUMs, names should be the same (ignoring flavor suffix) or at
402
* least one of enums should be anonymous;
403
* - for ENUMs, check sizes, names are ignored;
404
* - for INT, size and signedness are ignored;
405
* - any two FLOATs are always compatible;
406
* - for ARRAY, dimensionality is ignored, element types are checked for
407
* compatibility recursively;
408
* - everything else shouldn't be ever a target of relocation.
409
* These rules are not set in stone and probably will be adjusted as we get
410
* more experience with using BPF CO-RE relocations.
411
*/
412
static int bpf_core_fields_are_compat(const struct btf *local_btf,
413
__u32 local_id,
414
const struct btf *targ_btf,
415
__u32 targ_id)
416
{
417
const struct btf_type *local_type, *targ_type;
418
419
recur:
420
local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
421
targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
422
if (!local_type || !targ_type)
423
return -EINVAL;
424
425
if (btf_is_composite(local_type) && btf_is_composite(targ_type))
426
return 1;
427
if (!btf_kind_core_compat(local_type, targ_type))
428
return 0;
429
430
switch (btf_kind(local_type)) {
431
case BTF_KIND_PTR:
432
case BTF_KIND_FLOAT:
433
return 1;
434
case BTF_KIND_FWD:
435
case BTF_KIND_ENUM64:
436
case BTF_KIND_ENUM: {
437
const char *local_name, *targ_name;
438
size_t local_len, targ_len;
439
440
local_name = btf__name_by_offset(local_btf,
441
local_type->name_off);
442
targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
443
local_len = bpf_core_essential_name_len(local_name);
444
targ_len = bpf_core_essential_name_len(targ_name);
445
/* one of them is anonymous or both w/ same flavor-less names */
446
return local_len == 0 || targ_len == 0 ||
447
(local_len == targ_len &&
448
strncmp(local_name, targ_name, local_len) == 0);
449
}
450
case BTF_KIND_INT:
451
/* just reject deprecated bitfield-like integers; all other
452
* integers are by default compatible between each other
453
*/
454
return btf_int_offset(local_type) == 0 &&
455
btf_int_offset(targ_type) == 0;
456
case BTF_KIND_ARRAY:
457
local_id = btf_array(local_type)->type;
458
targ_id = btf_array(targ_type)->type;
459
goto recur;
460
default:
461
return 0;
462
}
463
}
464
465
/*
466
* Given single high-level named field accessor in local type, find
467
* corresponding high-level accessor for a target type. Along the way,
468
* maintain low-level spec for target as well. Also keep updating target
469
* bit offset.
470
*
471
* Searching is performed through recursive exhaustive enumeration of all
472
* fields of a struct/union. If there are any anonymous (embedded)
473
* structs/unions, they are recursively searched as well. If field with
474
* desired name is found, check compatibility between local and target types,
475
* before returning result.
476
*
477
* 1 is returned, if field is found.
478
* 0 is returned if no compatible field is found.
479
* <0 is returned on error.
480
*/
481
static int bpf_core_match_member(const struct btf *local_btf,
482
const struct bpf_core_accessor *local_acc,
483
const struct btf *targ_btf,
484
__u32 targ_id,
485
struct bpf_core_spec *spec,
486
__u32 *next_targ_id)
487
{
488
const struct btf_type *local_type, *targ_type;
489
const struct btf_member *local_member, *m;
490
const char *local_name, *targ_name;
491
__u32 local_id;
492
int i, n, found;
493
494
targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
495
if (!targ_type)
496
return -EINVAL;
497
if (!btf_is_composite(targ_type))
498
return 0;
499
500
local_id = local_acc->type_id;
501
local_type = btf_type_by_id(local_btf, local_id);
502
local_member = btf_members(local_type) + local_acc->idx;
503
local_name = btf__name_by_offset(local_btf, local_member->name_off);
504
505
n = btf_vlen(targ_type);
506
m = btf_members(targ_type);
507
for (i = 0; i < n; i++, m++) {
508
__u32 bit_offset;
509
510
bit_offset = btf_member_bit_offset(targ_type, i);
511
512
/* too deep struct/union/array nesting */
513
if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
514
return -E2BIG;
515
516
/* speculate this member will be the good one */
517
spec->bit_offset += bit_offset;
518
spec->raw_spec[spec->raw_len++] = i;
519
520
targ_name = btf__name_by_offset(targ_btf, m->name_off);
521
if (str_is_empty(targ_name)) {
522
/* embedded struct/union, we need to go deeper */
523
found = bpf_core_match_member(local_btf, local_acc,
524
targ_btf, m->type,
525
spec, next_targ_id);
526
if (found) /* either found or error */
527
return found;
528
} else if (strcmp(local_name, targ_name) == 0) {
529
/* matching named field */
530
struct bpf_core_accessor *targ_acc;
531
532
targ_acc = &spec->spec[spec->len++];
533
targ_acc->type_id = targ_id;
534
targ_acc->idx = i;
535
targ_acc->name = targ_name;
536
537
*next_targ_id = m->type;
538
found = bpf_core_fields_are_compat(local_btf,
539
local_member->type,
540
targ_btf, m->type);
541
if (!found)
542
spec->len--; /* pop accessor */
543
return found;
544
}
545
/* member turned out not to be what we looked for */
546
spec->bit_offset -= bit_offset;
547
spec->raw_len--;
548
}
549
550
return 0;
551
}
552
553
/*
554
* Try to match local spec to a target type and, if successful, produce full
555
* target spec (high-level, low-level + bit offset).
