Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/perf/bench/numa.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* numa.c
4
*
5
* numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6
*/
7
8
#include <inttypes.h>
9
10
#include <subcmd/parse-options.h>
11
#include "../util/cloexec.h"
12
13
#include "bench.h"
14
15
#include <errno.h>
16
#include <sched.h>
17
#include <stdio.h>
18
#include <assert.h>
19
#include <debug.h>
20
#include <malloc.h>
21
#include <signal.h>
22
#include <stdlib.h>
23
#include <string.h>
24
#include <unistd.h>
25
#include <sys/mman.h>
26
#include <sys/time.h>
27
#include <sys/resource.h>
28
#include <sys/wait.h>
29
#include <sys/prctl.h>
30
#include <sys/stat.h>
31
#include <sys/types.h>
32
#include <linux/kernel.h>
33
#include <linux/time64.h>
34
#include <linux/numa.h>
35
#include <linux/zalloc.h>
36
37
#include "../util/header.h"
38
#include "../util/mutex.h"
39
#include <api/fs/fs.h>
40
#include <numa.h>
41
#include <numaif.h>
42
43
#ifndef RUSAGE_THREAD
44
# define RUSAGE_THREAD 1
45
#endif
46
47
/*
48
* Regular printout to the terminal, suppressed if -q is specified:
49
*/
50
#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
51
52
/*
53
* Debug printf:
54
*/
55
#undef dprintf
56
#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
57
58
struct thread_data {
59
int curr_cpu;
60
cpu_set_t *bind_cpumask;
61
int bind_node;
62
u8 *process_data;
63
int process_nr;
64
int thread_nr;
65
int task_nr;
66
unsigned int loops_done;
67
u64 val;
68
u64 runtime_ns;
69
u64 system_time_ns;
70
u64 user_time_ns;
71
double speed_gbs;
72
struct mutex *process_lock;
73
};
74
75
/* Parameters set by options: */
76
77
struct params {
78
/* Startup synchronization: */
79
bool serialize_startup;
80
81
/* Task hierarchy: */
82
int nr_proc;
83
int nr_threads;
84
85
/* Working set sizes: */
86
const char *mb_global_str;
87
const char *mb_proc_str;
88
const char *mb_proc_locked_str;
89
const char *mb_thread_str;
90
91
double mb_global;
92
double mb_proc;
93
double mb_proc_locked;
94
double mb_thread;
95
96
/* Access patterns to the working set: */
97
bool data_reads;
98
bool data_writes;
99
bool data_backwards;
100
bool data_zero_memset;
101
bool data_rand_walk;
102
u32 nr_loops;
103
u32 nr_secs;
104
u32 sleep_usecs;
105
106
/* Working set initialization: */
107
bool init_zero;
108
bool init_random;
109
bool init_cpu0;
110
111
/* Misc options: */
112
int show_details;
113
int run_all;
114
int thp;
115
116
long bytes_global;
117
long bytes_process;
118
long bytes_process_locked;
119
long bytes_thread;
120
121
int nr_tasks;
122
123
bool show_convergence;
124
bool measure_convergence;
125
126
int perturb_secs;
127
int nr_cpus;
128
int nr_nodes;
129
130
/* Affinity options -C and -N: */
131
char *cpu_list_str;
132
char *node_list_str;
133
};
134
135
136
/* Global, read-writable area, accessible to all processes and threads: */
137
138
struct global_info {
139
u8 *data;
140
141
struct mutex startup_mutex;
142
struct cond startup_cond;
143
int nr_tasks_started;
144
145
struct mutex start_work_mutex;
146
struct cond start_work_cond;
147
int nr_tasks_working;
148
bool start_work;
149
150
struct mutex stop_work_mutex;
151
u64 bytes_done;
152
153
struct thread_data *threads;
154
155
/* Convergence latency measurement: */
156
bool all_converged;
157
bool stop_work;
158
159
int print_once;
160
161
struct params p;
162
};
163
164
static struct global_info *g = NULL;
165
166
static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
167
static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
168
169
struct params p0;
170
171
static const struct option options[] = {
172
OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
173
OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
174
175
OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
176
OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
177
OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
178
OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
179
180
OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
181
OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
182
OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
183
184
OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"),
185
OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
186
OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
187
OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
188
OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
189
190
191
OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
192
OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
193
OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
194
OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
195
196
OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
197
OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
198
OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
199
OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
200
"convergence is reached when each process (all its threads) is running on a single NUMA node."),
201
OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
202
OPT_BOOLEAN('q', "quiet" , &quiet,
203
"quiet mode (do not show any warnings or messages)"),
204
OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
205
206
/* Special option string parsing callbacks: */
207
OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
208
"bind the first N tasks to these specific cpus (the rest is unbound)",
209
parse_cpus_opt),
210
OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
211
"bind the first N tasks to these specific memory nodes (the rest is unbound)",
212
parse_nodes_opt),
213
OPT_END()
214
};
215
216
static const char * const bench_numa_usage[] = {
217
"perf bench numa <options>",
218
NULL
219
};
220
221
static const char * const numa_usage[] = {
222
"perf bench numa mem [<options>]",
223
NULL
224
};
225
226
/*
227
* To get number of numa nodes present.
228
*/
229
static int nr_numa_nodes(void)
230
{
231
int i, nr_nodes = 0;
232
233
for (i = 0; i < g->p.nr_nodes; i++) {
234
if (numa_bitmask_isbitset(numa_nodes_ptr, i))
235
nr_nodes++;
236
}
237
238
return nr_nodes;
239
}
240
241
/*
242
* To check if given numa node is present.
243
*/
244
static int is_node_present(int node)
245
{
246
return numa_bitmask_isbitset(numa_nodes_ptr, node);
247
}
248
249
/*
250
* To check given numa node has cpus.
