Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/lib/bpf/usdt.c
26282 views
1
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
/* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3
#include <ctype.h>
4
#include <stdio.h>
5
#include <stdlib.h>
6
#include <string.h>
7
#include <libelf.h>
8
#include <gelf.h>
9
#include <unistd.h>
10
#include <linux/ptrace.h>
11
#include <linux/kernel.h>
12
13
/* s8 will be marked as poison while it's a reg of riscv */
14
#if defined(__riscv)
15
#define rv_s8 s8
16
#endif
17
18
#include "bpf.h"
19
#include "libbpf.h"
20
#include "libbpf_common.h"
21
#include "libbpf_internal.h"
22
#include "hashmap.h"
23
#include "str_error.h"
24
25
/* libbpf's USDT support consists of BPF-side state/code and user-space
26
* state/code working together in concert. BPF-side parts are defined in
27
* usdt.bpf.h header library. User-space state is encapsulated by struct
28
* usdt_manager and all the supporting code centered around usdt_manager.
29
*
30
* usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map
31
* and IP-to-spec-ID map, which is auxiliary map necessary for kernels that
32
* don't support BPF cookie (see below). These two maps are implicitly
33
* embedded into user's end BPF object file when user's code included
34
* usdt.bpf.h. This means that libbpf doesn't do anything special to create
35
* these USDT support maps. They are created by normal libbpf logic of
36
* instantiating BPF maps when opening and loading BPF object.
37
*
38
* As such, libbpf is basically unaware of the need to do anything
39
* USDT-related until the very first call to bpf_program__attach_usdt(), which
40
* can be called by user explicitly or happen automatically during skeleton
41
* attach (or, equivalently, through generic bpf_program__attach() call). At
42
* this point, libbpf will instantiate and initialize struct usdt_manager and
43
* store it in bpf_object. USDT manager is per-BPF object construct, as each
44
* independent BPF object might or might not have USDT programs, and thus all
45
* the expected USDT-related state. There is no coordination between two
46
* bpf_object in parts of USDT attachment, they are oblivious of each other's
47
* existence and libbpf is just oblivious, dealing with bpf_object-specific
48
* USDT state.
49
*
50
* Quick crash course on USDTs.
51
*
52
* From user-space application's point of view, USDT is essentially just
53
* a slightly special function call that normally has zero overhead, unless it
54
* is being traced by some external entity (e.g, BPF-based tool). Here's how
55
* a typical application can trigger USDT probe:
56
*
57
* #include <sys/sdt.h> // provided by systemtap-sdt-devel package
58
* // folly also provide similar functionality in folly/tracing/StaticTracepoint.h
59
*
60
* STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y);
61
*
62
* USDT is identified by its <provider-name>:<probe-name> pair of names. Each
63
* individual USDT has a fixed number of arguments (3 in the above example)
64
* and specifies values of each argument as if it was a function call.
65
*
66
* USDT call is actually not a function call, but is instead replaced by
67
* a single NOP instruction (thus zero overhead, effectively). But in addition
68
* to that, those USDT macros generate special SHT_NOTE ELF records in
69
* .note.stapsdt ELF section. Here's an example USDT definition as emitted by
70
* `readelf -n <binary>`:
71
*
72
* stapsdt 0x00000089 NT_STAPSDT (SystemTap probe descriptors)
73
* Provider: test
74
* Name: usdt12
75
* Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e
76
* Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil
77
*
78
* In this case we have USDT test:usdt12 with 12 arguments.
79
*
80
* Location and base are offsets used to calculate absolute IP address of that
81
* NOP instruction that kernel can replace with an interrupt instruction to
82
* trigger instrumentation code (BPF program for all that we care about).
83
*
84
* Semaphore above is an optional feature. It records an address of a 2-byte
85
* refcount variable (normally in '.probes' ELF section) used for signaling if
86
* there is anything that is attached to USDT. This is useful for user
87
* applications if, for example, they need to prepare some arguments that are
88
* passed only to USDTs and preparation is expensive. By checking if USDT is
89
* "activated", an application can avoid paying those costs unnecessarily.
90
* Recent enough kernel has built-in support for automatically managing this
91
* refcount, which libbpf expects and relies on. If USDT is defined without
92
* associated semaphore, this value will be zero. See selftests for semaphore
93
* examples.
94
*
95
* Arguments is the most interesting part. This USDT specification string is
96
* providing information about all the USDT arguments and their locations. The
97
* part before @ sign defined byte size of the argument (1, 2, 4, or 8) and
98
* whether the argument is signed or unsigned (negative size means signed).
99
* The part after @ sign is assembly-like definition of argument location
100
* (see [0] for more details). Technically, assembler can provide some pretty
101
* advanced definitions, but libbpf is currently supporting three most common
102
* cases:
103
* 1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9);
104
* 2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer
105
* whose value is in register %rdx";
106
* 3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which
107
* specifies signed 32-bit integer stored at offset -1204 bytes from
108
* memory address stored in %rbp.
109
*
110
* [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
111
*
112
* During attachment, libbpf parses all the relevant USDT specifications and
113
* prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side
114
* code through spec map. This allows BPF applications to quickly fetch the
115
* actual value at runtime using a simple BPF-side code.
116
*
117
* With basics out of the way, let's go over less immediately obvious aspects
118
* of supporting USDTs.
119
*
120
* First, there is no special USDT BPF program type. It is actually just
121
* a uprobe BPF program (which for kernel, at least currently, is just a kprobe
122
* program, so BPF_PROG_TYPE_KPROBE program type). With the only difference
123
* that uprobe is usually attached at the function entry, while USDT will
124
* normally be somewhere inside the function. But it should always be
125
* pointing to NOP instruction, which makes such uprobes the fastest uprobe
126
* kind.
127
*
128
* Second, it's important to realize that such STAP_PROBEn(provider, name, ...)
129
* macro invocations can end up being inlined many-many times, depending on
130
* specifics of each individual user application. So single conceptual USDT
131
* (identified by provider:name pair of identifiers) is, generally speaking,
132
* multiple uprobe locations (USDT call sites) in different places in user
133
* application. Further, again due to inlining, each USDT call site might end
134
* up having the same argument #N be located in a different place. In one call
135
* site it could be a constant, in another will end up in a register, and in
136
* yet another could be some other register or even somewhere on the stack.
137
*
138
* As such, "attaching to USDT" means (in general case) attaching the same
139
* uprobe BPF program to multiple target locations in user application, each
140
* potentially having a completely different USDT spec associated with it.
141
* To wire all this up together libbpf allocates a unique integer spec ID for
142
* each unique USDT spec. Spec IDs are allocated as sequential small integers
143
* so that they can be used as keys in array BPF map (for performance reasons).
144
* Spec ID allocation and accounting is big part of what usdt_manager is
145
* about. This state has to be maintained per-BPF object and coordinate
146
* between different USDT attachments within the same BPF object.