556
*/
557
static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
558
const struct btf *targ_btf, __u32 targ_id,
559
struct bpf_core_spec *targ_spec)
560
{
561
const struct btf_type *targ_type;
562
const struct bpf_core_accessor *local_acc;
563
struct bpf_core_accessor *targ_acc;
564
int i, sz, matched;
565
__u32 name_off;
566
567
memset(targ_spec, 0, sizeof(*targ_spec));
568
targ_spec->btf = targ_btf;
569
targ_spec->root_type_id = targ_id;
570
targ_spec->relo_kind = local_spec->relo_kind;
571
572
if (core_relo_is_type_based(local_spec->relo_kind)) {
573
if (local_spec->relo_kind == BPF_CORE_TYPE_MATCHES)
574
return bpf_core_types_match(local_spec->btf,
575
local_spec->root_type_id,
576
targ_btf, targ_id);
577
else
578
return bpf_core_types_are_compat(local_spec->btf,
579
local_spec->root_type_id,
580
targ_btf, targ_id);
581
}
582
583
local_acc = &local_spec->spec[0];
584
targ_acc = &targ_spec->spec[0];
585
586
if (core_relo_is_enumval_based(local_spec->relo_kind)) {
587
size_t local_essent_len, targ_essent_len;
588
const char *targ_name;
589
590
/* has to resolve to an enum */
591
targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
592
if (!btf_is_any_enum(targ_type))
593
return 0;
594
595
local_essent_len = bpf_core_essential_name_len(local_acc->name);
596
597
for (i = 0; i < btf_vlen(targ_type); i++) {
598
if (btf_is_enum(targ_type))
599
name_off = btf_enum(targ_type)[i].name_off;
600
else
601
name_off = btf_enum64(targ_type)[i].name_off;
602
603
targ_name = btf__name_by_offset(targ_spec->btf, name_off);
604
targ_essent_len = bpf_core_essential_name_len(targ_name);
605
if (targ_essent_len != local_essent_len)
606
continue;
607
if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
608
targ_acc->type_id = targ_id;
609
targ_acc->idx = i;
610
targ_acc->name = targ_name;
611
targ_spec->len++;
612
targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
613
targ_spec->raw_len++;
614
return 1;
615
}
616
}
617
return 0;
618
}
619
620
if (!core_relo_is_field_based(local_spec->relo_kind))
621
return -EINVAL;
622
623
for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
624
targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
625
&targ_id);
626
if (!targ_type)
627
return -EINVAL;
628
629
if (local_acc->name) {
630
matched = bpf_core_match_member(local_spec->btf,
631
local_acc,
632
targ_btf, targ_id,
633
targ_spec, &targ_id);
634
if (matched <= 0)
635
return matched;
636
} else {
637
/* for i=0, targ_id is already treated as array element
638
* type (because it's the original struct), for others
639
* we should find array element type first
640
*/
641
if (i > 0) {
642
const struct btf_array *a;
643
bool flex;
644
645
if (!btf_is_array(targ_type))
646
return 0;
647
648
a = btf_array(targ_type);
649
flex = is_flex_arr(targ_btf, targ_acc - 1, a);
650
if (!flex && local_acc->idx >= a->nelems)
651
return 0;
652
if (!skip_mods_and_typedefs(targ_btf, a->type,
653
&targ_id))
654
return -EINVAL;
655
}
656
657
/* too deep struct/union/array nesting */
658
if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
659
return -E2BIG;
660
661
targ_acc->type_id = targ_id;
662
targ_acc->idx = local_acc->idx;
663
targ_acc->name = NULL;
664
targ_spec->len++;
665
targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
666
targ_spec->raw_len++;
667
668
sz = btf__resolve_size(targ_btf, targ_id);
669
if (sz < 0)
670
return sz;
671
targ_spec->bit_offset += local_acc->idx * sz * 8;
672
}
673
}
674
675
return 1;
676
}
677
678
static int bpf_core_calc_field_relo(const char *prog_name,
679
const struct bpf_core_relo *relo,
680
const struct bpf_core_spec *spec,
681
__u64 *val, __u32 *field_sz, __u32 *type_id,
682
bool *validate)
683
{
684
const struct bpf_core_accessor *acc;
685
const struct btf_type *t;
686
__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id, elem_id;
687
const struct btf_member *m;
688
const struct btf_type *mt;
689
bool bitfield;
690
__s64 sz;
691
692
*field_sz = 0;
693
694
if (relo->kind == BPF_CORE_FIELD_EXISTS) {
695
*val = spec ? 1 : 0;
696
return 0;
697
}
698
699
if (!spec)
700
return -EUCLEAN; /* request instruction poisoning */
701
702
acc = &spec->spec[spec->len - 1];
703
t = btf_type_by_id(spec->btf, acc->type_id);
704
705
/* a[n] accessor needs special handling */
706
if (!acc->name) {
707
if (relo->kind == BPF_CORE_FIELD_BYTE_OFFSET) {
708
*val = spec->bit_offset / 8;
709
/* remember field size for load/store mem size;
710
* note, for arrays we care about individual element
711
* sizes, not the overall array size
712
*/
713
t = skip_mods_and_typedefs(spec->btf, acc->type_id, &elem_id);
714
while (btf_is_array(t))
715
t = skip_mods_and_typedefs(spec->btf, btf_array(t)->type, &elem_id);
716
sz = btf__resolve_size(spec->btf, elem_id);
717
if (sz < 0)
718
return -EINVAL;
719
*field_sz = sz;
720
*type_id = acc->type_id;
721
} else if (relo->kind == BPF_CORE_FIELD_BYTE_SIZE) {
722
sz = btf__resolve_size(spec->btf, acc->type_id);
723
if (sz < 0)
724
return -EINVAL;
725
*val = sz;
726
} else {
727
pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
728
prog_name, relo->kind, relo->insn_off / 8);
729
return -EINVAL;
730
}
731
if (validate)
732
*validate = true;
733
return 0;
734
}
735
736
m = btf_members(t) + acc->idx;
737
mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
738
bit_off = spec->bit_offset;
739
