Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/perf/builtin-sched.c
50518 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include "builtin.h"
3
#include "perf.h"
4
#include "perf-sys.h"
5
6
#include "util/cpumap.h"
7
#include "util/evlist.h"
8
#include "util/evsel.h"
9
#include "util/evsel_fprintf.h"
10
#include "util/mutex.h"
11
#include "util/symbol.h"
12
#include "util/thread.h"
13
#include "util/header.h"
14
#include "util/session.h"
15
#include "util/tool.h"
16
#include "util/cloexec.h"
17
#include "util/thread_map.h"
18
#include "util/color.h"
19
#include "util/stat.h"
20
#include "util/string2.h"
21
#include "util/callchain.h"
22
#include "util/time-utils.h"
23
24
#include <subcmd/pager.h>
25
#include <subcmd/parse-options.h>
26
#include "util/trace-event.h"
27
28
#include "util/debug.h"
29
#include "util/event.h"
30
#include "util/util.h"
31
32
#include <linux/kernel.h>
33
#include <linux/log2.h>
34
#include <linux/zalloc.h>
35
#include <sys/prctl.h>
36
#include <sys/resource.h>
37
#include <inttypes.h>
38
39
#include <errno.h>
40
#include <semaphore.h>
41
#include <pthread.h>
42
#include <math.h>
43
#include <api/fs/fs.h>
44
#include <perf/cpumap.h>
45
#include <linux/time64.h>
46
#include <linux/err.h>
47
48
#include <linux/ctype.h>
49
50
#define PR_SET_NAME 15 /* Set process name */
51
#define MAX_CPUS 4096
52
#define COMM_LEN 20
53
#define SYM_LEN 129
54
#define MAX_PID 1024000
55
#define MAX_PRIO 140
56
57
static const char *cpu_list;
58
static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
59
60
struct sched_atom;
61
62
struct task_desc {
63
unsigned long nr;
64
unsigned long pid;
65
char comm[COMM_LEN];
66
67
unsigned long nr_events;
68
unsigned long curr_event;
69
struct sched_atom **atoms;
70
71
pthread_t thread;
72
73
sem_t ready_for_work;
74
sem_t work_done_sem;
75
76
u64 cpu_usage;
77
};
78
79
enum sched_event_type {
80
SCHED_EVENT_RUN,
81
SCHED_EVENT_SLEEP,
82
SCHED_EVENT_WAKEUP,
83
};
84
85
struct sched_atom {
86
enum sched_event_type type;
87
u64 timestamp;
88
u64 duration;
89
unsigned long nr;
90
sem_t *wait_sem;
91
struct task_desc *wakee;
92
};
93
94
enum thread_state {
95
THREAD_SLEEPING = 0,
96
THREAD_WAIT_CPU,
97
THREAD_SCHED_IN,
98
THREAD_IGNORE
99
};
100
101
struct work_atom {
102
struct list_head list;
103
enum thread_state state;
104
u64 sched_out_time;
105
u64 wake_up_time;
106
u64 sched_in_time;
107
u64 runtime;
108
};
109
110
struct work_atoms {
111
struct list_head work_list;
112
struct thread *thread;
113
struct rb_node node;
114
u64 max_lat;
115
u64 max_lat_start;
116
u64 max_lat_end;
117
u64 total_lat;
118
u64 nb_atoms;
119
u64 total_runtime;
120
int num_merged;
121
};
122
123
typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
124
125
struct perf_sched;
126
127
struct trace_sched_handler {
128
int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
129
struct perf_sample *sample, struct machine *machine);
130
131
int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
132
struct perf_sample *sample, struct machine *machine);
133
134
int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
135
struct perf_sample *sample, struct machine *machine);
136
137
/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
138
int (*fork_event)(struct perf_sched *sched, union perf_event *event,
139
struct machine *machine);
140
141
int (*migrate_task_event)(struct perf_sched *sched,
142
struct evsel *evsel,
143
struct perf_sample *sample,
144
struct machine *machine);
145
};
146
147
#define COLOR_PIDS PERF_COLOR_BLUE
148
#define COLOR_CPUS PERF_COLOR_BG_RED
149
150
struct perf_sched_map {
151
DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
152
struct perf_cpu *comp_cpus;
153
bool comp;
154
struct perf_thread_map *color_pids;
155
const char *color_pids_str;
156
struct perf_cpu_map *color_cpus;
157
const char *color_cpus_str;
158
const char *task_name;
159
struct strlist *task_names;
160
bool fuzzy;
161
struct perf_cpu_map *cpus;
162
const char *cpus_str;
163
};
164
165
struct perf_sched {
166
struct perf_tool tool;
167
const char *sort_order;
168
unsigned long nr_tasks;
169
struct task_desc **pid_to_task;
170
struct task_desc **tasks;
171
const struct trace_sched_handler *tp_handler;
172
struct mutex start_work_mutex;
173
struct mutex work_done_wait_mutex;
174
int profile_cpu;
175
/*
176
* Track the current task - that way we can know whether there's any
177
* weird events, such as a task being switched away that is not current.