147
*
148
* Spec ID is the key in spec BPF map, value is the actual USDT spec layed out
149
* as struct usdt_spec. Each invocation of BPF program at runtime needs to
150
* know its associated spec ID. It gets it either through BPF cookie, which
151
* libbpf sets to spec ID during attach time, or, if kernel is too old to
152
* support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such
153
* case. The latter means that some modes of operation can't be supported
154
* without BPF cookie. Such a mode is attaching to shared library "generically",
155
* without specifying target process. In such case, it's impossible to
156
* calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode
157
* is not supported without BPF cookie support.
158
*
159
* Note that libbpf is using BPF cookie functionality for its own internal
160
* needs, so user itself can't rely on BPF cookie feature. To that end, libbpf
161
* provides conceptually equivalent USDT cookie support. It's still u64
162
* user-provided value that can be associated with USDT attachment. Note that
163
* this will be the same value for all USDT call sites within the same single
164
* *logical* USDT attachment. This makes sense because to user attaching to
165
* USDT is a single BPF program triggered for singular USDT probe. The fact
166
* that this is done at multiple actual locations is a mostly hidden
167
* implementation details. This USDT cookie value can be fetched with
168
* bpf_usdt_cookie(ctx) API provided by usdt.bpf.h
169
*
170
* Lastly, while single USDT can have tons of USDT call sites, it doesn't
171
* necessarily have that many different USDT specs. It very well might be
172
* that 1000 USDT call sites only need 5 different USDT specs, because all the
173
* arguments are typically contained in a small set of registers or stack
174
* locations. As such, it's wasteful to allocate as many USDT spec IDs as
175
* there are USDT call sites. So libbpf tries to be frugal and performs
176
* on-the-fly deduplication during a single USDT attachment to only allocate
177
* the minimal required amount of unique USDT specs (and thus spec IDs). This
178
* is trivially achieved by using USDT spec string (Arguments string from USDT
179
* note) as a lookup key in a hashmap. USDT spec string uniquely defines
180
* everything about how to fetch USDT arguments, so two USDT call sites
181
* sharing USDT spec string can safely share the same USDT spec and spec ID.
182
* Note, this spec string deduplication is happening only during the same USDT
183
* attachment, so each USDT spec shares the same USDT cookie value. This is
184
* not generally true for other USDT attachments within the same BPF object,
185
* as even if USDT spec string is the same, USDT cookie value can be
186
* different. It was deemed excessive to try to deduplicate across independent
187
* USDT attachments by taking into account USDT spec string *and* USDT cookie
188
* value, which would complicate spec ID accounting significantly for little
189
* gain.
190
*/
191
192
#define USDT_BASE_SEC ".stapsdt.base"
193
#define USDT_SEMA_SEC ".probes"
194
#define USDT_NOTE_SEC ".note.stapsdt"
195
#define USDT_NOTE_TYPE 3
196
#define USDT_NOTE_NAME "stapsdt"
197
198
/* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */
199
enum usdt_arg_type {
200
USDT_ARG_CONST,
201
USDT_ARG_REG,
202
USDT_ARG_REG_DEREF,
203
};
204
205
/* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */
206
struct usdt_arg_spec {
207
__u64 val_off;
208
enum usdt_arg_type arg_type;
209
short reg_off;
210
bool arg_signed;
211
char arg_bitshift;
212
};
213
214
/* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */
215
#define USDT_MAX_ARG_CNT 12
216
217
/* should match struct __bpf_usdt_spec from usdt.bpf.h */
218
struct usdt_spec {
219
struct usdt_arg_spec args[USDT_MAX_ARG_CNT];
220
__u64 usdt_cookie;
221
short arg_cnt;
222
};
223
224
struct usdt_note {
225
const char *provider;
226
const char *name;
227
/* USDT args specification string, e.g.:
228
* "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx"
229
*/
230
const char *args;
231
long loc_addr;
232
long base_addr;
233
long sema_addr;
234
};
235
236
struct usdt_target {
237
long abs_ip;
238
long rel_ip;
239
long sema_off;
240
struct usdt_spec spec;
241
const char *spec_str;
242
};
243
244
struct usdt_manager {
245
struct bpf_map *specs_map;
246
struct bpf_map *ip_to_spec_id_map;
247
248
int *free_spec_ids;
249
size_t free_spec_cnt;
250
size_t next_free_spec_id;
251
252
bool has_bpf_cookie;
253
bool has_sema_refcnt;
254
bool has_uprobe_multi;
255
};
256
257
struct usdt_manager *usdt_manager_new(struct bpf_object *obj)
258
{
259
static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset";
260
struct usdt_manager *man;
261
struct bpf_map *specs_map, *ip_to_spec_id_map;
262
263
specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs");
264
ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id");
265
if (!specs_map || !ip_to_spec_id_map) {
266
pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n");
267
return ERR_PTR(-ESRCH);
268
}
269
270
man = calloc(1, sizeof(*man));
271
if (!man)
272
return ERR_PTR(-ENOMEM);
273
274
man->specs_map = specs_map;
275
man->ip_to_spec_id_map = ip_to_spec_id_map;
276
277
/* Detect if BPF cookie is supported for kprobes.
278
* We don't need IP-to-ID mapping if we can use BPF cookies.
279
* Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value")
280
*/
281
man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE);
282
283
/* Detect kernel support for automatic refcounting of USDT semaphore.
284
* If this is not supported, USDTs with semaphores will not be supported.
285
* Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe")
286
*/
287
man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0;
288
289
/*
290
* Detect kernel support for uprobe multi link to be used for attaching
291
* usdt probes.
