Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/perf/Documentation/perf-intel-pt.txt
26282 views
1
perf-intel-pt(1)
2
================
3
4
NAME
5
----
6
perf-intel-pt - Support for Intel Processor Trace within perf tools
7
8
SYNOPSIS
9
--------
10
[verse]
11
'perf record' -e intel_pt//
12
13
DESCRIPTION
14
-----------
15
16
Intel Processor Trace (Intel PT) is an extension of Intel Architecture that
17
collects information about software execution such as control flow, execution
18
modes and timings and formats it into highly compressed binary packets.
19
Technical details are documented in the Intel 64 and IA-32 Architectures
20
Software Developer Manuals, Chapter 36 Intel Processor Trace.
21
22
Intel PT is first supported in Intel Core M and 5th generation Intel Core
23
processors that are based on the Intel micro-architecture code name Broadwell.
24
25
Trace data is collected by 'perf record' and stored within the perf.data file.
26
See below for options to 'perf record'.
27
28
Trace data must be 'decoded' which involves walking the object code and matching
29
the trace data packets. For example a TNT packet only tells whether a
30
conditional branch was taken or not taken, so to make use of that packet the
31
decoder must know precisely which instruction was being executed.
32
33
Decoding is done on-the-fly. The decoder outputs samples in the same format as
34
samples output by perf hardware events, for example as though the "instructions"
35
or "branches" events had been recorded. Presently 3 tools support this:
36
'perf script', 'perf report' and 'perf inject'. See below for more information
37
on using those tools.
38
39
The main distinguishing feature of Intel PT is that the decoder can determine
40
the exact flow of software execution. Intel PT can be used to understand why
41
and how did software get to a certain point, or behave a certain way. The
42
software does not have to be recompiled, so Intel PT works with debug or release
43
builds, however the executed images are needed - which makes use in JIT-compiled
44
environments, or with self-modified code, a challenge. Also symbols need to be
45
provided to make sense of addresses.
46
47
A limitation of Intel PT is that it produces huge amounts of trace data
48
(hundreds of megabytes per second per core) which takes a long time to decode,
49
for example two or three orders of magnitude longer than it took to collect.
50
Another limitation is the performance impact of tracing, something that will
51
vary depending on the use-case and architecture.
52
53
54
Quickstart
55
----------
56
57
It is important to start small. That is because it is easy to capture vastly
58
more data than can possibly be processed.
59
60
The simplest thing to do with Intel PT is userspace profiling of small programs.
61
Data is captured with 'perf record' e.g. to trace 'ls' userspace-only:
62
63
perf record -e intel_pt//u ls
64
65
And profiled with 'perf report' e.g.
66
67
perf report
68
69
To also trace kernel space presents a problem, namely kernel self-modifying
70
code. A fairly good kernel image is available in /proc/kcore but to get an
71
accurate image a copy of /proc/kcore needs to be made under the same conditions
72
as the data capture. 'perf record' can make a copy of /proc/kcore if the option
73
--kcore is used, but access to /proc/kcore is restricted e.g.
74
75
sudo perf record -o pt_ls --kcore -e intel_pt// -- ls
76
77
which will create a directory named 'pt_ls' and put the perf.data file (named
78
simply 'data') and copies of /proc/kcore, /proc/kallsyms and /proc/modules into
79
it. The other tools understand the directory format, so to use 'perf report'
80
becomes:
81
82
sudo perf report -i pt_ls
83
84
Because samples are synthesized after-the-fact, the sampling period can be
85
selected for reporting. e.g. sample every microsecond
86
87
sudo perf report pt_ls --itrace=i1usge
88
89
See the sections below for more information about the --itrace option.
90
91
Beware the smaller the period, the more samples that are produced, and the
92
longer it takes to process them.
93
94
Also note that the coarseness of Intel PT timing information will start to
95
distort the statistical value of the sampling as the sampling period becomes
96
smaller.
97
98
To represent software control flow, "branches" samples are produced. By default
99
a branch sample is synthesized for every single branch. To get an idea what
100
data is available you can use the 'perf script' tool with all itrace sampling
101
options, which will list all the samples.
102
103
perf record -e intel_pt//u ls
104
perf script --itrace=iybxwpe
105
106
An interesting field that is not printed by default is 'flags' which can be
107
displayed as follows:
108
109
perf script --itrace=iybxwpe -F+flags
110
111
The flags are "bcrosyiABExghDt" which stand for branch, call, return, conditional,
112
system, asynchronous, interrupt, transaction abort, trace begin, trace end,
113
in transaction, VM-entry, VM-exit, interrupt disabled, and interrupt disable
114
toggle respectively.
115
116
perf script also supports higher level ways to dump instruction traces:
117
118
perf script --insn-trace=disasm
119
120
or to use the xed disassembler, which requires installing the xed tool
121
(see XED below):
122
123
perf script --insn-trace --xed
124
125
Dumping all instructions in a long trace can be fairly slow. It is usually better
126
to start with higher level decoding, like
127
128
perf script --call-trace
129
130
or
131
132
perf script --call-ret-trace
133
134
and then select a time range of interest. The time range can then be examined
135
in detail with
136
137
perf script --time starttime,stoptime --insn-trace=disasm
138
139
While examining the trace it's also useful to filter on specific CPUs using
140
the -C option
141
142
perf script --time starttime,stoptime --insn-trace=disasm -C 1
143
144
Dump all instructions in time range on CPU 1.
145
146
Another interesting field that is not printed by default is 'ipc' which can be
147
displayed as follows:
148
149
perf script --itrace=be -F+ipc
150
151
There are two ways that instructions-per-cycle (IPC) can be calculated depending
152
on the recording.
153
154
If the 'cyc' config term (see <<_config_terms,config terms>> section below) was used, then IPC
155
and cycle events are calculated using the cycle count from CYC packets, otherwise
156
MTC packets are used - refer to the 'mtc' config term. When MTC is used, however,
157
the values are less accurate because the timing is less accurate.
158
159
Because Intel PT does not update the cycle count on every branch or instruction,
160
the values will often be zero. When there are values, they will be the number
161
of instructions and number of cycles since the last update, and thus represent
162
the average IPC cycle count since the last IPC for that event type.
163
Note IPC for "branches" events is calculated separately from IPC for "instructions"
164
events.
165
166
Even with the 'cyc' config term, it is possible to produce IPC information for
167
every change of timestamp, but at the expense of accuracy. That is selected by
168
specifying the itrace 'A' option. Due to the granularity of timestamps, the
169
actual number of cycles increases even though the cycles reported does not.
170
The number of instructions is known, but if IPC is reported, cycles can be too
171
low and so IPC is too high. Note that inaccuracy decreases as the period of
172
sampling increases i.e. if the number of cycles is too low by a small amount,
173
that becomes less significant if the number of cycles is large. It may also be
174
useful to use the 'A' option in conjunction with dlfilter-show-cycles.so to
175
provide higher granularity cycle information.
176
177
Also note that the IPC instruction count may or may not include the current
178
instruction. If the cycle count is associated with an asynchronous branch
179
(e.g. page fault or interrupt), then the instruction count does not include the
180
current instruction, otherwise it does. That is consistent with whether or not
181
that instruction has retired when the cycle count is updated.
182
183
Another note, in the case of "branches" events, non-taken branches are not
184
presently sampled, so IPC values for them do not appear e.g. a CYC packet with a
185
TNT packet that starts with a non-taken branch. To see every possible IPC
186
value, "instructions" events can be used e.g. --itrace=i0ns
187
188
While it is possible to create scripts to analyze the data, an alternative
189
approach is available to export the data to a sqlite or postgresql database.
190
Refer to script export-to-sqlite.py or export-to-postgresql.py for more details,
191
and to script exported-sql-viewer.py for an example of using the database.
192
193
There is also script intel-pt-events.py which provides an example of how to
194
unpack the raw data for power events and PTWRITE. The script also displays
195
branches, and supports 2 additional modes selected by option:
196
197
- --insn-trace - instruction trace
198
- --src-trace - source trace
199
200
The intel-pt-events.py script also has options:
201
202
- --all-switch-events - display all switch events, not only the last consecutive.
203
- --interleave [<n>] - interleave sample output for the same timestamp so that
204
no more than n samples for a CPU are displayed in a row. 'n' defaults to 4.
205
Note this only affects the order of output, and only when the timestamp is the
206
same.
207
208
As mentioned above, it is easy to capture too much data. One way to limit the
209
data captured is to use 'snapshot' mode which is explained further below.
210
Refer to 'new snapshot option' and 'Intel PT modes of operation' further below.
211
212
Another problem that will be experienced is decoder errors. They can be caused
213
by inability to access the executed image, self-modified or JIT-ed code, or the
214
inability to match side-band information (such as context switches and mmaps)
215
which results in the decoder not knowing what code was executed.
216
217
There is also the problem of perf not being able to copy the data fast enough,
218
resulting in data lost because the buffer was full. See 'Buffer handling' below
219
for more details.
220
221
222
perf record
223
-----------
224
225
new event
226
~~~~~~~~~
227
228
The Intel PT kernel driver creates a new PMU for Intel PT. PMU events are
229
selected by providing the PMU name followed by the "config" separated by slashes.
230
An enhancement has been made to allow default "config" e.g. the option
231
232
-e intel_pt//
233
234
will use a default config value. Currently that is the same as
235
236
-e intel_pt/tsc,noretcomp=0/
237
238
which is the same as
239
240
-e intel_pt/tsc=1,noretcomp=0/
241
242
Note there are other config terms - see section <<_config_terms,config terms>> further below.
243
244
The config terms are listed in /sys/devices/intel_pt/format. They are bit
245
fields within the config member of the struct perf_event_attr which is
246
passed to the kernel by the perf_event_open system call. They correspond to bit
247
fields in the IA32_RTIT_CTL MSR. Here is a list of them and their definitions:
248
249
$ grep -H . /sys/bus/event_source/devices/intel_pt/format/*
250
/sys/bus/event_source/devices/intel_pt/format/cyc:config:1
251
/sys/bus/event_source/devices/intel_pt/format/cyc_thresh:config:19-22
252
/sys/bus/event_source/devices/intel_pt/format/mtc:config:9
253
/sys/bus/event_source/devices/intel_pt/format/mtc_period:config:14-17
254
/sys/bus/event_source/devices/intel_pt/format/noretcomp:config:11
255
/sys/bus/event_source/devices/intel_pt/format/psb_period:config:24-27
256
/sys/bus/event_source/devices/intel_pt/format/tsc:config:10
257
258
Note that the default config must be overridden for each term i.e.
259
260
-e intel_pt/noretcomp=0/
261
262
is the same as:
263
264
-e intel_pt/tsc=1,noretcomp=0/
265
266
So, to disable TSC packets use:
267
268
-e intel_pt/tsc=0/
269
270
It is also possible to specify the config value explicitly:
271
272
-e intel_pt/config=0x400/
273
274
Note that, as with all events, the event is suffixed with event modifiers:
275
276
u userspace
277
k kernel
278
h hypervisor
279
G guest
280
H host
281
p precise ip
282
283
'h', 'G' and 'H' are for virtualization which are not used by Intel PT.
284
'p' is also not relevant to Intel PT. So only options 'u' and 'k' are
285
meaningful for Intel PT.
286
287
perf_event_attr is displayed if the -vv option is used e.g.
288
289
------------------------------------------------------------
290
perf_event_attr:
291
type 6
292
size 112
293
config 0x400
294
{ sample_period, sample_freq } 1
295
sample_type IP|TID|TIME|CPU|IDENTIFIER
296
read_format ID
297
disabled 1
298
inherit 1
299
exclude_kernel 1
300
exclude_hv 1
301
enable_on_exec 1
302
sample_id_all 1
303
------------------------------------------------------------
304
sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8
305
sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8
306
sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8
307
sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8
308
------------------------------------------------------------
309
310
311
config terms
312
~~~~~~~~~~~~
313
314
Config terms are parameters specified with the -e intel_pt// event option,
315
for example:
316
317
-e intel_pt/cyc/
318
319
which selects cycle accurate mode. Each config term can have a value which
320
defaults to 1, so the above is the same as:
321
322
-e intel_pt/cyc=1/
323
324
Some terms are set by default, so must be set to 0 to turn them off. For
325
example, to turn off branch tracing:
326
327
-e intel_pt/branch=0/
328
329
Multiple config terms are separated by commas, for example:
330
331
-e intel_pt/cyc,mtc_period=9/
332
333
There are also common config terms, see linkperf:perf-record[1] documentation.
334
335
Intel PT config terms are described below.
336
337
*tsc*::
338
Always supported. Produces TSC timestamp packets to provide
339
timing information. In some cases it is possible to decode
340
without timing information, for example a per-thread context
341
that does not overlap executable memory maps.
342
+
343
The default config selects tsc (i.e. tsc=1).
344
345
*noretcomp*::
346
Always supported. Disables "return compression" so a TIP packet
347
is produced when a function returns. Causes more packets to be
348
produced but might make decoding more reliable.
349
+
350
The default config does not select noretcomp (i.e. noretcomp=0).
351
352
*psb_period*::
353
Allows the frequency of PSB packets to be specified.
354
+
355
The PSB packet is a synchronization packet that provides a
356
starting point for decoding or recovery from errors.