178
*/
179
struct perf_cpu max_cpu;
180
u32 *curr_pid;
181
struct thread **curr_thread;
182
struct thread **curr_out_thread;
183
char next_shortname1;
184
char next_shortname2;
185
unsigned int replay_repeat;
186
unsigned long nr_run_events;
187
unsigned long nr_sleep_events;
188
unsigned long nr_wakeup_events;
189
unsigned long nr_sleep_corrections;
190
unsigned long nr_run_events_optimized;
191
unsigned long targetless_wakeups;
192
unsigned long multitarget_wakeups;
193
unsigned long nr_runs;
194
unsigned long nr_timestamps;
195
unsigned long nr_unordered_timestamps;
196
unsigned long nr_context_switch_bugs;
197
unsigned long nr_events;
198
unsigned long nr_lost_chunks;
199
unsigned long nr_lost_events;
200
u64 run_measurement_overhead;
201
u64 sleep_measurement_overhead;
202
u64 start_time;
203
u64 cpu_usage;
204
u64 runavg_cpu_usage;
205
u64 parent_cpu_usage;
206
u64 runavg_parent_cpu_usage;
207
u64 sum_runtime;
208
u64 sum_fluct;
209
u64 run_avg;
210
u64 all_runtime;
211
u64 all_count;
212
u64 *cpu_last_switched;
213
struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
214
struct list_head sort_list, cmp_pid;
215
bool force;
216
bool skip_merge;
217
struct perf_sched_map map;
218
219
/* options for timehist command */
220
bool summary;
221
bool summary_only;
222
bool idle_hist;
223
bool show_callchain;
224
unsigned int max_stack;
225
bool show_cpu_visual;
226
bool show_wakeups;
227
bool show_next;
228
bool show_migrations;
229
bool pre_migrations;
230
bool show_state;
231
bool show_prio;
232
u64 skipped_samples;
233
const char *time_str;
234
struct perf_time_interval ptime;
235
struct perf_time_interval hist_time;
236
volatile bool thread_funcs_exit;
237
const char *prio_str;
238
DECLARE_BITMAP(prio_bitmap, MAX_PRIO);
239
};
240
241
/* per thread run time data */
242
struct thread_runtime {
243
u64 last_time; /* time of previous sched in/out event */
244
u64 dt_run; /* run time */
245
u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
246
u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
247
u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
248
u64 dt_delay; /* time between wakeup and sched-in */
249
u64 dt_pre_mig; /* time between migration and wakeup */
250
u64 ready_to_run; /* time of wakeup */
251
u64 migrated; /* time when a thread is migrated */
252
253
struct stats run_stats;
254
u64 total_run_time;
255
u64 total_sleep_time;
256
u64 total_iowait_time;
257
u64 total_preempt_time;
258
u64 total_delay_time;
259
u64 total_pre_mig_time;
260
261
char last_state;
262
263
char shortname[3];
264
bool comm_changed;
265
266
u64 migrations;
267
268
int prio;
269
};
270
271
/* per event run time data */
272
struct evsel_runtime {
273
u64 *last_time; /* time this event was last seen per cpu */
274
u32 ncpu; /* highest cpu slot allocated */
275
};
276
277
/* per cpu idle time data */
278
struct idle_thread_runtime {
279
struct thread_runtime tr;
280
struct thread *last_thread;
281
struct rb_root_cached sorted_root;
282
struct callchain_root callchain;
283
struct callchain_cursor cursor;
284
};
285
286
/* track idle times per cpu */
287
static struct thread **idle_threads;
288
static int idle_max_cpu;
289
static char idle_comm[] = "<idle>";
290
291
static u64 get_nsecs(void)
292
{
293
struct timespec ts;
294
295
clock_gettime(CLOCK_MONOTONIC, &ts);
296
297
return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
298
}
299
300
static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
301
{
302
u64 T0 = get_nsecs(), T1;
303
