Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/perf/builtin-sched.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include "builtin.h"
3
#include "perf.h"
4
#include "perf-sys.h"
5
6
#include "util/cpumap.h"
7
#include "util/evlist.h"
8
#include "util/evsel.h"
9
#include "util/evsel_fprintf.h"
10
#include "util/mutex.h"
11
#include "util/symbol.h"
12
#include "util/thread.h"
13
#include "util/header.h"
14
#include "util/session.h"
15
#include "util/tool.h"
16
#include "util/cloexec.h"
17
#include "util/thread_map.h"
18
#include "util/color.h"
19
#include "util/stat.h"
20
#include "util/string2.h"
21
#include "util/callchain.h"
22
#include "util/time-utils.h"
23
24
#include <subcmd/pager.h>
25
#include <subcmd/parse-options.h>
26
#include "util/trace-event.h"
27
28
#include "util/debug.h"
29
#include "util/event.h"
30
#include "util/util.h"
31
32
#include <linux/kernel.h>
33
#include <linux/log2.h>
34
#include <linux/zalloc.h>
35
#include <sys/prctl.h>
36
#include <sys/resource.h>
37
#include <inttypes.h>
38
39
#include <errno.h>
40
#include <semaphore.h>
41
#include <pthread.h>
42
#include <math.h>
43
#include <api/fs/fs.h>
44
#include <perf/cpumap.h>
45
#include <linux/time64.h>
46
#include <linux/err.h>
47
48
#include <linux/ctype.h>
49
50
#define PR_SET_NAME 15 /* Set process name */
51
#define MAX_CPUS 4096
52
#define COMM_LEN 20
53
#define SYM_LEN 129
54
#define MAX_PID 1024000
55
#define MAX_PRIO 140
56
57
static const char *cpu_list;
58
static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
59
60
struct sched_atom;
61
62
struct task_desc {
63
unsigned long nr;
64
unsigned long pid;
65
char comm[COMM_LEN];
66
67
unsigned long nr_events;
68
unsigned long curr_event;
69
struct sched_atom **atoms;
70
71
pthread_t thread;
72
73
sem_t ready_for_work;
74
sem_t work_done_sem;
75
76
u64 cpu_usage;
77
};
78
79
enum sched_event_type {
80
SCHED_EVENT_RUN,
81
SCHED_EVENT_SLEEP,
82
SCHED_EVENT_WAKEUP,
83
};
84
85
struct sched_atom {
86
enum sched_event_type type;
87
u64 timestamp;
88
u64 duration;
89
unsigned long nr;
90
sem_t *wait_sem;
91
struct task_desc *wakee;
92
};
93
94
enum thread_state {
95
THREAD_SLEEPING = 0,
96
THREAD_WAIT_CPU,
97
THREAD_SCHED_IN,
98
THREAD_IGNORE
99
};
100
101
struct work_atom {
102
struct list_head list;
103
enum thread_state state;
104
u64 sched_out_time;
105
u64 wake_up_time;
106
u64 sched_in_time;
107
u64 runtime;
108
};
109
110
struct work_atoms {
111
struct list_head work_list;
112
struct thread *thread;
113
struct rb_node node;
114
u64 max_lat;
115
u64 max_lat_start;
116
u64 max_lat_end;
117
u64 total_lat;
118
u64 nb_atoms;
119
u64 total_runtime;
120
int num_merged;
121
};
122
123
typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
124
125
struct perf_sched;
126
127
struct trace_sched_handler {
128
int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
129
struct perf_sample *sample, struct machine *machine);
130
131
int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
132
struct perf_sample *sample, struct machine *machine);
133
134
int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
135
struct perf_sample *sample, struct machine *machine);
136
137
/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
138
int (*fork_event)(struct perf_sched *sched, union perf_event *event,
139
struct machine *machine);
140
141
int (*migrate_task_event)(struct perf_sched *sched,
142
struct evsel *evsel,
143
struct perf_sample *sample,
144
struct machine *machine);
145
};
146
147
#define COLOR_PIDS PERF_COLOR_BLUE
148
#define COLOR_CPUS PERF_COLOR_BG_RED
149
150
struct perf_sched_map {
151
DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
152
struct perf_cpu *comp_cpus;
153
bool comp;
154
struct perf_thread_map *color_pids;
155
const char *color_pids_str;
156
struct perf_cpu_map *color_cpus;
157
const char *color_cpus_str;
158
const char *task_name;
159
struct strlist *task_names;
160
bool fuzzy;
161
struct perf_cpu_map *cpus;
162
const char *cpus_str;
163
};
164
165
struct perf_sched {
166
struct perf_tool tool;
167
const char *sort_order;
168
unsigned long nr_tasks;
169
struct task_desc **pid_to_task;
170
struct task_desc **tasks;
171
const struct trace_sched_handler *tp_handler;
172
struct mutex start_work_mutex;
173
struct mutex work_done_wait_mutex;
174
int profile_cpu;
175
/*
176
* Track the current task - that way we can know whether there's any
177
* weird events, such as a task being switched away that is not current.
178
*/
179
struct perf_cpu max_cpu;
180
u32 *curr_pid;
181
struct thread **curr_thread;
182
struct thread **curr_out_thread;
183
char next_shortname1;
184
char next_shortname2;
185
unsigned int replay_repeat;
186
unsigned long nr_run_events;
187
unsigned long nr_sleep_events;
188
unsigned long nr_wakeup_events;
189
unsigned long nr_sleep_corrections;
190
unsigned long nr_run_events_optimized;
191
unsigned long targetless_wakeups;
192
unsigned long multitarget_wakeups;
193
unsigned long nr_runs;
194
unsigned long nr_timestamps;
195
unsigned long nr_unordered_timestamps;
196
unsigned long nr_context_switch_bugs;
197
unsigned long nr_events;
198
unsigned long nr_lost_chunks;
199
unsigned long nr_lost_events;
200
u64 run_measurement_overhead;
201
u64 sleep_measurement_overhead;
202
u64 start_time;
203
u64 cpu_usage;
204
u64 runavg_cpu_usage;
205
u64 parent_cpu_usage;
206
u64 runavg_parent_cpu_usage;
207
u64 sum_runtime;
208
u64 sum_fluct;
209
u64 run_avg;
210
u64 all_runtime;
211
u64 all_count;
212
u64 *cpu_last_switched;
213
struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
214
struct list_head sort_list, cmp_pid;
215
bool force;
216
bool skip_merge;
217
struct perf_sched_map map;
218
219
/* options for timehist command */
220
bool summary;
221
bool summary_only;
222
bool idle_hist;
223
bool show_callchain;
224
unsigned int max_stack;
225
bool show_cpu_visual;
226
bool show_wakeups;
227
bool show_next;
228
bool show_migrations;
229
bool pre_migrations;
230
bool show_state;
231
bool show_prio;
232
u64 skipped_samples;
233
const char *time_str;
234
struct perf_time_interval ptime;
235
struct perf_time_interval hist_time;
236
volatile bool thread_funcs_exit;
237
const char *prio_str;
238
DECLARE_BITMAP(prio_bitmap, MAX_PRIO);
239
};
240
241
/* per thread run time data */
242
struct thread_runtime {
243
u64 last_time; /* time of previous sched in/out event */
244
u64 dt_run; /* run time */
245
u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
246
u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
247
u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
248
u64 dt_delay; /* time between wakeup and sched-in */
249
u64 dt_pre_mig; /* time between migration and wakeup */
250
u64 ready_to_run; /* time of wakeup */
251
u64 migrated; /* time when a thread is migrated */
252
253
struct stats run_stats;
254
u64 total_run_time;
255
u64 total_sleep_time;
256
u64 total_iowait_time;
257
u64 total_preempt_time;
258
u64 total_delay_time;
259
u64 total_pre_mig_time;
260
261
char last_state;
262
263
char shortname[3];
264
bool comm_changed;
265
266
u64 migrations;
267
268
int prio;
269
};
270
271
/* per event run time data */
272
struct evsel_runtime {
273
u64 *last_time; /* time this event was last seen per cpu */
274
u32 ncpu; /* highest cpu slot allocated */
275
};
276
277
/* per cpu idle time data */
278
struct idle_thread_runtime {
279
struct thread_runtime tr;
280
struct thread *last_thread;
281
struct rb_root_cached sorted_root;
282
struct callchain_root callchain;
283
struct callchain_cursor cursor;
284
};
285
286
/* track idle times per cpu */
287
static struct thread **idle_threads;
288
static int idle_max_cpu;
289
static char idle_comm[] = "<idle>";
290
291
static u64 get_nsecs(void)
292
{
293
struct timespec ts;
294
295
clock_gettime(CLOCK_MONOTONIC, &ts);
296
297
return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
298
}
299
300
static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
301
{
302
u64 T0 = get_nsecs(), T1;
303
304
do {
305
T1 = get_nsecs();
306
} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
307
}
308
309
static void sleep_nsecs(u64 nsecs)
310
{
311
struct timespec ts;
312
313
ts.tv_nsec = nsecs % 999999999;
314
ts.tv_sec = nsecs / 999999999;
315
316
nanosleep(&ts, NULL);
317
}
318
319
static void calibrate_run_measurement_overhead(struct perf_sched *sched)
320
{
321
u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
322
int i;
323
324
for (i = 0; i < 10; i++) {
325
T0 = get_nsecs();
326
burn_nsecs(sched, 0);
327
T1 = get_nsecs();
328
delta = T1-T0;
329
min_delta = min(min_delta, delta);
330
}
331
sched->run_measurement_overhead = min_delta;
332
333
printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
334
}
335
336
static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
337
{
338
u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
339
int i;
340
341
for (i = 0; i < 10; i++) {
342
T0 = get_nsecs();
343
sleep_nsecs(10000);
344
T1 = get_nsecs();
345
delta = T1-T0;
346
min_delta = min(min_delta, delta);
347
}
348
min_delta -= 10000;
349
sched->sleep_measurement_overhead = min_delta;
350
351
printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
352
}
353
354
static struct sched_atom *
355
get_new_event(struct task_desc *task, u64 timestamp)
356
{
357
struct sched_atom *event = zalloc(sizeof(*event));
358
unsigned long idx = task->nr_events;
359
size_t size;
360
361
event->timestamp = timestamp;
362
event->nr = idx;
363
364
task->nr_events++;
365
size = sizeof(struct sched_atom *) * task->nr_events;
366
task->atoms = realloc(task->atoms, size);
367
BUG_ON(!task->atoms);
368
369
task->atoms[idx] = event;
370
371
return event;
372
}
373
374
static struct sched_atom *last_event(struct task_desc *task)
375
{
376
if (!task->nr_events)
377
return NULL;
378
379
return task->atoms[task->nr_events - 1];
380
}
381
382
static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
383
u64 timestamp, u64 duration)
384
{
385
struct sched_atom *event, *curr_event = last_event(task);
386
387
/*
388
* optimize an existing RUN event by merging this one
389
* to it:
390
*/
391
if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
392
sched->nr_run_events_optimized++;
393
curr_event->duration += duration;
394
return;
395
}
396
397
event = get_new_event(task, timestamp);
398
399
event->type = SCHED_EVENT_RUN;
400
event->duration = duration;
401
402
sched->nr_run_events++;
403
}
404
405
static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
406
u64 timestamp, struct task_desc *wakee)
407
{
408
struct sched_atom *event, *wakee_event;
409
410
event = get_new_event(task, timestamp);
411
event->type = SCHED_EVENT_WAKEUP;
412
event->wakee = wakee;
413
414
wakee_event = last_event(wakee);
415
if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
416
sched->targetless_wakeups++;
417
return;
418
}
419
if (wakee_event->wait_sem) {
420
sched->multitarget_wakeups++;
421
return;
422
}
423
424
wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
425
sem_init(wakee_event->wait_sem, 0, 0);
426
event->wait_sem = wakee_event->wait_sem;
427
428
sched->nr_wakeup_events++;
429
}
430
431
static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
432
u64 timestamp)
433
{
434
struct sched_atom *event = get_new_event(task, timestamp);
435
436
event->type = SCHED_EVENT_SLEEP;
437
438
sched->nr_sleep_events++;
439
}
440
441
static struct task_desc *register_pid(struct perf_sched *sched,
442
unsigned long pid, const char *comm)
443
{
444
struct task_desc *task;
445
static int pid_max;
446
447
if (sched->pid_to_task == NULL) {
448
if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
449
pid_max = MAX_PID;
450
BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
451
}
452
if (pid >= (unsigned long)pid_max) {
453
BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
454
sizeof(struct task_desc *))) == NULL);
455
while (pid >= (unsigned long)pid_max)
456
sched->pid_to_task[pid_max++] = NULL;
457
}
458
459
task = sched->pid_to_task[pid];
460
461
if (task)
462
return task;
463
464
task = zalloc(sizeof(*task));
465
task->pid = pid;
466
task->nr = sched->nr_tasks;
467
strcpy(task->comm, comm);
468
/*
469
* every task starts in sleeping state - this gets ignored
470
* if there's no wakeup pointing to this sleep state:
471
*/
472
add_sched_event_sleep(sched, task, 0);
473
474
sched->pid_to_task[pid] = task;
475
sched->nr_tasks++;
476
sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
477
BUG_ON(!sched->tasks);
478
sched->tasks[task->nr] = task;
479
480
if (verbose > 0)
481
printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
482
483
return task;
484
}
485
486
487
static void print_task_traces(struct perf_sched *sched)
488
{
489
struct task_desc *task;
490
unsigned long i;
491
492
for (i = 0; i < sched->nr_tasks; i++) {
493
task = sched->tasks[i];
494
printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
495
task->nr, task->comm, task->pid, task->nr_events);
496
}
497
}
498
499
static void add_cross_task_wakeups(struct perf_sched *sched)
500
{
501
struct task_desc *task1, *task2;
502
unsigned long i, j;
503
504
for (i = 0; i < sched->nr_tasks; i++) {
505
task1 = sched->tasks[i];
506
j = i + 1;
507
if (j == sched->nr_tasks)
508
j = 0;
509
task2 = sched->tasks[j];
510
add_sched_event_wakeup(sched, task1, 0, task2);
511
}
512
}
513
514
static void perf_sched__process_event(struct perf_sched *sched,
515
struct sched_atom *atom)
516
{
517
int ret = 0;
518
519
switch (atom->type) {
520
case SCHED_EVENT_RUN:
521
burn_nsecs(sched, atom->duration);
522
break;
523
case SCHED_EVENT_SLEEP:
524
if (atom->wait_sem)
525
ret = sem_wait(atom->wait_sem);
526
BUG_ON(ret);
527
break;
528
case SCHED_EVENT_WAKEUP:
529
if (atom->wait_sem)
530
ret = sem_post(atom->wait_sem);
531
BUG_ON(ret);
532
break;
533
default:
534
BUG_ON(1);
535
}
536
}
537
538
static u64 get_cpu_usage_nsec_parent(void)
539
{
540
struct rusage ru;
541
u64 sum;
542
int err;
543
544
err = getrusage(RUSAGE_SELF, &ru);
545
BUG_ON(err);
546
547
sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
548
sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
549
550
return sum;
551
}
552
553
static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
554
{
555
struct perf_event_attr attr;
556
char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
557
int fd;
558
struct rlimit limit;
559
bool need_privilege = false;
560
561
memset(&attr, 0, sizeof(attr));
562
563
attr.type = PERF_TYPE_SOFTWARE;
564
attr.config = PERF_COUNT_SW_TASK_CLOCK;
565
566
force_again:
567
fd = sys_perf_event_open(&attr, 0, -1, -1,
568
perf_event_open_cloexec_flag());
569
570
if (fd < 0) {
571
if (errno == EMFILE) {
572
if (sched->force) {
573
BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
574
limit.rlim_cur += sched->nr_tasks - cur_task;
575
if (limit.rlim_cur > limit.rlim_max) {
576
limit.rlim_max = limit.rlim_cur;
577
need_privilege = true;
578
}
579
if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
580
if (need_privilege && errno == EPERM)
581
strcpy(info, "Need privilege\n");
582
} else
583
goto force_again;
584
} else
585
strcpy(info, "Have a try with -f option\n");
586
}
587
pr_err("Error: sys_perf_event_open() syscall returned "
588
"with %d (%s)\n%s", fd,
589
str_error_r(errno, sbuf, sizeof(sbuf)), info);