bit_sz = btf_member_bitfield_size(t, acc->idx);
740
741
bitfield = bit_sz > 0;
742
if (bitfield) {
743
byte_sz = mt->size;
744
byte_off = bit_off / 8 / byte_sz * byte_sz;
745
/* figure out smallest int size necessary for bitfield load */
746
while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
747
if (byte_sz >= 8) {
748
/* bitfield can't be read with 64-bit read */
749
pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
750
prog_name, relo->kind, relo->insn_off / 8);
751
return -E2BIG;
752
}
753
byte_sz *= 2;
754
byte_off = bit_off / 8 / byte_sz * byte_sz;
755
}
756
} else {
757
sz = btf__resolve_size(spec->btf, field_type_id);
758
if (sz < 0)
759
return -EINVAL;
760
byte_sz = sz;
761
byte_off = spec->bit_offset / 8;
762
bit_sz = byte_sz * 8;
763
}
764
765
/* for bitfields, all the relocatable aspects are ambiguous and we
766
* might disagree with compiler, so turn off validation of expected
767
* value, except for signedness
768
*/
769
if (validate)
770
*validate = !bitfield;
771
772
switch (relo->kind) {
773
case BPF_CORE_FIELD_BYTE_OFFSET:
774
*val = byte_off;
775
if (!bitfield) {
776
/* remember field size for load/store mem size;
777
* note, for arrays we care about individual element
778
* sizes, not the overall array size
779
*/
780
t = skip_mods_and_typedefs(spec->btf, field_type_id, &elem_id);
781
while (btf_is_array(t))
782
t = skip_mods_and_typedefs(spec->btf, btf_array(t)->type, &elem_id);
783
sz = btf__resolve_size(spec->btf, elem_id);
784
if (sz < 0)
785
return -EINVAL;
786
*field_sz = sz;
787
*type_id = field_type_id;
788
}
789
break;
790
case BPF_CORE_FIELD_BYTE_SIZE:
791
*val = byte_sz;
792
break;
793
case BPF_CORE_FIELD_SIGNED:
794
*val = (btf_is_any_enum(mt) && BTF_INFO_KFLAG(mt->info)) ||
795
(btf_is_int(mt) && (btf_int_encoding(mt) & BTF_INT_SIGNED));
796
if (validate)
797
*validate = true; /* signedness is never ambiguous */
798
break;
799
case BPF_CORE_FIELD_LSHIFT_U64:
800
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
801
*val = 64 - (bit_off + bit_sz - byte_off * 8);
802
#else
803
*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
804
#endif
805
break;
806
case BPF_CORE_FIELD_RSHIFT_U64:
807
*val = 64 - bit_sz;
808
if (validate)
809
*validate = true; /* right shift is never ambiguous */
810
break;
811
case BPF_CORE_FIELD_EXISTS:
812
default:
813
return -EOPNOTSUPP;
814
}
815
816
return 0;
817
}
818
819
static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
820
const struct bpf_core_spec *spec,
821
__u64 *val, bool *validate)
822
{
823
__s64 sz;
824
825
/* by default, always check expected value in bpf_insn */
826
if (validate)
827
*validate = true;
828
829
/* type-based relos return zero when target type is not found */
830
if (!spec) {
831
*val = 0;
832
return 0;
833
}
834
835
switch (relo->kind) {
836
case BPF_CORE_TYPE_ID_TARGET:
837
*val = spec->root_type_id;
838
/* type ID, embedded in bpf_insn, might change during linking,
839
* so enforcing it is pointless
840
*/
841
if (validate)
842
*validate = false;
843
break;
844
case BPF_CORE_TYPE_EXISTS:
845
case BPF_CORE_TYPE_MATCHES:
846
*val = 1;
847
break;
848
case BPF_CORE_TYPE_SIZE:
849
sz = btf__resolve_size(spec->btf, spec->root_type_id);
850
if (sz < 0)
851
return -EINVAL;
852
*val = sz;
853
break;
854
case BPF_CORE_TYPE_ID_LOCAL:
855
/* BPF_CORE_TYPE_ID_LOCAL is handled specially and shouldn't get here */
856
default:
857
return -EOPNOTSUPP;
858
}
859
860
return 0;
861
}
862
863
static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
864
const struct bpf_core_spec *spec,
865
__u64 *val)
866
{
867
const struct btf_type *t;
868
869
switch (relo->kind) {
870
case BPF_CORE_ENUMVAL_EXISTS:
871
*val = spec ? 1 : 0;
872
break;
873
case BPF_CORE_ENUMVAL_VALUE:
874
if (!spec)
875
return -EUCLEAN; /* request instruction poisoning */
876
t = btf_type_by_id(spec->btf, spec->spec[0].type_id);
877
if (btf_is_enum(t))
878
*val = btf_enum(t)[spec->spec[0].idx].val;
879
else
880
*val = btf_enum64_value(btf_enum64(t) + spec->spec[0].idx);
881
break;
882
default:
883
return -EOPNOTSUPP;
884
}
885
886
return 0;
887
}
888
889
/* Calculate original and target relocation values, given local and target
890
* specs and relocation kind. These values are calculated for each candidate.
891
* If there are multiple candidates, resulting values should all be consistent
892
* with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
893
* If instruction has to be poisoned, *poison will be set to true.
894
*/
895
static int bpf_core_calc_relo(const char *prog_name,
896
const struct bpf_core_relo *relo,
897
int relo_idx,
898
const struct bpf_core_spec *local_spec,
899
const struct bpf_core_spec *targ_spec,
900
struct bpf_core_relo_res *res)
901
{
902
int err = -EOPNOTSUPP;
903
904
res->orig_val = 0;
905
res->new_val = 0;
906
res->poison = false;
907
res->validate = true;
908
res->fail_memsz_adjust = false;
909
res->orig_sz = res->new_sz = 0;
910
res->orig_type_id = res->new_type_id = 0;
911
912
if (core_relo_is_field_based(relo->kind)) {
913
err = bpf_core_calc_field_relo(prog_name, relo, local_spec,
914
&res->orig_val, &res->orig_sz,
915
&res->orig_type_id, &res->validate);
916
err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec,
917
&res->new_val, &res->new_sz,
918
&res->new_type_id, NULL);
919
if (err)
920
goto done;
921
/* Validate if it's safe to adjust load/store memory size.