292
*/
293
man->has_uprobe_multi = kernel_supports(obj, FEAT_UPROBE_MULTI_LINK);
294
return man;
295
}
296
297
void usdt_manager_free(struct usdt_manager *man)
298
{
299
if (IS_ERR_OR_NULL(man))
300
return;
301
302
free(man->free_spec_ids);
303
free(man);
304
}
305
306
static int sanity_check_usdt_elf(Elf *elf, const char *path)
307
{
308
GElf_Ehdr ehdr;
309
int endianness;
310
311
if (elf_kind(elf) != ELF_K_ELF) {
312
pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path);
313
return -EBADF;
314
}
315
316
switch (gelf_getclass(elf)) {
317
case ELFCLASS64:
318
if (sizeof(void *) != 8) {
319
pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path);
320
return -EBADF;
321
}
322
break;
323
case ELFCLASS32:
324
if (sizeof(void *) != 4) {
325
pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path);
326
return -EBADF;
327
}
328
break;
329
default:
330
pr_warn("usdt: unsupported ELF class for '%s'\n", path);
331
return -EBADF;
332
}
333
334
if (!gelf_getehdr(elf, &ehdr))
335
return -EINVAL;
336
337
if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) {
338
pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n",
339
path, ehdr.e_type);
340
return -EBADF;
341
}
342
343
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
344
endianness = ELFDATA2LSB;
345
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
346
endianness = ELFDATA2MSB;
347
#else
348
# error "Unrecognized __BYTE_ORDER__"
349
#endif
350
if (endianness != ehdr.e_ident[EI_DATA]) {
351
pr_warn("usdt: ELF endianness mismatch for '%s'\n", path);
352
return -EBADF;
353
}
354
355
return 0;
356
}
357
358
static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn)
359
{
360
Elf_Scn *sec = NULL;
361
size_t shstrndx;
362
363
if (elf_getshdrstrndx(elf, &shstrndx))
364
return -EINVAL;
365
366
/* check if ELF is corrupted and avoid calling elf_strptr if yes */
367
if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL))
368
return -EINVAL;
369
370
while ((sec = elf_nextscn(elf, sec)) != NULL) {
371
char *name;
372
373
if (!gelf_getshdr(sec, shdr))
374
return -EINVAL;
375
376
name = elf_strptr(elf, shstrndx, shdr->sh_name);
377
if (name && strcmp(sec_name, name) == 0) {
378
*scn = sec;
379
return 0;
380
}
381
}
382
383
return -ENOENT;
384
}
385
386
struct elf_seg {
387
long start;
388
long end;
389
long offset;
390
bool is_exec;
391
};
392
393
static int cmp_elf_segs(const void *_a, const void *_b)
394
{
395
const struct elf_seg *a = _a;
396
const struct elf_seg *b = _b;
397
398
return a->start < b->start ? -1 : 1;
399
}
400
401
static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt)
402
{
403
GElf_Phdr phdr;
404
size_t n;
405
int i, err;
406
struct elf_seg *seg;
407
void *tmp;
408
409
*seg_cnt = 0;
410
411
if (elf_getphdrnum(elf, &n)) {
412
err = -errno;
413
return err;
414
}
415
416
for (i = 0; i < n; i++) {
417
if (!gelf_getphdr(elf, i, &phdr)) {
418
err = -errno;
419
return err;
420
}
421
422
pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n",
423
i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset,
424
(long)phdr.p_type, (long)phdr.p_flags);
425
if (phdr.p_type != PT_LOAD)
426
continue;
427
428
tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
429
if (!tmp)
430
return -ENOMEM;
431
432
*segs = tmp;
433
seg = *segs + *seg_cnt;
434
(*seg_cnt)++;
435
436
seg->start = phdr.p_vaddr;
437
seg->end = phdr.p_vaddr + phdr.p_memsz;
438
seg->offset = phdr.p_offset;
439
seg->is_exec = phdr.p_flags & PF_X;
440
}
441
442
if (*seg_cnt == 0) {
443
pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path);
444
return -ESRCH;
445
}
446
447
qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
448
return 0;
449
}
450
451
static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt)
452
{
453
char path[PATH_MAX], line[PATH_MAX], mode[16];
454
size_t seg_start, seg_end, seg_off;
455
struct elf_seg *seg;
456
int tmp_pid, i, err;
457
FILE *f;
458
459
*seg_cnt = 0;
460
461
/* Handle containerized binaries only accessible from
462
* /proc/<pid>/root/<path>. They will be reported as just /<path> in
463
* /proc/<pid>/maps.
464
*/
465
if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid)
466
goto proceed;
467
468
if (!realpath(lib_path, path)) {
469
pr_warn("usdt: failed to get absolute path of '%s' (err %s), using path as is...\n",
470
lib_path, errstr(-errno));
471
libbpf_strlcpy(path, lib_path, sizeof(path));
472
}
473
474
proceed:
475
sprintf(line, "/proc/%d/maps", pid);
476
f = fopen(line, "re");
477
if (!f) {
478
err = -errno;
479
pr_warn("usdt: failed to open '%s' to get base addr of '%s': %s\n",
480
line, lib_path, errstr(err));
481
return err;
482
}
483
484
/* We need to handle lines with no path at the end:
485
*
486
* 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613 /usr/lib64/libc-2.17.so
487
* 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0
488
* 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598 /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so
489
*/
490
while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n",
491
&seg_start, &seg_end, mode, &seg_off, line) == 5) {
492
void *tmp;
493
494
/* to handle no path case (see above) we need to capture line
495
* without skipping any whitespaces. So we need to strip
496
* leading whitespaces manually here
497
*/
498
i = 0;
499
while (isblank(line[i]))
500
i++;
501
if (strcmp(line + i, path) != 0)
502
continue;
503
504
pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n",
505
path, seg_start, seg_end, mode, seg_off);
506
507
/* ignore non-executable sections for shared libs */
508
if (mode[2] != 'x')
509
continue;
510
511
tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
512
if (!tmp) {
513
err = -ENOMEM;
514
goto err_out;
515
}
516
517
*segs = tmp;
518
seg = *segs + *seg_cnt;
519
*seg_cnt += 1;
520
521
seg->start = seg_start;
522
seg->end = seg_end;
523
seg->offset = seg_off;
524
seg->is_exec = true;
525
}
526
527
if (*seg_cnt == 0) {
528
pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n",
529
lib_path, path, pid);
530
err = -ESRCH;
531
goto err_out;
532
}
533
534
qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
535
err = 0;
536
err_out:
537
fclose(f);
538
return err;
539
}
540
541
static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr)
542
{
543
struct elf_seg *seg;
544
int i;
545
546
/* for ELF binaries (both executables and shared libraries), we are
547
* given virtual address (absolute for executables, relative for
548
* libraries) which should match address range of [seg_start, seg_end)
549
*/
550
for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
551
if (seg->start <= virtaddr && virtaddr < seg->end)
552
return seg;
553
}
554
return NULL;
555
}
556
557
static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset)
558
{
559
struct elf_seg *seg;
560
int i;
561
562
/* for VMA segments from /proc/<pid>/maps file, provided "address" is
563
* actually a file offset, so should be fall within logical
564
* offset-based range of [offset_start, offset_end)
565
*/
566
for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
567
if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start))
568
return seg;
569
}
570
return NULL;
571
}
572
573
static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr,
574
const char *data, size_t name_off, size_t desc_off,
575
struct usdt_note *usdt_note);
576
577
static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie);
578
579
static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid,
580
const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie,
581
struct usdt_target **out_targets, size_t *out_target_cnt)
582
{
583
size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0;
584
struct elf_seg *segs = NULL, *vma_segs = NULL;
585
struct usdt_target *targets = NULL, *target;
586
long base_addr = 0;
587
Elf_Scn *notes_scn, *base_scn;
588
GElf_Shdr base_shdr, notes_shdr;
589
GElf_Ehdr ehdr;
590
GElf_Nhdr nhdr;
591
Elf_Data *data;
592
int err;
593
594
*out_targets = NULL;
595
*out_target_cnt = 0;
596
597
err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, &notes_shdr, &notes_scn);
598
if (err) {
599
pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path);
600
return err;
601
}
602
603
if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) {
604
pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path);
605
return -EINVAL;
606
}
607
608
err = parse_elf_segs(elf, path, &segs, &seg_cnt);
609
if (err) {
610
pr_warn("usdt: failed to process ELF program segments for '%s': %s\n",
611
path, errstr(err));
612
goto err_out;
613
}
614
615
/* .stapsdt.base ELF section is optional, but is used for prelink
616
* offset compensation (see a big comment further below)
617
*/
618
if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0)
619
base_addr = base_shdr.sh_addr;
620
621
data = elf_getdata(notes_scn, 0);
622
off = 0;
623
while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) {
624
long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0;
625
struct usdt_note note;
626
struct elf_seg *seg = NULL;
627
void *tmp;
628
629
err = parse_usdt_note(elf, path, &nhdr, data->d_buf, name_off, desc_off, &note);
630
if (err)
631
goto err_out;
632
633
if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0)
634
continue;
635
636
/* We need to compensate "prelink effect". See [0] for details,
637
* relevant parts quoted here:
638
*
639
* Each SDT probe also expands into a non-allocated ELF note. You can
640
* find this by looking at SHT_NOTE sections and decoding the format;
641
* see below for details. Because the note is non-allocated, it means
642
* there is no runtime cost, and also preserved in both stripped files
643
* and .debug files.