590
exit(EXIT_FAILURE);
591
}
592
return fd;
593
}
594
595
static u64 get_cpu_usage_nsec_self(int fd)
596
{
597
u64 runtime;
598
int ret;
599
600
ret = read(fd, &runtime, sizeof(runtime));
601
BUG_ON(ret != sizeof(runtime));
602
603
return runtime;
604
}
605
606
struct sched_thread_parms {
607
struct task_desc *task;
608
struct perf_sched *sched;
609
int fd;
610
};
611
612
static void *thread_func(void *ctx)
613
{
614
struct sched_thread_parms *parms = ctx;
615
struct task_desc *this_task = parms->task;
616
struct perf_sched *sched = parms->sched;
617
u64 cpu_usage_0, cpu_usage_1;
618
unsigned long i, ret;
619
char comm2[22];
620
int fd = parms->fd;
621
622
zfree(&parms);
623
624
sprintf(comm2, ":%s", this_task->comm);
625
prctl(PR_SET_NAME, comm2);
626
if (fd < 0)
627
return NULL;
628
629
while (!sched->thread_funcs_exit) {
630
ret = sem_post(&this_task->ready_for_work);
631
BUG_ON(ret);
632
mutex_lock(&sched->start_work_mutex);
633
mutex_unlock(&sched->start_work_mutex);
634
635
cpu_usage_0 = get_cpu_usage_nsec_self(fd);
636
637
for (i = 0; i < this_task->nr_events; i++) {
638
this_task->curr_event = i;
639
perf_sched__process_event(sched, this_task->atoms[i]);
640
}
641
642
cpu_usage_1 = get_cpu_usage_nsec_self(fd);
643
this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
644
ret = sem_post(&this_task->work_done_sem);
645
BUG_ON(ret);
646
647
mutex_lock(&sched->work_done_wait_mutex);
648
mutex_unlock(&sched->work_done_wait_mutex);
649
}
650
return NULL;
651
}
652
653
static void create_tasks(struct perf_sched *sched)
654
EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
655
EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
656
{
657
struct task_desc *task;
658
pthread_attr_t attr;
659
unsigned long i;
660
int err;
661
662
err = pthread_attr_init(&attr);
663
BUG_ON(err);
664
err = pthread_attr_setstacksize(&attr,
665
(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
666
BUG_ON(err);
667
mutex_lock(&sched->start_work_mutex);
668
mutex_lock(&sched->work_done_wait_mutex);
669
for (i = 0; i < sched->nr_tasks; i++) {
670
struct sched_thread_parms *parms = malloc(sizeof(*parms));
671
BUG_ON(parms == NULL);
672
parms->task = task = sched->tasks[i];
673
parms->sched = sched;
674
parms->fd = self_open_counters(sched, i);
675
sem_init(&task->ready_for_work, 0, 0);
676
sem_init(&task->work_done_sem, 0, 0);
677
task->curr_event = 0;
678
err = pthread_create(&task->thread, &attr, thread_func, parms);
679
BUG_ON(err);
680
}
681
}
682
683
static void destroy_tasks(struct perf_sched *sched)
684
UNLOCK_FUNCTION(sched->start_work_mutex)
685
UNLOCK_FUNCTION(sched->work_done_wait_mutex)
686
{
687
struct task_desc *task;
688
unsigned long i;
689
int err;
690
691
mutex_unlock(&sched->start_work_mutex);
692
mutex_unlock(&sched->work_done_wait_mutex);
693
/* Get rid of threads so they won't be upset by mutex destrunction */
694
for (i = 0; i < sched->nr_tasks; i++) {
695
task = sched->tasks[i];
696
err = pthread_join(task->thread, NULL);
697
BUG_ON(err);
698
sem_destroy(&task->ready_for_work);
699
sem_destroy(&task->work_done_sem);
700
}
701
}
702
703
static void wait_for_tasks(struct perf_sched *sched)
704
EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
705
EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
706
{
707
u64 cpu_usage_0, cpu_usage_1;
708
struct task_desc *task;
709
unsigned long i, ret;
710
711
sched->start_time = get_nsecs();
712
sched->cpu_usage = 0;
713
mutex_unlock(&sched->work_done_wait_mutex);
714
715
for (i = 0; i < sched->nr_tasks; i++) {
716
task = sched->tasks[i];
717
ret = sem_wait(&task->ready_for_work);
718
BUG_ON(ret);
719
sem_init(&task->ready_for_work, 0, 0);
720
}
721
mutex_lock(&sched->work_done_wait_mutex);
722
723
cpu_usage_0 = get_cpu_usage_nsec_parent();
724
725
mutex_unlock(&sched->start_work_mutex);
726
727
for (i = 0; i < sched->nr_tasks; i++) {
728
task = sched->tasks[i];
729
ret = sem_wait(&task->work_done_sem);
730
BUG_ON(ret);
731
sem_init(&task->work_done_sem, 0, 0);
732
sched->cpu_usage += task->cpu_usage;
733
task->cpu_usage = 0;
734
}
735
736
cpu_usage_1 = get_cpu_usage_nsec_parent();
737
if (!sched->runavg_cpu_usage)
738
sched->runavg_cpu_usage = sched->cpu_usage;
739
sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
740
741
sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
742
if (!sched->runavg_parent_cpu_usage)
743
sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
744
sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
745
sched->parent_cpu_usage)/sched->replay_repeat;
746
747
mutex_lock(&sched->start_work_mutex);
748
749
for (i = 0; i < sched->nr_tasks; i++) {
750
task = sched->tasks[i];
751
task->curr_event = 0;
752
}
753
}
754
755
static void run_one_test(struct perf_sched *sched)
756
EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
757
EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
758
{
759
u64 T0, T1, delta, avg_delta, fluct;
760
761
T0 = get_nsecs();
762
wait_for_tasks(sched);
763
T1 = get_nsecs();
764
765
delta = T1 - T0;
766
sched->sum_runtime += delta;
767
sched->nr_runs++;
768
769
avg_delta = sched->sum_runtime / sched->nr_runs;
770
if (delta < avg_delta)
771
fluct = avg_delta - delta;
772
else
773
fluct = delta - avg_delta;
774
sched->sum_fluct += fluct;
775
if (!sched->run_avg)
776
sched->run_avg = delta;
777
sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
778
779
printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
780
781
printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
782
783
printf("cpu: %0.2f / %0.2f",
784
(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
785
786
#if 0
787
/*
788
* rusage statistics done by the parent, these are less
789
* accurate than the sched->sum_exec_runtime based statistics:
790
*/
791
printf(" [%0.2f / %0.2f]",
792
(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
793
(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
794
#endif
795
796
printf("\n");
797
798
if (sched->nr_sleep_corrections)
799
printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
800
sched->nr_sleep_corrections = 0;
801
}
802
803
static void test_calibrations(struct perf_sched *sched)
804
{
805
u64 T0, T1;
806
807
T0 = get_nsecs();
808
burn_nsecs(sched, NSEC_PER_MSEC);
809
T1 = get_nsecs();
810
811
printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
812
813
T0 = get_nsecs();
814
sleep_nsecs(NSEC_PER_MSEC);
815
T1 = get_nsecs();
816
817
printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
818
}
819
820
static int
821
replay_wakeup_event(struct perf_sched *sched,
822
struct evsel *evsel, struct perf_sample *sample,
823
struct machine *machine __maybe_unused)
824
{
825
const char *comm = evsel__strval(evsel, sample, "comm");
826
const u32 pid = evsel__intval(evsel, sample, "pid");
827
struct task_desc *waker, *wakee;
828
829
if (verbose > 0) {
830
printf("sched_wakeup event %p\n", evsel);
831
832
printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
833
}
834
835
waker = register_pid(sched, sample->tid, "<unknown>");
836
wakee = register_pid(sched, pid, comm);
837
838
add_sched_event_wakeup(sched, waker, sample->time, wakee);
839
return 0;
840
}
841
842
static int replay_switch_event(struct perf_sched *sched,
843
struct evsel *evsel,
844
struct perf_sample *sample,
845
struct machine *machine __maybe_unused)
846
{
847
const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"),
848
*next_comm = evsel__strval(evsel, sample, "next_comm");
849
const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
850
next_pid = evsel__intval(evsel, sample, "next_pid");
851
struct task_desc *prev, __maybe_unused *next;
852
u64 timestamp0, timestamp = sample->time;
853
int cpu = sample->cpu;
854
s64 delta;
855
856
if (verbose > 0)
857
printf("sched_switch event %p\n", evsel);
858
859
if (cpu >= MAX_CPUS || cpu < 0)
860
return 0;
861
862
timestamp0 = sched->cpu_last_switched[cpu];
863
if (timestamp0)
864
delta = timestamp - timestamp0;
865
else
866
delta = 0;
867
868
if (delta < 0) {
869
pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
870
return -1;
871
}
872
873
pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
874
prev_comm, prev_pid, next_comm, next_pid, delta);
875
876
prev = register_pid(sched, prev_pid, prev_comm);
877
next = register_pid(sched, next_pid, next_comm);
878
879
sched->cpu_last_switched[cpu] = timestamp;
880
881
add_sched_event_run(sched, prev, timestamp, delta);
882
add_sched_event_sleep(sched, prev, timestamp);
883
884
return 0;
885
}
886
887
static int replay_fork_event(struct perf_sched *sched,
888
union perf_event *event,
889
struct machine *machine)
890
{
891
struct thread *child, *parent;
892
893
child = machine__findnew_thread(machine, event->fork.pid,
894
event->fork.tid);
895
parent = machine__findnew_thread(machine, event->fork.ppid,
896
event->fork.ptid);
897
898
if (child == NULL || parent == NULL) {
899
pr_debug("thread does not exist on fork event: child %p, parent %p\n",
900
child, parent);
901
goto out_put;
902
}
903
904
if (verbose > 0) {
905
printf("fork event\n");
906
printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
907
printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child));
908
}
909
910
register_pid(sched, thread__tid(parent), thread__comm_str(parent));
911
register_pid(sched, thread__tid(child), thread__comm_str(child));
912
out_put:
913
thread__put(child);
914
thread__put(parent);
915
return 0;
916
}
917
918
struct sort_dimension {
919
const char *name;
920
sort_fn_t cmp;
921
struct list_head list;
922
};
923
924
static inline void init_prio(struct thread_runtime *r)
925
{
926
r->prio = -1;
927
}
928
929
/*
930
* handle runtime stats saved per thread
931
*/
932
static struct thread_runtime *thread__init_runtime(struct thread *thread)
933
{
934
struct thread_runtime *r;
935
936
r = zalloc(sizeof(struct thread_runtime));
937
if (!r)
938
return NULL;
939
940
init_stats(&r->run_stats);
941
init_prio(r);
942
thread__set_priv(thread, r);
943
944
return r;
945
}
946
947
static struct thread_runtime *thread__get_runtime(struct thread *thread)
948
{
949
struct thread_runtime *tr;
950
951
tr = thread__priv(thread);
952
if (tr == NULL) {
953
tr = thread__init_runtime(thread);
954
if (tr == NULL)
955
pr_debug("Failed to malloc memory for runtime data.\n");
956
}
957
958
return tr;
959
}
960
961
static int
962
thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
963
{
964
struct sort_dimension *sort;
965
int ret = 0;
966
967
BUG_ON(list_empty(list));
968
969
list_for_each_entry(sort, list, list) {
970
ret = sort->cmp(l, r);
971
if (ret)
972
return ret;
973
}
974
975
return ret;
976
}
977
978
static struct work_atoms *
979
thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
980
struct list_head *sort_list)
981
{
982
struct rb_node *node = root->rb_root.rb_node;
983
struct work_atoms key = { .thread = thread };
984
985
while (node) {
986
struct work_atoms *atoms;
987
int cmp;
988
989
atoms = container_of(node, struct work_atoms, node);
990
991
cmp = thread_lat_cmp(sort_list, &key, atoms);
992
if (cmp > 0)
993
node = node->rb_left;
994
else if (cmp < 0)
995
node = node->rb_right;
996
else {
997
BUG_ON(!RC_CHK_EQUAL(thread, atoms->thread));
998
return atoms;
999
}
1000
}
1001
return NULL;
1002
}
1003
1004
static void
1005
__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1006
struct list_head *sort_list)
1007
{
1008
struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1009
bool leftmost = true;
1010
1011
while (*new) {
1012
struct work_atoms *this;
1013
int cmp;
1014
1015
this = container_of(*new, struct work_atoms, node);
1016
parent = *new;
1017
1018
cmp = thread_lat_cmp(sort_list, data, this);
1019
1020
if (cmp > 0)
1021
new = &((*new)->rb_left);
1022
else {
1023
new = &((*new)->rb_right);
1024
leftmost = false;
1025
}
1026
}
1027
1028
rb_link_node(&data->node, parent, new);
1029
rb_insert_color_cached(&data->node, root, leftmost);
1030
}
1031
1032
static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1033
{
1034
struct work_atoms *atoms = zalloc(sizeof(*atoms));
1035
if (!atoms) {
1036
pr_err("No memory at %s\n", __func__);
1037
return -1;
1038
}
1039
1040
atoms->thread = thread__get(thread);
1041
INIT_LIST_HEAD(&atoms->work_list);
1042
__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1043
return 0;
1044
}
1045
1046
static int
1047
add_sched_out_event(struct work_atoms *atoms,
1048
char run_state,
1049
u64 timestamp)
1050
{
1051
struct work_atom *atom = zalloc(sizeof(*atom));
1052
if (!atom) {
1053
pr_err("Non memory at %s", __func__);
1054
return -1;
1055
}
1056
1057
atom->sched_out_time = timestamp;
1058
1059
if (run_state == 'R') {
1060
atom->state = THREAD_WAIT_CPU;
1061
atom->wake_up_time = atom->sched_out_time;
1062
}
1063
1064
list_add_tail(&atom->list, &atoms->work_list);
1065
return 0;
1066
}
1067
1068
static void
1069
add_runtime_event(struct work_atoms *atoms, u64 delta,
1070
u64 timestamp __maybe_unused)
1071
{
1072
struct work_atom *atom;
1073
1074
BUG_ON(list_empty(&atoms->work_list));
1075
1076
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1077
1078
atom->runtime += delta;
1079
atoms->total_runtime += delta;
1080
}
1081
1082
static void
1083
add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1084
{
1085
struct work_atom *atom;
1086
u64 delta;
1087
1088
if (list_empty(&atoms->work_list))
1089
return;
1090
1091
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1092
1093
if (atom->state != THREAD_WAIT_CPU)
1094
return;
1095
1096
if (timestamp < atom->wake_up_time) {
1097
atom->state = THREAD_IGNORE;
1098
return;
1099
}
1100
1101
atom->state = THREAD_SCHED_IN;
1102
atom->sched_in_time = timestamp;
1103
1104
delta = atom->sched_in_time - atom->wake_up_time;
1105
atoms->total_lat += delta;
1106
if (delta > atoms->max_lat) {
1107
atoms->max_lat = delta;
1108
atoms->max_lat_start = atom->wake_up_time;
1109
atoms->max_lat_end = timestamp;
1110
}
1111
atoms->nb_atoms++;
1112
}
1113
1114
static void free_work_atoms(struct work_atoms *atoms)
1115
{
1116
struct work_atom *atom, *tmp;
1117
1118
if (atoms == NULL)
1119
return;
1120
1121
list_for_each_entry_safe(atom, tmp, &atoms->work_list, list) {
1122
list_del(&atom->list);
1123
free(atom);
1124
}
1125
thread__zput(atoms->thread);
1126
free(atoms);
1127
}
1128
1129
static int latency_switch_event(struct perf_sched *sched,
1130
struct evsel *evsel,
1131
struct perf_sample *sample,
1132
struct machine *machine)
1133
{
1134
const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1135
next_pid = evsel__intval(evsel, sample, "next_pid");
1136
const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1137
struct work_atoms *out_events, *in_events;
1138
struct thread *sched_out, *sched_in;
1139
u64 timestamp0, timestamp = sample->time;
1140
int cpu = sample->cpu, err = -1;
1141
s64 delta;
1142
1143
BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1144
1145
timestamp0 = sched->cpu_last_switched[cpu];
1146
sched->cpu_last_switched[cpu] = timestamp;
1147
if (timestamp0)
1148
delta = timestamp - timestamp0;
1149
else
1150
delta = 0;
1151
1152
if (delta < 0) {
1153
pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1154
return -1;
1155
}
1156
1157
sched_out = machine__findnew_thread(machine, -1, prev_pid);
1158