922
* Adjustments are performed only if original and new memory
923
* sizes differ.
924
*/
925
res->fail_memsz_adjust = false;
926
if (res->orig_sz != res->new_sz) {
927
const struct btf_type *orig_t, *new_t;
928
929
orig_t = btf_type_by_id(local_spec->btf, res->orig_type_id);
930
new_t = btf_type_by_id(targ_spec->btf, res->new_type_id);
931
932
/* There are two use cases in which it's safe to
933
* adjust load/store's mem size:
934
* - reading a 32-bit kernel pointer, while on BPF
935
* size pointers are always 64-bit; in this case
936
* it's safe to "downsize" instruction size due to
937
* pointer being treated as unsigned integer with
938
* zero-extended upper 32-bits;
939
* - reading unsigned integers, again due to
940
* zero-extension is preserving the value correctly.
941
*
942
* In all other cases it's incorrect to attempt to
943
* load/store field because read value will be
944
* incorrect, so we poison relocated instruction.
945
*/
946
if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
947
goto done;
948
if (btf_is_int(orig_t) && btf_is_int(new_t) &&
949
btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
950
btf_int_encoding(new_t) != BTF_INT_SIGNED)
951
goto done;
952
953
/* mark as invalid mem size adjustment, but this will
954
* only be checked for LDX/STX/ST insns
955
*/
956
res->fail_memsz_adjust = true;
957
}
958
} else if (core_relo_is_type_based(relo->kind)) {
959
err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val, &res->validate);
960
err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val, NULL);
961
} else if (core_relo_is_enumval_based(relo->kind)) {
962
err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
963
err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
964
}
965
966
done:
967
if (err == -EUCLEAN) {
968
/* EUCLEAN is used to signal instruction poisoning request */
969
res->poison = true;
970
err = 0;
971
} else if (err == -EOPNOTSUPP) {
972
/* EOPNOTSUPP means unknown/unsupported relocation */
973
pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
974
prog_name, relo_idx, core_relo_kind_str(relo->kind),
975
relo->kind, relo->insn_off / 8);
976
}
977
978
return err;
979
}
980
981
/*
982
* Turn instruction for which CO_RE relocation failed into invalid one with
983
* distinct signature.
984
*/
985
static void bpf_core_poison_insn(const char *prog_name, int relo_idx,
986
int insn_idx, struct bpf_insn *insn)
987
{
988
pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
989
prog_name, relo_idx, insn_idx);
990
insn->code = BPF_JMP | BPF_CALL;
991
insn->dst_reg = 0;
992
insn->src_reg = 0;
993
insn->off = 0;
994
/* if this instruction is reachable (not a dead code),
995
* verifier will complain with the following message:
996
* invalid func unknown#195896080
997
*/
998
insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
999
}
1000
1001
static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
1002
{
1003
switch (BPF_SIZE(insn->code)) {
1004
case BPF_DW: return 8;
1005
case BPF_W: return 4;
1006
case BPF_H: return 2;
1007
case BPF_B: return 1;
1008
default: return -1;
1009
}
1010
}
1011
1012
static int insn_bytes_to_bpf_size(__u32 sz)
1013
{
1014
switch (sz) {
1015
case 8: return BPF_DW;
1016
case 4: return BPF_W;
1017
case 2: return BPF_H;
1018
case 1: return BPF_B;
1019
default: return -1;
1020
}
1021
}
1022
1023
/*
1024
* Patch relocatable BPF instruction.
1025
*
1026
* Patched value is determined by relocation kind and target specification.
1027
* For existence relocations target spec will be NULL if field/type is not found.
1028
* Expected insn->imm value is determined using relocation kind and local
1029
* spec, and is checked before patching instruction. If actual insn->imm value
1030
* is wrong, bail out with error.
1031
*
1032
* Currently supported classes of BPF instruction are:
1033
* 1. rX = <imm> (assignment with immediate operand);
1034
* 2. rX += <imm> (arithmetic operations with immediate operand);
1035
* 3. rX = <imm64> (load with 64-bit immediate value);
1036
* 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
1037
* 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
1038
* 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
1039
*/
1040
int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn,
1041
int insn_idx, const struct bpf_core_relo *relo,
1042
int relo_idx, const struct bpf_core_relo_res *res)
1043
{
1044
__u64 orig_val, new_val;
1045
__u8 class;
1046
1047
class = BPF_CLASS(insn->code);
1048
1049
if (res->poison) {
1050
poison:
1051
/* poison second part of ldimm64 to avoid confusing error from
1052
* verifier about "unknown opcode 00"
1053
*/
1054
if (is_ldimm64_insn(insn))
1055
bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1);
1056
bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn);
1057
return 0;
1058
}
1059
1060
orig_val = res->orig_val;
1061
new_val = res->new_val;
1062
1063
switch (class) {
1064
case BPF_ALU:
1065
case BPF_ALU64:
1066
if (BPF_SRC(insn->code) != BPF_K)
1067
return -EINVAL;
1068
if (res->validate && insn->imm != orig_val) {
1069
pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %llu -> %llu\n",
1070
prog_name, relo_idx,
1071
insn_idx, insn->imm, (unsigned long long)orig_val,
1072
(unsigned long long)new_val);
1073
return -EINVAL;
1074
}
1075
orig_val = insn->imm;
1076
insn->imm = new_val;
1077
pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %llu -> %llu\n",
1078
prog_name, relo_idx, insn_idx,
1079
(unsigned long long)orig_val, (unsigned long long)new_val);
1080
break;