251
*/
252
static bool node_has_cpus(int node)
253
{
254
struct bitmask *cpumask = numa_allocate_cpumask();
255
bool ret = false; /* fall back to nocpus */
256
int cpu;
257
258
BUG_ON(!cpumask);
259
if (!numa_node_to_cpus(node, cpumask)) {
260
for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
261
if (numa_bitmask_isbitset(cpumask, cpu)) {
262
ret = true;
263
break;
264
}
265
}
266
}
267
numa_free_cpumask(cpumask);
268
269
return ret;
270
}
271
272
static cpu_set_t *bind_to_cpu(int target_cpu)
273
{
274
int nrcpus = numa_num_possible_cpus();
275
cpu_set_t *orig_mask, *mask;
276
size_t size;
277
278
orig_mask = CPU_ALLOC(nrcpus);
279
BUG_ON(!orig_mask);
280
size = CPU_ALLOC_SIZE(nrcpus);
281
CPU_ZERO_S(size, orig_mask);
282
283
if (sched_getaffinity(0, size, orig_mask))
284
goto err_out;
285
286
mask = CPU_ALLOC(nrcpus);
287
if (!mask)
288
goto err_out;
289
290
CPU_ZERO_S(size, mask);
291
292
if (target_cpu == -1) {
293
int cpu;
294
295
for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
296
CPU_SET_S(cpu, size, mask);
297
} else {
298
if (target_cpu < 0 || target_cpu >= g->p.nr_cpus)
299
goto err;
300
301
CPU_SET_S(target_cpu, size, mask);
302
}
303
304
if (sched_setaffinity(0, size, mask))
305
goto err;
306
307
return orig_mask;
308
309
err:
310
CPU_FREE(mask);
311
err_out:
312
CPU_FREE(orig_mask);
313
314
/* BUG_ON due to failure in allocation of orig_mask/mask */
315
BUG_ON(-1);
316
return NULL;
317
}
318
319
static cpu_set_t *bind_to_node(int target_node)
320
{
321
int nrcpus = numa_num_possible_cpus();
322
size_t size;
323
cpu_set_t *orig_mask, *mask;
324
int cpu;
325
326
orig_mask = CPU_ALLOC(nrcpus);
327
BUG_ON(!orig_mask);
328
size = CPU_ALLOC_SIZE(nrcpus);
329
CPU_ZERO_S(size, orig_mask);
330
331
if (sched_getaffinity(0, size, orig_mask))
332
goto err_out;
333
334
mask = CPU_ALLOC(nrcpus);
335
if (!mask)
336
goto err_out;
337
338
CPU_ZERO_S(size, mask);
339
340
if (target_node == NUMA_NO_NODE) {
341
for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
342
CPU_SET_S(cpu, size, mask);
343
} else {
344
struct bitmask *cpumask = numa_allocate_cpumask();
345
346
if (!cpumask)
347
goto err;
348
349
if (!numa_node_to_cpus(target_node, cpumask)) {
350
for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
351
if (numa_bitmask_isbitset(cpumask, cpu))
352
CPU_SET_S(cpu, size, mask);
353
}
354
}
355
numa_free_cpumask(cpumask);
356
}
357
358
if (sched_setaffinity(0, size, mask))
359
goto err;
360
361
return orig_mask;
362
363
err:
364
CPU_FREE(mask);
365
err_out:
366
CPU_FREE(orig_mask);
367
368
/* BUG_ON due to failure in allocation of orig_mask/mask */
369
BUG_ON(-1);
370
return NULL;
371
}
372
373
static void bind_to_cpumask(cpu_set_t *mask)
374
{
375
int ret;
376
size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus());
377
378
ret = sched_setaffinity(0, size, mask);
379
if (ret) {
380
CPU_FREE(mask);
381
BUG_ON(ret);
382
}
383
}
384
385
static void mempol_restore(void)
386
{
387
int ret;
388
389
ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
390
391
BUG_ON(ret);
392
}
393
394
static void bind_to_memnode(int node)
395
{
396
struct bitmask *node_mask;
397
int ret;
398
399
if (node == NUMA_NO_NODE)
400
return;
401
402
node_mask = numa_allocate_nodemask();
403
BUG_ON(!node_mask);
404
405
numa_bitmask_clearall(node_mask);
406
numa_bitmask_setbit(node_mask, node);
407
408
ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
409
dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
410
411
numa_bitmask_free(node_mask);
412
BUG_ON(ret);
413
}
414
415
#define HPSIZE (2*1024*1024)
416
417
#define set_taskname(fmt...) \
418
do { \
419
char name[20]; \
420
\
421
snprintf(name, 20, fmt); \
422
prctl(PR_SET_NAME, name); \
423
} while (0)
424
425
static u8 *alloc_data(ssize_t bytes0, int map_flags,
426
int init_zero, int init_cpu0, int thp, int init_random)
427
{
428
cpu_set_t *orig_mask = NULL;
429
ssize_t bytes;
430
u8 *buf;
431
int ret;
432
433
if (!bytes0)
434
return NULL;
435
436
/* Allocate and initialize all memory on CPU#0: */
437
if (init_cpu0) {
438
int node = numa_node_of_cpu(0);
439
440
orig_mask = bind_to_node(node);
441
bind_to_memnode(node);
442
}
443
444
bytes = bytes0 + HPSIZE;
445
446
buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
447
BUG_ON(buf == (void *)-1);
448
449
if (map_flags == MAP_PRIVATE) {
450
if (thp > 0) {
451
ret = madvise(buf, bytes, MADV_HUGEPAGE);
452
if (ret && !g->print_once) {
453
g->print_once = 1;
454
printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
455
}
456
}
457
if (thp < 0) {
458
ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
459
if (ret && !g->print_once) {
460
g->print_once = 1;
461
printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
462
}
463
}
464
}
465
466
if (init_zero) {
467
bzero(buf, bytes);
468
} else {
469
/* Initialize random contents, different in each word: */
470
if (init_random) {
471
u64 *wbuf = (void *)buf;
472
long off = rand();
473
long i;
474
475
for (i = 0; i < bytes/8; i++)
476
wbuf[i] = i + off;
477
}
478
}
479
480
/* Align to 2MB boundary: */
481
buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
482
483
/* Restore affinity: */
484
if (init_cpu0) {
485
bind_to_cpumask(orig_mask);
486
CPU_FREE(orig_mask);
487
mempol_restore();
488
}
489
490
return buf;
491
}
492
493
static void free_data(void *data, ssize_t bytes)
494
{
495
int ret;
496
497
if (!data)
498
return;
499
500
ret = munmap(data, bytes);
501
BUG_ON(ret);
502
}
503
504
/*
505
* Create a shared memory buffer that can be shared between processes, zeroed:
506
*/
507
static void * zalloc_shared_data(ssize_t bytes)
508
{
509
return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
510
}
511
512
/*
513
* Create a shared memory buffer that can be shared between processes:
514
*/
515
static void * setup_shared_data(ssize_t bytes)
516
{
517
return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
518
}
519
520
/*
521
* Allocate process-local memory - this will either be shared between
522
* threads of this process, or only be accessed by this thread:
523
*/
524
static void * setup_private_data(ssize_t bytes)
525
{
526
return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
527
}
528
529
static int parse_cpu_list(const char *arg)
530
{
531
p0.cpu_list_str = strdup(arg);
532
533
dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
534
535
return 0;
536
}
537
538
/*
539
* Check whether a CPU is online
540
*
541
* Returns:
542
* 1 -> if CPU is online
543
* 0 -> if CPU is offline
544
* -1 -> error case
545
*/
546
static int is_cpu_online(unsigned int cpu)
547
{
548
char *str;
549
size_t strlen;
550
char buf[256];
551
int status = -1;
552
struct stat statbuf;
553
554
snprintf(buf, sizeof(buf),
555
"/sys/devices/system/cpu/cpu%d", cpu);
556
if (stat(buf, &statbuf) != 0)
557
return 0;
558
559
/*
560
* Check if /sys/devices/system/cpu/cpux/online file
561
* exists. Some cases cpu0 won't have online file since
562
* it is not expected to be turned off generally.