sched_in = machine__findnew_thread(machine, -1, next_pid);
1159
if (sched_out == NULL || sched_in == NULL)
1160
goto out_put;
1161
1162
out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1163
if (!out_events) {
1164
if (thread_atoms_insert(sched, sched_out))
1165
goto out_put;
1166
out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1167
if (!out_events) {
1168
pr_err("out-event: Internal tree error");
1169
goto out_put;
1170
}
1171
}
1172
if (add_sched_out_event(out_events, prev_state, timestamp))
1173
return -1;
1174
1175
in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1176
if (!in_events) {
1177
if (thread_atoms_insert(sched, sched_in))
1178
goto out_put;
1179
in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1180
if (!in_events) {
1181
pr_err("in-event: Internal tree error");
1182
goto out_put;
1183
}
1184
/*
1185
* Take came in we have not heard about yet,
1186
* add in an initial atom in runnable state:
1187
*/
1188
if (add_sched_out_event(in_events, 'R', timestamp))
1189
goto out_put;
1190
}
1191
add_sched_in_event(in_events, timestamp);
1192
err = 0;
1193
out_put:
1194
thread__put(sched_out);
1195
thread__put(sched_in);
1196
return err;
1197
}
1198
1199
static int latency_runtime_event(struct perf_sched *sched,
1200
struct evsel *evsel,
1201
struct perf_sample *sample,
1202
struct machine *machine)
1203
{
1204
const u32 pid = evsel__intval(evsel, sample, "pid");
1205
const u64 runtime = evsel__intval(evsel, sample, "runtime");
1206
struct thread *thread = machine__findnew_thread(machine, -1, pid);
1207
struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1208
u64 timestamp = sample->time;
1209
int cpu = sample->cpu, err = -1;
1210
1211
if (thread == NULL)
1212
return -1;
1213
1214
BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1215
if (!atoms) {
1216
if (thread_atoms_insert(sched, thread))
1217
goto out_put;
1218
atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1219
if (!atoms) {
1220
pr_err("in-event: Internal tree error");
1221
goto out_put;
1222
}
1223
if (add_sched_out_event(atoms, 'R', timestamp))
1224
goto out_put;
1225
}
1226
1227
add_runtime_event(atoms, runtime, timestamp);
1228
err = 0;
1229
out_put:
1230
thread__put(thread);
1231
return err;
1232
}
1233
1234
static int latency_wakeup_event(struct perf_sched *sched,
1235
struct evsel *evsel,
1236
struct perf_sample *sample,
1237
struct machine *machine)
1238
{
1239
const u32 pid = evsel__intval(evsel, sample, "pid");
1240
struct work_atoms *atoms;
1241
struct work_atom *atom;
1242
struct thread *wakee;
1243
u64 timestamp = sample->time;
1244
int err = -1;
1245
1246
wakee = machine__findnew_thread(machine, -1, pid);
1247
if (wakee == NULL)
1248
return -1;
1249
atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1250
if (!atoms) {
1251
if (thread_atoms_insert(sched, wakee))
1252
goto out_put;
1253
atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1254
if (!atoms) {
1255
pr_err("wakeup-event: Internal tree error");
1256
goto out_put;
1257
}
1258
if (add_sched_out_event(atoms, 'S', timestamp))
1259
goto out_put;
1260
}
1261
1262
BUG_ON(list_empty(&atoms->work_list));
1263
1264
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1265
1266
/*
1267
* As we do not guarantee the wakeup event happens when
1268
* task is out of run queue, also may happen when task is
1269
* on run queue and wakeup only change ->state to TASK_RUNNING,
1270
* then we should not set the ->wake_up_time when wake up a
1271
* task which is on run queue.
1272
*
1273
* You WILL be missing events if you've recorded only
1274
* one CPU, or are only looking at only one, so don't
1275
* skip in this case.
1276
*/
1277
if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1278
goto out_ok;
1279
1280
sched->nr_timestamps++;
1281
if (atom->sched_out_time > timestamp) {
1282
sched->nr_unordered_timestamps++;
1283
goto out_ok;
1284
}
1285
1286
atom->state = THREAD_WAIT_CPU;
1287
atom->wake_up_time = timestamp;
1288
out_ok:
1289
err = 0;
1290
out_put:
1291
thread__put(wakee);
1292
return err;
1293
}
1294
1295
static int latency_migrate_task_event(struct perf_sched *sched,
1296
struct evsel *evsel,
1297
struct perf_sample *sample,
1298
struct machine *machine)
1299
{
1300
const u32 pid = evsel__intval(evsel, sample, "pid");
1301
u64 timestamp = sample->time;
1302
struct work_atoms *atoms;
1303
struct work_atom *atom;
1304
struct thread *migrant;
1305
int err = -1;
1306
1307
/*
1308
* Only need to worry about migration when profiling one CPU.
1309
*/
1310
if (sched->profile_cpu == -1)
1311
return 0;
1312
1313
migrant = machine__findnew_thread(machine, -1, pid);
1314
if (migrant == NULL)
1315
return -1;
1316
atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1317
if (!atoms) {
1318
if (thread_atoms_insert(sched, migrant))
1319
goto out_put;
1320
register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1321
atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1322
if (!atoms) {
1323
pr_err("migration-event: Internal tree error");
1324
goto out_put;
1325
}
1326
if (add_sched_out_event(atoms, 'R', timestamp))
1327
goto out_put;
1328
}
1329
1330
BUG_ON(list_empty(&atoms->work_list));
1331
1332
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1333
atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1334
1335
sched->nr_timestamps++;
1336
1337
if (atom->sched_out_time > timestamp)
1338
sched->nr_unordered_timestamps++;
1339
err = 0;
1340
out_put:
1341
thread__put(migrant);
1342
return err;
1343
}
1344
1345
static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1346
{
1347
int i;
1348
int ret;
1349
u64 avg;
1350
char max_lat_start[32], max_lat_end[32];
1351
1352
if (!work_list->nb_atoms)
1353
return;
1354
/*
1355
* Ignore idle threads:
1356
*/
1357
if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1358
return;
1359
1360
sched->all_runtime += work_list->total_runtime;
1361
sched->all_count += work_list->nb_atoms;
1362
1363
if (work_list->num_merged > 1) {
1364
ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread),
1365
work_list->num_merged);
1366
} else {
1367
ret = printf(" %s:%d ", thread__comm_str(work_list->thread),
1368
thread__tid(work_list->thread));
1369
}
1370
1371
for (i = 0; i < 24 - ret; i++)
1372
printf(" ");
1373
1374
avg = work_list->total_lat / work_list->nb_atoms;
1375
timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1376
timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1377
1378
printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1379
(double)work_list->total_runtime / NSEC_PER_MSEC,
1380
work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1381
(double)work_list->max_lat / NSEC_PER_MSEC,
1382
max_lat_start, max_lat_end);
1383
}
1384
1385
static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1386
{
1387
pid_t l_tid, r_tid;
1388
1389
if (RC_CHK_EQUAL(l->thread, r->thread))
1390
return 0;
1391
l_tid = thread__tid(l->thread);
1392
r_tid = thread__tid(r->thread);
1393
if (l_tid < r_tid)
1394
return -1;
1395
if (l_tid > r_tid)
1396
return 1;
1397
return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1398
}
1399
1400
static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1401
{
1402
u64 avgl, avgr;
1403
1404
if (!l->nb_atoms)
1405
return -1;
1406
1407
if (!r->nb_atoms)
1408
return 1;
1409
1410
avgl = l->total_lat / l->nb_atoms;
1411
avgr = r->total_lat / r->nb_atoms;
1412
1413
if (avgl < avgr)
1414
return -1;
1415
if (avgl > avgr)
1416
return 1;
1417
1418
return 0;
1419
}
1420
1421
static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1422
{
1423
if (l->max_lat < r->max_lat)
1424
return -1;
1425
if (l->max_lat > r->max_lat)
1426
return 1;
1427
1428
return 0;
1429
}
1430
1431
static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1432
{
1433
if (l->nb_atoms < r->nb_atoms)
1434
return -1;
1435
if (l->nb_atoms > r->nb_atoms)
1436
return 1;
1437
1438
return 0;
1439
}
1440
1441
static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1442
{
1443
if (l->total_runtime < r->total_runtime)
1444
return -1;
1445
if (l->total_runtime > r->total_runtime)
1446
return 1;
1447
1448
return 0;
1449
}
1450
1451
static int sort_dimension__add(const char *tok, struct list_head *list)
1452
{
1453
size_t i;
1454
static struct sort_dimension avg_sort_dimension = {
1455
.name = "avg",
1456
.cmp = avg_cmp,
1457
};
1458
static struct sort_dimension max_sort_dimension = {
1459
.name = "max",
1460
.cmp = max_cmp,
1461
};
1462
static struct sort_dimension pid_sort_dimension = {
1463
.name = "pid",
1464
.cmp = pid_cmp,
1465
};
1466
static struct sort_dimension runtime_sort_dimension = {
1467
.name = "runtime",
1468
.cmp = runtime_cmp,
1469
};
1470
static struct sort_dimension switch_sort_dimension = {
1471
.name = "switch",
1472
.cmp = switch_cmp,
1473
};
1474
struct sort_dimension *available_sorts[] = {
1475
&pid_sort_dimension,
1476
&avg_sort_dimension,
1477
&max_sort_dimension,
1478
&switch_sort_dimension,
1479
&runtime_sort_dimension,
1480
};
1481
1482
for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1483
if (!strcmp(available_sorts[i]->name, tok)) {
1484
list_add_tail(&available_sorts[i]->list, list);
1485
1486
return 0;
1487
}
1488
}
1489
1490
return -1;
1491
}
1492
1493
static void perf_sched__sort_lat(struct perf_sched *sched)
1494
{
1495
struct rb_node *node;
1496
struct rb_root_cached *root = &sched->atom_root;
1497
again:
1498
for (;;) {
1499
struct work_atoms *data;
1500
node = rb_first_cached(root);
1501
if (!node)
1502
break;
1503
1504
rb_erase_cached(node, root);
1505
data = rb_entry(node, struct work_atoms, node);
1506
__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1507
}
1508
if (root == &sched->atom_root) {
1509
root = &sched->merged_atom_root;
1510
goto again;
1511
}
1512
}
1513
1514
static int process_sched_wakeup_event(const struct perf_tool *tool,
1515
struct evsel *evsel,
1516
struct perf_sample *sample,
1517
struct machine *machine)
1518
{
1519
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1520
1521
if (sched->tp_handler->wakeup_event)
1522
return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1523
1524
return 0;
1525
}
1526
1527
static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
1528
struct evsel *evsel __maybe_unused,
1529
struct perf_sample *sample __maybe_unused,
1530
struct machine *machine __maybe_unused)
1531
{
1532
return 0;
1533
}
1534
1535
union map_priv {
1536
void *ptr;
1537
bool color;
1538
};
1539
1540
static bool thread__has_color(struct thread *thread)
1541
{
1542
union map_priv priv = {
1543
.ptr = thread__priv(thread),
1544
};
1545
1546
return priv.color;
1547
}
1548
1549
static struct thread*
1550
map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1551
{
1552
struct thread *thread = machine__findnew_thread(machine, pid, tid);
1553
union map_priv priv = {
1554
.color = false,
1555
};
1556
1557
if (!sched->map.color_pids || !thread || thread__priv(thread))
1558
return thread;
1559
1560
if (thread_map__has(sched->map.color_pids, tid))
1561
priv.color = true;
1562
1563
thread__set_priv(thread, priv.ptr);
1564
return thread;
1565
}
1566
1567
static bool sched_match_task(struct perf_sched *sched, const char *comm_str)
1568
{
1569
bool fuzzy_match = sched->map.fuzzy;
1570
struct strlist *task_names = sched->map.task_names;
1571
struct str_node *node;
1572
1573
strlist__for_each_entry(node, task_names) {
1574
bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) :
1575
!strcmp(comm_str, node->s);
1576
if (match_found)
1577
return true;
1578
}
1579
1580
return false;
1581
}
1582
1583
static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr,
1584
const char *color, bool sched_out)
1585
{
1586
for (int i = 0; i < cpus_nr; i++) {
1587
struct perf_cpu cpu = {
1588
.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1589
};
1590
struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1591
struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu];
1592
struct thread_runtime *curr_tr;
1593
const char *pid_color = color;
1594
const char *cpu_color = color;
1595
char symbol = ' ';
1596
struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread;
1597
1598
if (thread_to_check && thread__has_color(thread_to_check))
1599
pid_color = COLOR_PIDS;
1600
1601
if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1602
cpu_color = COLOR_CPUS;
1603
1604
if (cpu.cpu == this_cpu.cpu)
1605
symbol = '*';
1606
1607
color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol);
1608
1609
thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] :
1610
sched->curr_thread[cpu.cpu];
1611
1612
if (thread_to_check) {
1613
curr_tr = thread__get_runtime(thread_to_check);
1614
if (curr_tr == NULL)
1615
return;
1616
1617
if (sched_out) {
1618
if (cpu.cpu == this_cpu.cpu)
1619
color_fprintf(stdout, color, "- ");
1620
else {
1621
curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1622
if (curr_tr != NULL)
1623
color_fprintf(stdout, pid_color, "%2s ",
1624
curr_tr->shortname);
1625
}
1626
} else
1627
color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1628
} else
1629
color_fprintf(stdout, color, " ");
1630
}
1631
}
1632
1633
static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1634
struct perf_sample *sample, struct machine *machine)
1635
{
1636
const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1637
const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid");
1638
struct thread *sched_in, *sched_out;
1639
struct thread_runtime *tr;
1640
int new_shortname;
1641
u64 timestamp0, timestamp = sample->time;
1642
s64 delta;
1643
struct perf_cpu this_cpu = {
1644
.cpu = sample->cpu,
1645
};
1646
int cpus_nr;
1647
int proceed;
1648
bool new_cpu = false;
1649
const char *color = PERF_COLOR_NORMAL;
1650
char stimestamp[32];
1651
const char *str;
1652
int ret = -1;
1653
1654
BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1655
1656
if (this_cpu.cpu > sched->max_cpu.cpu)
1657
sched->max_cpu = this_cpu;
1658
1659
if (sched->map.comp) {
1660
cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1661
if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1662
sched->map.comp_cpus[cpus_nr++] = this_cpu;
1663
new_cpu = true;
1664
}
1665
} else
1666
cpus_nr = sched->max_cpu.cpu;
1667
1668
timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1669
sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1670
if (timestamp0)
1671
delta = timestamp - timestamp0;
1672
else
1673
delta = 0;
1674
1675
if (delta < 0) {
1676
pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1677
return -1;
1678
}
1679
1680
sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1681
sched_out = map__findnew_thread(sched, machine, -1, prev_pid);
1682
if (sched_in == NULL || sched_out == NULL)
1683
goto out;
1684
1685
tr = thread__get_runtime(sched_in);
1686
if (tr == NULL)
1687
goto out;
1688
1689
thread__put(sched->curr_thread[this_cpu.cpu]);
1690
thread__put(sched->curr_out_thread[this_cpu.cpu]);
1691
1692
sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1693
sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out);
1694
1695
ret = 0;
1696
1697
str = thread__comm_str(sched_in);
1698
new_shortname = 0;
1699
if (!tr->shortname[0]) {
1700
if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1701
/*
1702
* Don't allocate a letter-number for swapper:0
1703
* as a shortname. Instead, we use '.' for it.