1081
case BPF_LDX:
1082
case BPF_ST:
1083
case BPF_STX:
1084
if (res->validate && insn->off != orig_val) {
1085
pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %llu -> %llu\n",
1086
prog_name, relo_idx, insn_idx, insn->off, (unsigned long long)orig_val,
1087
(unsigned long long)new_val);
1088
return -EINVAL;
1089
}
1090
if (new_val > SHRT_MAX) {
1091
pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %llu\n",
1092
prog_name, relo_idx, insn_idx, (unsigned long long)new_val);
1093
return -ERANGE;
1094
}
1095
if (res->fail_memsz_adjust) {
1096
pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
1097
"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
1098
prog_name, relo_idx, insn_idx);
1099
goto poison;
1100
}
1101
1102
orig_val = insn->off;
1103
insn->off = new_val;
1104
pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %llu -> %llu\n",
1105
prog_name, relo_idx, insn_idx, (unsigned long long)orig_val,
1106
(unsigned long long)new_val);
1107
1108
if (res->new_sz != res->orig_sz) {
1109
int insn_bytes_sz, insn_bpf_sz;
1110
1111
insn_bytes_sz = insn_bpf_size_to_bytes(insn);
1112
if (insn_bytes_sz != res->orig_sz) {
1113
pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
1114
prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
1115
return -EINVAL;
1116
}
1117
1118
insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
1119
if (insn_bpf_sz < 0) {
1120
pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
1121
prog_name, relo_idx, insn_idx, res->new_sz);
1122
return -EINVAL;
1123
}
1124
1125
insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
1126
pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
1127
prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
1128
}
1129
break;
1130
case BPF_LD: {
1131
__u64 imm;
1132
1133
if (!is_ldimm64_insn(insn) ||
1134
insn[0].src_reg != 0 || insn[0].off != 0 ||
1135
insn[1].code != 0 || insn[1].dst_reg != 0 ||
1136
insn[1].src_reg != 0 || insn[1].off != 0) {
1137
pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
1138
prog_name, relo_idx, insn_idx);
1139
return -EINVAL;
1140
}
1141
1142
imm = (__u32)insn[0].imm | ((__u64)insn[1].imm << 32);
1143
if (res->validate && imm != orig_val) {
1144
pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %llu -> %llu\n",
1145
prog_name, relo_idx,
1146
insn_idx, (unsigned long long)imm,
1147
(unsigned long long)orig_val, (unsigned long long)new_val);
1148
return -EINVAL;
1149
}
1150
1151
insn[0].imm = new_val;
1152
insn[1].imm = new_val >> 32;
1153
pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %llu\n",
1154
prog_name, relo_idx, insn_idx,
1155
(unsigned long long)imm, (unsigned long long)new_val);
1156
break;
1157
}
1158
default:
1159
pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
1160
prog_name, relo_idx, insn_idx, insn->code,
1161
insn->src_reg, insn->dst_reg, insn->off, insn->imm);
1162
return -EINVAL;
1163
}
1164
1165
return 0;
1166
}
1167
1168
/* Output spec definition in the format:
1169
* [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
1170
* where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
1171
*/
1172
int bpf_core_format_spec(char *buf, size_t buf_sz, const struct bpf_core_spec *spec)
1173
{
1174
const struct btf_type *t;
1175
const char *s;
1176
__u32 type_id;
1177
int i, len = 0;
1178
1179
#define append_buf(fmt, args...) \
1180
({ \
1181
int r; \
1182
r = snprintf(buf, buf_sz, fmt, ##args); \
1183
len += r; \
1184
if (r >= buf_sz) \
1185
r = buf_sz; \
1186
buf += r; \
1187
buf_sz -= r; \
1188
})
1189
1190
type_id = spec->root_type_id;
1191
t = btf_type_by_id(spec->btf, type_id);
1192
s = btf__name_by_offset(spec->btf, t->name_off);
1193
1194
append_buf("<%s> [%u] %s %s",
1195
core_relo_kind_str(spec->relo_kind),
1196
type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
1197
1198
if (core_relo_is_type_based(spec->relo_kind))
1199
return len;
1200
1201
if (core_relo_is_enumval_based(spec->relo_kind)) {
1202
t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
1203
if (btf_is_enum(t)) {
1204
const struct btf_enum *e;
1205
const char *fmt_str;
1206
1207
e = btf_enum(t) + spec->raw_spec[0];
1208
s = btf__name_by_offset(spec->btf, e->name_off);
1209
fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %d" : "::%s = %u";
1210
append_buf(fmt_str, s, e->val);
1211
} else {
1212
const struct btf_enum64 *e;
1213
const char *fmt_str;
1214
1215
e = btf_enum64(t) + spec->raw_spec[0];
1216
s = btf__name_by_offset(spec->btf, e->name_off);
1217
fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %lld" : "::%s = %llu";
1218
append_buf(fmt_str, s, (unsigned long long)btf_enum64_value(e));
1219
}
1220
return len;
1221
}
1222
1223
if (core_relo_is_field_based(spec->relo_kind)) {
1224
for (i = 0; i < spec->len; i++) {
1225
if (spec->spec[i].name)
1226
append_buf(".%s", spec->spec[i].name);
1227
else if (i > 0 || spec->spec[i].idx > 0)
1228
append_buf("[%u]", spec->spec[i].idx);
1229
}
1230
1231
append_buf(" (");
1232
for (i = 0; i < spec->raw_len; i++)
1233
append_buf("%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
1234
1235
if (spec->bit_offset % 8)
1236
append_buf(" @ offset %u.%u)", spec->bit_offset / 8, spec->bit_offset % 8);
1237
else
1238
append_buf(" @ offset %u)", spec->bit_offset / 8);
1239
return len;
1240
}
1241
1242
return len;
1243
#undef append_buf
1244
}
1245
1246
/*
1247
* Calculate CO-RE relocation target result.
1248
*
1249
* The outline and important points of the algorithm:
1250
* 1. For given local type, find corresponding candidate target types.