644
*
645
* However, this means that prelink won't adjust the note's contents
646
* for address offsets. Instead, this is done via the .stapsdt.base
647
* section. This is a special section that is added to the text. We
648
* will only ever have one of these sections in a final link and it
649
* will only ever be one byte long. Nothing about this section itself
650
* matters, we just use it as a marker to detect prelink address
651
* adjustments.
652
*
653
* Each probe note records the link-time address of the .stapsdt.base
654
* section alongside the probe PC address. The decoder compares the
655
* base address stored in the note with the .stapsdt.base section's
656
* sh_addr. Initially these are the same, but the section header will
657
* be adjusted by prelink. So the decoder applies the difference to
658
* the probe PC address to get the correct prelinked PC address; the
659
* same adjustment is applied to the semaphore address, if any.
660
*
661
* [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
662
*/
663
usdt_abs_ip = note.loc_addr;
664
if (base_addr && note.base_addr)
665
usdt_abs_ip += base_addr - note.base_addr;
666
667
/* When attaching uprobes (which is what USDTs basically are)
668
* kernel expects file offset to be specified, not a relative
669
* virtual address, so we need to translate virtual address to
670
* file offset, for both ET_EXEC and ET_DYN binaries.
671
*/
672
seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip);
673
if (!seg) {
674
err = -ESRCH;
675
pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n",
676
usdt_provider, usdt_name, path, usdt_abs_ip);
677
goto err_out;
678
}
679
if (!seg->is_exec) {
680
err = -ESRCH;
681
pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n",
682
path, seg->start, seg->end, usdt_provider, usdt_name,
683
usdt_abs_ip);
684
goto err_out;
685
}
686
/* translate from virtual address to file offset */
687
usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset;
688
689
if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) {
690
/* If we don't have BPF cookie support but need to
691
* attach to a shared library, we'll need to know and
692
* record absolute addresses of attach points due to
693
* the need to lookup USDT spec by absolute IP of
694
* triggered uprobe. Doing this resolution is only
695
* possible when we have a specific PID of the process
696
* that's using specified shared library. BPF cookie
697
* removes the absolute address limitation as we don't
698
* need to do this lookup (we just use BPF cookie as
699
* an index of USDT spec), so for newer kernels with
700
* BPF cookie support libbpf supports USDT attachment
701
* to shared libraries with no PID filter.
702
*/
703
if (pid < 0) {
704
pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n");
705
err = -ENOTSUP;
706
goto err_out;
707
}
708
709
/* vma_segs are lazily initialized only if necessary */
710
if (vma_seg_cnt == 0) {
711
err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt);
712
if (err) {
713
pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %s\n",
714
pid, path, errstr(err));
715
goto err_out;
716
}
717
}
718
719
seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip);
720
if (!seg) {
721
err = -ESRCH;
722
pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n",
723
usdt_provider, usdt_name, path, usdt_rel_ip);
724
goto err_out;
725
}
726
727
usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip;
728
}
729
730
pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n",
731
usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path,
732
note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args,
733
seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0);
734
735
/* Adjust semaphore address to be a file offset */
736
if (note.sema_addr) {
737
if (!man->has_sema_refcnt) {
738
pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n",
739
usdt_provider, usdt_name, path);
740
err = -ENOTSUP;
741
goto err_out;
742
}
743
744
seg = find_elf_seg(segs, seg_cnt, note.sema_addr);
745
if (!seg) {
746
err = -ESRCH;
747
pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n",
748
usdt_provider, usdt_name, path, note.sema_addr);
749
goto err_out;
750
}
751
if (seg->is_exec) {
752
err = -ESRCH;
753
pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n",
754
path, seg->start, seg->end, usdt_provider, usdt_name,
755
note.sema_addr);
756
goto err_out;
757
}
758
759
usdt_sema_off = note.sema_addr - seg->start + seg->offset;
760
761
pr_debug("usdt: sema for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n",
762
usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ",
763
path, note.sema_addr, note.base_addr, usdt_sema_off,
764
seg->start, seg->end, seg->offset);
765
}
766
767
/* Record adjusted addresses and offsets and parse USDT spec */
768
tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets));
769
if (!tmp) {
770
err = -ENOMEM;
771
goto err_out;
772
}
773
targets = tmp;
774
775
target = &targets[target_cnt];
776
memset(target, 0, sizeof(*target));
777
778
target->abs_ip = usdt_abs_ip;
779
target->rel_ip = usdt_rel_ip;
780
target->sema_off = usdt_sema_off;
781
782
/* notes.args references strings from ELF itself, so they can
783
* be referenced safely until elf_end() call
784
*/
785
target->spec_str = note.args;
786
787
err = parse_usdt_spec(&target->spec, &note, usdt_cookie);
788
if (err)
789
goto err_out;
790
791
target_cnt++;
792
}
793
794
*out_targets = targets;
795
*out_target_cnt = target_cnt;
796
err = target_cnt;
797
798
err_out:
799
free(segs);
800
free(vma_segs);
801
if (err < 0)
802
free(targets);
803
return err;
804
}
805
806
struct bpf_link_usdt {
807
struct bpf_link link;
808
809
struct usdt_manager *usdt_man;
810
811
size_t spec_cnt;
812
int *spec_ids;
813
814
size_t uprobe_cnt;
815
struct {
816
long abs_ip;
817
struct bpf_link *link;
818
} *uprobes;
819
820
struct bpf_link *multi_link;
821
};
822
823
static int bpf_link_usdt_detach(struct bpf_link *link)
824
{
825
struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
826
struct usdt_manager *man = usdt_link->usdt_man;
827
int i;
828
829
bpf_link__destroy(usdt_link->multi_link);
830
831
/* When having multi_link, uprobe_cnt is 0 */
832
for (i = 0; i < usdt_link->uprobe_cnt; i++) {
833
/* detach underlying uprobe link */
834
bpf_link__destroy(usdt_link->uprobes[i].link);
835
/* there is no need to update specs map because it will be
836
* unconditionally overwritten on subsequent USDT attaches,
837
* but if BPF cookies are not used we need to remove entry
838
* from ip_to_spec_id map, otherwise we'll run into false
839
* conflicting IP errors
840
*/
841
if (!man->has_bpf_cookie) {
842
/* not much we can do about errors here */
843
(void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map),
844
&usdt_link->uprobes[i].abs_ip);
845
}
846
}
847
848
/* try to return the list of previously used spec IDs to usdt_manager
849
* for future reuse for subsequent USDT attaches
850
*/
851
if (!man->free_spec_ids) {
852
/* if there were no free spec IDs yet, just transfer our IDs */
853
man->free_spec_ids = usdt_link->spec_ids;
854
man->free_spec_cnt = usdt_link->spec_cnt;
855
usdt_link->spec_ids = NULL;
856
} else {
857
/* otherwise concat IDs */
858
size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt;
859
int *new_free_ids;
860
861
new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt,
862
sizeof(*new_free_ids));
863
/* If we couldn't resize free_spec_ids, we'll just leak
864
* a bunch of free IDs; this is very unlikely to happen and if
865
* system is so exhausted on memory, it's the least of user's
866
* concerns, probably.