1704
*/
1705
tr->shortname[0] = '.';
1706
tr->shortname[1] = ' ';
1707
} else if (!sched->map.task_name || sched_match_task(sched, str)) {
1708
tr->shortname[0] = sched->next_shortname1;
1709
tr->shortname[1] = sched->next_shortname2;
1710
1711
if (sched->next_shortname1 < 'Z') {
1712
sched->next_shortname1++;
1713
} else {
1714
sched->next_shortname1 = 'A';
1715
if (sched->next_shortname2 < '9')
1716
sched->next_shortname2++;
1717
else
1718
sched->next_shortname2 = '0';
1719
}
1720
} else {
1721
tr->shortname[0] = '-';
1722
tr->shortname[1] = ' ';
1723
}
1724
new_shortname = 1;
1725
}
1726
1727
if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1728
goto out;
1729
1730
proceed = 0;
1731
str = thread__comm_str(sched_in);
1732
/*
1733
* Check which of sched_in and sched_out matches the passed --task-name
1734
* arguments and call the corresponding print_sched_map.
1735
*/
1736
if (sched->map.task_name && !sched_match_task(sched, str)) {
1737
if (!sched_match_task(sched, thread__comm_str(sched_out)))
1738
goto out;
1739
else
1740
goto sched_out;
1741
1742
} else {
1743
str = thread__comm_str(sched_out);
1744
if (!(sched->map.task_name && !sched_match_task(sched, str)))
1745
proceed = 1;
1746
}
1747
1748
printf(" ");
1749
1750
print_sched_map(sched, this_cpu, cpus_nr, color, false);
1751
1752
timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1753
color_fprintf(stdout, color, " %12s secs ", stimestamp);
1754
if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1755
const char *pid_color = color;
1756
1757
if (thread__has_color(sched_in))
1758
pid_color = COLOR_PIDS;
1759
1760
color_fprintf(stdout, pid_color, "%s => %s:%d",
1761
tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1762
tr->comm_changed = false;
1763
}
1764
1765
if (sched->map.comp && new_cpu)
1766
color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu);
1767
1768
if (proceed != 1) {
1769
color_fprintf(stdout, color, "\n");
1770
goto out;
1771
}
1772
1773
sched_out:
1774
if (sched->map.task_name) {
1775
tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]);
1776
if (strcmp(tr->shortname, "") == 0)
1777
goto out;
1778
1779
if (proceed == 1)
1780
color_fprintf(stdout, color, "\n");
1781
1782
printf(" ");
1783
print_sched_map(sched, this_cpu, cpus_nr, color, true);
1784
timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1785
color_fprintf(stdout, color, " %12s secs ", stimestamp);
1786
}
1787
1788
color_fprintf(stdout, color, "\n");
1789
1790
out:
1791
thread__put(sched_out);
1792
thread__put(sched_in);
1793
1794
return ret;
1795
}
1796
1797
static int process_sched_switch_event(const struct perf_tool *tool,
1798
struct evsel *evsel,
1799
struct perf_sample *sample,
1800
struct machine *machine)
1801
{
1802
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1803
int this_cpu = sample->cpu, err = 0;
1804
u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1805
next_pid = evsel__intval(evsel, sample, "next_pid");
1806
1807
if (sched->curr_pid[this_cpu] != (u32)-1) {
1808
/*
1809
* Are we trying to switch away a PID that is
1810
* not current?
1811
*/
1812
if (sched->curr_pid[this_cpu] != prev_pid)
1813
sched->nr_context_switch_bugs++;
1814
}
1815
1816
if (sched->tp_handler->switch_event)
1817
err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1818
1819
sched->curr_pid[this_cpu] = next_pid;
1820
return err;
1821
}
1822
1823
static int process_sched_runtime_event(const struct perf_tool *tool,
1824
struct evsel *evsel,
1825
struct perf_sample *sample,
1826
struct machine *machine)
1827
{
1828
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1829
1830
if (sched->tp_handler->runtime_event)
1831
return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1832
1833
return 0;
1834
}
1835
1836
static int perf_sched__process_fork_event(const struct perf_tool *tool,
1837
union perf_event *event,
1838
struct perf_sample *sample,
1839
struct machine *machine)
1840
{
1841
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1842
1843
/* run the fork event through the perf machinery */
1844
perf_event__process_fork(tool, event, sample, machine);
1845
1846
/* and then run additional processing needed for this command */
1847
if (sched->tp_handler->fork_event)
1848
return sched->tp_handler->fork_event(sched, event, machine);
1849
1850
return 0;
1851
}
1852
1853
static int process_sched_migrate_task_event(const struct perf_tool *tool,
1854
struct evsel *evsel,
1855
struct perf_sample *sample,
1856
struct machine *machine)
1857
{
1858
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1859
1860
if (sched->tp_handler->migrate_task_event)
1861
return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1862
1863
return 0;
1864
}
1865
1866
typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1867
struct evsel *evsel,
1868
struct perf_sample *sample,
1869
struct machine *machine);
1870
1871
static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused,
1872
union perf_event *event __maybe_unused,
1873
struct perf_sample *sample,
1874
struct evsel *evsel,
1875
struct machine *machine)
1876
{
1877
int err = 0;
1878
1879
if (evsel->handler != NULL) {
1880
tracepoint_handler f = evsel->handler;
1881
err = f(tool, evsel, sample, machine);
1882
}
1883
1884
return err;
1885
}
1886
1887
static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused,
1888
union perf_event *event,
1889
struct perf_sample *sample,
1890
struct machine *machine)
1891
{
1892
struct thread *thread;
1893
struct thread_runtime *tr;
1894
int err;
1895
1896
err = perf_event__process_comm(tool, event, sample, machine);
1897
if (err)
1898
return err;
1899
1900
thread = machine__find_thread(machine, sample->pid, sample->tid);
1901
if (!thread) {
1902
pr_err("Internal error: can't find thread\n");
1903
return -1;
1904
}
1905
1906
tr = thread__get_runtime(thread);
1907
if (tr == NULL) {
1908
thread__put(thread);
1909
return -1;
1910
}
1911
1912
tr->comm_changed = true;
1913
thread__put(thread);
1914
1915
return 0;
1916
}
1917
1918
static int perf_sched__read_events(struct perf_sched *sched)
1919
{
1920
struct evsel_str_handler handlers[] = {
1921
{ "sched:sched_switch", process_sched_switch_event, },
1922
{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1923
{ "sched:sched_wakeup", process_sched_wakeup_event, },
1924
{ "sched:sched_waking", process_sched_wakeup_event, },
1925
{ "sched:sched_wakeup_new", process_sched_wakeup_event, },
1926
{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1927
};
1928
struct perf_session *session;
1929
struct perf_data data = {
1930
.path = input_name,
1931
.mode = PERF_DATA_MODE_READ,
1932
.force = sched->force,
1933
};
1934
int rc = -1;
1935
1936
session = perf_session__new(&data, &sched->tool);
1937
if (IS_ERR(session)) {
1938
pr_debug("Error creating perf session");
1939
return PTR_ERR(session);
1940
}
1941
1942
symbol__init(perf_session__env(session));
1943
1944
/* prefer sched_waking if it is captured */
1945
if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1946
handlers[2].handler = process_sched_wakeup_ignore;
1947
1948
if (perf_session__set_tracepoints_handlers(session, handlers))
1949
goto out_delete;
1950
1951
if (perf_session__has_traces(session, "record -R")) {
1952
int err = perf_session__process_events(session);
1953
if (err) {
1954
pr_err("Failed to process events, error %d", err);
1955
goto out_delete;
1956
}
1957
1958
sched->nr_events = session->evlist->stats.nr_events[0];
1959
sched->nr_lost_events = session->evlist->stats.total_lost;
1960
sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1961
}
1962
1963
rc = 0;
1964
out_delete:
1965
perf_session__delete(session);
1966
return rc;
1967
}
1968
1969
/*
1970
* scheduling times are printed as msec.usec
1971
*/
1972
static inline void print_sched_time(unsigned long long nsecs, int width)
1973
{
1974
unsigned long msecs;
1975
unsigned long usecs;
1976
1977
msecs = nsecs / NSEC_PER_MSEC;
1978
nsecs -= msecs * NSEC_PER_MSEC;
1979
usecs = nsecs / NSEC_PER_USEC;
1980
printf("%*lu.%03lu ", width, msecs, usecs);
1981
}
1982
1983
/*
1984
* returns runtime data for event, allocating memory for it the
1985
* first time it is used.