357
+
358
Support for psb_period is indicated by:
359
+
360
/sys/bus/event_source/devices/intel_pt/caps/psb_cyc
361
+
362
which contains "1" if the feature is supported and "0"
363
otherwise.
364
+
365
Valid values are given by:
366
+
367
/sys/bus/event_source/devices/intel_pt/caps/psb_periods
368
+
369
which contains a hexadecimal value, the bits of which represent
370
valid values e.g. bit 2 set means value 2 is valid.
371
+
372
The psb_period value is converted to the approximate number of
373
trace bytes between PSB packets as:
374
+
375
2 ^ (value + 11)
376
+
377
e.g. value 3 means 16KiB bytes between PSBs
378
+
379
If an invalid value is entered, the error message
380
will give a list of valid values e.g.
381
+
382
$ perf record -e intel_pt/psb_period=15/u uname
383
Invalid psb_period for intel_pt. Valid values are: 0-5
384
+
385
If MTC packets are selected, the default config selects a value
386
of 3 (i.e. psb_period=3) or the nearest lower value that is
387
supported (0 is always supported). Otherwise the default is 0.
388
+
389
If decoding is expected to be reliable and the buffer is large
390
then a large PSB period can be used.
391
+
392
Because a TSC packet is produced with PSB, the PSB period can
393
also affect the granularity to timing information in the absence
394
of MTC or CYC.
395
396
*mtc*::
397
Produces MTC timing packets.
398
+
399
MTC packets provide finer grain timestamp information than TSC
400
packets. MTC packets record time using the hardware crystal
401
clock (CTC) which is related to TSC packets using a TMA packet.
402
+
403
Support for this feature is indicated by:
404
+
405
/sys/bus/event_source/devices/intel_pt/caps/mtc
406
+
407
which contains "1" if the feature is supported and
408
"0" otherwise.
409
+
410
The frequency of MTC packets can also be specified - see
411
mtc_period below.
412
413
*mtc_period*::
414
Specifies how frequently MTC packets are produced - see mtc
415
above for how to determine if MTC packets are supported.
416
+
417
Valid values are given by:
418
+
419
/sys/bus/event_source/devices/intel_pt/caps/mtc_periods
420
+
421
which contains a hexadecimal value, the bits of which represent
422
valid values e.g. bit 2 set means value 2 is valid.
423
+
424
The mtc_period value is converted to the MTC frequency as:
425
426
CTC-frequency / (2 ^ value)
427
+
428
e.g. value 3 means one eighth of CTC-frequency
429
+
430
Where CTC is the hardware crystal clock, the frequency of which
431
can be related to TSC via values provided in cpuid leaf 0x15.
432
+
433
If an invalid value is entered, the error message
434
will give a list of valid values e.g.
435
+
436
$ perf record -e intel_pt/mtc_period=15/u uname
437
Invalid mtc_period for intel_pt. Valid values are: 0,3,6,9
438
+
439
The default value is 3 or the nearest lower value
440
that is supported (0 is always supported).
441
442
*cyc*::
443
Produces CYC timing packets.
444
+
445
CYC packets provide even finer grain timestamp information than
446
MTC and TSC packets. A CYC packet contains the number of CPU
447
cycles since the last CYC packet. Unlike MTC and TSC packets,
448
CYC packets are only sent when another packet is also sent.
449
+
450
Support for this feature is indicated by:
451
+
452
/sys/bus/event_source/devices/intel_pt/caps/psb_cyc
453
+
454
which contains "1" if the feature is supported and
455
"0" otherwise.
456
+
457
The number of CYC packets produced can be reduced by specifying
458
a threshold - see cyc_thresh below.
459
460
*cyc_thresh*::
461
Specifies how frequently CYC packets are produced - see cyc
462
above for how to determine if CYC packets are supported.
463
+
464
Valid cyc_thresh values are given by:
465
+
466
/sys/bus/event_source/devices/intel_pt/caps/cycle_thresholds
467
+
468
which contains a hexadecimal value, the bits of which represent
469
valid values e.g. bit 2 set means value 2 is valid.
470
+
471
The cyc_thresh value represents the minimum number of CPU cycles
472
that must have passed before a CYC packet can be sent. The
473
number of CPU cycles is:
474
+
475
2 ^ (value - 1)
476
+
477
e.g. value 4 means 8 CPU cycles must pass before a CYC packet
478
can be sent. Note a CYC packet is still only sent when another
479
packet is sent, not at, e.g. every 8 CPU cycles.
480
+
481
If an invalid value is entered, the error message
482
will give a list of valid values e.g.
483
+
484
$ perf record -e intel_pt/cyc,cyc_thresh=15/u uname
485
Invalid cyc_thresh for intel_pt. Valid values are: 0-12
486
+
487
CYC packets are not requested by default.
488
489
*pt*::
490
Specifies pass-through which enables the 'branch' config term.
491
+
492
The default config selects 'pt' if it is available, so a user will
493
never need to specify this term.
494
495
*branch*::
496
Enable branch tracing. Branch tracing is enabled by default so to
497
disable branch tracing use 'branch=0'.
498
+
499
The default config selects 'branch' if it is available.
500
501
*ptw*::
502
Enable PTWRITE packets which are produced when a ptwrite instruction
503
is executed.
504
+
505
Support for this feature is indicated by:
506
+
507
/sys/bus/event_source/devices/intel_pt/caps/ptwrite
508
+
509
which contains "1" if the feature is supported and
510
"0" otherwise.
511
+
512
As an alternative, refer to "Emulated PTWRITE" further below.
513
514
*fup_on_ptw*::
515
Enable a FUP packet to follow the PTWRITE packet. The FUP packet
516
provides the address of the ptwrite instruction. In the absence of
517
fup_on_ptw, the decoder will use the address of the previous branch
518
if branch tracing is enabled, otherwise the address will be zero.
519
Note that fup_on_ptw will work even when branch tracing is disabled.
520
521
*pwr_evt*::
522
Enable power events. The power events provide information about
523
changes to the CPU C-state.
524
+
525
Support for this feature is indicated by:
526
+
527
/sys/bus/event_source/devices/intel_pt/caps/power_event_trace
528
+
529
which contains "1" if the feature is supported and
530
"0" otherwise.
531
532
*event*::
533
Enable Event Trace. The events provide information about asynchronous
534
events.
535
+
536
Support for this feature is indicated by:
537
+
538
/sys/bus/event_source/devices/intel_pt/caps/event_trace
539
+
540
which contains "1" if the feature is supported and
541
"0" otherwise.
542
543
*notnt*::
544
Disable TNT packets. Without TNT packets, it is not possible to walk
545
executable code to reconstruct control flow, however FUP, TIP, TIP.PGE
546
and TIP.PGD packets still indicate asynchronous control flow, and (if
547
return compression is disabled - see noretcomp) return statements.
548
The advantage of eliminating TNT packets is reducing the size of the
549
trace and corresponding tracing overhead.
550
+
551
Support for this feature is indicated by:
552
+
553
/sys/bus/event_source/devices/intel_pt/caps/tnt_disable
554
+
555
which contains "1" if the feature is supported and
556
"0" otherwise.
557
558
*aux-action=start-paused*::
559
Start tracing paused, refer to the section <<_pause_or_resume_tracing,Pause or Resume Tracing>>
560
561
562
config terms on other events
563
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
564
565
Some Intel PT features work with other events, features such as AUX area sampling
566
and PEBS-via-PT. In those cases, the other events can have config terms below:
567
568
*aux-sample-size*::
569
Used to set the AUX area sample size, refer to the section
570
<<_aux_area_sampling_option,AUX area sampling option>>
571
572
*aux-output*::
573
Used to select PEBS-via-PT, refer to the
574
section <<_pebs_via_intel_pt,PEBS via Intel PT>>
575
576
*aux-action*::
577
Used to pause or resume tracing, refer to the section
578
<<_pause_or_resume_tracing,Pause or Resume Tracing>>
579
580
AUX area sampling option
581
~~~~~~~~~~~~~~~~~~~~~~~~
582
583
To select Intel PT "sampling" the AUX area sampling option can be used:
584
585
--aux-sample
586
587
Optionally it can be followed by the sample size in bytes e.g.
588
589
--aux-sample=8192
590
591
In addition, the Intel PT event to sample must be defined e.g.
592
593
-e intel_pt//u
594
595
Samples on other events will be created containing Intel PT data e.g. the
596
following will create Intel PT samples on the branch-misses event, note the
597
events must be grouped using {}:
598
599
perf record --aux-sample -e '{intel_pt//u,branch-misses:u}'
600
601
An alternative to '--aux-sample' is to add the config term 'aux-sample-size' to
602
events. In this case, the grouping is implied e.g.
603
604
perf record -e intel_pt//u -e branch-misses/aux-sample-size=8192/u
605
606
is the same as:
607
608
perf record -e '{intel_pt//u,branch-misses/aux-sample-size=8192/u}'
609
610
but allows for also using an address filter e.g.:
611
612
perf record -e intel_pt//u --filter 'filter * @/bin/ls' -e branch-misses/aux-sample-size=8192/u -- ls
613
614
It is important to select a sample size that is big enough to contain at least
615
one PSB packet. If not a warning will be displayed:
616
617
Intel PT sample size (%zu) may be too small for PSB period (%zu)
618
619
The calculation used for that is: if sample_size <= psb_period + 256 display the
620
warning. When sampling is used, psb_period defaults to 0 (2KiB).
621
622
The default sample size is 4KiB.
623
624
The sample size is passed in aux_sample_size in struct perf_event_attr. The
625
sample size is limited by the maximum event size which is 64KiB. It is
626
difficult to know how big the event might be without the trace sample attached,
627
but the tool validates that the sample size is not greater than 60KiB.
628
629
630
new snapshot option
631
~~~~~~~~~~~~~~~~~~~
632
633
The difference between full trace and snapshot from the kernel's perspective is
634
that in full trace we don't overwrite trace data that the user hasn't collected
635
yet (and indicated that by advancing aux_tail), whereas in snapshot mode we let
636
the trace run and overwrite older data in the buffer so that whenever something
637
interesting happens, we can stop it and grab a snapshot of what was going on
638
around that interesting moment.
639
640
To select snapshot mode a new option has been added:
641
642
-S
643
644
Optionally it can be followed by the snapshot size e.g.
645
646
-S0x100000
647
648
The default snapshot size is the auxtrace mmap size. If neither auxtrace mmap size
649
nor snapshot size is specified, then the default is 4MiB for privileged users
650
(or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users.
651
If an unprivileged user does not specify mmap pages, the mmap pages will be
652
reduced as described in the <<_new_auxtrace_mmap_size_option,new auxtrace mmap size option>>
653
section below.
654
655
The snapshot size is displayed if the option -vv is used e.g.
656
657
Intel PT snapshot size: %zu
658
659
660
new auxtrace mmap size option
661
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
662
663
Intel PT buffer size is specified by an addition to the -m option e.g.
664
665
-m,16
666
667
selects a buffer size of 16 pages i.e. 64KiB.
668
669
Note that the existing functionality of -m is unchanged. The auxtrace mmap size
670
is specified by the optional addition of a comma and the value.
671
672
The default auxtrace mmap size for Intel PT is 4MiB/page_size for privileged users
673
(or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users.
674
If an unprivileged user does not specify mmap pages, the mmap pages will be
675
reduced from the default 512KiB/page_size to 256KiB/page_size, otherwise the
676
user is likely to get an error as they exceed their mlock limit (Max locked
677
memory as shown in /proc/self/limits). Note that perf does not count the first
678
512KiB (actually /proc/sys/kernel/perf_event_mlock_kb minus 1 page) per cpu
679
against the mlock limit so an unprivileged user is allowed 512KiB per cpu plus
680
their mlock limit (which defaults to 64KiB but is not multiplied by the number
681
of cpus).
682
683
In full-trace mode, powers of two are allowed for buffer size, with a minimum
684
size of 2 pages. In snapshot mode or sampling mode, it is the same but the
685
minimum size is 1 page.
686
687
The mmap size and auxtrace mmap size are displayed if the -vv option is used e.g.
688
689
mmap length 528384
690
auxtrace mmap length 4198400
691
692
693
Intel PT modes of operation
694
~~~~~~~~~~~~~~~~~~~~~~~~~~~
695
696
Intel PT can be used in 3 modes:
697
full-trace mode
698
sample mode
699
snapshot mode
700
701
Full-trace mode traces continuously e.g.
702
703
perf record -e intel_pt//u uname
704
705
Sample mode attaches a Intel PT sample to other events e.g.
706
707
perf record --aux-sample -e intel_pt//u -e branch-misses:u
708
709
Snapshot mode captures the available data when a signal is sent or "snapshot"
710
control command is issued. e.g. using a signal
711
712
perf record -v -e intel_pt//u -S ./loopy 1000000000 &
713
[1] 11435
714
kill -USR2 11435
715
Recording AUX area tracing snapshot
716
717
Note that the signal sent is SIGUSR2.
718
Note that "Recording AUX area tracing snapshot" is displayed because the -v
719
option is used.
720
721
The advantage of using "snapshot" control command is that the access is
722
controlled by access to a FIFO e.g.