563
* In kernels without CONFIG_HOTPLUG_CPU, this
564
* file won't exist
565
*/
566
snprintf(buf, sizeof(buf),
567
"/sys/devices/system/cpu/cpu%d/online", cpu);
568
if (stat(buf, &statbuf) != 0)
569
return 1;
570
571
/*
572
* Read online file using sysfs__read_str.
573
* If read or open fails, return -1.
574
* If read succeeds, return value from file
575
* which gets stored in "str"
576
*/
577
snprintf(buf, sizeof(buf),
578
"devices/system/cpu/cpu%d/online", cpu);
579
580
if (sysfs__read_str(buf, &str, &strlen) < 0)
581
return status;
582
583
status = atoi(str);
584
585
free(str);
586
return status;
587
}
588
589
static int parse_setup_cpu_list(void)
590
{
591
struct thread_data *td;
592
char *str0, *str;
593
int t;
594
595
if (!g->p.cpu_list_str)
596
return 0;
597
598
dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
599
600
str0 = str = strdup(g->p.cpu_list_str);
601
t = 0;
602
603
BUG_ON(!str);
604
605
tprintf("# binding tasks to CPUs:\n");
606
tprintf("# ");
607
608
while (true) {
609
int bind_cpu, bind_cpu_0, bind_cpu_1;
610
char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
611
int bind_len;
612
int step;
613
int mul;
614
615
tok = strsep(&str, ",");
616
if (!tok)
617
break;
618
619
tok_end = strstr(tok, "-");
620
621
dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
622
if (!tok_end) {
623
/* Single CPU specified: */
624
bind_cpu_0 = bind_cpu_1 = atol(tok);
625
} else {
626
/* CPU range specified (for example: "5-11"): */
627
bind_cpu_0 = atol(tok);
628
bind_cpu_1 = atol(tok_end + 1);
629
}
630
631
step = 1;
632
tok_step = strstr(tok, "#");
633
if (tok_step) {
634
step = atol(tok_step + 1);
635
BUG_ON(step <= 0 || step >= g->p.nr_cpus);
636
}
637
638
/*
639
* Mask length.
640
* Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
641
* where the _4 means the next 4 CPUs are allowed.
642
*/
643
bind_len = 1;
644
tok_len = strstr(tok, "_");
645
if (tok_len) {
646
bind_len = atol(tok_len + 1);
647
BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
648
}
649
650
/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
651
mul = 1;
652
tok_mul = strstr(tok, "x");
653
if (tok_mul) {
654
mul = atol(tok_mul + 1);
655
BUG_ON(mul <= 0);
656
}
657
658
dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
659
660
if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
661
printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
662
return -1;
663
}
664
665
if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) {
666
printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
667
return -1;
668
}
669
670
BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
671
BUG_ON(bind_cpu_0 > bind_cpu_1);
672
673
for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
674
size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus);
675
int i;
676
677
for (i = 0; i < mul; i++) {
678
int cpu;
679
680
if (t >= g->p.nr_tasks) {
681
printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
682
goto out;
683
}
684
td = g->threads + t;
685
686
if (t)
687
tprintf(",");
688
if (bind_len > 1) {
689
tprintf("%2d/%d", bind_cpu, bind_len);
690
} else {
691
tprintf("%2d", bind_cpu);
692
}
693
694
td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
695
BUG_ON(!td->bind_cpumask);
696
CPU_ZERO_S(size, td->bind_cpumask);
697
for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
698
if (cpu < 0 || cpu >= g->p.nr_cpus) {
699
CPU_FREE(td->bind_cpumask);
700
BUG_ON(-1);
701
}
702
CPU_SET_S(cpu, size, td->bind_cpumask);
703
}
704
t++;
705
}
706
}
707
}
708
out:
709
710
tprintf("\n");
711
712
if (t < g->p.nr_tasks)
713
printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
714
715
free(str0);
716
return 0;
717
}
718
719
static int parse_cpus_opt(const struct option *opt __maybe_unused,
720
const char *arg, int unset __maybe_unused)
721
{
722
if (!arg)
723
return -1;
724
725
return parse_cpu_list(arg);
726
}
727
728
static int parse_node_list(const char *arg)
729
{
730
p0.node_list_str = strdup(arg);
731
732
dprintf("got NODE list: {%s}\n", p0.node_list_str);
733
734
return 0;
735
}
736
737
static int parse_setup_node_list(void)
738
{
739
struct thread_data *td;
740
char *str0, *str;
741
int t;
742
743
if (!g->p.node_list_str)
744
return 0;
745
746
dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
747
748
str0 = str = strdup(g->p.node_list_str);
749
t = 0;
750
751
BUG_ON(!str);
752
753
tprintf("# binding tasks to NODEs:\n");
754
tprintf("# ");
755
756
while (true) {
757
int bind_node, bind_node_0, bind_node_1;
758
char *tok, *tok_end, *tok_step, *tok_mul;
759
int step;
760
int mul;
761
762
tok = strsep(&str, ",");
763
if (!tok)
764
break;
765
766
tok_end = strstr(tok, "-");
767
768
dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
769
if (!tok_end) {
770
/* Single NODE specified: */
771
bind_node_0 = bind_node_1 = atol(tok);
772
} else {
773
/* NODE range specified (for example: "5-11"): */
774
bind_node_0 = atol(tok);
775
bind_node_1 = atol(tok_end + 1);
776
}
777
778
step = 1;
779
tok_step = strstr(tok, "#");
780
if (tok_step) {
781
step = atol(tok_step + 1);
782
BUG_ON(step <= 0 || step >= g->p.nr_nodes);
783
}
784
785
/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
786
mul = 1;
787
tok_mul = strstr(tok, "x");
788
if (tok_mul) {
789
mul = atol(tok_mul + 1);
790
BUG_ON(mul <= 0);
791
}
792
793
dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
794
795
if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
796
printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
797
return -1;
798
}
799
800
BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
801
BUG_ON(bind_node_0 > bind_node_1);
802
803
for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
804
int i;
805
806
for (i = 0; i < mul; i++) {
807
if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
808
printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
809
goto out;
810
}
811
td = g->threads + t;
812
813
if (!t)
814
tprintf(" %2d", bind_node);
815
else
816
tprintf(",%2d", bind_node);
817
818
td->bind_node = bind_node;
819
t++;
820
}
821
}
822
}
823
out:
824
825
tprintf("\n");
826
827
if (t < g->p.nr_tasks)
828
printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
829
830
free(str0);
831
return 0;
832
}
833
834
static int parse_nodes_opt(const struct option *opt __maybe_unused,
835
const char *arg, int unset __maybe_unused)
836
{
837
if (!arg)
838
return -1;
839
840
return parse_node_list(arg);
841
}
842
843
static inline uint32_t lfsr_32(uint32_t lfsr)
844
{
845
const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
846
return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
847
}
848
849
/*
850
* Make sure there's real data dependency to RAM (when read
851
* accesses are enabled), so the compiler, the CPU and the
852
* kernel (KSM, zero page, etc.) cannot optimize away RAM
853
* accesses:
854
*/
855
static inline u64 access_data(u64 *data, u64 val)
856
{
857
if (g->p.data_reads)
858
val += *data;
859
if (g->p.data_writes)
860
*data = val + 1;
861
return val;
862
}
863
864
/*
865
* The worker process does two types of work, a forwards going
866
* loop and a backwards going loop.