1986
*/
1987
static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1988
{
1989
struct evsel_runtime *r = evsel->priv;
1990
1991
if (r == NULL) {
1992
r = zalloc(sizeof(struct evsel_runtime));
1993
evsel->priv = r;
1994
}
1995
1996
return r;
1997
}
1998
1999
/*
2000
* save last time event was seen per cpu
2001
*/
2002
static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
2003
{
2004
struct evsel_runtime *r = evsel__get_runtime(evsel);
2005
2006
if (r == NULL)
2007
return;
2008
2009
if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
2010
int i, n = __roundup_pow_of_two(cpu+1);
2011
void *p = r->last_time;
2012
2013
p = realloc(r->last_time, n * sizeof(u64));
2014
if (!p)
2015
return;
2016
2017
r->last_time = p;
2018
for (i = r->ncpu; i < n; ++i)
2019
r->last_time[i] = (u64) 0;
2020
2021
r->ncpu = n;
2022
}
2023
2024
r->last_time[cpu] = timestamp;
2025
}
2026
2027
/* returns last time this event was seen on the given cpu */
2028
static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
2029
{
2030
struct evsel_runtime *r = evsel__get_runtime(evsel);
2031
2032
if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
2033
return 0;
2034
2035
return r->last_time[cpu];
2036
}
2037
2038
static void timehist__evsel_priv_destructor(void *priv)
2039
{
2040
struct evsel_runtime *r = priv;
2041
2042
if (r) {
2043
free(r->last_time);
2044
free(r);
2045
}
2046
}
2047
2048
static int comm_width = 30;
2049
2050
static char *timehist_get_commstr(struct thread *thread)
2051
{
2052
static char str[32];
2053
const char *comm = thread__comm_str(thread);
2054
pid_t tid = thread__tid(thread);
2055
pid_t pid = thread__pid(thread);
2056
int n;
2057
2058
if (pid == 0)
2059
n = scnprintf(str, sizeof(str), "%s", comm);
2060
2061
else if (tid != pid)
2062
n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
2063
2064
else
2065
n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
2066
2067
if (n > comm_width)
2068
comm_width = n;
2069
2070
return str;
2071
}
2072
2073
/* prio field format: xxx or xxx->yyy */
2074
#define MAX_PRIO_STR_LEN 8
2075
static char *timehist_get_priostr(struct evsel *evsel,
2076
struct thread *thread,
2077
struct perf_sample *sample)
2078
{
2079
static char prio_str[16];
2080
int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio");
2081
struct thread_runtime *tr = thread__priv(thread);
2082
2083
if (tr->prio != prev_prio && tr->prio != -1)
2084
scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio);
2085
else
2086
scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio);
2087
2088
return prio_str;
2089
}
2090
2091
static void timehist_header(struct perf_sched *sched)
2092
{
2093
u32 ncpus = sched->max_cpu.cpu + 1;
2094
u32 i, j;
2095
2096
printf("%15s %6s ", "time", "cpu");
2097
2098
if (sched->show_cpu_visual) {
2099
printf(" ");
2100
for (i = 0, j = 0; i < ncpus; ++i) {
2101
printf("%x", j++);
2102
if (j > 15)
2103
j = 0;
2104
}
2105
printf(" ");
2106
}
2107
2108
printf(" %-*s", comm_width, "task name");
2109
2110
if (sched->show_prio)
2111
printf(" %-*s", MAX_PRIO_STR_LEN, "prio");
2112
2113
printf(" %9s %9s %9s", "wait time", "sch delay", "run time");
2114
2115
if (sched->pre_migrations)
2116
printf(" %9s", "pre-mig time");
2117
2118
if (sched->show_state)
2119
printf(" %s", "state");
2120
2121
printf("\n");
2122
2123
/*
2124
* units row
2125
*/
2126
printf("%15s %-6s ", "", "");
2127
2128
if (sched->show_cpu_visual)
2129
printf(" %*s ", ncpus, "");
2130
2131
printf(" %-*s", comm_width, "[tid/pid]");
2132
2133
if (sched->show_prio)
2134
printf(" %-*s", MAX_PRIO_STR_LEN, "");
2135
2136
printf(" %9s %9s %9s", "(msec)", "(msec)", "(msec)");
2137
2138
if (sched->pre_migrations)
2139
printf(" %9s", "(msec)");
2140
2141
printf("\n");
2142
2143
/*
2144
* separator
2145
*/
2146
printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2147
2148
if (sched->show_cpu_visual)
2149
printf(" %.*s ", ncpus, graph_dotted_line);
2150
2151
printf(" %.*s", comm_width, graph_dotted_line);
2152
2153
if (sched->show_prio)
2154
printf(" %.*s", MAX_PRIO_STR_LEN, graph_dotted_line);
2155
2156
printf(" %.9s %.9s %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line);
2157
2158
if (sched->pre_migrations)
2159
printf(" %.9s", graph_dotted_line);
2160
2161
if (sched->show_state)
2162
printf(" %.5s", graph_dotted_line);
2163
2164
printf("\n");
2165
}
2166
2167
static void timehist_print_sample(struct perf_sched *sched,
2168
struct evsel *evsel,
2169
struct perf_sample *sample,
2170
struct addr_location *al,
2171
struct thread *thread,
2172
u64 t, const char state)
2173
{
2174
struct thread_runtime *tr = thread__priv(thread);
2175
const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2176
const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2177
u32 max_cpus = sched->max_cpu.cpu + 1;
2178
char tstr[64];
2179
char nstr[30];
2180
u64 wait_time;
2181
2182
if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2183
return;
2184
2185
timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2186
printf("%15s [%04d] ", tstr, sample->cpu);
2187
2188
if (sched->show_cpu_visual) {
2189
u32 i;
2190
char c;
2191
2192
printf(" ");
2193
for (i = 0; i < max_cpus; ++i) {
2194
/* flag idle times with 'i'; others are sched events */
2195
if (i == sample->cpu)
2196
c = (thread__tid(thread) == 0) ? 'i' : 's';
2197
else
2198
c = ' ';
2199
printf("%c", c);
2200
}
2201
printf(" ");
2202
}
2203
2204
if (!thread__comm_set(thread)) {
2205
const char *prev_comm = evsel__strval(evsel, sample, "prev_comm");
2206
thread__set_comm(thread, prev_comm, sample->time);
2207
}
2208
2209
printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2210
2211
if (sched->show_prio)
2212
printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample));
2213
2214
wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2215
print_sched_time(wait_time, 6);
2216
2217
print_sched_time(tr->dt_delay, 6);
2218
print_sched_time(tr->dt_run, 6);
2219
if (sched->pre_migrations)
2220
print_sched_time(tr->dt_pre_mig, 6);
2221
2222
if (sched->show_state)
2223
printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2224
2225
if (sched->show_next) {
2226
snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2227
printf(" %-*s", comm_width, nstr);
2228
}
2229
2230
if (sched->show_wakeups && !sched->show_next)
2231
printf(" %-*s", comm_width, "");
2232
2233
if (thread__tid(thread) == 0)
2234
goto out;
2235
2236
if (sched->show_callchain)
2237
printf(" ");
2238
2239
sample__fprintf_sym(sample, al, 0,
2240
EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2241
EVSEL__PRINT_CALLCHAIN_ARROW |
2242
EVSEL__PRINT_SKIP_IGNORED,
2243
get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout);
2244
2245
out:
2246
printf("\n");
2247
}
2248
2249
/*
2250
* Explanation of delta-time stats:
2251
*
2252
* t = time of current schedule out event
2253
* tprev = time of previous sched out event
2254
* also time of schedule-in event for current task
2255
* last_time = time of last sched change event for current task
2256
* (i.e, time process was last scheduled out)
2257
* ready_to_run = time of wakeup for current task
2258
* migrated = time of task migration to another CPU
2259
*
2260
* -----|-------------|-------------|-------------|-------------|-----
2261
* last ready migrated tprev t
2262
* time to run
2263
*
2264
* |---------------- dt_wait ----------------|
2265
* |--------- dt_delay ---------|-- dt_run --|
2266
* |- dt_pre_mig -|
2267
*
2268
* dt_run = run time of current task
2269
* dt_wait = time between last schedule out event for task and tprev
2270
* represents time spent off the cpu
2271
* dt_delay = time between wakeup and schedule-in of task
2272
* dt_pre_mig = time between wakeup and migration to another CPU
2273
*/
2274
2275
static void timehist_update_runtime_stats(struct thread_runtime *r,
2276
u64 t, u64 tprev)
2277
{
2278
r->dt_delay = 0;
2279
r->dt_sleep = 0;
2280
r->dt_iowait = 0;
2281
r->dt_preempt = 0;
2282
r->dt_run = 0;
2283
r->dt_pre_mig = 0;
2284
2285
if (tprev) {
2286
r->dt_run = t - tprev;
2287
if (r->ready_to_run) {
2288
if (r->ready_to_run > tprev)
2289
pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2290
else
2291
r->dt_delay = tprev - r->ready_to_run;
2292
2293
if ((r->migrated > r->ready_to_run) && (r->migrated < tprev))
2294
r->dt_pre_mig = r->migrated - r->ready_to_run;
2295
}
2296
2297
if (r->last_time > tprev)
2298
pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2299
else if (r->last_time) {
2300
u64 dt_wait = tprev - r->last_time;
2301
2302
if (r->last_state == 'R')
2303
r->dt_preempt = dt_wait;
2304
else if (r->last_state == 'D')
2305
r->dt_iowait = dt_wait;
2306
else
2307
r->dt_sleep = dt_wait;
2308
}
2309
}
2310
2311
update_stats(&r->run_stats, r->dt_run);
2312
2313
r->total_run_time += r->dt_run;
2314
r->total_delay_time += r->dt_delay;
2315
r->total_sleep_time += r->dt_sleep;
2316
r->total_iowait_time += r->dt_iowait;
2317
r->total_preempt_time += r->dt_preempt;
2318
r->total_pre_mig_time += r->dt_pre_mig;
2319
}
2320
2321
static bool is_idle_sample(struct perf_sample *sample,
2322
struct evsel *evsel)
2323
{
2324
/* pid 0 == swapper == idle task */
2325
if (evsel__name_is(evsel, "sched:sched_switch"))
2326
return evsel__intval(evsel, sample, "prev_pid") == 0;
2327
2328
return sample->pid == 0;
2329
}
2330
2331
static void save_task_callchain(struct perf_sched *sched,
2332
struct perf_sample *sample,
2333
struct evsel *evsel,
2334
struct machine *machine)
2335
{
2336
struct callchain_cursor *cursor;
2337
struct thread *thread;
2338
2339
/* want main thread for process - has maps */
2340
thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2341
if (thread == NULL) {
2342
pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2343
return;
2344
}
2345
2346
if (!sched->show_callchain || sample->callchain == NULL) {
2347
thread__put(thread);
2348
return;
2349
}
2350
2351
cursor = get_tls_callchain_cursor();
2352
2353
if (thread__resolve_callchain(thread, cursor, evsel, sample,
2354
NULL, NULL, sched->max_stack + 2) != 0) {
2355
if (verbose > 0)
2356
pr_err("Failed to resolve callchain. Skipping\n");
2357
2358
thread__put(thread);
2359
return;
2360
}
2361
2362
callchain_cursor_commit(cursor);
2363
thread__put(thread);
2364
2365
while (true) {
2366
struct callchain_cursor_node *node;
2367
struct symbol *sym;
2368
2369
node = callchain_cursor_current(cursor);
2370
if (node == NULL)
2371
break;
2372
2373
sym = node->ms.sym;
2374
if (sym) {
2375
if (!strcmp(sym->name, "schedule") ||
2376
!strcmp(sym->name, "__schedule") ||
2377
!strcmp(sym->name, "preempt_schedule"))
2378
sym->ignore = 1;
2379
}
2380
2381
callchain_cursor_advance(cursor);
2382
}
2383
}
2384
2385
static int init_idle_thread(struct thread *thread)
2386
{
2387
struct idle_thread_runtime *itr;
2388
2389
thread__set_comm(thread, idle_comm, 0);
2390
2391
itr = zalloc(sizeof(*itr));
2392
if (itr == NULL)
2393
return -ENOMEM;
2394
2395
init_prio(&itr->tr);
2396
init_stats(&itr->tr.run_stats);
2397
callchain_init(&itr->callchain);
2398
callchain_cursor_reset(&itr->cursor);
2399
thread__set_priv(thread, itr);
2400
2401
return 0;
2402
}
2403
2404
/*
2405
* Track idle stats per cpu by maintaining a local thread
2406
* struct for the idle task on each cpu.
2407
*/
2408
static int init_idle_threads(int ncpu)
2409
{
2410
int i, ret;
2411
2412
idle_threads = zalloc(ncpu * sizeof(struct thread *));
2413
if (!idle_threads)
2414
return -ENOMEM;
2415
2416
idle_max_cpu = ncpu;
2417
2418
/* allocate the actual thread struct if needed */
2419
for (i = 0; i < ncpu; ++i) {
2420
idle_threads[i] = thread__new(0, 0);
2421
if (idle_threads[i] == NULL)
2422
return -ENOMEM;
2423
2424
ret = init_idle_thread(idle_threads[i]);
2425
if (ret < 0)
2426
return ret;
2427
}
2428
2429
return 0;
2430
}
2431
2432
static void free_idle_threads(void)
2433
{
2434
int i;
2435
2436
if (idle_threads == NULL)
2437
return;
2438
2439
for (i = 0; i < idle_max_cpu; ++i) {
2440
struct thread *idle = idle_threads[i];
2441
2442
if (idle) {
2443
struct idle_thread_runtime *itr;
2444
2445
itr = thread__priv(idle);
2446
if (itr)
2447
thread__put(itr->last_thread);
2448
2449
thread__delete(idle);
2450
}
2451
}
2452
2453
free(idle_threads);
2454
}
2455
2456
static struct thread *get_idle_thread(int cpu)
2457
{
2458
/*
2459
* expand/allocate array of pointers to local thread
2460
* structs if needed
2461
*/
2462
if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2463
int i, j = __roundup_pow_of_two(cpu+1);
2464
void *p;
2465
2466
p = realloc(idle_threads, j * sizeof(struct thread *));
2467
if (!p)
2468
return NULL;
2469
2470
idle_threads = (struct thread **) p;
2471
for (i = idle_max_cpu; i < j; ++i)
2472
idle_threads[i] = NULL;
2473
2474
idle_max_cpu = j;
2475
}
2476
2477
/* allocate a new thread struct if needed */
2478
if (idle_threads[cpu] == NULL) {
2479
idle_threads[cpu] = thread__new(0, 0);
2480
2481
if (idle_threads[cpu]) {
2482
if (init_idle_thread(idle_threads[cpu]) < 0)
2483
return NULL;
2484
}
2485
}
2486
2487
return thread__get(idle_threads[cpu]);
2488
}
2489
2490
static void save_idle_callchain(struct perf_sched *sched,
2491
struct idle_thread_runtime *itr,
2492
struct perf_sample *sample)
2493
{
2494
struct callchain_cursor *cursor;
2495
2496
if (!sched->show_callchain || sample->callchain == NULL)
2497
return;
2498
2499
cursor = get_tls_callchain_cursor();
2500
if (cursor == NULL)
2501
return;
2502
2503
callchain_cursor__copy(&itr->cursor, cursor);
2504
}
2505
2506
static struct thread *timehist_get_thread(struct perf_sched *sched,
2507
struct perf_sample *sample,
2508
struct machine *machine,
2509
struct evsel *evsel)
2510
{
2511
struct thread *thread;
2512
2513
if (is_idle_sample(sample, evsel)) {
2514
thread = get_idle_thread(sample->cpu);
2515
if (thread == NULL)
2516
pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2517
2518
} else {
2519
/* there were samples with tid 0 but non-zero pid */
2520
thread = machine__findnew_thread(machine, sample->pid,
2521
sample->tid ?: sample->pid);
2522
if (thread == NULL) {
2523
pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2524
sample->tid);
2525
}
2526
2527
save_task_callchain(sched, sample, evsel, machine);
2528
if (sched->idle_hist) {
2529
struct thread *idle;
2530
struct idle_thread_runtime *itr;
2531
2532
idle = get_idle_thread(sample->cpu);
2533
if (idle == NULL) {
2534
pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2535
return NULL;
2536
}
2537
2538
itr = thread__priv(idle);
2539
if (itr == NULL)
2540
return NULL;
2541
2542
thread__put(itr->last_thread);
2543
itr->last_thread = thread__get(thread);
2544
2545
/* copy task callchain when entering to idle */
2546
if (evsel__intval(evsel, sample, "next_pid") == 0)
2547
save_idle_callchain(sched, itr, sample);
2548
}
2549
}
2550
2551
return thread;
2552
}
2553
2554
static bool timehist_skip_sample(struct perf_sched *sched,
2555
struct thread *thread,
2556
struct evsel *evsel,
2557
struct perf_sample *sample)
2558
{
2559
bool rc = false;
2560
int prio = -1;
2561
struct thread_runtime *tr = NULL;
2562
2563
if (thread__is_filtered(thread)) {
2564
rc = true;
2565
sched->skipped_samples++;
2566
}
2567
2568
if (sched->prio_str) {
2569
/*
2570
* Because priority may be changed during task execution,
2571
* first read priority from prev sched_in event for current task.
2572
* If prev sched_in event is not saved, then read priority from
2573
* current task sched_out event.