723
724
$ mkfifo perf.control
725
$ mkfifo perf.ack
726
$ cat perf.ack &
727
[1] 15235
728
$ sudo ~/bin/perf record --control fifo:perf.control,perf.ack -S -e intel_pt//u -- sleep 60 &
729
[2] 15243
730
$ ps -e | grep perf
731
15244 pts/1 00:00:00 perf
732
$ kill -USR2 15244
733
bash: kill: (15244) - Operation not permitted
734
$ echo snapshot > perf.control
735
ack
736
737
The 3 Intel PT modes of operation cannot be used together.
738
739
740
Buffer handling
741
~~~~~~~~~~~~~~~
742
743
There may be buffer limitations (i.e. single ToPa entry) which means that actual
744
buffer sizes are limited to powers of 2 up to 4MiB (MAX_PAGE_ORDER). In order to
745
provide other sizes, and in particular an arbitrarily large size, multiple
746
buffers are logically concatenated. However an interrupt must be used to switch
747
between buffers. That has two potential problems:
748
a) the interrupt may not be handled in time so that the current buffer
749
becomes full and some trace data is lost.
750
b) the interrupts may slow the system and affect the performance
751
results.
752
753
If trace data is lost, the driver sets 'truncated' in the PERF_RECORD_AUX event
754
which the tools report as an error.
755
756
In full-trace mode, the driver waits for data to be copied out before allowing
757
the (logical) buffer to wrap-around. If data is not copied out quickly enough,
758
again 'truncated' is set in the PERF_RECORD_AUX event. If the driver has to
759
wait, the intel_pt event gets disabled. Because it is difficult to know when
760
that happens, perf tools always re-enable the intel_pt event after copying out
761
data.
762
763
764
Intel PT and build ids
765
~~~~~~~~~~~~~~~~~~~~~~
766
767
By default "perf record" post-processes the event stream to find all build ids
768
for executables for all addresses sampled. Deliberately, Intel PT is not
769
decoded for that purpose (it would take too long). Instead the build ids for
770
all executables encountered (due to mmap, comm or task events) are included
771
in the perf.data file.
772
773
To see buildids included in the perf.data file use the command:
774
775
perf buildid-list
776
777
If the perf.data file contains Intel PT data, that is the same as:
778
779
perf buildid-list --with-hits
780
781
782
Snapshot mode and event disabling
783
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
784
785
In order to make a snapshot, the intel_pt event is disabled using an IOCTL,
786
namely PERF_EVENT_IOC_DISABLE. However doing that can also disable the
787
collection of side-band information. In order to prevent that, a dummy
788
software event has been introduced that permits tracking events (like mmaps) to
789
continue to be recorded while intel_pt is disabled. That is important to ensure
790
there is complete side-band information to allow the decoding of subsequent
791
snapshots.
792
793
A test has been created for that. To find the test:
794
795
perf test list
796
...
797
23: Test using a dummy software event to keep tracking
798
799
To run the test:
800
801
perf test 23
802
23: Test using a dummy software event to keep tracking : Ok
803
804
805
perf record modes (nothing new here)
806
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
807
808
perf record essentially operates in one of three modes:
809
per thread
810
per cpu
811
workload only
812
813
"per thread" mode is selected by -t or by --per-thread (with -p or -u or just a
814
workload).
815
"per cpu" is selected by -C or -a.
816
"workload only" mode is selected by not using the other options but providing a
817
command to run (i.e. the workload).
818
819
In per-thread mode an exact list of threads is traced. There is no inheritance.
820
Each thread has its own event buffer.
821
822
In per-cpu mode all processes (or processes from the selected cgroup i.e. -G
823
option, or processes selected with -p or -u) are traced. Each cpu has its own
824
buffer. Inheritance is allowed.
825
826
In workload-only mode, the workload is traced but with per-cpu buffers.
827
Inheritance is allowed. Note that you can now trace a workload in per-thread
828
mode by using the --per-thread option.
829
830
831
Privileged vs non-privileged users
832
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
833
834
Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users
835
have memory limits imposed upon them. That affects what buffer sizes they can
836
have as outlined above.
837
838
The v4.2 kernel introduced support for a context switch metadata event,
839
PERF_RECORD_SWITCH, which allows unprivileged users to see when their processes
840
are scheduled out and in, just not by whom, which is left for the
841
PERF_RECORD_SWITCH_CPU_WIDE, that is only accessible in system wide context,
842
which in turn requires CAP_PERFMON or CAP_SYS_ADMIN.
843
844
Please see the 45ac1403f564 ("perf: Add PERF_RECORD_SWITCH to indicate context
845
switches") commit, that introduces these metadata events for further info.
846
847
When working with kernels < v4.2, the following considerations must be taken,
848
as the sched:sched_switch tracepoints will be used to receive such information:
849
850
Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users are
851
not permitted to use tracepoints which means there is insufficient side-band
852
information to decode Intel PT in per-cpu mode, and potentially workload-only
853
mode too if the workload creates new processes.
854
855
Note also, that to use tracepoints, read-access to debugfs is required. So if
856
debugfs is not mounted or the user does not have read-access, it will again not
857
be possible to decode Intel PT in per-cpu mode.
858
859
860
sched_switch tracepoint
861
~~~~~~~~~~~~~~~~~~~~~~~
862
863
The sched_switch tracepoint is used to provide side-band data for Intel PT
864
decoding in kernels where the PERF_RECORD_SWITCH metadata event isn't
865
available.
866
867
The sched_switch events are automatically added. e.g. the second event shown
868
below:
869
870
$ perf record -vv -e intel_pt//u uname
871
------------------------------------------------------------
872
perf_event_attr:
873
type 6
874
size 112
875
config 0x400
876
{ sample_period, sample_freq } 1
877
sample_type IP|TID|TIME|CPU|IDENTIFIER
878
read_format ID
879
disabled 1
880
inherit 1
881
exclude_kernel 1
882
exclude_hv 1
883
enable_on_exec 1
884
sample_id_all 1
885
------------------------------------------------------------
886
sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8
887
sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8
888
sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8
889
sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8
890
------------------------------------------------------------
891
perf_event_attr:
892
type 2
893
size 112
894
config 0x108
895
{ sample_period, sample_freq } 1
896
sample_type IP|TID|TIME|CPU|PERIOD|RAW|IDENTIFIER
897
read_format ID
898
inherit 1
899
sample_id_all 1
900
exclude_guest 1
901
------------------------------------------------------------
902
sys_perf_event_open: pid -1 cpu 0 group_fd -1 flags 0x8
903
sys_perf_event_open: pid -1 cpu 1 group_fd -1 flags 0x8
904
sys_perf_event_open: pid -1 cpu 2 group_fd -1 flags 0x8
905
sys_perf_event_open: pid -1 cpu 3 group_fd -1 flags 0x8
906
------------------------------------------------------------
907
perf_event_attr:
908
type 1
909
size 112
910
config 0x9
911
{ sample_period, sample_freq } 1
912
sample_type IP|TID|TIME|IDENTIFIER
913
read_format ID
914
disabled 1
915
inherit 1
916
exclude_kernel 1
917
exclude_hv 1
918
mmap 1
919
comm 1
920
enable_on_exec 1
921
task 1
922
sample_id_all 1
923
mmap2 1
924
comm_exec 1
925
------------------------------------------------------------
926
sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8
927
sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8
928
sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8
929
sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8
930
mmap size 528384B
931
AUX area mmap length 4194304
932
perf event ring buffer mmapped per cpu
933
Synthesizing auxtrace information
934
Linux
935
[ perf record: Woken up 1 times to write data ]
936
[ perf record: Captured and wrote 0.042 MB perf.data ]
937
938
Note, the sched_switch event is only added if the user is permitted to use it
939
and only in per-cpu mode.
940
941
Note also, the sched_switch event is only added if TSC packets are requested.
942
That is because, in the absence of timing information, the sched_switch events
943
cannot be matched against the Intel PT trace.
944
945
946
perf script
947
-----------
948
949
By default, perf script will decode trace data found in the perf.data file.
950
This can be further controlled by new option --itrace.
951
952
953
New --itrace option
954
~~~~~~~~~~~~~~~~~~~
955
956
Having no option is the same as
957
958
--itrace
959
960
which, in turn, is the same as
961
962
--itrace=cepwxy
963
964
The letters are:
965
966
i synthesize "instructions" events
967
y synthesize "cycles" events
968
b synthesize "branches" events
969
x synthesize "transactions" events
970
w synthesize "ptwrite" events
971
p synthesize "power" events (incl. PSB events)
972
c synthesize branches events (calls only)
973
r synthesize branches events (returns only)
974
o synthesize PEBS-via-PT events
975
I synthesize Event Trace events
976
e synthesize tracing error events
977
d create a debug log
978
g synthesize a call chain (use with i or x)
979
G synthesize a call chain on existing event records
980
l synthesize last branch entries (use with i or x)
981
L synthesize last branch entries on existing event records
982
s skip initial number of events
983
q quicker (less detailed) decoding
984
A approximate IPC
985
Z prefer to ignore timestamps (so-called "timeless" decoding)
986
987
"Instructions" events look like they were recorded by "perf record -e
988
instructions".
989
990
"Cycles" events look like they were recorded by "perf record -e cycles"
991
(ie., the default). Note that even with CYC packets enabled and no sampling,
992
these are not fully accurate, since CYC packets are not emitted for each
993
instruction, only when some other event (like an indirect branch, or a
994
TNT packet representing multiple branches) happens causes a packet to
995
be emitted. Thus, it is more effective for attributing cycles to functions
996
(and possibly basic blocks) than to individual instructions, although it
997
is not even perfect for functions (although it becomes better if the noretcomp
998
option is active).
999
1000
"Branches" events look like they were recorded by "perf record -e branches". "c"
1001
and "r" can be combined to get calls and returns.
1002
1003
"Transactions" events correspond to the start or end of transactions. The
1004
'flags' field can be used in perf script to determine whether the event is a
1005
transaction start, commit or abort.
1006
1007
Note that "instructions", "cycles", "branches" and "transactions" events
1008
depend on code flow packets which can be disabled by using the config term
1009
"branch=0". Refer to the <<_config_terms,config terms>> section above.
1010
1011
"ptwrite" events record the payload of the ptwrite instruction and whether
1012
"fup_on_ptw" was used. "ptwrite" events depend on PTWRITE packets which are
1013
recorded only if the "ptw" config term was used. Refer to the <<_config_terms,config terms>>
1014
section above. perf script "synth" field displays "ptwrite" information like
1015
this: "ip: 0 payload: 0x123456789abcdef0" where "ip" is 1 if "fup_on_ptw" was
1016
used.
1017
1018
"Power" events correspond to power event packets and CBR (core-to-bus ratio)
1019
packets. While CBR packets are always recorded when tracing is enabled, power
1020
event packets are recorded only if the "pwr_evt" config term was used. Refer to
1021
the <<_config_terms,config terms>> section above. The power events record information about
1022
C-state changes, whereas CBR is indicative of CPU frequency. perf script
1023
"event,synth" fields display information like this:
1024
1025
cbr: cbr: 22 freq: 2189 MHz (200%)
1026
mwait: hints: 0x60 extensions: 0x1
1027
pwre: hw: 0 cstate: 2 sub-cstate: 0
1028
exstop: ip: 1
1029
pwrx: deepest cstate: 2 last cstate: 2 wake reason: 0x4
1030
1031
Where:
1032
1033
"cbr" includes the frequency and the percentage of maximum non-turbo
1034
"mwait" shows mwait hints and extensions
1035
"pwre" shows C-state transitions (to a C-state deeper than C0) and
1036
whether initiated by hardware
1037
"exstop" indicates execution stopped and whether the IP was recorded
1038
exactly,
1039
"pwrx" indicates return to C0
1040
1041
For more details refer to the Intel 64 and IA-32 Architectures Software
1042
Developer Manuals.
1043
1044
PSB events show when a PSB+ occurred and also the byte-offset in the trace.
1045
Emitting a PSB+ can cause a CPU a slight delay. When doing timing analysis
1046
of code with Intel PT, it is useful to know if a timing bubble was caused
1047
by Intel PT or not.
1048
1049
Error events show where the decoder lost the trace. Error events
1050
are quite important. Users must know if what they are seeing is a complete
1051
picture or not. The "e" option may be followed by flags which affect what errors
1052
will or will not be reported. Each flag must be preceded by either '+' or '-'.
1053
The flags supported by Intel PT are:
1054
1055
-o Suppress overflow errors
1056
-l Suppress trace data lost errors
1057
1058
For example, for errors but not overflow or data lost errors:
1059
1060
--itrace=e-o-l
1061
1062
The "d" option will cause the creation of a file "intel_pt.log" containing all
1063
decoded packets and instructions. Note that this option slows down the decoder
1064
and that the resulting file may be very large. The "d" option may be followed
1065
by flags which affect what debug messages will or will not be logged. Each flag
1066
must be preceded by either '+' or '-'. The flags support by Intel PT are:
1067
1068
-a Suppress logging of perf events
1069
+a Log all perf events
1070
+e Output only on decoding errors (size configurable)
1071
+o Output to stdout instead of "intel_pt.log"
1072
1073
By default, logged perf events are filtered by any specified time ranges, but
1074
flag +a overrides that. The +e flag can be useful for analyzing errors. By
1075
default, the log size in that case is 16384 bytes, but can be altered by
1076
linkperf:perf-config[1] e.g. perf config itrace.debug-log-buffer-size=30000
1077
1078
In addition, the period of the "instructions" event can be specified. e.g.