867
*
868
* We do this so that on multiprocessor systems we do not create
869
* a 'train' of processing, with highly synchronized processes,
870
* skewing the whole benchmark.
871
*/
872
static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
873
{
874
long words = bytes/sizeof(u64);
875
u64 *data = (void *)__data;
876
long chunk_0, chunk_1;
877
u64 *d0, *d, *d1;
878
long off;
879
long i;
880
881
BUG_ON(!data && words);
882
BUG_ON(data && !words);
883
884
if (!data)
885
return val;
886
887
/* Very simple memset() work variant: */
888
if (g->p.data_zero_memset && !g->p.data_rand_walk) {
889
bzero(data, bytes);
890
return val;
891
}
892
893
/* Spread out by PID/TID nr and by loop nr: */
894
chunk_0 = words/nr_max;
895
chunk_1 = words/g->p.nr_loops;
896
off = nr*chunk_0 + loop*chunk_1;
897
898
while (off >= words)
899
off -= words;
900
901
if (g->p.data_rand_walk) {
902
u32 lfsr = nr + loop + val;
903
long j;
904
905
for (i = 0; i < words/1024; i++) {
906
long start, end;
907
908
lfsr = lfsr_32(lfsr);
909
910
start = lfsr % words;
911
end = min(start + 1024, words-1);
912
913
if (g->p.data_zero_memset) {
914
bzero(data + start, (end-start) * sizeof(u64));
915
} else {
916
for (j = start; j < end; j++)
917
val = access_data(data + j, val);
918
}
919
}
920
} else if (!g->p.data_backwards || (nr + loop) & 1) {
921
/* Process data forwards: */
922
923
d0 = data + off;
924
d = data + off + 1;
925
d1 = data + words;
926
927
for (;;) {
928
if (unlikely(d >= d1))
929
d = data;
930
if (unlikely(d == d0))
931
break;
932
933
val = access_data(d, val);
934
935
d++;
936
}
937
} else {
938
/* Process data backwards: */
939
940
d0 = data + off;
941
d = data + off - 1;
942
d1 = data + words;
943
944
for (;;) {
945
if (unlikely(d < data))
946
d = data + words-1;
947
if (unlikely(d == d0))
948
break;
949
950
val = access_data(d, val);
951
952
d--;
953
}
954
}
955
956
return val;
957
}
958
959
static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
960
{
961
unsigned int cpu;
962
963
cpu = sched_getcpu();
964
965
g->threads[task_nr].curr_cpu = cpu;
966
prctl(0, bytes_worked);
967
}
968
969
/*
970
* Count the number of nodes a process's threads
971
* are spread out on.
972
*
973
* A count of 1 means that the process is compressed
974
* to a single node. A count of g->p.nr_nodes means it's
975
* spread out on the whole system.
976
*/
977
static int count_process_nodes(int process_nr)
978
{
979
char *node_present;
980
int nodes;
981
int n, t;
982
983
node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
984
BUG_ON(!node_present);
985
for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
986
node_present[nodes] = 0;
987
988
for (t = 0; t < g->p.nr_threads; t++) {
989
struct thread_data *td;
990
int task_nr;
991
int node;
992
993
task_nr = process_nr*g->p.nr_threads + t;
994
td = g->threads + task_nr;
995
996
node = numa_node_of_cpu(td->curr_cpu);
997
if (node < 0) /* curr_cpu was likely still -1 */ {
998
free(node_present);
999
return 0;
1000
}
1001
1002
node_present[node] = 1;
1003
}
1004
1005
nodes = 0;
1006
1007
for (n = 0; n < g->p.nr_nodes; n++)
1008
nodes += node_present[n];
1009
1010
free(node_present);
1011
return nodes;
1012
}
1013
1014
/*
1015
* Count the number of distinct process-threads a node contains.
1016
*
1017
* A count of 1 means that the node contains only a single
1018
* process. If all nodes on the system contain at most one
1019
* process then we are well-converged.