1251
* Candidate type is a type with the same "essential" name, ignoring
1252
* everything after last triple underscore (___). E.g., `sample`,
1253
* `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
1254
* for each other. Names with triple underscore are referred to as
1255
* "flavors" and are useful, among other things, to allow to
1256
* specify/support incompatible variations of the same kernel struct, which
1257
* might differ between different kernel versions and/or build
1258
* configurations.
1259
*
1260
* N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
1261
* converter, when deduplicated BTF of a kernel still contains more than
1262
* one different types with the same name. In that case, ___2, ___3, etc
1263
* are appended starting from second name conflict. But start flavors are
1264
* also useful to be defined "locally", in BPF program, to extract same
1265
* data from incompatible changes between different kernel
1266
* versions/configurations. For instance, to handle field renames between
1267
* kernel versions, one can use two flavors of the struct name with the
1268
* same common name and use conditional relocations to extract that field,
1269
* depending on target kernel version.
1270
* 2. For each candidate type, try to match local specification to this
1271
* candidate target type. Matching involves finding corresponding
1272
* high-level spec accessors, meaning that all named fields should match,
1273
* as well as all array accesses should be within the actual bounds. Also,
1274
* types should be compatible (see bpf_core_fields_are_compat for details).
1275
* 3. It is supported and expected that there might be multiple flavors
1276
* matching the spec. As long as all the specs resolve to the same set of
1277
* offsets across all candidates, there is no error. If there is any
1278
* ambiguity, CO-RE relocation will fail. This is necessary to accommodate
1279
* imperfection of BTF deduplication, which can cause slight duplication of
1280
* the same BTF type, if some directly or indirectly referenced (by
1281
* pointer) type gets resolved to different actual types in different
1282
* object files. If such a situation occurs, deduplicated BTF will end up
1283
* with two (or more) structurally identical types, which differ only in
1284
* types they refer to through pointer. This should be OK in most cases and
1285
* is not an error.
1286
* 4. Candidate types search is performed by linearly scanning through all
1287
* types in target BTF. It is anticipated that this is overall more
1288
* efficient memory-wise and not significantly worse (if not better)
1289
* CPU-wise compared to prebuilding a map from all local type names to
1290
* a list of candidate type names. It's also sped up by caching resolved
1291
* list of matching candidates per each local "root" type ID, that has at
1292
* least one bpf_core_relo associated with it. This list is shared
1293
* between multiple relocations for the same type ID and is updated as some
1294
* of the candidates are pruned due to structural incompatibility.
1295
*/
1296
int bpf_core_calc_relo_insn(const char *prog_name,
1297
const struct bpf_core_relo *relo,
1298
int relo_idx,
1299
const struct btf *local_btf,
1300
struct bpf_core_cand_list *cands,
1301
struct bpf_core_spec *specs_scratch,
1302
struct bpf_core_relo_res *targ_res)
1303
{
1304
struct bpf_core_spec *local_spec = &specs_scratch[0];
1305
struct bpf_core_spec *cand_spec = &specs_scratch[1];
1306
struct bpf_core_spec *targ_spec = &specs_scratch[2];
1307
struct bpf_core_relo_res cand_res;
1308
const struct btf_type *local_type;
1309
const char *local_name;
1310
__u32 local_id;
1311
char spec_buf[256];
1312
int i, j, err;
1313
1314
local_id = relo->type_id;
1315
local_type = btf_type_by_id(local_btf, local_id);
1316
local_name = btf__name_by_offset(local_btf, local_type->name_off);
1317
if (!local_name)
1318
return -EINVAL;
1319
1320
err = bpf_core_parse_spec(prog_name, local_btf, relo, local_spec);
1321
if (err) {
1322
const char *spec_str;
1323
1324
spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
1325
pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
1326
prog_name, relo_idx, local_id, btf_kind_str(local_type),
1327
str_is_empty(local_name) ? "<anon>" : local_name,
1328
spec_str ?: "<?>", err);
1329
return -EINVAL;
1330
}
1331
1332
bpf_core_format_spec(spec_buf, sizeof(spec_buf), local_spec);
1333
pr_debug("prog '%s': relo #%d: %s\n", prog_name, relo_idx, spec_buf);
1334
1335
/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
1336
if (relo->kind == BPF_CORE_TYPE_ID_LOCAL) {
1337
/* bpf_insn's imm value could get out of sync during linking */
1338
memset(targ_res, 0, sizeof(*targ_res));
1339
targ_res->validate = false;
1340
targ_res->poison = false;
1341
targ_res->orig_val = local_spec->root_type_id;
1342
targ_res->new_val = local_spec->root_type_id;
1343
return 0;
1344
}
1345
1346
/* libbpf doesn't support candidate search for anonymous types */
1347
if (str_is_empty(local_name)) {
1348
pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
1349
prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
1350
return -EOPNOTSUPP;
1351
}
1352
1353
for (i = 0, j = 0; i < cands->len; i++) {
1354
err = bpf_core_spec_match(local_spec, cands->cands[i].btf,
1355
cands->cands[i].id, cand_spec);
1356
if (err < 0) {
1357
bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1358
pr_warn("prog '%s': relo #%d: error matching candidate #%d %s: %d\n",
1359
prog_name, relo_idx, i, spec_buf, err);
1360
return err;
1361
}
1362
1363
bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1364
pr_debug("prog '%s': relo #%d: %s candidate #%d %s\n", prog_name,
1365
relo_idx, err == 0 ? "non-matching" : "matching", i, spec_buf);
1366
1367
if (err == 0)
1368
continue;
1369
1370
err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, cand_spec, &cand_res);
1371
if (err)
1372
return err;
1373
1374
if (j == 0) {
1375
*targ_res = cand_res;
1376
*targ_spec = *cand_spec;
1377
} else if (cand_spec->bit_offset != targ_spec->bit_offset) {
1378
/* if there are many field relo candidates, they
1379
* should all resolve to the same bit offset
1380
*/
1381
pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
1382
prog_name, relo_idx, cand_spec->bit_offset,
1383
targ_spec->bit_offset);
1384
return -EINVAL;
1385
} else if (cand_res.poison != targ_res->poison ||
1386
cand_res.new_val != targ_res->new_val) {
1387
/* all candidates should result in the same relocation
1388
* decision and value, otherwise it's dangerous to
1389
* proceed due to ambiguity
1390
*/
1391
pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %llu != %s %llu\n",
1392
prog_name, relo_idx,
1393
cand_res.poison ? "failure" : "success",
1394
(unsigned long long)cand_res.new_val,
1395
targ_res->poison ? "failure" : "success",
1396
(unsigned long long)targ_res->new_val);
1397
return -EINVAL;
1398
}
1399
1400
cands->cands[j++] = cands->cands[i];
1401
}
1402
1403
/*
1404
* For BPF_CORE_FIELD_EXISTS relo or when used BPF program has field
1405
* existence checks or kernel version/config checks, it's expected
1406
* that we might not find any candidates. In this case, if field
1407
* wasn't found in any candidate, the list of candidates shouldn't
1408
* change at all, we'll just handle relocating appropriately,
1409
* depending on relo's kind.