1079
1080
--itrace=i10us
1081
1082
sets the period to 10us i.e. one instruction sample is synthesized for each 10
1083
microseconds of trace. Alternatives to "us" are "ms" (milliseconds),
1084
"ns" (nanoseconds), "t" (TSC ticks) or "i" (instructions).
1085
1086
"ms", "us" and "ns" are converted to TSC ticks.
1087
1088
The timing information included with Intel PT does not give the time of every
1089
instruction. Consequently, for the purpose of sampling, the decoder estimates
1090
the time since the last timing packet based on 1 tick per instruction. The time
1091
on the sample is *not* adjusted and reflects the last known value of TSC.
1092
1093
For Intel PT, the default period is 100us.
1094
1095
Setting it to a zero period means "as often as possible".
1096
1097
In the case of Intel PT that is the same as a period of 1 and a unit of
1098
'instructions' (i.e. --itrace=i1i).
1099
1100
Also the call chain size (default 16, max. 1024) for instructions or
1101
transactions events can be specified. e.g.
1102
1103
--itrace=ig32
1104
--itrace=xg32
1105
1106
Also the number of last branch entries (default 64, max. 1024) for instructions or
1107
transactions events can be specified. e.g.
1108
1109
--itrace=il10
1110
--itrace=xl10
1111
1112
Note that last branch entries are cleared for each sample, so there is no overlap
1113
from one sample to the next.
1114
1115
The G and L options are designed in particular for sample mode, and work much
1116
like g and l but add call chain and branch stack to the other selected events
1117
instead of synthesized events. For example, to record branch-misses events for
1118
'ls' and then add a call chain derived from the Intel PT trace:
1119
1120
perf record --aux-sample -e '{intel_pt//u,branch-misses:u}' -- ls
1121
perf report --itrace=Ge
1122
1123
Although in fact G is a default for perf report, so that is the same as just:
1124
1125
perf report
1126
1127
One caveat with the G and L options is that they work poorly with "Large PEBS".
1128
Large PEBS means PEBS records will be accumulated by hardware and the written
1129
into the event buffer in one go. That reduces interrupts, but can give very
1130
late timestamps. Because the Intel PT trace is synchronized by timestamps,
1131
the PEBS events do not match the trace. Currently, Large PEBS is used only in
1132
certain circumstances:
1133
- hardware supports it
1134
- PEBS is used
1135
- event period is specified, instead of frequency
1136
- the sample type is limited to the following flags:
1137
PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_ADDR |
1138
PERF_SAMPLE_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID |
1139
PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_IDENTIFIER |
1140
PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_PHYS_ADDR |
1141
PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER |
1142
PERF_SAMPLE_PERIOD (and sometimes) | PERF_SAMPLE_TIME
1143
Because Intel PT sample mode uses a different sample type to the list above,
1144
Large PEBS is not used with Intel PT sample mode. To avoid Large PEBS in other
1145
cases, avoid specifying the event period i.e. avoid the 'perf record' -c option,
1146
--count option, or 'period' config term.
1147
1148
To disable trace decoding entirely, use the option --no-itrace.
1149
1150
It is also possible to skip events generated (instructions, branches, transactions)
1151
at the beginning. This is useful to ignore initialization code.
1152
1153
--itrace=i0nss1000000
1154
1155
skips the first million instructions.
1156
1157
The q option changes the way the trace is decoded. The decoding is much faster
1158
but much less detailed. Specifically, with the q option, the decoder does not
1159
decode TNT packets, and does not walk object code, but gets the ip from FUP and
1160
TIP packets. The q option can be used with the b and i options but the period
1161
is not used. The q option decodes more quickly, but is useful only if the
1162
control flow of interest is represented or indicated by FUP, TIP, TIP.PGE, or
1163
TIP.PGD packets (refer below). However the q option could be used to find time
1164
ranges that could then be decoded fully using the --time option.
1165
1166
What will *not* be decoded with the (single) q option:
1167
1168
- direct calls and jmps
1169
- conditional branches
1170
- non-branch instructions
1171
1172
What *will* be decoded with the (single) q option:
1173
1174
- asynchronous branches such as interrupts
1175
- indirect branches
1176
- function return target address *if* the noretcomp config term (refer
1177
<<_config_terms,config terms>> section) was used
1178
- start of (control-flow) tracing
1179
- end of (control-flow) tracing, if it is not out of context
1180
- power events, ptwrite, transaction start and abort
1181
- instruction pointer associated with PSB packets
1182
1183
Note the q option does not specify what events will be synthesized e.g. the p
1184
option must be used also to show power events.
1185
1186
Repeating the q option (double-q i.e. qq) results in even faster decoding and even
1187
less detail. The decoder decodes only extended PSB (PSB+) packets, getting the
1188
instruction pointer if there is a FUP packet within PSB+ (i.e. between PSB and
1189
PSBEND). Note PSB packets occur regularly in the trace based on the psb_period
1190
config term (refer <<_config_terms,config terms>> section). There will be a FUP packet if the
1191
PSB+ occurs while control flow is being traced.
1192
1193
What will *not* be decoded with the qq option:
1194
1195
- everything except instruction pointer associated with PSB packets
1196
1197
What *will* be decoded with the qq option:
1198
1199
- instruction pointer associated with PSB packets
1200
1201
The Z option is equivalent to having recorded a trace without TSC
1202
(i.e. config term tsc=0). It can be useful to avoid timestamp issues when
1203
decoding a trace of a virtual machine.
1204
1205
1206
dlfilter-show-cycles.so
1207
~~~~~~~~~~~~~~~~~~~~~~~
1208
1209
Cycles can be displayed using dlfilter-show-cycles.so in which case the itrace A
1210
option can be useful to provide higher granularity cycle information:
1211
1212
perf script --itrace=A --call-trace --dlfilter dlfilter-show-cycles.so
1213
1214
To see a list of dlfilters:
1215
1216
perf script -v --list-dlfilters
1217
1218
See also linkperf:perf-dlfilters[1]
1219
1220
1221
dump option
1222
~~~~~~~~~~~
1223
1224
perf script has an option (-D) to "dump" the events i.e. display the binary
1225
data.
1226
1227
When -D is used, Intel PT packets are displayed. The packet decoder does not
1228
pay attention to PSB packets, but just decodes the bytes - so the packets seen
1229
by the actual decoder may not be identical in places where the data is corrupt.
1230
One example of that would be when the buffer-switching interrupt has been too
1231
slow, and the buffer has been filled completely. In that case, the last packet
1232
in the buffer might be truncated and immediately followed by a PSB as the trace
1233
continues in the next buffer.
1234
1235
To disable the display of Intel PT packets, combine the -D option with
1236
--no-itrace.
1237
1238
1239
perf report
1240
-----------
1241
1242
By default, perf report will decode trace data found in the perf.data file.
1243
This can be further controlled by new option --itrace exactly the same as
1244
perf script, with the exception that the default is --itrace=igxe.
1245
1246
1247
perf inject
1248
-----------
1249
1250
perf inject also accepts the --itrace option in which case tracing data is
1251
removed and replaced with the synthesized events. e.g.
1252
1253
perf inject --itrace -i perf.data -o perf.data.new
1254
1255
Below is an example of using Intel PT with autofdo. It requires autofdo
1256
(https://github.com/google/autofdo) and gcc version 5. The bubble
1257
sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial)
1258
amended to take the number of elements as a parameter.
1259
1260
$ gcc-5 -O3 sort.c -o sort_optimized
1261
$ ./sort_optimized 30000
1262
Bubble sorting array of 30000 elements
1263
2254 ms
1264
1265
$ cat ~/.perfconfig
1266
[intel-pt]
1267
mispred-all = on
1268
1269
$ perf record -e intel_pt//u ./sort 3000
1270
Bubble sorting array of 3000 elements
1271
58 ms
1272
[ perf record: Woken up 2 times to write data ]
1273
[ perf record: Captured and wrote 3.939 MB perf.data ]
1274
$ perf inject -i perf.data -o inj --itrace=i100usle --strip
1275
$ ./create_gcov --binary=./sort --profile=inj --gcov=sort.gcov -gcov_version=1
1276
$ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo
1277
$ ./sort_autofdo 30000
1278
Bubble sorting array of 30000 elements
1279
2155 ms
1280
1281
Note there is currently no advantage to using Intel PT instead of LBR, but
1282
that may change in the future if greater use is made of the data.
1283
1284
1285
PEBS via Intel PT
1286
-----------------
1287
1288
Some hardware has the feature to redirect PEBS records to the Intel PT trace.
1289
Recording is selected by using the aux-output config term e.g.
1290
1291
perf record -c 10000 -e '{intel_pt/branch=0/,cycles/aux-output/ppp}' uname
1292
1293
Originally, software only supported redirecting at most one PEBS event because it
1294
was not able to differentiate one event from another. To overcome that, more recent
1295
kernels and perf tools add support for the PERF_RECORD_AUX_OUTPUT_HW_ID side-band event.
1296
To check for the presence of that event in a PEBS-via-PT trace:
1297
1298
perf script -D --no-itrace | grep PERF_RECORD_AUX_OUTPUT_HW_ID
1299
1300
To display PEBS events from the Intel PT trace, use the itrace 'o' option e.g.
1301
1302
perf script --itrace=oe
1303
1304
XED
1305
---
1306
1307
include::build-xed.txt[]
1308
1309
1310
Tracing Virtual Machines (kernel only)
1311
--------------------------------------
1312
1313
Currently, kernel tracing is supported with either "timeless" decoding
1314
(i.e. no TSC timestamps) or VM Time Correlation. VM Time Correlation is an extra step
1315
using 'perf inject' and requires unchanging VMX TSC Offset and no VMX TSC Scaling.
1316
1317
Other limitations and caveats
1318
1319
VMX controls may suppress packets needed for decoding resulting in decoding errors
1320
VMX controls may block the perf NMI to the host potentially resulting in lost trace data
1321
Guest kernel self-modifying code (e.g. jump labels or JIT-compiled eBPF) will result in decoding errors
1322
Guest thread information is unknown
1323
Guest VCPU is unknown but may be able to be inferred from the host thread
1324
Callchains are not supported
1325
1326
Example using "timeless" decoding
1327
1328
Start VM
1329
1330
$ sudo virsh start kubuntu20.04
1331
Domain kubuntu20.04 started
1332
1333
Mount the guest file system. Note sshfs needs -o direct_io to enable reading of proc files. root access is needed to read /proc/kcore.
1334
1335
$ mkdir vm0
1336
$ sshfs -o direct_io root@vm0:/ vm0
1337
1338
Copy the guest /proc/kallsyms, /proc/modules and /proc/kcore
1339
1340
$ perf buildid-cache -v --kcore vm0/proc/kcore
1341
kcore added to build-id cache directory /home/user/.debug/[kernel.kcore]/9600f316a53a0f54278885e8d9710538ec5f6a08/2021021807494306
1342
$ KALLSYMS=/home/user/.debug/[kernel.kcore]/9600f316a53a0f54278885e8d9710538ec5f6a08/2021021807494306/kallsyms
1343
1344
Find the VM process
1345
1346
$ ps -eLl | grep 'KVM\|PID'
1347
F S UID PID PPID LWP C PRI NI ADDR SZ WCHAN TTY TIME CMD
1348
3 S 64055 1430 1 1440 1 80 0 - 1921718 - ? 00:02:47 CPU 0/KVM
1349
3 S 64055 1430 1 1441 1 80 0 - 1921718 - ? 00:02:41 CPU 1/KVM
1350
3 S 64055 1430 1 1442 1 80 0 - 1921718 - ? 00:02:38 CPU 2/KVM
1351
3 S 64055 1430 1 1443 2 80 0 - 1921718 - ? 00:03:18 CPU 3/KVM
1352
1353
Start an open-ended perf record, tracing the VM process, do something on the VM, and then ctrl-C to stop.
1354
TSC is not supported and tsc=0 must be specified. That means mtc is useless, so add mtc=0.
1355
However, IPC can still be determined, hence cyc=1 can be added.
1356
Only kernel decoding is supported, so 'k' must be specified.
1357
Intel PT traces both the host and the guest so --guest and --host need to be specified.
1358
Without timestamps, --per-thread must be specified to distinguish threads.