1020
*/
1021
static int count_node_processes(int node)
1022
{
1023
int processes = 0;
1024
int t, p;
1025
1026
for (p = 0; p < g->p.nr_proc; p++) {
1027
for (t = 0; t < g->p.nr_threads; t++) {
1028
struct thread_data *td;
1029
int task_nr;
1030
int n;
1031
1032
task_nr = p*g->p.nr_threads + t;
1033
td = g->threads + task_nr;
1034
1035
n = numa_node_of_cpu(td->curr_cpu);
1036
if (n == node) {
1037
processes++;
1038
break;
1039
}
1040
}
1041
}
1042
1043
return processes;
1044
}
1045
1046
static void calc_convergence_compression(int *strong)
1047
{
1048
unsigned int nodes_min, nodes_max;
1049
int p;
1050
1051
nodes_min = -1;
1052
nodes_max = 0;
1053
1054
for (p = 0; p < g->p.nr_proc; p++) {
1055
unsigned int nodes = count_process_nodes(p);
1056
1057
if (!nodes) {
1058
*strong = 0;
1059
return;
1060
}
1061
1062
nodes_min = min(nodes, nodes_min);
1063
nodes_max = max(nodes, nodes_max);
1064
}
1065
1066
/* Strong convergence: all threads compress on a single node: */
1067
if (nodes_min == 1 && nodes_max == 1) {
1068
*strong = 1;
1069
} else {
1070
*strong = 0;
1071
tprintf(" {%d-%d}", nodes_min, nodes_max);
1072
}
1073
}
1074
1075
static void calc_convergence(double runtime_ns_max, double *convergence)
1076
{
1077
unsigned int loops_done_min, loops_done_max;
1078
int process_groups;
1079
int *nodes;
1080
int distance;
1081
int nr_min;
1082
int nr_max;
1083
int strong;
1084
int sum;
1085
int nr;
1086
int node;
1087
int cpu;
1088
int t;
1089
1090
if (!g->p.show_convergence && !g->p.measure_convergence)
1091
return;
1092
1093
nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1094
BUG_ON(!nodes);
1095
for (node = 0; node < g->p.nr_nodes; node++)
1096
nodes[node] = 0;
1097
1098
loops_done_min = -1;
1099
loops_done_max = 0;
1100
1101
for (t = 0; t < g->p.nr_tasks; t++) {
1102
struct thread_data *td = g->threads + t;
1103
unsigned int loops_done;
1104
1105
cpu = td->curr_cpu;
1106
1107
/* Not all threads have written it yet: */
1108
if (cpu < 0)
1109
continue;
1110
1111
node = numa_node_of_cpu(cpu);
1112
1113
nodes[node]++;
1114
1115
loops_done = td->loops_done;
1116
loops_done_min = min(loops_done, loops_done_min);
1117
loops_done_max = max(loops_done, loops_done_max);
1118
}
1119
1120
nr_max = 0;
1121
nr_min = g->p.nr_tasks;
1122
sum = 0;
1123
1124
for (node = 0; node < g->p.nr_nodes; node++) {
1125
if (!is_node_present(node))
1126
continue;
1127
nr = nodes[node];
1128
nr_min = min(nr, nr_min);
1129
nr_max = max(nr, nr_max);
1130
sum += nr;
1131
}
1132
BUG_ON(nr_min > nr_max);
1133
1134
BUG_ON(sum > g->p.nr_tasks);
1135
1136
if (0 && (sum < g->p.nr_tasks)) {
1137
free(nodes);
1138
return;
1139
}
1140
1141
/*
1142
* Count the number of distinct process groups present
1143
* on nodes - when we are converged this will decrease
1144
* to g->p.nr_proc:
1145
*/
1146
process_groups = 0;
1147
1148
for (node = 0; node < g->p.nr_nodes; node++) {
1149
int processes;
1150
1151
if (!is_node_present(node))
1152
continue;
1153
processes = count_node_processes(node);
1154
nr = nodes[node];
1155
tprintf(" %2d/%-2d", nr, processes);
1156
1157
process_groups += processes;
1158
}
1159
1160
distance = nr_max - nr_min;
1161
1162
tprintf(" [%2d/%-2d]", distance, process_groups);
1163
1164
tprintf(" l:%3d-%-3d (%3d)",
1165
loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1166
1167
if (loops_done_min && loops_done_max) {
1168
double skew = 1.0 - (double)loops_done_min/loops_done_max;
1169
1170
tprintf(" [%4.1f%%]", skew * 100.0);
1171
}
1172
1173
calc_convergence_compression(&strong);
1174
1175
if (strong && process_groups == g->p.nr_proc) {
1176
if (!*convergence) {
1177
*convergence = runtime_ns_max;
1178
tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1179
if (g->p.measure_convergence) {
1180
g->all_converged = true;
1181
g->stop_work = true;
1182
}
1183
}
1184
} else {
1185
if (*convergence) {
1186
tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1187
*convergence = 0;
1188
}
1189
tprintf("\n");
1190
}
1191
1192
free(nodes);
1193
}
1194
1195
static void show_summary(double runtime_ns_max, int l, double *convergence)
1196
{
1197
tprintf("\r # %5.1f%% [%.1f mins]",
1198
(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1199
1200
calc_convergence(runtime_ns_max, convergence);
1201
1202
if (g->p.show_details >= 0)
1203
fflush(stdout);
1204
}
1205
1206
static void *worker_thread(void *__tdata)
1207
{
1208
struct thread_data *td = __tdata;
1209
struct timeval start0, start, stop, diff;
1210
int process_nr = td->process_nr;
1211
int thread_nr = td->thread_nr;
1212
unsigned long last_perturbance;
1213
int task_nr = td->task_nr;
1214
int details = g->p.show_details;
1215
int first_task, last_task;
1216
double convergence = 0;
1217
u64 val = td->val;
1218
double runtime_ns_max;
1219
u8 *global_data;
1220
u8 *process_data;
1221
u8 *thread_data;
1222
u64 bytes_done, secs;
1223
long work_done;
1224
u32 l;
1225
struct rusage rusage;
1226
1227
bind_to_cpumask(td->bind_cpumask);
1228
bind_to_memnode(td->bind_node);
1229
1230
set_taskname("thread %d/%d", process_nr, thread_nr);
1231
1232
global_data = g->data;
1233
process_data = td->process_data;
1234
thread_data = setup_private_data(g->p.bytes_thread);
1235
1236
bytes_done = 0;
1237
1238
last_task = 0;
1239
if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1240
last_task = 1;
1241
1242
first_task = 0;
1243
if (process_nr == 0 && thread_nr == 0)
1244
first_task = 1;
1245
1246
if (details >= 2) {
1247
printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1248
process_nr, thread_nr, global_data, process_data, thread_data);
1249
}
1250
1251
if (g->p.serialize_startup) {
1252
mutex_lock(&g->startup_mutex);
1253
g->nr_tasks_started++;
1254
/* The last thread wakes the main process. */
1255
if (g->nr_tasks_started == g->p.nr_tasks)
1256
cond_signal(&g->startup_cond);
1257
1258
mutex_unlock(&g->startup_mutex);
1259
1260
/* Here we will wait for the main process to start us all at once: */
1261
mutex_lock(&g->start_work_mutex);
1262
g->start_work = false;
1263
g->nr_tasks_working++;
1264
while (!g->start_work)
1265
cond_wait(&g->start_work_cond, &g->start_work_mutex);
1266
1267
mutex_unlock(&g->start_work_mutex);
1268
}
1269
1270
gettimeofday(&start0, NULL);
1271
1272
start = stop = start0;
1273
last_perturbance = start.tv_sec;
1274
1275
for (l = 0; l < g->p.nr_loops; l++) {
1276
start = stop;
1277
1278
if (g->stop_work)
1279
break;
1280
1281
val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1282
val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1283
val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1284
1285
if (g->p.sleep_usecs) {
1286
mutex_lock(td->process_lock);
1287
usleep(g->p.sleep_usecs);
1288
mutex_unlock(td->process_lock);
1289
}
1290
/*
1291
* Amount of work to be done under a process-global lock:
1292
*/
1293
if (g->p.bytes_process_locked) {
1294
mutex_lock(td->process_lock);
1295
val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1296
mutex_unlock(td->process_lock);
1297
}
1298
1299
work_done = g->p.bytes_global + g->p.bytes_process +
1300
g->p.bytes_process_locked + g->p.bytes_thread;
1301
1302
update_curr_cpu(task_nr, work_done);
1303
bytes_done += work_done;
1304
1305
if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1306
continue;
1307
1308
td->loops_done = l;
1309
1310
gettimeofday(&stop, NULL);
1311
1312
/* Check whether our max runtime timed out: */
1313
if (g->p.nr_secs) {
1314
timersub(&stop, &start0, &diff);
1315
if ((u32)diff.tv_sec >= g->p.nr_secs) {
1316
g->stop_work = true;
1317
break;
1318
}
1319
}
1320
1321
/* Update the summary at most once per second: */
1322
if (start.tv_sec == stop.tv_sec)
1323
continue;
1324
1325
/*
1326
* Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1327
* by migrating to CPU#0:
1328
*/
1329
if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1330
cpu_set_t *orig_mask;
1331
int target_cpu;
1332
int this_cpu;
1333
1334
last_perturbance = stop.tv_sec;
1335
1336
/*
1337
* Depending on where we are running, move into
1338
* the other half of the system, to create some
1339
* real disturbance:
1340
*/
1341
this_cpu = g->threads[task_nr].curr_cpu;
1342
if (this_cpu < g->p.nr_cpus/2)
1343
target_cpu = g->p.nr_cpus-1;
1344
else
1345
target_cpu = 0;
1346
1347
orig_mask = bind_to_cpu(target_cpu);
1348
1349
/* Here we are running on the target CPU already */
1350
if (details >= 1)
1351
printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1352
1353
bind_to_cpumask(orig_mask);
1354
CPU_FREE(orig_mask);
1355
}
1356
1357
if (details >= 3) {
1358
timersub(&stop, &start, &diff);
1359
runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1360
runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1361
1362
if (details >= 0) {
1363
printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1364
process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1365
}
1366
fflush(stdout);
1367
}
1368
if (!last_task)
1369
continue;
1370
1371
timersub(&stop, &start0, &diff);
1372
runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1373
runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1374
1375
show_summary(runtime_ns_max, l, &convergence);
1376
}
1377
1378
gettimeofday(&stop, NULL);
1379
timersub(&stop, &start0, &diff);
1380
td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1381
td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1382
secs = td->runtime_ns / NSEC_PER_SEC;
1383
td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1384
1385
getrusage(RUSAGE_THREAD, &rusage);
1386
td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1387
td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1388
td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1389
td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1390
1391
free_data(thread_data, g->p.bytes_thread);
1392
1393
mutex_lock(&g->stop_work_mutex);
1394
g->bytes_done += bytes_done;
1395
mutex_unlock(&g->stop_work_mutex);
1396
1397
return NULL;
1398
}
1399
1400
/*
1401
* A worker process starts a couple of threads:
1402
*/
1403
static void worker_process(int process_nr)
1404
{
1405
struct mutex process_lock;
1406
struct thread_data *td;
1407
pthread_t *pthreads;
1408
u8 *process_data;
1409
int task_nr;
1410
int ret;
1411
int t;
1412
1413
mutex_init(&process_lock);
1414
set_taskname("process %d", process_nr);
1415
1416
/*
1417
* Pick up the memory policy and the CPU binding of our first thread,
1418
* so that we initialize memory accordingly:
1419
*/
1420
task_nr = process_nr*g->p.nr_threads;
1421
td = g->threads + task_nr;
1422
1423
bind_to_memnode(td->bind_node);
1424
bind_to_cpumask(td->bind_cpumask);
1425
1426
pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1427
process_data = setup_private_data(g->p.bytes_process);
1428
1429
if (g->p.show_details >= 3) {
1430
printf(" # process %2d global mem: %p, process mem: %p\n",
1431
process_nr, g->data, process_data);
1432
}
1433
1434
for (t = 0; t < g->p.nr_threads; t++) {
1435
task_nr = process_nr*g->p.nr_threads + t;
1436
td = g->threads + task_nr;
1437
1438
td->process_data = process_data;
1439
td->process_nr = process_nr;
1440
td->thread_nr = t;
1441
td->task_nr = task_nr;
1442
td->val = rand();
1443
td->curr_cpu = -1;
1444
td->process_lock = &process_lock;
1445
1446
ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1447
BUG_ON(ret);
1448
}
1449
1450
for (t = 0; t < g->p.nr_threads; t++) {
1451
ret = pthread_join(pthreads[t], NULL);
1452
BUG_ON(ret);
1453
}
1454
1455
free_data(process_data, g->p.bytes_process);
1456
free(pthreads);
1457
}
1458
1459
static void print_summary(void)
1460
{
1461
if (g->p.show_details < 0)
1462
return;
1463
1464
printf("\n ###\n");
1465
printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1466
g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1467
printf(" # %5dx %5ldMB global shared mem operations\n",
1468
g->p.nr_loops, g->p.bytes_global/1024/1024);
1469
printf(" # %5dx %5ldMB process shared mem operations\n",
1470
g->p.nr_loops, g->p.bytes_process/1024/1024);
1471
printf(" # %5dx %5ldMB thread local mem operations\n",
1472
g->p.nr_loops, g->p.bytes_thread/1024/1024);
1473
1474
printf(" ###\n");
1475
1476
printf("\n ###\n"); fflush(stdout);
1477
}
1478
1479
static void init_thread_data(void)
1480
{
1481
ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1482
int t;
1483
1484
g->threads = zalloc_shared_data(size);
1485
1486
for (t = 0; t < g->p.nr_tasks; t++) {
1487
struct thread_data *td = g->threads + t;
1488
size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus);
1489
int cpu;
1490
1491
/* Allow all nodes by default: */
1492
td->bind_node = NUMA_NO_NODE;
1493
1494
/* Allow all CPUs by default: */
1495
td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
1496
BUG_ON(!td->bind_cpumask);
1497
CPU_ZERO_S(cpuset_size, td->bind_cpumask);
1498
for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1499
CPU_SET_S(cpu, cpuset_size, td->bind_cpumask);
1500
}
1501
}
1502
1503
static void deinit_thread_data(void)
1504
{
1505
ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1506
int t;
1507
1508
/* Free the bind_cpumask allocated for thread_data */
1509
for (t = 0; t < g->p.nr_tasks; t++) {
1510
struct thread_data *td = g->threads + t;
1511
CPU_FREE(td->bind_cpumask);
1512
}
1513
1514
free_data(g->threads, size);
1515
}
1516
1517
static int init(void)
1518
{
1519
g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1520
1521
/* Copy over options: */
1522
g->p = p0;
1523
1524
g->p.nr_cpus = numa_num_configured_cpus();
1525
1526
g->p.nr_nodes = numa_max_node() + 1;
1527
1528
/* char array in count_process_nodes(): */
1529
BUG_ON(g->p.nr_nodes < 0);