867
* So just do our best here to return those IDs to usdt_manager.
868
* Another edge case when we can legitimately get NULL is when
869
* new_cnt is zero, which can happen in some edge cases, so we
870
* need to be careful about that.
871
*/
872
if (new_free_ids || new_cnt == 0) {
873
memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids,
874
usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids));
875
man->free_spec_ids = new_free_ids;
876
man->free_spec_cnt = new_cnt;
877
}
878
}
879
880
return 0;
881
}
882
883
static void bpf_link_usdt_dealloc(struct bpf_link *link)
884
{
885
struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
886
887
free(usdt_link->spec_ids);
888
free(usdt_link->uprobes);
889
free(usdt_link);
890
}
891
892
static size_t specs_hash_fn(long key, void *ctx)
893
{
894
return str_hash((char *)key);
895
}
896
897
static bool specs_equal_fn(long key1, long key2, void *ctx)
898
{
899
return strcmp((char *)key1, (char *)key2) == 0;
900
}
901
902
static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash,
903
struct bpf_link_usdt *link, struct usdt_target *target,
904
int *spec_id, bool *is_new)
905
{
906
long tmp;
907
void *new_ids;
908
int err;
909
910
/* check if we already allocated spec ID for this spec string */
911
if (hashmap__find(specs_hash, target->spec_str, &tmp)) {
912
*spec_id = tmp;
913
*is_new = false;
914
return 0;
915
}
916
917
/* otherwise it's a new ID that needs to be set up in specs map and
918
* returned back to usdt_manager when USDT link is detached
919
*/
920
new_ids = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids));
921
if (!new_ids)
922
return -ENOMEM;
923
link->spec_ids = new_ids;
924
925
/* get next free spec ID, giving preference to free list, if not empty */
926
if (man->free_spec_cnt) {
927
*spec_id = man->free_spec_ids[man->free_spec_cnt - 1];
928
929
/* cache spec ID for current spec string for future lookups */
930
err = hashmap__add(specs_hash, target->spec_str, *spec_id);
931
if (err)
932
return err;
933
934
man->free_spec_cnt--;
935
} else {
936
/* don't allocate spec ID bigger than what fits in specs map */
937
if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map))
938
return -E2BIG;
939
940
*spec_id = man->next_free_spec_id;
941
942
/* cache spec ID for current spec string for future lookups */
943
err = hashmap__add(specs_hash, target->spec_str, *spec_id);
944
if (err)
945
return err;
946
947
man->next_free_spec_id++;
948
}
949
950
/* remember new spec ID in the link for later return back to free list on detach */
951
link->spec_ids[link->spec_cnt] = *spec_id;
952
link->spec_cnt++;
953
*is_new = true;
954
return 0;
955
}
956
957
struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog,
958
pid_t pid, const char *path,
959
const char *usdt_provider, const char *usdt_name,
960
__u64 usdt_cookie)
961
{
962
unsigned long *offsets = NULL, *ref_ctr_offsets = NULL;
963
int i, err, spec_map_fd, ip_map_fd;
964
LIBBPF_OPTS(bpf_uprobe_opts, opts);
965
struct hashmap *specs_hash = NULL;
966
struct bpf_link_usdt *link = NULL;
967
struct usdt_target *targets = NULL;
968
__u64 *cookies = NULL;
969
struct elf_fd elf_fd;
970
size_t target_cnt;
971
972
spec_map_fd = bpf_map__fd(man->specs_map);
973
ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map);
974
975
err = elf_open(path, &elf_fd);
976
if (err)
977
return libbpf_err_ptr(err);
978
979
err = sanity_check_usdt_elf(elf_fd.elf, path);
980
if (err)
981
goto err_out;
982
983
/* normalize PID filter */
984
if (pid < 0)
985
pid = -1;
986
else if (pid == 0)
987
pid = getpid();
988
989
/* discover USDT in given binary, optionally limiting
990
* activations to a given PID, if pid > 0
991
*/
992
err = collect_usdt_targets(man, elf_fd.elf, path, pid, usdt_provider, usdt_name,
993
usdt_cookie, &targets, &target_cnt);
994
if (err <= 0) {
995
err = (err == 0) ? -ENOENT : err;
996
goto err_out;
997
}
998
999
specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL);
1000
if (IS_ERR(specs_hash)) {
1001
err = PTR_ERR(specs_hash);
1002
goto err_out;
1003
}
1004
1005
link = calloc(1, sizeof(*link));
1006
if (!link) {
1007
err = -ENOMEM;
1008
goto err_out;
1009
}
1010
1011
link->usdt_man = man;
1012
link->link.detach = &bpf_link_usdt_detach;
1013
link->link.dealloc = &bpf_link_usdt_dealloc;
1014
1015
if (man->has_uprobe_multi) {
1016
offsets = calloc(target_cnt, sizeof(*offsets));
1017
cookies = calloc(target_cnt, sizeof(*cookies));
1018
ref_ctr_offsets = calloc(target_cnt, sizeof(*ref_ctr_offsets));
1019
1020
if (!offsets || !ref_ctr_offsets || !cookies) {
1021
err = -ENOMEM;
1022
goto err_out;
1023
}
1024
} else {
1025
link->uprobes = calloc(target_cnt, sizeof(*link->uprobes));
1026
if (!link->uprobes) {
1027
err = -ENOMEM;
1028
goto err_out;
1029
}
1030
}
1031
1032
for (i = 0; i < target_cnt; i++) {
1033
struct usdt_target *target = &targets[i];
1034
struct bpf_link *uprobe_link;
1035
bool is_new;
1036
int spec_id;
1037
1038
/* Spec ID can be either reused or newly allocated. If it is
1039
* newly allocated, we'll need to fill out spec map, otherwise
1040
* entire spec should be valid and can be just used by a new
1041
* uprobe. We reuse spec when USDT arg spec is identical. We
1042
* also never share specs between two different USDT
1043
* attachments ("links"), so all the reused specs already
1044
* share USDT cookie value implicitly.