1359
1360
$ sudo perf kvm --guest --host --guestkallsyms $KALLSYMS record --kcore -e intel_pt/tsc=0,mtc=0,cyc=1/k -p 1430 --per-thread
1361
^C
1362
[ perf record: Woken up 1 times to write data ]
1363
[ perf record: Captured and wrote 5.829 MB ]
1364
1365
perf script can be used to provide an instruction trace
1366
1367
$ perf script --guestkallsyms $KALLSYMS --insn-trace=disasm -F+ipc | grep -C10 vmresume | head -21
1368
CPU 0/KVM 1440 ffffffff82133cdd __vmx_vcpu_run+0x3d ([kernel.kallsyms]) movq 0x48(%rax), %r9
1369
CPU 0/KVM 1440 ffffffff82133ce1 __vmx_vcpu_run+0x41 ([kernel.kallsyms]) movq 0x50(%rax), %r10
1370
CPU 0/KVM 1440 ffffffff82133ce5 __vmx_vcpu_run+0x45 ([kernel.kallsyms]) movq 0x58(%rax), %r11
1371
CPU 0/KVM 1440 ffffffff82133ce9 __vmx_vcpu_run+0x49 ([kernel.kallsyms]) movq 0x60(%rax), %r12
1372
CPU 0/KVM 1440 ffffffff82133ced __vmx_vcpu_run+0x4d ([kernel.kallsyms]) movq 0x68(%rax), %r13
1373
CPU 0/KVM 1440 ffffffff82133cf1 __vmx_vcpu_run+0x51 ([kernel.kallsyms]) movq 0x70(%rax), %r14
1374
CPU 0/KVM 1440 ffffffff82133cf5 __vmx_vcpu_run+0x55 ([kernel.kallsyms]) movq 0x78(%rax), %r15
1375
CPU 0/KVM 1440 ffffffff82133cf9 __vmx_vcpu_run+0x59 ([kernel.kallsyms]) movq (%rax), %rax
1376
CPU 0/KVM 1440 ffffffff82133cfc __vmx_vcpu_run+0x5c ([kernel.kallsyms]) callq 0xffffffff82133c40
1377
CPU 0/KVM 1440 ffffffff82133c40 vmx_vmenter+0x0 ([kernel.kallsyms]) jz 0xffffffff82133c46
1378
CPU 0/KVM 1440 ffffffff82133c42 vmx_vmenter+0x2 ([kernel.kallsyms]) vmresume IPC: 0.11 (50/445)
1379
:1440 1440 ffffffffbb678b06 native_write_msr+0x6 ([guest.kernel.kallsyms]) nopl %eax, (%rax,%rax,1)
1380
:1440 1440 ffffffffbb678b0b native_write_msr+0xb ([guest.kernel.kallsyms]) retq IPC: 0.04 (2/41)
1381
:1440 1440 ffffffffbb666646 lapic_next_deadline+0x26 ([guest.kernel.kallsyms]) data16 nop
1382
:1440 1440 ffffffffbb666648 lapic_next_deadline+0x28 ([guest.kernel.kallsyms]) xor %eax, %eax
1383
:1440 1440 ffffffffbb66664a lapic_next_deadline+0x2a ([guest.kernel.kallsyms]) popq %rbp
1384
:1440 1440 ffffffffbb66664b lapic_next_deadline+0x2b ([guest.kernel.kallsyms]) retq IPC: 0.16 (4/25)
1385
:1440 1440 ffffffffbb74607f clockevents_program_event+0x8f ([guest.kernel.kallsyms]) test %eax, %eax
1386
:1440 1440 ffffffffbb746081 clockevents_program_event+0x91 ([guest.kernel.kallsyms]) jz 0xffffffffbb74603c IPC: 0.06 (2/30)
1387
:1440 1440 ffffffffbb74603c clockevents_program_event+0x4c ([guest.kernel.kallsyms]) popq %rbx
1388
:1440 1440 ffffffffbb74603d clockevents_program_event+0x4d ([guest.kernel.kallsyms]) popq %r12
1389
1390
Example using VM Time Correlation
1391
1392
Start VM
1393
1394
$ sudo virsh start kubuntu20.04
1395
Domain kubuntu20.04 started
1396
1397
Mount the guest file system. Note sshfs needs -o direct_io to enable reading of proc files. root access is needed to read /proc/kcore.
1398
1399
$ mkdir -p vm0
1400
$ sshfs -o direct_io root@vm0:/ vm0
1401
1402
Copy the guest /proc/kallsyms, /proc/modules and /proc/kcore
1403
1404
$ perf buildid-cache -v --kcore vm0/proc/kcore
1405
same kcore found in /home/user/.debug/[kernel.kcore]/cc9c55a98c5e4ec0aeda69302554aabed5cd6491/2021021312450777
1406
$ KALLSYMS=/home/user/.debug/\[kernel.kcore\]/cc9c55a98c5e4ec0aeda69302554aabed5cd6491/2021021312450777/kallsyms
1407
1408
Find the VM process
1409
1410
$ ps -eLl | grep 'KVM\|PID'
1411
F S UID PID PPID LWP C PRI NI ADDR SZ WCHAN TTY TIME CMD
1412
3 S 64055 16998 1 17005 13 80 0 - 1818189 - ? 00:00:16 CPU 0/KVM
1413
3 S 64055 16998 1 17006 4 80 0 - 1818189 - ? 00:00:05 CPU 1/KVM
1414
3 S 64055 16998 1 17007 3 80 0 - 1818189 - ? 00:00:04 CPU 2/KVM
1415
3 S 64055 16998 1 17008 4 80 0 - 1818189 - ? 00:00:05 CPU 3/KVM
1416
1417
Start an open-ended perf record, tracing the VM process, do something on the VM, and then ctrl-C to stop.
1418
IPC can be determined, hence cyc=1 can be added.
1419
Only kernel decoding is supported, so 'k' must be specified.
1420
Intel PT traces both the host and the guest so --guest and --host need to be specified.
1421
1422
$ sudo perf kvm --guest --host --guestkallsyms $KALLSYMS record --kcore -e intel_pt/cyc=1/k -p 16998
1423
^C[ perf record: Woken up 1 times to write data ]
1424
[ perf record: Captured and wrote 9.041 MB perf.data.kvm ]
1425
1426
Now 'perf inject' can be used to determine the VMX TCS Offset. Note, Intel PT TSC packets are
1427
only 7-bytes, so the TSC Offset might differ from the actual value in the 8th byte. That will
1428
have no effect i.e. the resulting timestamps will be correct anyway.
1429
1430
$ perf inject -i perf.data.kvm --vm-time-correlation=dry-run
1431
ERROR: Unknown TSC Offset for VMCS 0x1bff6a
1432
VMCS: 0x1bff6a TSC Offset 0xffffe42722c64c41
1433
ERROR: Unknown TSC Offset for VMCS 0x1cbc08
1434
VMCS: 0x1cbc08 TSC Offset 0xffffe42722c64c41
1435
ERROR: Unknown TSC Offset for VMCS 0x1c3ce8
1436
VMCS: 0x1c3ce8 TSC Offset 0xffffe42722c64c41
1437
ERROR: Unknown TSC Offset for VMCS 0x1cbce9
1438
VMCS: 0x1cbce9 TSC Offset 0xffffe42722c64c41
1439
1440
Each virtual CPU has a different Virtual Machine Control Structure (VMCS)
1441
shown above with the calculated TSC Offset. For an unchanging TSC Offset
1442
they should all be the same for the same virtual machine.
1443
1444
Now that the TSC Offset is known, it can be provided to 'perf inject'
1445
1446
$ perf inject -i perf.data.kvm --vm-time-correlation="dry-run 0xffffe42722c64c41"
1447
1448
Note the options for 'perf inject' --vm-time-correlation are:
1449
1450
[ dry-run ] [ <TSC Offset> [ : <VMCS> [ , <VMCS> ]... ] ]...
1451
1452
So it is possible to specify different TSC Offsets for different VMCS.
1453
The option "dry-run" will cause the file to be processed but without updating it.
1454
Note it is also possible to get a intel_pt.log file by adding option --itrace=d
1455
1456
There were no errors so, do it for real
1457
1458
$ perf inject -i perf.data.kvm --vm-time-correlation=0xffffe42722c64c41 --force
1459
1460
'perf script' can be used to see if there are any decoder errors
1461
1462
$ perf script -i perf.data.kvm --guestkallsyms $KALLSYMS --itrace=e-o
1463
1464
There were none.
1465
1466
'perf script' can be used to provide an instruction trace showing timestamps
1467
1468
$ perf script -i perf.data.kvm --guestkallsyms $KALLSYMS --insn-trace=disasm -F+ipc | grep -C10 vmresume | head -21
1469
CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133cdd __vmx_vcpu_run+0x3d ([kernel.kallsyms]) movq 0x48(%rax), %r9
1470
CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133ce1 __vmx_vcpu_run+0x41 ([kernel.kallsyms]) movq 0x50(%rax), %r10
1471
CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133ce5 __vmx_vcpu_run+0x45 ([kernel.kallsyms]) movq 0x58(%rax), %r11
1472
CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133ce9 __vmx_vcpu_run+0x49 ([kernel.kallsyms]) movq 0x60(%rax), %r12
1473
CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133ced __vmx_vcpu_run+0x4d ([kernel.kallsyms]) movq 0x68(%rax), %r13
1474
CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133cf1 __vmx_vcpu_run+0x51 ([kernel.kallsyms]) movq 0x70(%rax), %r14
1475
CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133cf5 __vmx_vcpu_run+0x55 ([kernel.kallsyms]) movq 0x78(%rax), %r15
1476
CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133cf9 __vmx_vcpu_run+0x59 ([kernel.kallsyms]) movq (%rax), %rax
1477
CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133cfc __vmx_vcpu_run+0x5c ([kernel.kallsyms]) callq 0xffffffff82133c40
1478
CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133c40 vmx_vmenter+0x0 ([kernel.kallsyms]) jz 0xffffffff82133c46
1479
CPU 1/KVM 17006 [001] 11500.262866075: ffffffff82133c42 vmx_vmenter+0x2 ([kernel.kallsyms]) vmresume IPC: 0.05 (40/769)
1480
:17006 17006 [001] 11500.262869216: ffffffff82200cb0 asm_sysvec_apic_timer_interrupt+0x0 ([guest.kernel.kallsyms]) clac
1481
:17006 17006 [001] 11500.262869216: ffffffff82200cb3 asm_sysvec_apic_timer_interrupt+0x3 ([guest.kernel.kallsyms]) pushq $0xffffffffffffffff
1482
:17006 17006 [001] 11500.262869216: ffffffff82200cb5 asm_sysvec_apic_timer_interrupt+0x5 ([guest.kernel.kallsyms]) callq 0xffffffff82201160
1483
:17006 17006 [001] 11500.262869216: ffffffff82201160 error_entry+0x0 ([guest.kernel.kallsyms]) cld
1484
:17006 17006 [001] 11500.262869216: ffffffff82201161 error_entry+0x1 ([guest.kernel.kallsyms]) pushq %rsi
1485
:17006 17006 [001] 11500.262869216: ffffffff82201162 error_entry+0x2 ([guest.kernel.kallsyms]) movq 0x8(%rsp), %rsi
1486
:17006 17006 [001] 11500.262869216: ffffffff82201167 error_entry+0x7 ([guest.kernel.kallsyms]) movq %rdi, 0x8(%rsp)
1487
:17006 17006 [001] 11500.262869216: ffffffff8220116c error_entry+0xc ([guest.kernel.kallsyms]) pushq %rdx
1488
:17006 17006 [001] 11500.262869216: ffffffff8220116d error_entry+0xd ([guest.kernel.kallsyms]) pushq %rcx
1489
:17006 17006 [001] 11500.262869216: ffffffff8220116e error_entry+0xe ([guest.kernel.kallsyms]) pushq %rax
1490
1491
1492
Tracing Virtual Machines (including user space)
1493
-----------------------------------------------
1494
1495
It is possible to use perf record to record sideband events within a virtual machine, so that an Intel PT trace on the host can be decoded.
1496
Sideband events from the guest perf.data file can be injected into the host perf.data file using perf inject.
1497
1498
Here is an example of the steps needed:
1499
1500
On the guest machine:
1501
1502
Check that no-kvmclock kernel command line option was used to boot:
1503
1504
Note, this is essential to enable time correlation between host and guest machines.
1505
1506
$ cat /proc/cmdline
1507
BOOT_IMAGE=/boot/vmlinuz-5.10.0-16-amd64 root=UUID=cb49c910-e573-47e0-bce7-79e293df8e1d ro no-kvmclock
1508
1509
There is no BPF support at present so, if possible, disable JIT compiling:
1510
1511
$ echo 0 | sudo tee /proc/sys/net/core/bpf_jit_enable
1512
0
1513
1514
Start perf record to collect sideband events:
1515
1516
$ sudo perf record -o guest-sideband-testing-guest-perf.data --sample-identifier --buildid-all --switch-events --kcore -a -e dummy
1517
1518
On the host machine:
1519
1520
Start perf record to collect Intel PT trace:
1521
1522
Note, the host trace will get very big, very fast, so the steps from starting to stopping the host trace really need to be done so that they happen in the shortest time possible.
1523
1524
$ sudo perf record -o guest-sideband-testing-host-perf.data -m,64M --kcore -a -e intel_pt/cyc/
1525
1526
On the guest machine:
1527
1528
Run a small test case, just 'uname' in this example:
1529
1530
$ uname
1531
Linux
1532
1533
On the host machine:
1534
1535
Stop the Intel PT trace:
1536
1537
^C
1538
[ perf record: Woken up 1 times to write data ]
1539
[ perf record: Captured and wrote 76.122 MB guest-sideband-testing-host-perf.data ]
1540
1541
On the guest machine:
1542
1543
Stop the Intel PT trace:
1544
1545
^C
1546
[ perf record: Woken up 1 times to write data ]
1547
[ perf record: Captured and wrote 1.247 MB guest-sideband-testing-guest-perf.data ]
1548
1549
And then copy guest-sideband-testing-guest-perf.data to the host (not shown here).