1530
1531
if (quiet && !g->p.show_details)
1532
g->p.show_details = -1;
1533
1534
/* Some memory should be specified: */
1535
if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1536
return -1;
1537
1538
if (g->p.mb_global_str) {
1539
g->p.mb_global = atof(g->p.mb_global_str);
1540
BUG_ON(g->p.mb_global < 0);
1541
}
1542
1543
if (g->p.mb_proc_str) {
1544
g->p.mb_proc = atof(g->p.mb_proc_str);
1545
BUG_ON(g->p.mb_proc < 0);
1546
}
1547
1548
if (g->p.mb_proc_locked_str) {
1549
g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1550
BUG_ON(g->p.mb_proc_locked < 0);
1551
BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1552
}
1553
1554
if (g->p.mb_thread_str) {
1555
g->p.mb_thread = atof(g->p.mb_thread_str);
1556
BUG_ON(g->p.mb_thread < 0);
1557
}
1558
1559
BUG_ON(g->p.nr_threads <= 0);
1560
BUG_ON(g->p.nr_proc <= 0);
1561
1562
g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1563
1564
g->p.bytes_global = g->p.mb_global *1024L*1024L;
1565
g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1566
g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1567
g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1568
1569
g->data = setup_shared_data(g->p.bytes_global);
1570
1571
/* Startup serialization: */
1572
mutex_init_pshared(&g->start_work_mutex);
1573
cond_init_pshared(&g->start_work_cond);
1574
mutex_init_pshared(&g->startup_mutex);
1575
cond_init_pshared(&g->startup_cond);
1576
mutex_init_pshared(&g->stop_work_mutex);
1577
1578
init_thread_data();
1579
1580
tprintf("#\n");
1581
if (parse_setup_cpu_list() || parse_setup_node_list())
1582
return -1;
1583
tprintf("#\n");
1584
1585
print_summary();
1586
1587
return 0;
1588
}
1589
1590
static void deinit(void)
1591
{
1592
free_data(g->data, g->p.bytes_global);
1593
g->data = NULL;
1594
1595
deinit_thread_data();
1596
1597
free_data(g, sizeof(*g));
1598
g = NULL;
1599
}
1600
1601
/*
1602
* Print a short or long result, depending on the verbosity setting:
1603
*/
1604
static void print_res(const char *name, double val,
1605
const char *txt_unit, const char *txt_short, const char *txt_long)
1606
{
1607
if (!name)
1608
name = "main,";
1609
1610
if (!quiet)
1611
printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1612
else
1613
printf(" %14.3f %s\n", val, txt_long);
1614
}
1615
1616
static int __bench_numa(const char *name)
1617
{
1618
struct timeval start, stop, diff;
1619
u64 runtime_ns_min, runtime_ns_sum;
1620
pid_t *pids, pid, wpid;
1621
double delta_runtime;
1622
double runtime_avg;
1623
double runtime_sec_max;
1624
double runtime_sec_min;
1625
int wait_stat;
1626
double bytes;
1627
int i, t, p;
1628
1629
if (init())
1630
return -1;
1631
1632
pids = zalloc(g->p.nr_proc * sizeof(*pids));
1633
pid = -1;
1634
1635
if (g->p.serialize_startup) {
1636
tprintf(" #\n");
1637
tprintf(" # Startup synchronization: ..."); fflush(stdout);
1638
}
1639
1640
gettimeofday(&start, NULL);
1641
1642
for (i = 0; i < g->p.nr_proc; i++) {
1643
pid = fork();
1644
dprintf(" # process %2d: PID %d\n", i, pid);
1645
1646
BUG_ON(pid < 0);
1647
if (!pid) {
1648
/* Child process: */
1649
worker_process(i);
1650
1651
exit(0);
1652
}
1653
pids[i] = pid;
1654
1655
}
1656
1657
if (g->p.serialize_startup) {
1658
bool threads_ready = false;
1659
double startup_sec;
1660
1661
/*
1662
* Wait for all the threads to start up. The last thread will
1663
* signal this process.
1664
*/
1665
mutex_lock(&g->startup_mutex);
1666
while (g->nr_tasks_started != g->p.nr_tasks)
1667
cond_wait(&g->startup_cond, &g->startup_mutex);
1668
1669
mutex_unlock(&g->startup_mutex);
1670
1671
/* Wait for all threads to be at the start_work_cond. */
1672
while (!threads_ready) {
1673
mutex_lock(&g->start_work_mutex);
1674
threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1675
mutex_unlock(&g->start_work_mutex);
1676
if (!threads_ready)
1677
usleep(1);
1678
}
1679
1680
gettimeofday(&stop, NULL);
1681
1682
timersub(&stop, &start, &diff);
1683
1684
startup_sec = diff.tv_sec * NSEC_PER_SEC;
1685
startup_sec += diff.tv_usec * NSEC_PER_USEC;
1686
startup_sec /= NSEC_PER_SEC;
1687
1688
tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1689
tprintf(" #\n");
1690
1691
start = stop;
1692
/* Start all threads running. */
1693
mutex_lock(&g->start_work_mutex);
1694
g->start_work = true;
1695
mutex_unlock(&g->start_work_mutex);
1696
cond_broadcast(&g->start_work_cond);
1697
} else {
1698
gettimeofday(&start, NULL);
1699
}
1700
1701
/* Parent process: */
1702
1703
1704
for (i = 0; i < g->p.nr_proc; i++) {
1705
wpid = waitpid(pids[i], &wait_stat, 0);
1706
BUG_ON(wpid < 0);
1707
BUG_ON(!WIFEXITED(wait_stat));
1708
1709
}
1710
1711
runtime_ns_sum = 0;
1712
runtime_ns_min = -1LL;
1713
1714
for (t = 0; t < g->p.nr_tasks; t++) {
1715
u64 thread_runtime_ns = g->threads[t].runtime_ns;
1716
1717
runtime_ns_sum += thread_runtime_ns;
1718
runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1719
}
1720
1721
gettimeofday(&stop, NULL);
1722
timersub(&stop, &start, &diff);
1723
1724
BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1725
1726
tprintf("\n ###\n");
1727
tprintf("\n");
1728
1729
runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1730
runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1731
runtime_sec_max /= NSEC_PER_SEC;
1732
1733
runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1734
1735
bytes = g->bytes_done;
1736
runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1737
1738
if (g->p.measure_convergence) {
1739
print_res(name, runtime_sec_max,
1740
"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1741
}
1742
1743
print_res(name, runtime_sec_max,
1744
"secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1745
1746
print_res(name, runtime_sec_min,
1747
"secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1748
1749
print_res(name, runtime_avg,
1750
"secs,", "runtime-avg/thread", "secs average thread-runtime");
1751
1752
delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1753
print_res(name, delta_runtime / runtime_sec_max * 100.0,
1754
"%,", "spread-runtime/thread", "% difference between max/avg runtime");
1755
1756
print_res(name, bytes / g->p.nr_tasks / 1e9,
1757
"GB,", "data/thread", "GB data processed, per thread");
1758
1759
print_res(name, bytes / 1e9,
1760
"GB,", "data-total", "GB data processed, total");
1761
1762
print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1763
"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1764
1765
print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1766
"GB/sec,", "thread-speed", "GB/sec/thread speed");
1767
1768
print_res(name, bytes / runtime_sec_max / 1e9,
1769
"GB/sec,", "total-speed", "GB/sec total speed");
1770
1771
if (g->p.show_details >= 2) {
1772
char tname[14 + 2 * 11 + 1];
1773
struct thread_data *td;
1774
for (p = 0; p < g->p.nr_proc; p++) {