1410
*/
1411
if (j > 0)
1412
cands->len = j;
1413
1414
/*
1415
* If no candidates were found, it might be both a programmer error,
1416
* as well as expected case, depending whether instruction w/
1417
* relocation is guarded in some way that makes it unreachable (dead
1418
* code) if relocation can't be resolved. This is handled in
1419
* bpf_core_patch_insn() uniformly by replacing that instruction with
1420
* BPF helper call insn (using invalid helper ID). If that instruction
1421
* is indeed unreachable, then it will be ignored and eliminated by
1422
* verifier. If it was an error, then verifier will complain and point
1423
* to a specific instruction number in its log.
1424
*/
1425
if (j == 0) {
1426
pr_debug("prog '%s': relo #%d: no matching targets found\n",
1427
prog_name, relo_idx);
1428
1429
/* calculate single target relo result explicitly */
1430
err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, NULL, targ_res);
1431
if (err)
1432
return err;
1433
}
1434
1435
return 0;
1436
}
1437
1438
static bool bpf_core_names_match(const struct btf *local_btf, size_t local_name_off,
1439
const struct btf *targ_btf, size_t targ_name_off)
1440
{
1441
const char *local_n, *targ_n;
1442
size_t local_len, targ_len;
1443
1444
local_n = btf__name_by_offset(local_btf, local_name_off);
1445
targ_n = btf__name_by_offset(targ_btf, targ_name_off);
1446
1447
if (str_is_empty(targ_n))
1448
return str_is_empty(local_n);
1449
1450
targ_len = bpf_core_essential_name_len(targ_n);
1451
local_len = bpf_core_essential_name_len(local_n);
1452
1453
return targ_len == local_len && strncmp(local_n, targ_n, local_len) == 0;
1454
}
1455
1456
static int bpf_core_enums_match(const struct btf *local_btf, const struct btf_type *local_t,
1457
const struct btf *targ_btf, const struct btf_type *targ_t)
1458
{
1459
__u16 local_vlen = btf_vlen(local_t);
1460
__u16 targ_vlen = btf_vlen(targ_t);
1461
int i, j;
1462
1463
if (local_t->size != targ_t->size)
1464
return 0;
1465
1466
if (local_vlen > targ_vlen)
1467
return 0;
1468
1469
/* iterate over the local enum's variants and make sure each has
1470
* a symbolic name correspondent in the target
1471
*/
1472
for (i = 0; i < local_vlen; i++) {
1473
bool matched = false;
1474
__u32 local_n_off, targ_n_off;
1475
1476
local_n_off = btf_is_enum(local_t) ? btf_enum(local_t)[i].name_off :
1477
btf_enum64(local_t)[i].name_off;
1478
1479
for (j = 0; j < targ_vlen; j++) {
1480
targ_n_off = btf_is_enum(targ_t) ? btf_enum(targ_t)[j].name_off :
1481
btf_enum64(targ_t)[j].name_off;
1482
1483
if (bpf_core_names_match(local_btf, local_n_off, targ_btf, targ_n_off)) {
1484
matched = true;
1485
break;
1486
}
1487
}
1488
1489
if (!matched)
1490
return 0;
1491
}
1492
return 1;
1493
}
1494
1495
static int bpf_core_composites_match(const struct btf *local_btf, const struct btf_type *local_t,
1496
const struct btf *targ_btf, const struct btf_type *targ_t,
1497
bool behind_ptr, int level)
1498
{
1499
const struct btf_member *local_m = btf_members(local_t);
1500
__u16 local_vlen = btf_vlen(local_t);
1501
__u16 targ_vlen = btf_vlen(targ_t);
1502
int i, j, err;
1503
1504
if (local_vlen > targ_vlen)
1505
return 0;
1506
1507
/* check that all local members have a match in the target */
1508
for (i = 0; i < local_vlen; i++, local_m++) {
1509
const struct btf_member *targ_m = btf_members(targ_t);
1510
bool matched = false;
1511
1512
for (j = 0; j < targ_vlen; j++, targ_m++) {
1513
if (!bpf_core_names_match(local_btf, local_m->name_off,
1514
targ_btf, targ_m->name_off))
1515
continue;
1516
1517
err = __bpf_core_types_match(local_btf, local_m->type, targ_btf,
1518
targ_m->type, behind_ptr, level - 1);
1519
if (err < 0)
1520
return err;
1521
if (err > 0) {
1522
matched = true;
1523
break;
1524
}
1525
}
1526
1527
if (!matched)
1528
return 0;
1529
}
1530
return 1;
1531
}
1532
1533
/* Check that two types "match". This function assumes that root types were
1534
* already checked for name match.
1535
*
1536
* The matching relation is defined as follows:
1537
* - modifiers and typedefs are stripped (and, hence, effectively ignored)
1538
* - generally speaking types need to be of same kind (struct vs. struct, union
1539
* vs. union, etc.)