1550
1551
On the host machine:
1552
1553
With the 2 perf.data recordings, and with their ownership changed to the user.
1554
1555
Identify the TSC Offset:
1556
1557
$ perf inject -i guest-sideband-testing-host-perf.data --vm-time-correlation=dry-run
1558
VMCS: 0x103fc6 TSC Offset 0xfffffa6ae070cb20
1559
VMCS: 0x103ff2 TSC Offset 0xfffffa6ae070cb20
1560
VMCS: 0x10fdaa TSC Offset 0xfffffa6ae070cb20
1561
VMCS: 0x24d57c TSC Offset 0xfffffa6ae070cb20
1562
1563
Correct Intel PT TSC timestamps for the guest machine:
1564
1565
$ perf inject -i guest-sideband-testing-host-perf.data --vm-time-correlation=0xfffffa6ae070cb20 --force
1566
1567
Identify the guest machine PID:
1568
1569
$ perf script -i guest-sideband-testing-host-perf.data --no-itrace --show-task-events | grep KVM
1570
CPU 0/KVM 0 [000] 0.000000: PERF_RECORD_COMM: CPU 0/KVM:13376/13381
1571
CPU 1/KVM 0 [000] 0.000000: PERF_RECORD_COMM: CPU 1/KVM:13376/13382
1572
CPU 2/KVM 0 [000] 0.000000: PERF_RECORD_COMM: CPU 2/KVM:13376/13383
1573
CPU 3/KVM 0 [000] 0.000000: PERF_RECORD_COMM: CPU 3/KVM:13376/13384
1574
1575
Note, the QEMU option -name debug-threads=on is needed so that thread names
1576
can be used to determine which thread is running which VCPU as above. libvirt seems to use this by default.
1577
1578
Create a guestmount, assuming the guest machine is 'vm_to_test':
1579
1580
$ mkdir -p ~/guestmount/13376
1581
$ sshfs -o direct_io vm_to_test:/ ~/guestmount/13376
1582
1583
Inject the guest perf.data file into the host perf.data file:
1584
1585
Note, due to the guestmount option, guest object files and debug files will be copied into the build ID cache from the guest machine, with the notable exception of VDSO.
1586
If needed, VDSO can be copied manually in a fashion similar to that used by the perf-archive script.
1587
1588
$ perf inject -i guest-sideband-testing-host-perf.data -o inj --guestmount ~/guestmount --guest-data=guest-sideband-testing-guest-perf.data,13376,0xfffffa6ae070cb20
1589
1590
Show an excerpt from the result. In this case the CPU and time range have been to chosen to show interaction between guest and host when 'uname' is starting to run on the guest machine:
1591
1592
Notes:
1593
1594
- the CPU displayed, [002] in this case, is always the host CPU
1595
- events happening in the virtual machine start with VM:13376 VCPU:003, which shows the hypervisor PID 13376 and the VCPU number
1596
- only calls and errors are displayed i.e. --itrace=ce
1597
- branches entering and exiting the virtual machine are split, and show as 2 branches to/from "0 [unknown] ([unknown])"
1598
1599
$ perf script -i inj --itrace=ce -F+machine_pid,+vcpu,+addr,+pid,+tid,-period --ns --time 7919.408803365,7919.408804631 -C 2
1600
CPU 3/KVM 13376/13384 [002] 7919.408803365: branches: ffffffffc0f8ebe0 vmx_vcpu_enter_exit+0xc0 ([kernel.kallsyms]) => ffffffffc0f8edc0 __vmx_vcpu_run+0x0 ([kernel.kallsyms])
1601
CPU 3/KVM 13376/13384 [002] 7919.408803365: branches: ffffffffc0f8edd5 __vmx_vcpu_run+0x15 ([kernel.kallsyms]) => ffffffffc0f8eca0 vmx_update_host_rsp+0x0 ([kernel.kallsyms])
1602
CPU 3/KVM 13376/13384 [002] 7919.408803365: branches: ffffffffc0f8ee1b __vmx_vcpu_run+0x5b ([kernel.kallsyms]) => ffffffffc0f8ed60 vmx_vmenter+0x0 ([kernel.kallsyms])
1603
CPU 3/KVM 13376/13384 [002] 7919.408803461: branches: ffffffffc0f8ed62 vmx_vmenter+0x2 ([kernel.kallsyms]) => 0 [unknown] ([unknown])
1604
VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408803461: branches: 0 [unknown] ([unknown]) => 7f851c9b5a5c init_cacheinfo+0x3ac (/usr/lib/x86_64-linux-gnu/libc-2.31.so)
1605
VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408803567: branches: 7f851c9b5a5a init_cacheinfo+0x3aa (/usr/lib/x86_64-linux-gnu/libc-2.31.so) => 0 [unknown] ([unknown])
1606
CPU 3/KVM 13376/13384 [002] 7919.408803567: branches: 0 [unknown] ([unknown]) => ffffffffc0f8ed80 vmx_vmexit+0x0 ([kernel.kallsyms])
1607
CPU 3/KVM 13376/13384 [002] 7919.408803596: branches: ffffffffc0f6619a vmx_vcpu_run+0x26a ([kernel.kallsyms]) => ffffffffb2255c60 x86_virt_spec_ctrl+0x0 ([kernel.kallsyms])
1608
CPU 3/KVM 13376/13384 [002] 7919.408803801: branches: ffffffffc0f66445 vmx_vcpu_run+0x515 ([kernel.kallsyms]) => ffffffffb2290b30 native_write_msr+0x0 ([kernel.kallsyms])
1609
CPU 3/KVM 13376/13384 [002] 7919.408803850: branches: ffffffffc0f661f8 vmx_vcpu_run+0x2c8 ([kernel.kallsyms]) => ffffffffc1092300 kvm_load_host_xsave_state+0x0 ([kernel.kallsyms])
1610
CPU 3/KVM 13376/13384 [002] 7919.408803850: branches: ffffffffc1092327 kvm_load_host_xsave_state+0x27 ([kernel.kallsyms]) => ffffffffc1092220 kvm_load_host_xsave_state.part.0+0x0 ([kernel.kallsyms])
1611
CPU 3/KVM 13376/13384 [002] 7919.408803862: branches: ffffffffc0f662cf vmx_vcpu_run+0x39f ([kernel.kallsyms]) => ffffffffc0f63f90 vmx_recover_nmi_blocking+0x0 ([kernel.kallsyms])
1612
CPU 3/KVM 13376/13384 [002] 7919.408803862: branches: ffffffffc0f662e9 vmx_vcpu_run+0x3b9 ([kernel.kallsyms]) => ffffffffc0f619a0 __vmx_complete_interrupts+0x0 ([kernel.kallsyms])
1613
CPU 3/KVM 13376/13384 [002] 7919.408803872: branches: ffffffffc109cfb2 vcpu_enter_guest+0x752 ([kernel.kallsyms]) => ffffffffc0f5f570 vmx_handle_exit_irqoff+0x0 ([kernel.kallsyms])
1614
CPU 3/KVM 13376/13384 [002] 7919.408803881: branches: ffffffffc109d028 vcpu_enter_guest+0x7c8 ([kernel.kallsyms]) => ffffffffb234f900 __srcu_read_lock+0x0 ([kernel.kallsyms])
1615
CPU 3/KVM 13376/13384 [002] 7919.408803897: branches: ffffffffc109d06f vcpu_enter_guest+0x80f ([kernel.kallsyms]) => ffffffffc0f72e30 vmx_handle_exit+0x0 ([kernel.kallsyms])
1616
CPU 3/KVM 13376/13384 [002] 7919.408803897: branches: ffffffffc0f72e3d vmx_handle_exit+0xd ([kernel.kallsyms]) => ffffffffc0f727c0 __vmx_handle_exit+0x0 ([kernel.kallsyms])
1617
CPU 3/KVM 13376/13384 [002] 7919.408803897: branches: ffffffffc0f72b15 __vmx_handle_exit+0x355 ([kernel.kallsyms]) => ffffffffc0f60ae0 vmx_flush_pml_buffer+0x0 ([kernel.kallsyms])
1618
CPU 3/KVM 13376/13384 [002] 7919.408803903: branches: ffffffffc0f72994 __vmx_handle_exit+0x1d4 ([kernel.kallsyms]) => ffffffffc10b7090 kvm_emulate_cpuid+0x0 ([kernel.kallsyms])
1619
CPU 3/KVM 13376/13384 [002] 7919.408803903: branches: ffffffffc10b70f1 kvm_emulate_cpuid+0x61 ([kernel.kallsyms]) => ffffffffc10b6e10 kvm_cpuid+0x0 ([kernel.kallsyms])
1620
CPU 3/KVM 13376/13384 [002] 7919.408803941: branches: ffffffffc10b7125 kvm_emulate_cpuid+0x95 ([kernel.kallsyms]) => ffffffffc1093110 kvm_skip_emulated_instruction+0x0 ([kernel.kallsyms])
1621
CPU 3/KVM 13376/13384 [002] 7919.408803941: branches: ffffffffc109311f kvm_skip_emulated_instruction+0xf ([kernel.kallsyms]) => ffffffffc0f5e180 vmx_get_rflags+0x0 ([kernel.kallsyms])
1622
CPU 3/KVM 13376/13384 [002] 7919.408803951: branches: ffffffffc109312a kvm_skip_emulated_instruction+0x1a ([kernel.kallsyms]) => ffffffffc0f5fd30 vmx_skip_emulated_instruction+0x0 ([kernel.kallsyms])
1623
CPU 3/KVM 13376/13384 [002] 7919.408803951: branches: ffffffffc0f5fd79 vmx_skip_emulated_instruction+0x49 ([kernel.kallsyms]) => ffffffffc0f5fb50 skip_emulated_instruction+0x0 ([kernel.kallsyms])
1624
CPU 3/KVM 13376/13384 [002] 7919.408803956: branches: ffffffffc0f5fc68 skip_emulated_instruction+0x118 ([kernel.kallsyms]) => ffffffffc0f6a940 vmx_cache_reg+0x0 ([kernel.kallsyms])
1625
CPU 3/KVM 13376/13384 [002] 7919.408803964: branches: ffffffffc0f5fc11 skip_emulated_instruction+0xc1 ([kernel.kallsyms]) => ffffffffc0f5f9e0 vmx_set_interrupt_shadow+0x0 ([kernel.kallsyms])
1626
CPU 3/KVM 13376/13384 [002] 7919.408803980: branches: ffffffffc109f8b1 vcpu_run+0x71 ([kernel.kallsyms]) => ffffffffc10ad2f0 kvm_cpu_has_pending_timer+0x0 ([kernel.kallsyms])
1627
CPU 3/KVM 13376/13384 [002] 7919.408803980: branches: ffffffffc10ad2fb kvm_cpu_has_pending_timer+0xb ([kernel.kallsyms]) => ffffffffc10b0490 apic_has_pending_timer+0x0 ([kernel.kallsyms])
1628
CPU 3/KVM 13376/13384 [002] 7919.408803991: branches: ffffffffc109f899 vcpu_run+0x59 ([kernel.kallsyms]) => ffffffffc109c860 vcpu_enter_guest+0x0 ([kernel.kallsyms])
1629
CPU 3/KVM 13376/13384 [002] 7919.408803993: branches: ffffffffc109cd4c vcpu_enter_guest+0x4ec ([kernel.kallsyms]) => ffffffffc0f69140 vmx_prepare_switch_to_guest+0x0 ([kernel.kallsyms])
1630
CPU 3/KVM 13376/13384 [002] 7919.408803996: branches: ffffffffc109cd7d vcpu_enter_guest+0x51d ([kernel.kallsyms]) => ffffffffb234f930 __srcu_read_unlock+0x0 ([kernel.kallsyms])
1631
CPU 3/KVM 13376/13384 [002] 7919.408803996: branches: ffffffffc109cd9c vcpu_enter_guest+0x53c ([kernel.kallsyms]) => ffffffffc0f609b0 vmx_sync_pir_to_irr+0x0 ([kernel.kallsyms])
1632
CPU 3/KVM 13376/13384 [002] 7919.408803996: branches: ffffffffc0f60a6d vmx_sync_pir_to_irr+0xbd ([kernel.kallsyms]) => ffffffffc10adc20 kvm_lapic_find_highest_irr+0x0 ([kernel.kallsyms])
1633
CPU 3/KVM 13376/13384 [002] 7919.408804010: branches: ffffffffc0f60abd vmx_sync_pir_to_irr+0x10d ([kernel.kallsyms]) => ffffffffc0f60820 vmx_set_rvi+0x0 ([kernel.kallsyms])
1634
CPU 3/KVM 13376/13384 [002] 7919.408804019: branches: ffffffffc109ceca vcpu_enter_guest+0x66a ([kernel.kallsyms]) => ffffffffb2249840 fpregs_assert_state_consistent+0x0 ([kernel.kallsyms])
1635
CPU 3/KVM 13376/13384 [002] 7919.408804021: branches: ffffffffc109cf10 vcpu_enter_guest+0x6b0 ([kernel.kallsyms]) => ffffffffc0f65f30 vmx_vcpu_run+0x0 ([kernel.kallsyms])
1636
CPU 3/KVM 13376/13384 [002] 7919.408804024: branches: ffffffffc0f6603b vmx_vcpu_run+0x10b ([kernel.kallsyms]) => ffffffffb229bed0 __get_current_cr3_fast+0x0 ([kernel.kallsyms])
1637
CPU 3/KVM 13376/13384 [002] 7919.408804024: branches: ffffffffc0f66055 vmx_vcpu_run+0x125 ([kernel.kallsyms]) => ffffffffb2253050 cr4_read_shadow+0x0 ([kernel.kallsyms])
1638
CPU 3/KVM 13376/13384 [002] 7919.408804030: branches: ffffffffc0f6608d vmx_vcpu_run+0x15d ([kernel.kallsyms]) => ffffffffc10921e0 kvm_load_guest_xsave_state+0x0 ([kernel.kallsyms])
1639
CPU 3/KVM 13376/13384 [002] 7919.408804030: branches: ffffffffc1092207 kvm_load_guest_xsave_state+0x27 ([kernel.kallsyms]) => ffffffffc1092110 kvm_load_guest_xsave_state.part.0+0x0 ([kernel.kallsyms])
1640
CPU 3/KVM 13376/13384 [002] 7919.408804032: branches: ffffffffc0f660c6 vmx_vcpu_run+0x196 ([kernel.kallsyms]) => ffffffffb22061a0 perf_guest_get_msrs+0x0 ([kernel.kallsyms])
1641
CPU 3/KVM 13376/13384 [002] 7919.408804032: branches: ffffffffb22061a9 perf_guest_get_msrs+0x9 ([kernel.kallsyms]) => ffffffffb220cda0 intel_guest_get_msrs+0x0 ([kernel.kallsyms])
1642
CPU 3/KVM 13376/13384 [002] 7919.408804039: branches: ffffffffc0f66109 vmx_vcpu_run+0x1d9 ([kernel.kallsyms]) => ffffffffc0f652c0 clear_atomic_switch_msr+0x0 ([kernel.kallsyms])