1045
*/
1046
err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new);
1047
if (err)
1048
goto err_out;
1049
1050
if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) {
1051
err = -errno;
1052
pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %s\n",
1053
spec_id, usdt_provider, usdt_name, path, errstr(err));
1054
goto err_out;
1055
}
1056
if (!man->has_bpf_cookie &&
1057
bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) {
1058
err = -errno;
1059
if (err == -EEXIST) {
1060
pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n",
1061
spec_id, usdt_provider, usdt_name, path);
1062
} else {
1063
pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %s\n",
1064
target->abs_ip, spec_id, usdt_provider, usdt_name,
1065
path, errstr(err));
1066
}
1067
goto err_out;
1068
}
1069
1070
if (man->has_uprobe_multi) {
1071
offsets[i] = target->rel_ip;
1072
ref_ctr_offsets[i] = target->sema_off;
1073
cookies[i] = spec_id;
1074
} else {
1075
opts.ref_ctr_offset = target->sema_off;
1076
opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0;
1077
uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path,
1078
target->rel_ip, &opts);
1079
err = libbpf_get_error(uprobe_link);
1080
if (err) {
1081
pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %s\n",
1082
i, usdt_provider, usdt_name, path, errstr(err));
1083
goto err_out;
1084
}
1085
1086
link->uprobes[i].link = uprobe_link;
1087
link->uprobes[i].abs_ip = target->abs_ip;
1088
link->uprobe_cnt++;
1089
}
1090
}
1091
1092
if (man->has_uprobe_multi) {
1093
LIBBPF_OPTS(bpf_uprobe_multi_opts, opts_multi,
1094
.ref_ctr_offsets = ref_ctr_offsets,
1095
.offsets = offsets,
1096
.cookies = cookies,
1097
.cnt = target_cnt,
1098
);
1099
1100
link->multi_link = bpf_program__attach_uprobe_multi(prog, pid, path,
1101
NULL, &opts_multi);
1102
if (!link->multi_link) {
1103
err = -errno;
1104
pr_warn("usdt: failed to attach uprobe multi for '%s:%s' in '%s': %s\n",
1105
usdt_provider, usdt_name, path, errstr(err));
1106
goto err_out;
1107
}
1108
1109
free(offsets);
1110
free(ref_ctr_offsets);
1111
free(cookies);
1112
}
1113
1114
free(targets);
1115
hashmap__free(specs_hash);
1116
elf_close(&elf_fd);
1117
return &link->link;
1118
1119
err_out:
1120
free(offsets);
1121
free(ref_ctr_offsets);
1122
free(cookies);
1123
1124
if (link)
1125
bpf_link__destroy(&link->link);
1126
free(targets);
1127
hashmap__free(specs_hash);
1128
elf_close(&elf_fd);
1129
return libbpf_err_ptr(err);
1130
}
1131
1132
/* Parse out USDT ELF note from '.note.stapsdt' section.
1133
* Logic inspired by perf's code.
1134
*/
1135
static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr,
1136
const char *data, size_t name_off, size_t desc_off,
1137
struct usdt_note *note)
1138
{
1139
const char *provider, *name, *args;
1140
long addrs[3];
1141
size_t len;
1142
1143
/* sanity check USDT note name and type first */
1144
if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0)
1145
return -EINVAL;
1146
if (nhdr->n_type != USDT_NOTE_TYPE)
1147
return -EINVAL;
1148
1149
/* sanity check USDT note contents ("description" in ELF terminology) */
1150
len = nhdr->n_descsz;
1151
data = data + desc_off;
1152
1153
/* +3 is the very minimum required to store three empty strings */
1154
if (len < sizeof(addrs) + 3)
1155
return -EINVAL;
1156
1157
/* get location, base, and semaphore addrs */
1158
memcpy(&addrs, data, sizeof(addrs));
1159
1160
/* parse string fields: provider, name, args */
1161
provider = data + sizeof(addrs);
1162
1163
name = (const char *)memchr(provider, '\0', data + len - provider);
1164
if (!name) /* non-zero-terminated provider */
1165
return -EINVAL;
1166
name++;
1167
if (name >= data + len || *name == '\0') /* missing or empty name */
1168
return -EINVAL;
1169
1170
args = memchr(name, '\0', data + len - name);
1171
if (!args) /* non-zero-terminated name */
1172
return -EINVAL;
1173
++args;
1174
if (args >= data + len) /* missing arguments spec */
1175
return -EINVAL;
1176
1177
note->provider = provider;
1178
note->name = name;
1179
if (*args == '\0' || *args == ':')
1180
note->args = "";
1181
else
1182
note->args = args;
1183
note->loc_addr = addrs[0];
1184
note->base_addr = addrs[1];
1185
note->sema_addr = addrs[2];
1186
1187
return 0;
1188
}
1189
1190
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz);
1191
1192
static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie)
1193
{
1194
struct usdt_arg_spec *arg;
1195
const char *s;
1196
int arg_sz, len;
1197
1198
spec->usdt_cookie = usdt_cookie;
1199
spec->arg_cnt = 0;
1200
1201
s = note->args;
1202
while (s[0]) {
1203
if (spec->arg_cnt >= USDT_MAX_ARG_CNT) {
1204
pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n",
1205
USDT_MAX_ARG_CNT, note->provider, note->name, note->args);
1206
return -E2BIG;
1207
}
1208
1209
arg = &spec->args[spec->arg_cnt];
1210
len = parse_usdt_arg(s, spec->arg_cnt, arg, &arg_sz);
1211
if (len < 0)
1212
return len;
1213
1214
arg->arg_signed = arg_sz < 0;
1215
if (arg_sz < 0)
1216
arg_sz = -arg_sz;
1217
1218
switch (arg_sz) {
1219
case 1: case 2: case 4: case 8:
1220
arg->arg_bitshift = 64 - arg_sz * 8;
1221
break;
1222
default:
1223
pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n",
1224
spec->arg_cnt, s, arg_sz);
1225
return -EINVAL;
1226
}
1227
1228
s += len;
1229
spec->arg_cnt++;
1230
}
1231
1232
return 0;
1233
}
1234
1235
/* Architecture-specific logic for parsing USDT argument location specs */
1236
1237
#if defined(__x86_64__) || defined(__i386__)
1238
1239
static int calc_pt_regs_off(const char *reg_name)
1240
{
1241
static struct {
1242
const char *names[4];
1243
size_t pt_regs_off;
1244
} reg_map[] = {
1245
#ifdef __x86_64__
1246
#define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64)
1247
#else
1248
#define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32)
1249
#endif
1250
{ {"rip", "eip", "", ""}, reg_off(rip, eip) },
1251
{ {"rax", "eax", "ax", "al"}, reg_off(rax, eax) },
1252
{ {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) },