1775
for (t = 0; t < g->p.nr_threads; t++) {
1776
memset(tname, 0, sizeof(tname));
1777
td = g->threads + p*g->p.nr_threads + t;
1778
snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1779
print_res(tname, td->speed_gbs,
1780
"GB/sec", "thread-speed", "GB/sec/thread speed");
1781
print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1782
"secs", "thread-system-time", "system CPU time/thread");
1783
print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1784
"secs", "thread-user-time", "user CPU time/thread");
1785
}
1786
}
1787
}
1788
1789
free(pids);
1790
1791
deinit();
1792
1793
return 0;
1794
}
1795
1796
#define MAX_ARGS 50
1797
1798
static int command_size(const char **argv)
1799
{
1800
int size = 0;
1801
1802
while (*argv) {
1803
size++;
1804
argv++;
1805
}
1806
1807
BUG_ON(size >= MAX_ARGS);
1808
1809
return size;
1810
}
1811
1812
static void init_params(struct params *p, const char *name, int argc, const char **argv)
1813
{
1814
int i;
1815
1816
printf("\n # Running %s \"perf bench numa", name);
1817
1818
for (i = 0; i < argc; i++)
1819
printf(" %s", argv[i]);
1820
1821
printf("\"\n");
1822
1823
memset(p, 0, sizeof(*p));
1824
1825
/* Initialize nonzero defaults: */
1826
1827
p->serialize_startup = 1;
1828
p->data_reads = true;
1829
p->data_writes = true;
1830
p->data_backwards = true;
1831
p->data_rand_walk = true;
1832
p->nr_loops = -1;
1833
p->init_random = true;
1834
p->mb_global_str = "1";
1835
p->nr_proc = 1;
1836
p->nr_threads = 1;
1837
p->nr_secs = 5;
1838
p->run_all = argc == 1;
1839
}
1840
1841
static int run_bench_numa(const char *name, const char **argv)
1842
{
1843
int argc = command_size(argv);
1844
1845
init_params(&p0, name, argc, argv);
1846
argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1847
if (argc)
1848
goto err;
1849
1850
if (__bench_numa(name))
1851
goto err;
1852
1853
return 0;
1854
1855
err:
1856
return -1;
1857
}
1858
1859
#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1860
#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1861
1862
#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1863
#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1864
1865
#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1866
#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1867
1868
/*
1869
* The built-in test-suite executed by "perf bench numa -a".
1870
*
1871
* (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1872
*/
1873
static const char *tests[][MAX_ARGS] = {
1874
/* Basic single-stream NUMA bandwidth measurements: */
1875
{ "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1876
"-C" , "0", "-M", "0", OPT_BW_RAM },
1877
{ "RAM-bw-local-NOTHP,",
1878
"mem", "-p", "1", "-t", "1", "-P", "1024",
1879
"-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1880
{ "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1881
"-C" , "0", "-M", "1", OPT_BW_RAM },
1882
1883
/* 2-stream NUMA bandwidth measurements: */
1884
{ "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1885
"-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1886
{ "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1887
"-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1888
1889
/* Cross-stream NUMA bandwidth measurement: */
1890
{ "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1891
"-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1892
1893
/* Convergence latency measurements: */
1894
{ " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1895
{ " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1896
{ " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1897
{ " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV },
1898
{ " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1899
{ " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1900
{ " 4x4-convergence-NOTHP,",
1901
"mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1902
{ " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1903
{ " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1904
{ " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1905
{ " 8x4-convergence-NOTHP,",
1906
"mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1907
{ " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1908
{ " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1909
{ " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1910
{ "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1911
{ "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1912
1913
/* Various NUMA process/thread layout bandwidth measurements: */
1914
{ " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1915
{ " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1916
{ " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1917
{ " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1918
{ " 8x1-bw-process-NOTHP,",
1919
"mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1920
{ "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1921
1922
{ " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1923
{ " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1924
{ "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1925
{ "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1926
1927
{ " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1928
{ " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1929
{ " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1930
{ " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1931
{ " 4x8-bw-process-NOTHP,",
1932
"mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1933
{ " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1934
{ " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1935
1936
{ "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1937
{ "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1938
1939
{ "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1940
{ "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1941
{ "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1942
{ "numa01-bw-thread-NOTHP,",
1943
"mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1944
};
1945
1946
static int bench_all(void)
1947
{
1948
int nr = ARRAY_SIZE(tests);
1949
int ret;
1950
int i;
1951
1952
ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1953
BUG_ON(ret < 0);
1954
1955
for (i = 0; i < nr; i++) {
1956
run_bench_numa(tests[i][0], tests[i] + 1);
1957
}
1958
1959
printf("\n");
1960
1961
return 0;
1962
}
1963
1964
int bench_numa(int argc, const char **argv)
1965
{
1966
init_params(&p0, "main,", argc, argv);
1967
argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1968
if (argc)
1969
goto err;
1970
1971
if (p0.run_all)
1972
return bench_all();
1973
1974
if (__bench_numa(NULL))
1975
goto err;
1976
1977
return 0;
1978
1979
err:
1980
usage_with_options(numa_usage, options);
1981
return -1;
1982
}
1983
1984