1643
CPU 3/KVM 13376/13384 [002] 7919.408804040: branches: ffffffffc0f66119 vmx_vcpu_run+0x1e9 ([kernel.kallsyms]) => ffffffffc0f73f60 intel_pmu_lbr_is_enabled+0x0 ([kernel.kallsyms])
1644
CPU 3/KVM 13376/13384 [002] 7919.408804042: branches: ffffffffc0f73f81 intel_pmu_lbr_is_enabled+0x21 ([kernel.kallsyms]) => ffffffffc10b68e0 kvm_find_cpuid_entry+0x0 ([kernel.kallsyms])
1645
CPU 3/KVM 13376/13384 [002] 7919.408804045: branches: ffffffffc0f66454 vmx_vcpu_run+0x524 ([kernel.kallsyms]) => ffffffffc0f61ff0 vmx_update_hv_timer+0x0 ([kernel.kallsyms])
1646
CPU 3/KVM 13376/13384 [002] 7919.408804057: branches: ffffffffc0f66142 vmx_vcpu_run+0x212 ([kernel.kallsyms]) => ffffffffc10af100 kvm_wait_lapic_expire+0x0 ([kernel.kallsyms])
1647
CPU 3/KVM 13376/13384 [002] 7919.408804057: branches: ffffffffc0f66156 vmx_vcpu_run+0x226 ([kernel.kallsyms]) => ffffffffb2255c60 x86_virt_spec_ctrl+0x0 ([kernel.kallsyms])
1648
CPU 3/KVM 13376/13384 [002] 7919.408804057: branches: ffffffffc0f66161 vmx_vcpu_run+0x231 ([kernel.kallsyms]) => ffffffffc0f8eb20 vmx_vcpu_enter_exit+0x0 ([kernel.kallsyms])
1649
CPU 3/KVM 13376/13384 [002] 7919.408804057: branches: ffffffffc0f8eb44 vmx_vcpu_enter_exit+0x24 ([kernel.kallsyms]) => ffffffffb2353e10 rcu_note_context_switch+0x0 ([kernel.kallsyms])
1650
CPU 3/KVM 13376/13384 [002] 7919.408804057: branches: ffffffffb2353e1c rcu_note_context_switch+0xc ([kernel.kallsyms]) => ffffffffb2353db0 rcu_qs+0x0 ([kernel.kallsyms])
1651
CPU 3/KVM 13376/13384 [002] 7919.408804066: branches: ffffffffc0f8ebe0 vmx_vcpu_enter_exit+0xc0 ([kernel.kallsyms]) => ffffffffc0f8edc0 __vmx_vcpu_run+0x0 ([kernel.kallsyms])
1652
CPU 3/KVM 13376/13384 [002] 7919.408804066: branches: ffffffffc0f8edd5 __vmx_vcpu_run+0x15 ([kernel.kallsyms]) => ffffffffc0f8eca0 vmx_update_host_rsp+0x0 ([kernel.kallsyms])
1653
CPU 3/KVM 13376/13384 [002] 7919.408804066: branches: ffffffffc0f8ee1b __vmx_vcpu_run+0x5b ([kernel.kallsyms]) => ffffffffc0f8ed60 vmx_vmenter+0x0 ([kernel.kallsyms])
1654
CPU 3/KVM 13376/13384 [002] 7919.408804162: branches: ffffffffc0f8ed62 vmx_vmenter+0x2 ([kernel.kallsyms]) => 0 [unknown] ([unknown])
1655
VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804162: branches: 0 [unknown] ([unknown]) => 7f851c9b5a5c init_cacheinfo+0x3ac (/usr/lib/x86_64-linux-gnu/libc-2.31.so)
1656
VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804273: branches: 7f851cb7c0e4 _dl_init+0x74 (/usr/lib/x86_64-linux-gnu/ld-2.31.so) => 7f851cb7bf50 call_init.part.0+0x0 (/usr/lib/x86_64-linux-gnu/ld-2.31.so)
1657
VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804526: branches: 55e0c00136f0 _start+0x0 (/usr/bin/uname) => ffffffff83200ac0 asm_exc_page_fault+0x0 ([kernel.kallsyms])
1658
VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804526: branches: ffffffff83200ac3 asm_exc_page_fault+0x3 ([kernel.kallsyms]) => ffffffff83201290 error_entry+0x0 ([kernel.kallsyms])
1659
VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804534: branches: ffffffff832012fa error_entry+0x6a ([kernel.kallsyms]) => ffffffff830b59a0 sync_regs+0x0 ([kernel.kallsyms])
1660
VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804631: branches: ffffffff83200ad9 asm_exc_page_fault+0x19 ([kernel.kallsyms]) => ffffffff830b8210 exc_page_fault+0x0 ([kernel.kallsyms])
1661
VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804631: branches: ffffffff830b82a4 exc_page_fault+0x94 ([kernel.kallsyms]) => ffffffff830b80e0 __kvm_handle_async_pf+0x0 ([kernel.kallsyms])
1662
VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804631: branches: ffffffff830b80ed __kvm_handle_async_pf+0xd ([kernel.kallsyms]) => ffffffff830b80c0 kvm_read_and_reset_apf_flags+0x0 ([kernel.kallsyms])
1663
1664
1665
Tracing Virtual Machines - Guest Code
1666
-------------------------------------
1667
1668
A common case for KVM test programs is that the test program acts as the
1669
hypervisor, creating, running and destroying the virtual machine, and
1670
providing the guest object code from its own object code. In this case,
1671
the VM is not running an OS, but only the functions loaded into it by the
1672
hypervisor test program, and conveniently, loaded at the same virtual
1673
addresses. To support that, option "--guest-code" has been added to perf script
1674
and perf kvm report.
1675
1676
Here is an example tracing a test program from the kernel's KVM selftests:
1677
1678
# perf record --kcore -e intel_pt/cyc/ -- tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test
1679
[ perf record: Woken up 1 times to write data ]
1680
[ perf record: Captured and wrote 0.280 MB perf.data ]
1681
# perf script --guest-code --itrace=bep --ns -F-period,+addr,+flags
1682
[SNIP]
1683
tsc_msrs_test 18436 [007] 10897.962087733: branches: call ffffffffc13b2ff5 __vmx_vcpu_run+0x15 (vmlinux) => ffffffffc13b2f50 vmx_update_host_rsp+0x0 (vmlinux)
1684
tsc_msrs_test 18436 [007] 10897.962087733: branches: return ffffffffc13b2f5d vmx_update_host_rsp+0xd (vmlinux) => ffffffffc13b2ffa __vmx_vcpu_run+0x1a (vmlinux)
1685
tsc_msrs_test 18436 [007] 10897.962087733: branches: call ffffffffc13b303b __vmx_vcpu_run+0x5b (vmlinux) => ffffffffc13b2f80 vmx_vmenter+0x0 (vmlinux)
1686
tsc_msrs_test 18436 [007] 10897.962087836: branches: vmentry ffffffffc13b2f82 vmx_vmenter+0x2 (vmlinux) => 0 [unknown] ([unknown])
1687
[guest/18436] 18436 [007] 10897.962087836: branches: vmentry 0 [unknown] ([unknown]) => 402c81 guest_code+0x131 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1688
[guest/18436] 18436 [007] 10897.962087836: branches: call 402c81 guest_code+0x131 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 40dba0 ucall+0x0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1689
[guest/18436] 18436 [007] 10897.962088248: branches: vmexit 40dba0 ucall+0x0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 0 [unknown] ([unknown])
1690
tsc_msrs_test 18436 [007] 10897.962088248: branches: vmexit 0 [unknown] ([unknown]) => ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux)
1691
tsc_msrs_test 18436 [007] 10897.962088248: branches: jmp ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux) => ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux)
1692
tsc_msrs_test 18436 [007] 10897.962088256: branches: return ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux) => ffffffffc13b3040 __vmx_vcpu_run+0x60 (vmlinux)
1693
tsc_msrs_test 18436 [007] 10897.962088270: branches: return ffffffffc13b30b6 __vmx_vcpu_run+0xd6 (vmlinux) => ffffffffc13b2f2e vmx_vcpu_enter_exit+0x4e (vmlinux)
1694
[SNIP]
1695
tsc_msrs_test 18436 [007] 10897.962089321: branches: call ffffffffc13b2ff5 __vmx_vcpu_run+0x15 (vmlinux) => ffffffffc13b2f50 vmx_update_host_rsp+0x0 (vmlinux)
1696
tsc_msrs_test 18436 [007] 10897.962089321: branches: return ffffffffc13b2f5d vmx_update_host_rsp+0xd (vmlinux) => ffffffffc13b2ffa __vmx_vcpu_run+0x1a (vmlinux)
1697
tsc_msrs_test 18436 [007] 10897.962089321: branches: call ffffffffc13b303b __vmx_vcpu_run+0x5b (vmlinux) => ffffffffc13b2f80 vmx_vmenter+0x0 (vmlinux)
1698
tsc_msrs_test 18436 [007] 10897.962089424: branches: vmentry ffffffffc13b2f82 vmx_vmenter+0x2 (vmlinux) => 0 [unknown] ([unknown])
1699
[guest/18436] 18436 [007] 10897.962089424: branches: vmentry 0 [unknown] ([unknown]) => 40dba0 ucall+0x0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1700
[guest/18436] 18436 [007] 10897.962089701: branches: jmp 40dc1b ucall+0x7b (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 40dc39 ucall+0x99 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1701
[guest/18436] 18436 [007] 10897.962089701: branches: jcc 40dc3c ucall+0x9c (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 40dc20 ucall+0x80 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1702
[guest/18436] 18436 [007] 10897.962089701: branches: jcc 40dc3c ucall+0x9c (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 40dc20 ucall+0x80 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1703
[guest/18436] 18436 [007] 10897.962089701: branches: jcc 40dc37 ucall+0x97 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 40dc50 ucall+0xb0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1704
[guest/18436] 18436 [007] 10897.962089878: branches: vmexit 40dc55 ucall+0xb5 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 0 [unknown] ([unknown])
1705
tsc_msrs_test 18436 [007] 10897.962089878: branches: vmexit 0 [unknown] ([unknown]) => ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux)
1706
tsc_msrs_test 18436 [007] 10897.962089878: branches: jmp ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux) => ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux)
1707
tsc_msrs_test 18436 [007] 10897.962089887: branches: return ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux) => ffffffffc13b3040 __vmx_vcpu_run+0x60 (vmlinux)
1708
tsc_msrs_test 18436 [007] 10897.962089901: branches: return ffffffffc13b30b6 __vmx_vcpu_run+0xd6 (vmlinux) => ffffffffc13b2f2e vmx_vcpu_enter_exit+0x4e (vmlinux)
1709
[SNIP]
1710
1711
# perf kvm --guest-code --guest --host report -i perf.data --stdio | head -20
1712
1713
# To display the perf.data header info, please use --header/--header-only options.
1714
#
1715
#
1716
# Total Lost Samples: 0
1717
#
1718
# Samples: 12 of event 'instructions'
1719
# Event count (approx.): 2274583
1720
#
1721
# Children Self Command Shared Object Symbol
1722
# ........ ........ ............. .................... ...........................................
1723
#
1724
54.70% 0.00% tsc_msrs_test [kernel.vmlinux] [k] entry_SYSCALL_64_after_hwframe
1725
|
1726
---entry_SYSCALL_64_after_hwframe
1727
do_syscall_64
1728
|
1729
|--29.44%--syscall_exit_to_user_mode
1730
| exit_to_user_mode_prepare
1731
| task_work_run
1732
| __fput
1733
1734
1735
Event Trace
1736
-----------
1737
1738
Event Trace records information about asynchronous events, for example interrupts,
1739
faults, VM exits and entries. The information is recorded in CFE and EVD packets,
1740
and also the Interrupt Flag is recorded on the MODE.Exec packet. The CFE packet
1741
contains a type field to identify one of the following:
1742
1743
1 INTR interrupt, fault, exception, NMI
1744
2 IRET interrupt return
1745
3 SMI system management interrupt
1746
4 RSM resume from system management mode
1747
5 SIPI startup interprocessor interrupt
1748
6 INIT INIT signal
1749
7 VMENTRY VM-Entry
1750
8 VMEXIT VM-Entry
1751
9 VMEXIT_INTR VM-Exit due to interrupt
1752
10 SHUTDOWN Shutdown
1753
1754
For more details, refer to the Intel 64 and IA-32 Architectures Software
1755
Developer Manuals (version 076 or later).