1253
{ {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) },
1254
{ {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) },
1255
{ {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) },
1256
{ {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) },
1257
{ {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) },
1258
{ {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) },
1259
#undef reg_off
1260
#ifdef __x86_64__
1261
{ {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) },
1262
{ {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) },
1263
{ {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) },
1264
{ {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) },
1265
{ {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) },
1266
{ {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) },
1267
{ {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) },
1268
{ {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) },
1269
#endif
1270
};
1271
int i, j;
1272
1273
for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1274
for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) {
1275
if (strcmp(reg_name, reg_map[i].names[j]) == 0)
1276
return reg_map[i].pt_regs_off;
1277
}
1278
}
1279
1280
pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1281
return -ENOENT;
1282
}
1283
1284
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1285
{
1286
char reg_name[16];
1287
int len, reg_off;
1288
long off;
1289
1290
if (sscanf(arg_str, " %d @ %ld ( %%%15[^)] ) %n", arg_sz, &off, reg_name, &len) == 3) {
1291
/* Memory dereference case, e.g., -4@-20(%rbp) */
1292
arg->arg_type = USDT_ARG_REG_DEREF;
1293
arg->val_off = off;
1294
reg_off = calc_pt_regs_off(reg_name);
1295
if (reg_off < 0)
1296
return reg_off;
1297
arg->reg_off = reg_off;
1298
} else if (sscanf(arg_str, " %d @ ( %%%15[^)] ) %n", arg_sz, reg_name, &len) == 2) {
1299
/* Memory dereference case without offset, e.g., 8@(%rsp) */
1300
arg->arg_type = USDT_ARG_REG_DEREF;
1301
arg->val_off = 0;
1302
reg_off = calc_pt_regs_off(reg_name);
1303
if (reg_off < 0)
1304
return reg_off;
1305
arg->reg_off = reg_off;
1306
} else if (sscanf(arg_str, " %d @ %%%15s %n", arg_sz, reg_name, &len) == 2) {
1307
/* Register read case, e.g., -4@%eax */
1308
arg->arg_type = USDT_ARG_REG;
1309
arg->val_off = 0;
1310
1311
reg_off = calc_pt_regs_off(reg_name);
1312
if (reg_off < 0)
1313
return reg_off;
1314
arg->reg_off = reg_off;
1315
} else if (sscanf(arg_str, " %d @ $%ld %n", arg_sz, &off, &len) == 2) {
1316
/* Constant value case, e.g., 4@$71 */
1317
arg->arg_type = USDT_ARG_CONST;
1318
arg->val_off = off;
1319
arg->reg_off = 0;
1320
} else {
1321
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1322
return -EINVAL;
1323
}
1324
1325
return len;
1326
}
1327
1328
#elif defined(__s390x__)
1329
1330
/* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */
1331
1332
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1333
{
1334
unsigned int reg;
1335
int len;
1336
long off;
1337
1338
if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", arg_sz, &off, &reg, &len) == 3) {
1339
/* Memory dereference case, e.g., -2@-28(%r15) */
1340
arg->arg_type = USDT_ARG_REG_DEREF;
1341
arg->val_off = off;
1342
if (reg > 15) {
1343
pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1344
return -EINVAL;
1345
}
1346
arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1347
} else if (sscanf(arg_str, " %d @ %%r%u %n", arg_sz, &reg, &len) == 2) {
1348
/* Register read case, e.g., -8@%r0 */
1349
arg->arg_type = USDT_ARG_REG;
1350
arg->val_off = 0;
1351
if (reg > 15) {
1352
pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1353
return -EINVAL;
1354
}
1355
arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1356
} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1357
/* Constant value case, e.g., 4@71 */
1358
arg->arg_type = USDT_ARG_CONST;
1359
arg->val_off = off;
1360
arg->reg_off = 0;
1361
} else {
1362
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1363
return -EINVAL;
1364
}
1365
1366
return len;
1367
}
1368
1369
#elif defined(__aarch64__)
1370
1371
static int calc_pt_regs_off(const char *reg_name)
1372
{
1373
int reg_num;
1374
1375
if (sscanf(reg_name, "x%d", &reg_num) == 1) {
1376
if (reg_num >= 0 && reg_num < 31)
1377
return offsetof(struct user_pt_regs, regs[reg_num]);
1378
} else if (strcmp(reg_name, "sp") == 0) {
1379
return offsetof(struct user_pt_regs, sp);
1380
}
1381
pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1382
return -ENOENT;
1383
}
1384
1385
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1386
{
1387
char reg_name[16];
1388
int len, reg_off;
1389
long off;
1390
1391
if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz, reg_name, &off, &len) == 3) {
1392
/* Memory dereference case, e.g., -4@[sp, 96] */
1393
arg->arg_type = USDT_ARG_REG_DEREF;
1394
arg->val_off = off;
1395
reg_off = calc_pt_regs_off(reg_name);
1396
if (reg_off < 0)
1397
return reg_off;
1398
arg->reg_off = reg_off;
1399
} else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1400
/* Memory dereference case, e.g., -4@[sp] */
1401
arg->arg_type = USDT_ARG_REG_DEREF;
1402
arg->val_off = 0;
1403
reg_off = calc_pt_regs_off(reg_name);
1404
if (reg_off < 0)
1405
return reg_off;
1406
arg->reg_off = reg_off;
1407
} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1408
/* Constant value case, e.g., 4@5 */
1409
arg->arg_type = USDT_ARG_CONST;
1410
arg->val_off = off;
1411
arg->reg_off = 0;
1412
} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1413
/* Register read case, e.g., -8@x4 */
1414
arg->arg_type = USDT_ARG_REG;
1415
arg->val_off = 0;
1416
reg_off = calc_pt_regs_off(reg_name);
1417
if (reg_off < 0)
1418
return reg_off;
1419
arg->reg_off = reg_off;
1420
} else {
1421
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1422
return -EINVAL;
1423
}
1424
1425
return len;
1426
}
1427
1428
#elif defined(__riscv)
1429
1430
static int calc_pt_regs_off(const char *reg_name)
1431
{
1432