2574
*/
2575
tr = thread__get_runtime(thread);
2576
if (tr && tr->prio != -1)
2577
prio = tr->prio;
2578
else if (evsel__name_is(evsel, "sched:sched_switch"))
2579
prio = evsel__intval(evsel, sample, "prev_prio");
2580
2581
if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) {
2582
rc = true;
2583
sched->skipped_samples++;
2584
}
2585
}
2586
2587
if (sched->idle_hist) {
2588
if (!evsel__name_is(evsel, "sched:sched_switch"))
2589
rc = true;
2590
else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2591
evsel__intval(evsel, sample, "next_pid") != 0)
2592
rc = true;
2593
}
2594
2595
return rc;
2596
}
2597
2598
static void timehist_print_wakeup_event(struct perf_sched *sched,
2599
struct evsel *evsel,
2600
struct perf_sample *sample,
2601
struct machine *machine,
2602
struct thread *awakened)
2603
{
2604
struct thread *thread;
2605
char tstr[64];
2606
2607
thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2608
if (thread == NULL)
2609
return;
2610
2611
/* show wakeup unless both awakee and awaker are filtered */
2612
if (timehist_skip_sample(sched, thread, evsel, sample) &&
2613
timehist_skip_sample(sched, awakened, evsel, sample)) {
2614
thread__put(thread);
2615
return;
2616
}
2617
2618
timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2619
printf("%15s [%04d] ", tstr, sample->cpu);
2620
if (sched->show_cpu_visual)
2621
printf(" %*s ", sched->max_cpu.cpu + 1, "");
2622
2623
printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2624
2625
/* dt spacer */
2626
printf(" %9s %9s %9s ", "", "", "");
2627
2628
printf("awakened: %s", timehist_get_commstr(awakened));
2629
2630
printf("\n");
2631
2632
thread__put(thread);
2633
}
2634
2635
static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
2636
union perf_event *event __maybe_unused,
2637
struct evsel *evsel __maybe_unused,
2638
struct perf_sample *sample __maybe_unused,
2639
struct machine *machine __maybe_unused)
2640
{
2641
return 0;
2642
}
2643
2644
static int timehist_sched_wakeup_event(const struct perf_tool *tool,
2645
union perf_event *event __maybe_unused,
2646
struct evsel *evsel,
2647
struct perf_sample *sample,
2648
struct machine *machine)
2649
{
2650
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2651
struct thread *thread;
2652
struct thread_runtime *tr = NULL;
2653
/* want pid of awakened task not pid in sample */
2654
const u32 pid = evsel__intval(evsel, sample, "pid");
2655
2656
thread = machine__findnew_thread(machine, 0, pid);
2657
if (thread == NULL)
2658
return -1;
2659
2660
tr = thread__get_runtime(thread);
2661
if (tr == NULL) {
2662
thread__put(thread);
2663
return -1;
2664
}
2665
2666
if (tr->ready_to_run == 0)
2667
tr->ready_to_run = sample->time;
2668
2669
/* show wakeups if requested */
2670
if (sched->show_wakeups &&
2671
!perf_time__skip_sample(&sched->ptime, sample->time))
2672
timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2673
2674
thread__put(thread);
2675
return 0;
2676
}
2677
2678
static void timehist_print_migration_event(struct perf_sched *sched,
2679
struct evsel *evsel,
2680
struct perf_sample *sample,
2681
struct machine *machine,
2682
struct thread *migrated)
2683
{
2684
struct thread *thread;
2685
char tstr[64];
2686
u32 max_cpus;
2687
u32 ocpu, dcpu;
2688
2689
if (sched->summary_only)
2690
return;
2691
2692
max_cpus = sched->max_cpu.cpu + 1;
2693
ocpu = evsel__intval(evsel, sample, "orig_cpu");
2694
dcpu = evsel__intval(evsel, sample, "dest_cpu");
2695
2696
thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2697
if (thread == NULL)
2698
return;
2699
2700
if (timehist_skip_sample(sched, thread, evsel, sample) &&
2701
timehist_skip_sample(sched, migrated, evsel, sample)) {
2702
thread__put(thread);
2703
return;
2704
}
2705
2706
timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2707
printf("%15s [%04d] ", tstr, sample->cpu);
2708
2709
if (sched->show_cpu_visual) {
2710
u32 i;
2711
char c;
2712
2713
printf(" ");
2714
for (i = 0; i < max_cpus; ++i) {
2715
c = (i == sample->cpu) ? 'm' : ' ';
2716
printf("%c", c);
2717
}
2718
printf(" ");
2719
}
2720
2721
printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2722
2723
/* dt spacer */
2724
printf(" %9s %9s %9s ", "", "", "");
2725
2726
printf("migrated: %s", timehist_get_commstr(migrated));
2727
printf(" cpu %d => %d", ocpu, dcpu);
2728
2729
printf("\n");
2730
thread__put(thread);
2731
}
2732
2733
static int timehist_migrate_task_event(const struct perf_tool *tool,
2734
union perf_event *event __maybe_unused,
2735
struct evsel *evsel,
2736
struct perf_sample *sample,
2737
struct machine *machine)
2738
{
2739
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2740
struct thread *thread;
2741
struct thread_runtime *tr = NULL;
2742
/* want pid of migrated task not pid in sample */
2743
const u32 pid = evsel__intval(evsel, sample, "pid");
2744
2745
thread = machine__findnew_thread(machine, 0, pid);
2746
if (thread == NULL)
2747
return -1;
2748
2749
tr = thread__get_runtime(thread);
2750
if (tr == NULL) {
2751
thread__put(thread);
2752
return -1;
2753
}
2754
2755
tr->migrations++;
2756
tr->migrated = sample->time;
2757
2758
/* show migrations if requested */
2759
if (sched->show_migrations) {
2760
timehist_print_migration_event(sched, evsel, sample,
2761
machine, thread);
2762
}
2763
thread__put(thread);
2764
2765
return 0;
2766
}
2767
2768
static void timehist_update_task_prio(struct evsel *evsel,
2769
struct perf_sample *sample,
2770
struct machine *machine)
2771
{
2772
struct thread *thread;
2773
struct thread_runtime *tr = NULL;
2774
const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2775
const u32 next_prio = evsel__intval(evsel, sample, "next_prio");
2776
2777
if (next_pid == 0)
2778
thread = get_idle_thread(sample->cpu);
2779
else
2780
thread = machine__findnew_thread(machine, -1, next_pid);
2781
2782
if (thread == NULL)
2783
return;
2784
2785
tr = thread__get_runtime(thread);
2786
if (tr != NULL)
2787
tr->prio = next_prio;
2788
2789
thread__put(thread);
2790
}
2791
2792
static int timehist_sched_change_event(const struct perf_tool *tool,
2793
union perf_event *event,
2794
struct evsel *evsel,
2795
struct perf_sample *sample,
2796
struct machine *machine)
2797
{
2798
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2799
struct perf_time_interval *ptime = &sched->ptime;
2800
struct addr_location al;
2801
struct thread *thread = NULL;
2802
struct thread_runtime *tr = NULL;
2803
u64 tprev, t = sample->time;
2804
int rc = 0;
2805
const char state = evsel__taskstate(evsel, sample, "prev_state");
2806
2807
addr_location__init(&al);
2808
if (machine__resolve(machine, &al, sample) < 0) {
2809
pr_err("problem processing %d event. skipping it\n",
2810
event->header.type);
2811
rc = -1;
2812
goto out;
2813
}
2814
2815
if (sched->show_prio || sched->prio_str)
2816
timehist_update_task_prio(evsel, sample, machine);
2817
2818
thread = timehist_get_thread(sched, sample, machine, evsel);
2819
if (thread == NULL) {
2820
rc = -1;
2821
goto out;
2822
}
2823
2824
if (timehist_skip_sample(sched, thread, evsel, sample))
2825
goto out;
2826
2827
tr = thread__get_runtime(thread);
2828
if (tr == NULL) {
2829
rc = -1;
2830
goto out;
2831
}
2832
2833
tprev = evsel__get_time(evsel, sample->cpu);
2834
2835
/*
2836
* If start time given:
2837
* - sample time is under window user cares about - skip sample
2838
* - tprev is under window user cares about - reset to start of window
2839
*/
2840
if (ptime->start && ptime->start > t)
2841
goto out;
2842
2843
if (tprev && ptime->start > tprev)
2844
tprev = ptime->start;
2845
2846
/*
2847
* If end time given:
2848
* - previous sched event is out of window - we are done
2849
* - sample time is beyond window user cares about - reset it
2850
* to close out stats for time window interest
2851
* - If tprev is 0, that is, sched_in event for current task is
2852
* not recorded, cannot determine whether sched_in event is
2853
* within time window interest - ignore it
2854
*/
2855
if (ptime->end) {
2856
if (!tprev || tprev > ptime->end)
2857
goto out;
2858
2859
if (t > ptime->end)
2860
t = ptime->end;
2861
}
2862
2863
if (!sched->idle_hist || thread__tid(thread) == 0) {
2864
if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2865
timehist_update_runtime_stats(tr, t, tprev);
2866
2867
if (sched->idle_hist) {
2868
struct idle_thread_runtime *itr = (void *)tr;
2869
struct thread_runtime *last_tr;
2870
2871
if (itr->last_thread == NULL)
2872
goto out;
2873
2874
/* add current idle time as last thread's runtime */
2875
last_tr = thread__get_runtime(itr->last_thread);
2876
if (last_tr == NULL)
2877
goto out;
2878
2879
timehist_update_runtime_stats(last_tr, t, tprev);
2880
/*
2881
* remove delta time of last thread as it's not updated
2882
* and otherwise it will show an invalid value next
2883
* time. we only care total run time and run stat.
2884
*/
2885
last_tr->dt_run = 0;
2886
last_tr->dt_delay = 0;
2887
last_tr->dt_sleep = 0;
2888
last_tr->dt_iowait = 0;
2889
last_tr->dt_preempt = 0;
2890
2891
if (itr->cursor.nr)
2892
callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2893
2894
itr->last_thread = NULL;
2895
}
2896
2897
if (!sched->summary_only)
2898
timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2899
}
2900
2901
out:
2902
if (sched->hist_time.start == 0 && t >= ptime->start)
2903
sched->hist_time.start = t;
2904
if (ptime->end == 0 || t <= ptime->end)
2905
sched->hist_time.end = t;
2906
2907
if (tr) {
2908
/* time of this sched_switch event becomes last time task seen */
2909
tr->last_time = sample->time;
2910
2911
/* last state is used to determine where to account wait time */
2912
tr->last_state = state;
2913
2914
/* sched out event for task so reset ready to run time and migrated time */
2915
if (state == 'R')
2916
tr->ready_to_run = t;
2917
else
2918
tr->ready_to_run = 0;
2919
2920
tr->migrated = 0;
2921
}
2922
2923
evsel__save_time(evsel, sample->time, sample->cpu);
2924
2925
thread__put(thread);
2926
addr_location__exit(&al);
2927
return rc;
2928
}
2929
2930
static int timehist_sched_switch_event(const struct perf_tool *tool,
2931
union perf_event *event,
2932
struct evsel *evsel,
2933
struct perf_sample *sample,
2934
struct machine *machine __maybe_unused)
2935
{
2936
return timehist_sched_change_event(tool, event, evsel, sample, machine);
2937
}
2938
2939
static int process_lost(const struct perf_tool *tool __maybe_unused,
2940
union perf_event *event,
2941
struct perf_sample *sample,
2942
struct machine *machine __maybe_unused)
2943
{
2944
char tstr[64];
2945
2946
timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2947
printf("%15s ", tstr);
2948
printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2949
2950
return 0;
2951
}
2952
2953
2954
static void print_thread_runtime(struct thread *t,
2955
struct thread_runtime *r)
2956
{
2957
double mean = avg_stats(&r->run_stats);
2958
float stddev;
2959
2960
printf("%*s %5d %9" PRIu64 " ",
2961
comm_width, timehist_get_commstr(t), thread__ppid(t),
2962
(u64) r->run_stats.n);
2963
2964
print_sched_time(r->total_run_time, 8);
2965
stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2966
print_sched_time(r->run_stats.min, 6);
2967
printf(" ");
2968
print_sched_time((u64) mean, 6);
2969
printf(" ");
2970
print_sched_time(r->run_stats.max, 6);
2971
printf(" ");
2972
printf("%5.2f", stddev);
2973
printf(" %5" PRIu64, r->migrations);
2974
printf("\n");
2975
}
2976
2977
static void print_thread_waittime(struct thread *t,
2978
struct thread_runtime *r)
2979
{
2980
printf("%*s %5d %9" PRIu64 " ",
2981
comm_width, timehist_get_commstr(t), thread__ppid(t),
2982
(u64) r->run_stats.n);
2983
2984
print_sched_time(r->total_run_time, 8);
2985
print_sched_time(r->total_sleep_time, 6);
2986
printf(" ");
2987
print_sched_time(r->total_iowait_time, 6);
2988
printf(" ");
2989
print_sched_time(r->total_preempt_time, 6);
2990
printf(" ");
2991
print_sched_time(r->total_delay_time, 6);
2992
printf("\n");
2993
}
2994
2995
struct total_run_stats {
2996
struct perf_sched *sched;
2997
u64 sched_count;
2998
u64 task_count;
2999
u64 total_run_time;
3000
};
3001
3002
static int show_thread_runtime(struct thread *t, void *priv)
3003
{
3004
struct total_run_stats *stats = priv;
3005
struct thread_runtime *r;
3006
3007
if (thread__is_filtered(t))
3008
return 0;
3009
3010
r = thread__priv(t);
3011
if (r && r->run_stats.n) {
3012
stats->task_count++;
3013
stats->sched_count += r->run_stats.n;
3014
stats->total_run_time += r->total_run_time;
3015
3016
if (stats->sched->show_state)
3017
print_thread_waittime(t, r);
3018
else
3019
print_thread_runtime(t, r);
3020
}
3021
3022
return 0;
3023
}
3024
3025
static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
3026
{
3027
const char *sep = " <- ";
3028
struct callchain_list *chain;
3029
size_t ret = 0;
3030
char bf[1024];
3031
bool first;
3032
3033
if (node == NULL)
3034
return 0;
3035
3036
ret = callchain__fprintf_folded(fp, node->parent);
3037
first = (ret == 0);
3038
3039
list_for_each_entry(chain, &node->val, list) {
3040
if (chain->ip >= PERF_CONTEXT_MAX)
3041
continue;
3042
if (chain->ms.sym && chain->ms.sym->ignore)
3043
continue;
3044
ret += fprintf(fp, "%s%s", first ? "" : sep,
3045
callchain_list__sym_name(chain, bf, sizeof(bf),
3046
false));
3047
first = false;
3048
}
3049
3050
return ret;
3051
}
3052
3053
static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
3054
{
3055
size_t ret = 0;
3056
FILE *fp = stdout;
3057
struct callchain_node *chain;
3058
struct rb_node *rb_node = rb_first_cached(root);
3059
3060
printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
3061
printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
3062
graph_dotted_line);
3063
3064
while (rb_node) {
3065
chain = rb_entry(rb_node, struct callchain_node, rb_node);
3066
rb_node = rb_next(rb_node);
3067
3068
ret += fprintf(fp, " ");
3069
print_sched_time(chain->hit, 12);
3070
ret += 16; /* print_sched_time returns 2nd arg + 4 */
3071
ret += fprintf(fp, " %8d ", chain->count);
3072
ret += callchain__fprintf_folded(fp, chain);
3073
ret += fprintf(fp, "\n");
3074
}
3075
3076
return ret;
3077
}
3078
3079
static void timehist_print_summary(struct perf_sched *sched,
3080
struct perf_session *session)
3081
{
3082
struct machine *m = &session->machines.host;
3083
struct total_run_stats totals;
3084
u64 task_count;
3085
struct thread *t;
3086
struct thread_runtime *r;
3087
int i;
3088
u64 hist_time = sched->hist_time.end - sched->hist_time.start;
3089
3090
memset(&totals, 0, sizeof(totals));
3091
totals.sched = sched;
3092
3093
if (sched->idle_hist) {
3094
printf("\nIdle-time summary\n");
3095
printf("%*s parent sched-out ", comm_width, "comm");
3096
printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
3097
} else if (sched->show_state) {
3098
printf("\nWait-time summary\n");
3099
printf("%*s parent sched-in ", comm_width, "comm");
3100
printf(" run-time sleep iowait preempt delay\n");
3101
} else {
3102
printf("\nRuntime summary\n");
3103
printf("%*s parent sched-in ", comm_width, "comm");
3104
printf(" run-time min-run avg-run max-run stddev migrations\n");
3105
}
3106
printf("%*s (count) ", comm_width, "");
3107
printf(" (msec) (msec) (msec) (msec) %s\n",
3108
sched->show_state ? "(msec)" : "%");
3109
printf("%.117s\n", graph_dotted_line);
3110
3111
machine__for_each_thread(m, show_thread_runtime, &totals);
3112
task_count = totals.task_count;
3113
if (!task_count)
3114
printf("<no still running tasks>\n");
3115
3116
/* CPU idle stats not tracked when samples were skipped */
3117
if (sched->skipped_samples && !sched->idle_hist)
3118
return;
3119
3120
printf("\nIdle stats:\n");
3121
for (i = 0; i < idle_max_cpu; ++i) {
3122
if (cpu_list && !test_bit(i, cpu_bitmap))
3123
continue;
3124
3125
t = idle_threads[i];
3126
if (!t)
3127
continue;
3128
3129
r = thread__priv(t);
3130
if (r && r->run_stats.n) {
3131
totals.sched_count += r->run_stats.n;
3132
printf(" CPU %2d idle for ", i);
3133
print_sched_time(r->total_run_time, 6);
3134
printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
3135
} else
3136
printf(" CPU %2d idle entire time window\n", i);
3137
}
3138
3139
if (sched->idle_hist && sched->show_callchain) {
3140
callchain_param.mode = CHAIN_FOLDED;
3141
callchain_param.value = CCVAL_PERIOD;
3142
3143
callchain_register_param(&callchain_param);
3144
3145
printf("\nIdle stats by callchain:\n");
3146
for (i = 0; i < idle_max_cpu; ++i) {
3147
struct idle_thread_runtime *itr;
3148
3149
t = idle_threads[i];
3150
if (!t)
3151
continue;
3152
3153
itr = thread__priv(t);
3154
if (itr == NULL)
3155
continue;
3156
3157
callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
3158
0, &callchain_param);
3159
3160
printf(" CPU %2d:", i);
3161
print_sched_time(itr->tr.total_run_time, 6);
3162
printf(" msec\n");
3163
timehist_print_idlehist_callchain(&itr->sorted_root);
3164
printf("\n");
3165
}
3166
}
3167
3168
printf("\n"
3169
" Total number of unique tasks: %" PRIu64 "\n"
3170
"Total number of context switches: %" PRIu64 "\n",
3171
totals.task_count, totals.sched_count);
3172
3173
printf(" Total run time (msec): ");
3174
print_sched_time(totals.total_run_time, 2);
3175
printf("\n");
3176
3177
printf(" Total scheduling time (msec): ");
3178
print_sched_time(hist_time, 2);
3179
printf(" (x %d)\n", sched->max_cpu.cpu);
3180
}
3181
3182
typedef int (*sched_handler)(const struct perf_tool *tool,
3183
union perf_event *event,
3184
struct evsel *evsel,
3185
struct perf_sample *sample,
3186
struct machine *machine);
3187
3188
static int perf_timehist__process_sample(const struct perf_tool *tool,
3189
union perf_event *event,
3190
struct perf_sample *sample,
3191
struct evsel *evsel,
3192
struct machine *machine)
3193
{
3194
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3195
int err = 0;
3196
struct perf_cpu this_cpu = {
3197
.cpu = sample->cpu,
3198
};
3199
3200
if (this_cpu.cpu > sched->max_cpu.cpu)
3201
sched->max_cpu = this_cpu;
3202
3203
if (evsel->handler != NULL) {
3204
sched_handler f = evsel->handler;
3205
3206
err = f(tool, event, evsel, sample, machine);
3207
}
3208
3209
return err;
3210
}
3211
3212
static int timehist_check_attr(struct perf_sched *sched,
3213
struct evlist *evlist)
3214
{
3215
struct evsel *evsel;
3216
struct evsel_runtime *er;
3217
3218
list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3219
er = evsel__get_runtime(evsel);
3220
if (er == NULL) {
3221
pr_err("Failed to allocate memory for evsel runtime data\n");
3222
return -1;
3223
}
3224
3225
/* only need to save callchain related to sched_switch event */
3226
if (sched->show_callchain &&
3227
evsel__name_is(evsel, "sched:sched_switch") &&
3228
!evsel__has_callchain(evsel)) {
3229
pr_info("Samples of sched_switch event do not have callchains.\n");
3230
sched->show_callchain = 0;
3231
symbol_conf.use_callchain = 0;
3232
}
3233
}
3234
3235
return 0;
3236
}
3237
3238
static int timehist_parse_prio_str(struct perf_sched *sched)
3239
{
3240
char *p;
3241
unsigned long start_prio, end_prio;
3242
const char *str = sched->prio_str;
3243
3244
if (!str)
3245
return 0;
3246
3247
while (isdigit(*str)) {
3248
p = NULL;
3249
start_prio = strtoul(str, &p, 0);
3250
if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-'))
3251
return -1;
3252
3253
if (*p == '-') {
3254
str = ++p;
3255
p = NULL;
3256
end_prio = strtoul(str, &p, 0);
3257
3258
if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ','))
3259
return -1;
3260
3261
if (end_prio < start_prio)
3262
return -1;
3263
} else {
3264
end_prio = start_prio;
3265
}
3266
3267
for (; start_prio <= end_prio; start_prio++)
3268
__set_bit(start_prio, sched->prio_bitmap);
3269
3270
if (*p)
3271
++p;
3272
3273
str = p;
3274
}
3275
3276
return 0;
3277
}
3278
3279
static int perf_sched__timehist(struct perf_sched *sched)
3280
{
3281
struct evsel_str_handler handlers[] = {
3282
{ "sched:sched_switch", timehist_sched_switch_event, },
3283
{ "sched:sched_wakeup", timehist_sched_wakeup_event, },
3284
{ "sched:sched_waking", timehist_sched_wakeup_event, },
3285
{ "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
3286
};
3287
const struct evsel_str_handler migrate_handlers[] = {
3288
{ "sched:sched_migrate_task", timehist_migrate_task_event, },
3289
};
3290
struct perf_data data = {
3291
.path = input_name,
3292
.mode = PERF_DATA_MODE_READ,
3293
.force = sched->force,
3294
};
3295
3296
struct perf_session *session;
3297
struct perf_env *env;
3298
struct evlist *evlist;
3299
int err = -1;
3300
3301
/*
3302
* event handlers for timehist option
3303
*/
3304
sched->tool.sample = perf_timehist__process_sample;
3305
sched->tool.mmap = perf_event__process_mmap;
3306
sched->tool.comm = perf_event__process_comm;
3307
sched->tool.exit = perf_event__process_exit;
3308
sched->tool.fork = perf_event__process_fork;
3309
sched->tool.lost = process_lost;
3310
sched->tool.attr = perf_event__process_attr;
3311
sched->tool.tracing_data = perf_event__process_tracing_data;
3312
sched->tool.build_id = perf_event__process_build_id;
3313
3314
sched->tool.ordering_requires_timestamps = true;
3315
3316
symbol_conf.use_callchain = sched->show_callchain;
3317
3318
session = perf_session__new(&data, &sched->tool);
3319
if (IS_ERR(session))
3320
return PTR_ERR(session);
3321
3322
env = perf_session__env(session);
3323
if (cpu_list) {
3324
err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3325
if (err < 0)
3326
goto out;
3327
}
3328
3329
evlist = session->evlist;
3330
3331
symbol__init(env);
3332
3333
if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3334
pr_err("Invalid time string\n");
3335
err = -EINVAL;
3336
goto out;
3337
}
3338
3339
if (timehist_check_attr(sched, evlist) != 0)
3340
goto out;
3341
3342
if (timehist_parse_prio_str(sched) != 0) {
3343
pr_err("Invalid prio string\n");
3344
goto out;
3345
}
3346
3347
setup_pager();
3348
3349
evsel__set_priv_destructor(timehist__evsel_priv_destructor);
3350
3351
/* prefer sched_waking if it is captured */
3352
if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3353
handlers[1].handler = timehist_sched_wakeup_ignore;
3354
3355
/* setup per-evsel handlers */
3356
if (perf_session__set_tracepoints_handlers(session, handlers))
3357
goto out;
3358
3359
/* sched_switch event at a minimum needs to exist */
3360
if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3361
pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3362
goto out;
3363
}
3364
3365
if ((sched->show_migrations || sched->pre_migrations) &&
3366
perf_session__set_tracepoints_handlers(session, migrate_handlers))
3367
goto out;
3368
3369
/* pre-allocate struct for per-CPU idle stats */
3370
sched->max_cpu.cpu = env->nr_cpus_online;
3371
if (sched->max_cpu.cpu == 0)
3372
sched->max_cpu.cpu = 4;
3373
if (init_idle_threads(sched->max_cpu.cpu))
3374
goto out;
3375
3376
/* summary_only implies summary option, but don't overwrite summary if set */
3377
if (sched->summary_only)
3378
sched->summary = sched->summary_only;
3379
3380
if (!sched->summary_only)
3381
timehist_header(sched);
3382
3383
err = perf_session__process_events(session);
3384
if (err) {
3385
pr_err("Failed to process events, error %d", err);
3386
goto out;
3387
}
3388
3389
sched->nr_events = evlist->stats.nr_events[0];
3390
sched->nr_lost_events = evlist->stats.total_lost;
3391
sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3392
3393
if (sched->summary)
3394
timehist_print_summary(sched, session);
3395
3396
out:
3397
free_idle_threads();
3398
perf_session__delete(session);
3399
3400
return err;
3401
}
3402
3403
3404
static void print_bad_events(struct perf_sched *sched)
3405
{
3406
if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3407
printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3408
(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3409
sched->nr_unordered_timestamps, sched->nr_timestamps);
3410
}
3411
if (sched->nr_lost_events && sched->nr_events) {
3412
printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3413
(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3414
sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3415
}
3416
if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3417
printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3418
(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3419
sched->nr_context_switch_bugs, sched->nr_timestamps);
3420
if (sched->nr_lost_events)
3421
printf(" (due to lost events?)");
3422
printf("\n");
3423
}
3424
}
3425
3426
static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3427
{
3428
struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3429
struct work_atoms *this;
3430
const char *comm = thread__comm_str(data->thread), *this_comm;
3431
bool leftmost = true;
3432
3433
while (*new) {
3434
int cmp;
3435
3436
this = container_of(*new, struct work_atoms, node);
3437
parent = *new;
3438
3439
this_comm = thread__comm_str(this->thread);
3440
cmp = strcmp(comm, this_comm);
3441
if (cmp > 0) {
3442
new = &((*new)->rb_left);
3443
} else if (cmp < 0) {
3444
new = &((*new)->rb_right);
3445
leftmost = false;
3446
} else {
3447
this->num_merged++;
3448
this->total_runtime += data->total_runtime;
3449
this->nb_atoms += data->nb_atoms;
3450
this->total_lat += data->total_lat;
3451
list_splice_init(&data->work_list, &this->work_list);
3452
if (this->max_lat < data->max_lat) {
3453
this->max_lat = data->max_lat;
3454
this->max_lat_start = data->max_lat_start;
3455
this->max_lat_end = data->max_lat_end;
3456
}
3457
free_work_atoms(data);
3458
return;
3459
}
3460
}
3461
3462
data->num_merged++;
3463
rb_link_node(&data->node, parent, new);
3464
rb_insert_color_cached(&data->node, root, leftmost);
3465
}
3466
3467
static void perf_sched__merge_lat(struct perf_sched *sched)
3468
{
3469
struct work_atoms *data;
3470
struct rb_node *node;
3471
3472
if (sched->skip_merge)
3473
return;
3474
3475
while ((node = rb_first_cached(&sched->atom_root))) {
3476
rb_erase_cached(node, &sched->atom_root);
3477
data = rb_entry(node, struct work_atoms, node);
3478
__merge_work_atoms(&sched->merged_atom_root, data);
3479
}
3480
}
3481
3482
static int setup_cpus_switch_event(struct perf_sched *sched)
3483
{
3484
unsigned int i;
3485
3486
sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3487
if (!sched->cpu_last_switched)
3488
return -1;
3489
3490
sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3491
if (!sched->curr_pid) {
3492
zfree(&sched->cpu_last_switched);
3493
return -1;
3494
}
3495
3496
for (i = 0; i < MAX_CPUS; i++)
3497
sched->curr_pid[i] = -1;
3498
3499
return 0;
3500
}
3501
3502
static void free_cpus_switch_event(struct perf_sched *sched)
3503
{
3504
zfree(&sched->curr_pid);
3505
zfree(&sched->cpu_last_switched);
3506
}
3507
3508
static int perf_sched__lat(struct perf_sched *sched)
3509
{
3510
int rc = -1;
3511
struct rb_node *next;
3512
3513
setup_pager();
3514
3515
if (setup_cpus_switch_event(sched))
3516
return rc;
3517
3518
if (perf_sched__read_events(sched))
3519
goto out_free_cpus_switch_event;
3520
3521
perf_sched__merge_lat(sched);
3522
perf_sched__sort_lat(sched);
3523
3524
printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3525
printf(" Task | Runtime ms | Count | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n");
3526
printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3527
3528
next = rb_first_cached(&sched->sorted_atom_root);
3529
3530
while (next) {
3531
struct work_atoms *work_list;
3532
3533
work_list = rb_entry(next, struct work_atoms, node);
3534
output_lat_thread(sched, work_list);
3535
next = rb_next(next);
3536
}
3537
3538
printf(" -----------------------------------------------------------------------------------------------------------------\n");
3539
printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3540
(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3541
3542
printf(" ---------------------------------------------------\n");
3543
3544
print_bad_events(sched);
3545
printf("\n");
3546
3547
rc = 0;
3548
3549
while ((next = rb_first_cached(&sched->sorted_atom_root))) {
3550
struct work_atoms *data;
3551
3552
data = rb_entry(next, struct work_atoms, node);
3553
rb_erase_cached(next, &sched->sorted_atom_root);
3554
free_work_atoms(data);
3555
}
3556
out_free_cpus_switch_event:
3557
free_cpus_switch_event(sched);
3558
return rc;
3559
}
3560
3561
static int setup_map_cpus(struct perf_sched *sched)
3562
{
3563
sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF);
3564
3565
if (sched->map.comp) {
3566
sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3567
if (!sched->map.comp_cpus)
3568
return -1;
3569
}
3570
3571
if (sched->map.cpus_str) {
3572
sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3573
if (!sched->map.cpus) {
3574
pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3575
zfree(&sched->map.comp_cpus);
3576
return -1;
3577
}
3578
}
3579
3580
return 0;
3581
}
3582
3583
static int setup_color_pids(struct perf_sched *sched)
3584
{
3585
struct perf_thread_map *map;
3586
3587
if (!sched->map.color_pids_str)
3588
return 0;
3589
3590
map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3591
if (!map) {
3592
pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3593
return -1;
3594
}
3595
3596
sched->map.color_pids = map;
3597
return 0;
3598
}
3599
3600
static int setup_color_cpus(struct perf_sched *sched)
3601
{
3602
struct perf_cpu_map *map;
3603
3604
if (!sched->map.color_cpus_str)