1756
1757
The capability to do Event Trace is indicated by the
1758
/sys/bus/event_source/devices/intel_pt/caps/event_trace file.
1759
1760
Event trace is selected for recording using the "event" config term. e.g.
1761
1762
perf record -e intel_pt/event/u uname
1763
1764
Event trace events are output using the --itrace I option. e.g.
1765
1766
perf script --itrace=Ie
1767
1768
perf script displays events containing CFE type, vector and event data,
1769
in the form:
1770
1771
evt: hw int (t) cfe: INTR IP: 1 vector: 3 PFA: 0x8877665544332211
1772
1773
The IP flag indicates if the event binds to an IP, which includes any case where
1774
flow control packet generation is enabled, as well as when CFE packet IP bit is
1775
set.
1776
1777
perf script displays events containing changes to the Interrupt Flag in the form:
1778
1779
iflag: t IFLAG: 1->0 via branch
1780
1781
where "via branch" indicates a branch (interrupt or return from interrupt) and
1782
"non branch" indicates an instruction such as CFI, STI or POPF).
1783
1784
In addition, the current state of the interrupt flag is indicated by the presence
1785
or absence of the "D" (interrupt disabled) perf script flag. If the interrupt
1786
flag is changed, then the "t" flag is also included i.e.
1787
1788
no flag, interrupts enabled IF=1
1789
t interrupts become disabled IF=1 -> IF=0
1790
D interrupts are disabled IF=0
1791
Dt interrupts become enabled IF=0 -> IF=1
1792
1793
The intel-pt-events.py script illustrates how to access Event Trace information
1794
using a Python script.
1795
1796
1797
TNT Disable
1798
-----------
1799
1800
TNT packets are disabled using the "notnt" config term. e.g.
1801
1802
perf record -e intel_pt/notnt/u uname
1803
1804
In that case the --itrace q option is forced because walking executable code
1805
to reconstruct the control flow is not possible.
1806
1807
1808
Emulated PTWRITE
1809
----------------
1810
1811
Later perf tools support a method to emulate the ptwrite instruction, which
1812
can be useful if hardware does not support the ptwrite instruction.
1813
1814
Instead of using the ptwrite instruction, a function is used which produces
1815
a trace that encodes the payload data into TNT packets. Here is an example
1816
of the function:
1817
1818
#include <stdint.h>
1819
1820
void perf_emulate_ptwrite(uint64_t x)
1821
__attribute__((externally_visible, noipa, no_instrument_function, naked));
1822
1823
#define PERF_EMULATE_PTWRITE_8_BITS \
1824
"1: shl %rax\n" \
1825
" jc 1f\n" \
1826
"1: shl %rax\n" \
1827
" jc 1f\n" \
1828
"1: shl %rax\n" \
1829
" jc 1f\n" \
1830
"1: shl %rax\n" \
1831
" jc 1f\n" \
1832
"1: shl %rax\n" \
1833
" jc 1f\n" \
1834
"1: shl %rax\n" \
1835
" jc 1f\n" \
1836
"1: shl %rax\n" \
1837
" jc 1f\n" \
1838
"1: shl %rax\n" \
1839
" jc 1f\n"
1840
1841
/* Undefined instruction */
1842
#define PERF_EMULATE_PTWRITE_UD2 ".byte 0x0f, 0x0b\n"
1843
1844
#define PERF_EMULATE_PTWRITE_MAGIC PERF_EMULATE_PTWRITE_UD2 ".ascii \"perf,ptwrite \"\n"
1845
1846
void perf_emulate_ptwrite(uint64_t x __attribute__ ((__unused__)))
1847
{
1848
/* Assumes SysV ABI : x passed in rdi */
1849
__asm__ volatile (
1850
"jmp 1f\n"
1851
PERF_EMULATE_PTWRITE_MAGIC
1852
"1: mov %rdi, %rax\n"
1853
PERF_EMULATE_PTWRITE_8_BITS
1854
PERF_EMULATE_PTWRITE_8_BITS
1855
PERF_EMULATE_PTWRITE_8_BITS
1856
PERF_EMULATE_PTWRITE_8_BITS
1857
PERF_EMULATE_PTWRITE_8_BITS
1858
PERF_EMULATE_PTWRITE_8_BITS
1859
PERF_EMULATE_PTWRITE_8_BITS
1860
PERF_EMULATE_PTWRITE_8_BITS
1861
"1: ret\n"
1862
);
1863
}
1864
1865
For example, a test program with the function above:
1866
1867
#include <stdio.h>
1868
#include <stdint.h>
1869
#include <stdlib.h>
1870
1871
#include "perf_emulate_ptwrite.h"
1872
1873
int main(int argc, char *argv[])
1874
{
1875
uint64_t x = 0;
1876
1877
if (argc > 1)
1878
x = strtoull(argv[1], NULL, 0);
1879
perf_emulate_ptwrite(x);
1880
return 0;
1881
}
1882
1883
Can be compiled and traced:
1884
1885
$ gcc -Wall -Wextra -O3 -g -o eg_ptw eg_ptw.c
1886
$ perf record -e intel_pt//u ./eg_ptw 0x1234567890abcdef
1887
[ perf record: Woken up 1 times to write data ]
1888
[ perf record: Captured and wrote 0.017 MB perf.data ]
1889
$ perf script --itrace=ew
1890
eg_ptw 19875 [007] 8061.235912: ptwrite: IP: 0 payload: 0x1234567890abcdef 55701249a196 perf_emulate_ptwrite+0x16 (/home/user/eg_ptw)
1891
$
1892
1893
1894
Pipe mode
1895
---------
1896
Pipe mode is a problem for Intel PT and possibly other auxtrace users.
1897
It's not recommended to use a pipe as data output with Intel PT because
1898
of the following reason.
1899
1900
Essentially the auxtrace buffers do not behave like the regular perf
1901
event buffers. That is because the head and tail are updated by
1902
software, but in the auxtrace case the data is written by hardware.
1903
So the head and tail do not get updated as data is written.
1904
1905
In the Intel PT case, the head and tail are updated only when the trace
1906
is disabled by software, for example:
1907
- full-trace, system wide : when buffer passes watermark
1908
- full-trace, not system-wide : when buffer passes watermark or
1909
context switches
1910
- snapshot mode : as above but also when a snapshot is made
1911
- sample mode : as above but also when a sample is made
1912
1913
That means finished-round ordering doesn't work. An auxtrace buffer
1914
can turn up that has data that extends back in time, possibly to the
1915
very beginning of tracing.
1916
1917
For a perf.data file, that problem is solved by going through the trace
1918
and queuing up the auxtrace buffers in advance.
1919
1920
For pipe mode, the order of events and timestamps can presumably
1921
be messed up.
1922
1923
1924
Pause or Resume Tracing
1925
-----------------------
1926
1927
With newer Kernels, it is possible to use other selected events to pause
1928
or resume Intel PT tracing. This is configured by using the "aux-action"
1929
config term:
1930
1931
"aux-action=pause" is used with events that are to pause Intel PT tracing.
1932
1933
"aux-action=resume" is used with events that are to resume Intel PT tracing.
1934
1935
"aux-action=start-paused" is used with the Intel PT event to start in a
1936
paused state.
1937
1938
For example, to trace only the uname system call (sys_newuname) when running the
1939
command line utility uname:
1940
1941
$ perf record --kcore -e intel_pt/aux-action=start-paused/k,syscalls:sys_enter_newuname/aux-action=resume/,syscalls:sys_exit_newuname/aux-action=pause/ uname
1942
Linux
1943
[ perf record: Woken up 1 times to write data ]
1944
[ perf record: Captured and wrote 0.043 MB perf.data ]
1945
$ perf script --call-trace
1946
uname 30805 [000] 24001.058782799: name: 0x7ffc9c1865b0
1947
uname 30805 [000] 24001.058784424: psb offs: 0
1948
uname 30805 [000] 24001.058784424: cbr: 39 freq: 3904 MHz (139%)
1949
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) debug_smp_processor_id
1950
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) __x64_sys_newuname
1951
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) down_read
1952
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) __cond_resched
1953
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_add
1954
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) in_lock_functions
1955
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_sub
1956
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) up_read
1957
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_add
1958
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) in_lock_functions
1959
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) preempt_count_sub
1960
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) _copy_to_user
1961
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) syscall_exit_to_user_mode
1962
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) syscall_exit_work
1963
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) perf_syscall_exit
1964
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) debug_smp_processor_id
1965
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_trace_buf_alloc
1966
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_swevent_get_recursion_context
1967
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) debug_smp_processor_id
1968
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) debug_smp_processor_id
1969
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_tp_event
1970
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_trace_buf_update
1971
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) tracing_gen_ctx_irq_test
1972
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_swevent_event
1973
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __perf_event_account_interrupt
1974
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __this_cpu_preempt_check
1975
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_event_output_forward
1976
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_event_aux_pause
1977
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) ring_buffer_get
1978
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __rcu_read_lock
1979
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __rcu_read_unlock
1980
uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) pt_event_stop
1981
uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) debug_smp_processor_id
1982
uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) debug_smp_processor_id
1983
uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) native_write_msr
1984
uname 30805 [000] 24001.058785463: ([kernel.kallsyms]) native_write_msr
1985
uname 30805 [000] 24001.058785639: 0x0
1986
1987
The example above uses tracepoints, but any kind of sampled event can be used.
1988
1989
For example:
1990
1991
Tracing between arch_cpu_idle_enter() and arch_cpu_idle_exit() using breakpoint events:
1992
1993
$ sudo cat /proc/kallsyms | sort | grep ' arch_cpu_idle_enter\| arch_cpu_idle_exit'
1994
ffffffffb605bf60 T arch_cpu_idle_enter
1995
ffffffffb614d8a0 W arch_cpu_idle_exit
1996
$ sudo perf record --kcore -a -e intel_pt/aux-action=start-paused/k -e mem:0xffffffffb605bf60:x/aux-action=resume/ -e mem:0xffffffffb614d8a0:x/aux-action=pause/ -- sleep 1
1997
[ perf record: Woken up 1 times to write data ]
1998
[ perf record: Captured and wrote 1.387 MB perf.data ]
1999
2000
Tracing __alloc_pages() using kprobes:
2001
2002
$ sudo perf probe --add '__alloc_pages order'
2003
Added new event: probe:__alloc_pages (on __alloc_pages with order)
2004
$ sudo perf probe --add __alloc_pages%return
2005
Added new event: probe:__alloc_pages__return (on __alloc_pages%return)
2006
$ sudo perf record --kcore -aR -e intel_pt/aux-action=start-paused/k -e probe:__alloc_pages/aux-action=resume/ -e probe:__alloc_pages__return/aux-action=pause/ -- sleep 1
2007
[ perf record: Woken up 1 times to write data ]
2008
[ perf record: Captured and wrote 1.490 MB perf.data ]
2009
2010
Tracing starting at main() using a uprobe event:
2011
2012
$ sudo perf probe -x /usr/bin/uname main
2013
Added new event: probe_uname:main (on main in /usr/bin/uname)
2014
$ sudo perf record -e intel_pt/-aux-action=start-paused/u -e probe_uname:main/aux-action=resume/ -- uname
2015
Linux
2016
[ perf record: Woken up 1 times to write data ]
2017
[ perf record: Captured and wrote 0.031 MB perf.data ]
2018
2019
Tracing occasionally using cycles events with different periods:
2020
2021
$ perf record --kcore -a -m,64M -e intel_pt/aux-action=start-paused/k -e cycles/aux-action=pause,period=1000000/Pk -e cycles/aux-action=resume,period=10500000/Pk -- firefox
2022
[ perf record: Woken up 19 times to write data ]
2023
[ perf record: Captured and wrote 16.561 MB perf.data ]
2024
2025
2026
EXAMPLE
2027
-------
2028
2029
Examples can be found on perf wiki page "Perf tools support for IntelĀ® Processor Trace":
2030
2031
https://perf.wiki.kernel.org/index.php/Perf_tools_support_for_Intel%C2%AE_Processor_Trace
2032
2033
2034
SEE ALSO
2035
--------
2036
2037
linkperf:perf-record[1], linkperf:perf-script[1], linkperf:perf-report[1],
2038
linkperf:perf-inject[1]
2039
2040