static struct {
1433
const char *name;
1434
size_t pt_regs_off;
1435
} reg_map[] = {
1436
{ "ra", offsetof(struct user_regs_struct, ra) },
1437
{ "sp", offsetof(struct user_regs_struct, sp) },
1438
{ "gp", offsetof(struct user_regs_struct, gp) },
1439
{ "tp", offsetof(struct user_regs_struct, tp) },
1440
{ "a0", offsetof(struct user_regs_struct, a0) },
1441
{ "a1", offsetof(struct user_regs_struct, a1) },
1442
{ "a2", offsetof(struct user_regs_struct, a2) },
1443
{ "a3", offsetof(struct user_regs_struct, a3) },
1444
{ "a4", offsetof(struct user_regs_struct, a4) },
1445
{ "a5", offsetof(struct user_regs_struct, a5) },
1446
{ "a6", offsetof(struct user_regs_struct, a6) },
1447
{ "a7", offsetof(struct user_regs_struct, a7) },
1448
{ "s0", offsetof(struct user_regs_struct, s0) },
1449
{ "s1", offsetof(struct user_regs_struct, s1) },
1450
{ "s2", offsetof(struct user_regs_struct, s2) },
1451
{ "s3", offsetof(struct user_regs_struct, s3) },
1452
{ "s4", offsetof(struct user_regs_struct, s4) },
1453
{ "s5", offsetof(struct user_regs_struct, s5) },
1454
{ "s6", offsetof(struct user_regs_struct, s6) },
1455
{ "s7", offsetof(struct user_regs_struct, s7) },
1456
{ "s8", offsetof(struct user_regs_struct, rv_s8) },
1457
{ "s9", offsetof(struct user_regs_struct, s9) },
1458
{ "s10", offsetof(struct user_regs_struct, s10) },
1459
{ "s11", offsetof(struct user_regs_struct, s11) },
1460
{ "t0", offsetof(struct user_regs_struct, t0) },
1461
{ "t1", offsetof(struct user_regs_struct, t1) },
1462
{ "t2", offsetof(struct user_regs_struct, t2) },
1463
{ "t3", offsetof(struct user_regs_struct, t3) },
1464
{ "t4", offsetof(struct user_regs_struct, t4) },
1465
{ "t5", offsetof(struct user_regs_struct, t5) },
1466
{ "t6", offsetof(struct user_regs_struct, t6) },
1467
};
1468
int i;
1469
1470
for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1471
if (strcmp(reg_name, reg_map[i].name) == 0)
1472
return reg_map[i].pt_regs_off;
1473
}
1474
1475
pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1476
return -ENOENT;
1477
}
1478
1479
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1480
{
1481
char reg_name[16];
1482
int len, reg_off;
1483
long off;
1484
1485
if (sscanf(arg_str, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz, &off, reg_name, &len) == 3) {
1486
/* Memory dereference case, e.g., -8@-88(s0) */
1487
arg->arg_type = USDT_ARG_REG_DEREF;
1488
arg->val_off = off;
1489
reg_off = calc_pt_regs_off(reg_name);
1490
if (reg_off < 0)
1491
return reg_off;
1492
arg->reg_off = reg_off;
1493
} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1494
/* Constant value case, e.g., 4@5 */
1495
arg->arg_type = USDT_ARG_CONST;
1496
arg->val_off = off;
1497
arg->reg_off = 0;
1498
} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1499
/* Register read case, e.g., -8@a1 */
1500
arg->arg_type = USDT_ARG_REG;
1501
arg->val_off = 0;
1502
reg_off = calc_pt_regs_off(reg_name);
1503
if (reg_off < 0)
1504
return reg_off;
1505
arg->reg_off = reg_off;
1506
} else {
1507
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1508
return -EINVAL;
1509
}
1510
1511
return len;
1512
}
1513
1514
#elif defined(__arm__)
1515
1516
static int calc_pt_regs_off(const char *reg_name)
1517
{
1518
static struct {
1519
const char *name;
1520
size_t pt_regs_off;
1521
} reg_map[] = {
1522
{ "r0", offsetof(struct pt_regs, uregs[0]) },
1523
{ "r1", offsetof(struct pt_regs, uregs[1]) },
1524
{ "r2", offsetof(struct pt_regs, uregs[2]) },
1525
{ "r3", offsetof(struct pt_regs, uregs[3]) },
1526
{ "r4", offsetof(struct pt_regs, uregs[4]) },
1527
{ "r5", offsetof(struct pt_regs, uregs[5]) },
1528
{ "r6", offsetof(struct pt_regs, uregs[6]) },
1529
{ "r7", offsetof(struct pt_regs, uregs[7]) },
1530
{ "r8", offsetof(struct pt_regs, uregs[8]) },
1531
{ "r9", offsetof(struct pt_regs, uregs[9]) },
1532
{ "r10", offsetof(struct pt_regs, uregs[10]) },
1533
{ "fp", offsetof(struct pt_regs, uregs[11]) },
1534
{ "ip", offsetof(struct pt_regs, uregs[12]) },
1535
{ "sp", offsetof(struct pt_regs, uregs[13]) },
1536
{ "lr", offsetof(struct pt_regs, uregs[14]) },
1537
{ "pc", offsetof(struct pt_regs, uregs[15]) },
1538
};
1539
int i;
1540
1541
for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1542
if (strcmp(reg_name, reg_map[i].name) == 0)
1543
return reg_map[i].pt_regs_off;
1544
}
1545
1546
pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1547
return -ENOENT;
1548
}
1549
1550
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1551
{
1552
char reg_name[16];
1553
int len, reg_off;
1554
long off;
1555
1556
if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , #%ld ] %n",
1557
arg_sz, reg_name, &off, &len) == 3) {
1558
/* Memory dereference case, e.g., -4@[fp, #96] */
1559
arg->arg_type = USDT_ARG_REG_DEREF;
1560
arg->val_off = off;
1561
reg_off = calc_pt_regs_off(reg_name);
1562
if (reg_off < 0)
1563
return reg_off;
1564
arg->reg_off = reg_off;
1565
} else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1566
/* Memory dereference case, e.g., -4@[sp] */
1567
arg->arg_type = USDT_ARG_REG_DEREF;
1568
arg->val_off = 0;
1569
reg_off = calc_pt_regs_off(reg_name);
1570
if (reg_off < 0)
1571
return reg_off;
1572
arg->reg_off = reg_off;
1573
} else if (sscanf(arg_str, " %d @ #%ld %n", arg_sz, &off, &len) == 2) {
1574
/* Constant value case, e.g., 4@#5 */
1575
arg->arg_type = USDT_ARG_CONST;
1576
arg->val_off = off;
1577
arg->reg_off = 0;
1578
} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1579
/* Register read case, e.g., -8@r4 */
1580
arg->arg_type = USDT_ARG_REG;
1581
arg->val_off = 0;
1582
reg_off = calc_pt_regs_off(reg_name);
1583
if (reg_off < 0)
1584
return reg_off;
1585
arg->reg_off = reg_off;
1586
} else {
1587
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1588
return -EINVAL;
1589
}
1590
1591
return len;
1592
}
1593
1594
#else
1595
1596
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1597
{
1598
pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n");
1599
return -ENOTSUP;
1600
}
1601
1602
#endif
1603
1604