3605
return 0;
3606
3607
map = perf_cpu_map__new(sched->map.color_cpus_str);
3608
if (!map) {
3609
pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3610
return -1;
3611
}
3612
3613
sched->map.color_cpus = map;
3614
return 0;
3615
}
3616
3617
static int perf_sched__map(struct perf_sched *sched)
3618
{
3619
int rc = -1;
3620
3621
sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3622
if (!sched->curr_thread)
3623
return rc;
3624
3625
sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread)));
3626
if (!sched->curr_out_thread)
3627
goto out_free_curr_thread;
3628
3629
if (setup_cpus_switch_event(sched))
3630
goto out_free_curr_out_thread;
3631
3632
if (setup_map_cpus(sched))
3633
goto out_free_cpus_switch_event;
3634
3635
if (setup_color_pids(sched))
3636
goto out_put_map_cpus;
3637
3638
if (setup_color_cpus(sched))
3639
goto out_put_color_pids;
3640
3641
setup_pager();
3642
if (perf_sched__read_events(sched))
3643
goto out_put_color_cpus;
3644
3645
rc = 0;
3646
print_bad_events(sched);
3647
3648
out_put_color_cpus:
3649
perf_cpu_map__put(sched->map.color_cpus);
3650
3651
out_put_color_pids:
3652
perf_thread_map__put(sched->map.color_pids);
3653
3654
out_put_map_cpus:
3655
zfree(&sched->map.comp_cpus);
3656
perf_cpu_map__put(sched->map.cpus);
3657
3658
out_free_cpus_switch_event:
3659
free_cpus_switch_event(sched);
3660
3661
out_free_curr_out_thread:
3662
for (int i = 0; i < MAX_CPUS; i++)
3663
thread__put(sched->curr_out_thread[i]);
3664
zfree(&sched->curr_out_thread);
3665
3666
out_free_curr_thread:
3667
for (int i = 0; i < MAX_CPUS; i++)
3668
thread__put(sched->curr_thread[i]);
3669
zfree(&sched->curr_thread);
3670
return rc;
3671
}
3672
3673
static int perf_sched__replay(struct perf_sched *sched)
3674
{
3675
int ret;
3676
unsigned long i;
3677
3678
mutex_init(&sched->start_work_mutex);
3679
mutex_init(&sched->work_done_wait_mutex);
3680
3681
ret = setup_cpus_switch_event(sched);
3682
if (ret)
3683
goto out_mutex_destroy;
3684
3685
calibrate_run_measurement_overhead(sched);
3686
calibrate_sleep_measurement_overhead(sched);
3687
3688
test_calibrations(sched);
3689
3690
ret = perf_sched__read_events(sched);
3691
if (ret)
3692
goto out_free_cpus_switch_event;
3693
3694
printf("nr_run_events: %ld\n", sched->nr_run_events);
3695
printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3696
printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3697
3698
if (sched->targetless_wakeups)
3699
printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3700
if (sched->multitarget_wakeups)
3701
printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3702
if (sched->nr_run_events_optimized)
3703
printf("run atoms optimized: %ld\n",
3704
sched->nr_run_events_optimized);
3705
3706
print_task_traces(sched);
3707
add_cross_task_wakeups(sched);
3708
3709
sched->thread_funcs_exit = false;
3710
create_tasks(sched);
3711
printf("------------------------------------------------------------\n");
3712
if (sched->replay_repeat == 0)
3713
sched->replay_repeat = UINT_MAX;
3714
3715
for (i = 0; i < sched->replay_repeat; i++)
3716
run_one_test(sched);
3717
3718
sched->thread_funcs_exit = true;
3719
destroy_tasks(sched);
3720
3721
out_free_cpus_switch_event:
3722
free_cpus_switch_event(sched);
3723
3724
out_mutex_destroy:
3725
mutex_destroy(&sched->start_work_mutex);
3726
mutex_destroy(&sched->work_done_wait_mutex);
3727
return ret;
3728
}
3729
3730
static void setup_sorting(struct perf_sched *sched, const struct option *options,
3731
const char * const usage_msg[])
3732
{
3733
char *tmp, *tok, *str = strdup(sched->sort_order);
3734
3735
for (tok = strtok_r(str, ", ", &tmp);
3736
tok; tok = strtok_r(NULL, ", ", &tmp)) {
3737
if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3738
usage_with_options_msg(usage_msg, options,
3739
"Unknown --sort key: `%s'", tok);
3740
}
3741
}
3742
3743
free(str);
3744
3745
sort_dimension__add("pid", &sched->cmp_pid);
3746
}
3747
3748
static bool schedstat_events_exposed(void)
3749
{
3750
/*
3751
* Select "sched:sched_stat_wait" event to check
3752
* whether schedstat tracepoints are exposed.
3753
*/
3754
return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3755
false : true;
3756
}
3757
3758
static int __cmd_record(int argc, const char **argv)
3759
{
3760
unsigned int rec_argc, i, j;
3761
char **rec_argv;
3762
const char **rec_argv_copy;
3763
const char * const record_args[] = {
3764
"record",
3765
"-a",
3766
"-R",
3767
"-m", "1024",
3768
"-c", "1",
3769
"-e", "sched:sched_switch",
3770
"-e", "sched:sched_stat_runtime",
3771
"-e", "sched:sched_process_fork",
3772
"-e", "sched:sched_wakeup_new",
3773
"-e", "sched:sched_migrate_task",
3774
};
3775
3776
/*
3777
* The tracepoints trace_sched_stat_{wait, sleep, iowait}
3778
* are not exposed to user if CONFIG_SCHEDSTATS is not set,
3779
* to prevent "perf sched record" execution failure, determine
3780
* whether to record schedstat events according to actual situation.
3781
*/
3782
const char * const schedstat_args[] = {
3783
"-e", "sched:sched_stat_wait",
3784
"-e", "sched:sched_stat_sleep",
3785
"-e", "sched:sched_stat_iowait",
3786
};
3787
unsigned int schedstat_argc = schedstat_events_exposed() ?
3788
ARRAY_SIZE(schedstat_args) : 0;
3789
3790
struct tep_event *waking_event;
3791
int ret;
3792
3793
/*
3794
* +2 for either "-e", "sched:sched_wakeup" or
3795
* "-e", "sched:sched_waking"
3796
*/
3797
rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3798
rec_argv = calloc(rec_argc + 1, sizeof(char *));
3799
if (rec_argv == NULL)
3800
return -ENOMEM;
3801
rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3802
if (rec_argv_copy == NULL) {
3803
free(rec_argv);
3804
return -ENOMEM;
3805
}
3806
3807
for (i = 0; i < ARRAY_SIZE(record_args); i++)
3808
rec_argv[i] = strdup(record_args[i]);
3809
3810
rec_argv[i++] = strdup("-e");
3811
waking_event = trace_event__tp_format("sched", "sched_waking");
3812
if (!IS_ERR(waking_event))
3813
rec_argv[i++] = strdup("sched:sched_waking");
3814
else
3815
rec_argv[i++] = strdup("sched:sched_wakeup");
3816
3817
for (j = 0; j < schedstat_argc; j++)
3818
rec_argv[i++] = strdup(schedstat_args[j]);
3819
3820
for (j = 1; j < (unsigned int)argc; j++, i++)
3821
rec_argv[i] = strdup(argv[j]);
3822
3823
BUG_ON(i != rec_argc);
3824
3825
memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3826
ret = cmd_record(rec_argc, rec_argv_copy);
3827
3828
for (i = 0; i < rec_argc; i++)
3829
free(rec_argv[i]);
3830
free(rec_argv);
3831
free(rec_argv_copy);
3832
3833
return ret;
3834
}
3835
3836
int cmd_sched(int argc, const char **argv)
3837
{
3838
static const char default_sort_order[] = "avg, max, switch, runtime";
3839
struct perf_sched sched = {
3840
.cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3841
.sort_list = LIST_HEAD_INIT(sched.sort_list),
3842
.sort_order = default_sort_order,
3843
.replay_repeat = 10,
3844
.profile_cpu = -1,
3845
.next_shortname1 = 'A',
3846
.next_shortname2 = '0',
3847
.skip_merge = 0,
3848
.show_callchain = 1,
3849
.max_stack = 5,
3850
};
3851
const struct option sched_options[] = {
3852
OPT_STRING('i', "input", &input_name, "file",
3853
"input file name"),
3854
OPT_INCR('v', "verbose", &verbose,
3855
"be more verbose (show symbol address, etc)"),
3856
OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3857
"dump raw trace in ASCII"),
3858
OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3859
OPT_END()
3860
};
3861
const struct option latency_options[] = {
3862
OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3863
"sort by key(s): runtime, switch, avg, max"),
3864
OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3865
"CPU to profile on"),
3866
OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3867
"latency stats per pid instead of per comm"),
3868
OPT_PARENT(sched_options)
3869
};
3870
const struct option replay_options[] = {
3871
OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3872
"repeat the workload replay N times (0: infinite)"),
3873
OPT_PARENT(sched_options)
3874
};
3875
const struct option map_options[] = {
3876
OPT_BOOLEAN(0, "compact", &sched.map.comp,
3877
"map output in compact mode"),
3878
OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3879
"highlight given pids in map"),
3880
OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3881
"highlight given CPUs in map"),
3882
OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3883
"display given CPUs in map"),
3884
OPT_STRING(0, "task-name", &sched.map.task_name, "task",
3885
"map output only for the given task name(s)."),
3886
OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy,
3887
"given command name can be partially matched (fuzzy matching)"),
3888
OPT_PARENT(sched_options)
3889
};
3890
const struct option timehist_options[] = {
3891
OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3892
"file", "vmlinux pathname"),
3893
OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3894
"file", "kallsyms pathname"),
3895
OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3896
"Display call chains if present (default on)"),
3897
OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3898
"Maximum number of functions to display backtrace."),
3899
OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3900
"Look for files with symbols relative to this directory"),
3901
OPT_BOOLEAN('s', "summary", &sched.summary_only,
3902
"Show only syscall summary with statistics"),
3903
OPT_BOOLEAN('S', "with-summary", &sched.summary,
3904
"Show all syscalls and summary with statistics"),
3905
OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3906
OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3907
OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3908
OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3909
OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3910
OPT_STRING(0, "time", &sched.time_str, "str",
3911
"Time span for analysis (start,stop)"),
3912
OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3913
OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3914
"analyze events only for given process id(s)"),
3915
OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3916
"analyze events only for given thread id(s)"),
3917
OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3918
OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"),
3919
OPT_STRING(0, "prio", &sched.prio_str, "prio",
3920
"analyze events only for given task priority(ies)"),
3921
OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"),
3922
OPT_PARENT(sched_options)
3923
};
3924
3925
const char * const latency_usage[] = {
3926
"perf sched latency [<options>]",
3927
NULL
3928
};
3929
const char * const replay_usage[] = {
3930
"perf sched replay [<options>]",
3931
NULL
3932
};
3933
const char * const map_usage[] = {
3934
"perf sched map [<options>]",
3935
NULL
3936
};
3937
const char * const timehist_usage[] = {
3938
"perf sched timehist [<options>]",
3939
NULL
3940
};
3941
const char *const sched_subcommands[] = { "record", "latency", "map",
3942
"replay", "script",
3943
"timehist", NULL };
3944
const char *sched_usage[] = {
3945
NULL,
3946
NULL
3947
};
3948
struct trace_sched_handler lat_ops = {
3949
.wakeup_event = latency_wakeup_event,
3950
.switch_event = latency_switch_event,
3951
.runtime_event = latency_runtime_event,
3952
.migrate_task_event = latency_migrate_task_event,
3953
};
3954
struct trace_sched_handler map_ops = {
3955
.switch_event = map_switch_event,
3956
};
3957
struct trace_sched_handler replay_ops = {
3958
.wakeup_event = replay_wakeup_event,
3959
.switch_event = replay_switch_event,
3960
.fork_event = replay_fork_event,
3961
};
3962
int ret;
3963
3964
perf_tool__init(&sched.tool, /*ordered_events=*/true);
3965
sched.tool.sample = perf_sched__process_tracepoint_sample;
3966
sched.tool.comm = perf_sched__process_comm;
3967
sched.tool.namespaces = perf_event__process_namespaces;
3968
sched.tool.lost = perf_event__process_lost;
3969
sched.tool.fork = perf_sched__process_fork_event;
3970
3971
argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3972
sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3973
if (!argc)
3974
usage_with_options(sched_usage, sched_options);
3975
3976
thread__set_priv_destructor(free);
3977
3978
/*
3979
* Aliased to 'perf script' for now:
3980
*/
3981
if (!strcmp(argv[0], "script")) {
3982
ret = cmd_script(argc, argv);
3983
} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3984
ret = __cmd_record(argc, argv);
3985
} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3986
sched.tp_handler = &lat_ops;
3987
if (argc > 1) {
3988
argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3989
if (argc)
3990
usage_with_options(latency_usage, latency_options);
3991
}
3992
setup_sorting(&sched, latency_options, latency_usage);
3993
ret = perf_sched__lat(&sched);
3994
} else if (!strcmp(argv[0], "map")) {
3995
if (argc) {
3996
argc = parse_options(argc, argv, map_options, map_usage, 0);
3997
if (argc)
3998
usage_with_options(map_usage, map_options);
3999
4000
if (sched.map.task_name) {
4001
sched.map.task_names = strlist__new(sched.map.task_name, NULL);
4002
if (sched.map.task_names == NULL) {
4003
fprintf(stderr, "Failed to parse task names\n");
4004
ret = -1;
4005
goto out;
4006
}
4007
}
4008
}
4009
sched.tp_handler = &map_ops;
4010
setup_sorting(&sched, latency_options, latency_usage);
4011
ret = perf_sched__map(&sched);
4012
} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
4013
sched.tp_handler = &replay_ops;
4014
if (argc) {
4015
argc = parse_options(argc, argv, replay_options, replay_usage, 0);
4016
if (argc)
4017
usage_with_options(replay_usage, replay_options);
4018
}
4019
ret = perf_sched__replay(&sched);
4020
} else if (!strcmp(argv[0], "timehist")) {
4021
if (argc) {
4022
argc = parse_options(argc, argv, timehist_options,
4023
timehist_usage, 0);
4024
if (argc)
4025
usage_with_options(timehist_usage, timehist_options);
4026
}
4027
if ((sched.show_wakeups || sched.show_next) &&
4028
sched.summary_only) {
4029
pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
4030
parse_options_usage(timehist_usage, timehist_options, "s", true);
4031
if (sched.show_wakeups)
4032
parse_options_usage(NULL, timehist_options, "w", true);
4033
if (sched.show_next)
4034
parse_options_usage(NULL, timehist_options, "n", true);
4035
ret = -EINVAL;
4036
goto out;
4037
}
4038
ret = symbol__validate_sym_arguments();
4039
if (!ret)
4040
ret = perf_sched__timehist(&sched);
4041
} else {
4042
usage_with_options(sched_usage, sched_options);
4043
}
4044
4045
out:
4046
/* free usage string allocated by parse_options_subcommand */
4047
free((void *)sched_usage[0]);
4048
4049
return ret;
4050
}
4051
4052