1540
* - exceptions are struct/union behind a pointer which could also match a
1541
* forward declaration of a struct or union, respectively, and enum vs.
1542
* enum64 (see below)
1543
* Then, depending on type:
1544
* - integers:
1545
* - match if size and signedness match
1546
* - arrays & pointers:
1547
* - target types are recursively matched
1548
* - structs & unions:
1549
* - local members need to exist in target with the same name
1550
* - for each member we recursively check match unless it is already behind a
1551
* pointer, in which case we only check matching names and compatible kind
1552
* - enums:
1553
* - local variants have to have a match in target by symbolic name (but not
1554
* numeric value)
1555
* - size has to match (but enum may match enum64 and vice versa)
1556
* - function pointers:
1557
* - number and position of arguments in local type has to match target
1558
* - for each argument and the return value we recursively check match
1559
*/
1560
int __bpf_core_types_match(const struct btf *local_btf, __u32 local_id, const struct btf *targ_btf,
1561
__u32 targ_id, bool behind_ptr, int level)
1562
{
1563
const struct btf_type *local_t, *targ_t;
1564
int depth = 32; /* max recursion depth */
1565
__u16 local_k, targ_k;
1566
1567
if (level <= 0)
1568
return -EINVAL;
1569
1570
recur:
1571
depth--;
1572
if (depth < 0)
1573
return -EINVAL;
1574
1575
local_t = skip_mods_and_typedefs(local_btf, local_id, &local_id);
1576
targ_t = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
1577
if (!local_t || !targ_t)
1578
return -EINVAL;
1579
1580
/* While the name check happens after typedefs are skipped, root-level
1581
* typedefs would still be name-matched as that's the contract with
1582
* callers.
1583
*/
1584
if (!bpf_core_names_match(local_btf, local_t->name_off, targ_btf, targ_t->name_off))
1585
return 0;
1586
1587
local_k = btf_kind(local_t);
1588
targ_k = btf_kind(targ_t);
1589
1590
switch (local_k) {
1591
case BTF_KIND_UNKN:
1592
return local_k == targ_k;
1593
case BTF_KIND_FWD: {
1594
bool local_f = BTF_INFO_KFLAG(local_t->info);
1595
1596
if (behind_ptr) {
1597
if (local_k == targ_k)
1598
return local_f == BTF_INFO_KFLAG(targ_t->info);
1599
1600
/* for forward declarations kflag dictates whether the
1601
* target is a struct (0) or union (1)
1602
*/
1603
return (targ_k == BTF_KIND_STRUCT && !local_f) ||
1604
(targ_k == BTF_KIND_UNION && local_f);
1605
} else {
1606
if (local_k != targ_k)
1607
return 0;
1608
1609
/* match if the forward declaration is for the same kind */
1610
return local_f == BTF_INFO_KFLAG(targ_t->info);
1611
}
1612
}
1613
case BTF_KIND_ENUM:
1614
case BTF_KIND_ENUM64:
1615
if (!btf_is_any_enum(targ_t))
1616
return 0;
1617
1618
return bpf_core_enums_match(local_btf, local_t, targ_btf, targ_t);
1619
case BTF_KIND_STRUCT:
1620
case BTF_KIND_UNION:
1621
if (behind_ptr) {
1622
bool targ_f = BTF_INFO_KFLAG(targ_t->info);
1623
1624
if (local_k == targ_k)
1625
return 1;
1626
1627
if (targ_k != BTF_KIND_FWD)
1628
return 0;
1629
1630
return (local_k == BTF_KIND_UNION) == targ_f;
1631
} else {
1632
if (local_k != targ_k)
1633
return 0;
1634
1635
return bpf_core_composites_match(local_btf, local_t, targ_btf, targ_t,
1636
behind_ptr, level);
1637
}
1638
case BTF_KIND_INT: {
1639
__u8 local_sgn;
1640
__u8 targ_sgn;
1641
1642
if (local_k != targ_k)
1643
return 0;
1644
1645
local_sgn = btf_int_encoding(local_t) & BTF_INT_SIGNED;
1646
targ_sgn = btf_int_encoding(targ_t) & BTF_INT_SIGNED;
1647
1648
return local_t->size == targ_t->size && local_sgn == targ_sgn;
1649
}
1650
case BTF_KIND_PTR:
1651
if (local_k != targ_k)
1652
return 0;
1653
1654
behind_ptr = true;
1655
1656
local_id = local_t->type;
1657
targ_id = targ_t->type;
1658
goto recur;
1659
case BTF_KIND_ARRAY: {
1660
const struct btf_array *local_array = btf_array(local_t);
1661
const struct btf_array *targ_array = btf_array(targ_t);
1662
1663
if (local_k != targ_k)
1664
return 0;
1665
1666
if (local_array->nelems != targ_array->nelems)
1667
return 0;
1668
1669
local_id = local_array->type;
1670
targ_id = targ_array->type;
1671
goto recur;
1672
}
1673
case BTF_KIND_FUNC_PROTO: {
1674
struct btf_param *local_p = btf_params(local_t);
1675
struct btf_param *targ_p = btf_params(targ_t);
1676
__u16 local_vlen = btf_vlen(local_t);
1677
__u16 targ_vlen = btf_vlen(targ_t);
1678
int i, err;
1679
1680
if (local_k != targ_k)
1681
return 0;
1682
1683
if (local_vlen != targ_vlen)
1684
return 0;
1685
1686
for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
1687
err = __bpf_core_types_match(local_btf, local_p->type, targ_btf,
1688
targ_p->type, behind_ptr, level - 1);
1689
if (err <= 0)
1690
return err;
1691
}
1692
1693
/* tail recurse for return type check */
1694
local_id = local_t->type;
1695
targ_id = targ_t->type;
1696
goto recur;
1697
}
1698
default:
1699
pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
1700
btf_kind_str(local_t), local_id, targ_id);
1701
return 0;
1702
}
1703
}
1704
1705