304
do {
305
T1 = get_nsecs();
306
} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
307
}
308
309
static void sleep_nsecs(u64 nsecs)
310
{
311
struct timespec ts;
312
313
ts.tv_nsec = nsecs % 999999999;
314
ts.tv_sec = nsecs / 999999999;
315
316
nanosleep(&ts, NULL);
317
}
318
319
static void calibrate_run_measurement_overhead(struct perf_sched *sched)
320
{
321
u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
322
int i;
323
324
for (i = 0; i < 10; i++) {
325
T0 = get_nsecs();
326
burn_nsecs(sched, 0);
327
T1 = get_nsecs();
328
delta = T1-T0;
329
min_delta = min(min_delta, delta);
330
}
331
sched->run_measurement_overhead = min_delta;
332
333
printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
334
}
335
336
static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
337
{
338
u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
339
int i;
340
341
for (i = 0; i < 10; i++) {
342
T0 = get_nsecs();
343
sleep_nsecs(10000);
344
T1 = get_nsecs();
345
delta = T1-T0;
346
min_delta = min(min_delta, delta);
347
}
348
min_delta -= 10000;
349
sched->sleep_measurement_overhead = min_delta;
350
351
printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
352
}
353
354
static struct sched_atom *
355
get_new_event(struct task_desc *task, u64 timestamp)
356
{
357
struct sched_atom *event = zalloc(sizeof(*event));
358
unsigned long idx = task->nr_events;
359
size_t size;
360
361
event->timestamp = timestamp;
362
event->nr = idx;
363
364
task->nr_events++;
365
size = sizeof(struct sched_atom *) * task->nr_events;
366
task->atoms = realloc(task->atoms, size);
367
BUG_ON(!task->atoms);
368
369
task->atoms[idx] = event;
370
371
return event;
372
}
373
374
static struct sched_atom *last_event(struct task_desc *task)
375
{
376
if (!task->nr_events)
377
return NULL;
378
379
return task->atoms[task->nr_events - 1];
380
}
381
382
static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
383
u64 timestamp, u64 duration)
384
{
385
struct sched_atom *event, *curr_event = last_event(task);
386
387
/*
388
* optimize an existing RUN event by merging this one
389
* to it:
390
*/
391
if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
392
sched->nr_run_events_optimized++;
393
curr_event->duration += duration;
394
return;
395
}
396
397
event = get_new_event(task, timestamp);
398
399
event->type = SCHED_EVENT_RUN;
400
event->duration = duration;
401
402
sched->nr_run_events++;
403
}
404
405
static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
406
u64 timestamp, struct task_desc *wakee)
407
{
408
struct sched_atom *event, *wakee_event;
409
410
event = get_new_event(task, timestamp);
411
event->type = SCHED_EVENT_WAKEUP;
412
event->wakee = wakee;
413
414
wakee_event = last_event(wakee);
415
if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
416
sched->targetless_wakeups++;
417
return;
418
}
419
if (wakee_event->wait_sem) {
420
sched->multitarget_wakeups++;
421
return;
422
}
423
424
wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
425
sem_init(wakee_event->wait_sem, 0, 0);
426
event->wait_sem = wakee_event->wait_sem;
427
428
sched->nr_wakeup_events++;
429
}
430
431
static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
432
u64 timestamp)
433
{
434
struct sched_atom *event = get_new_event(task, timestamp);
435
436
event->type = SCHED_EVENT_SLEEP;
437
438
sched->nr_sleep_events++;
439
}
440
441
static struct task_desc *register_pid(struct perf_sched *sched,
442
unsigned long pid, const char *comm)
443
{
444
struct task_desc *task;
445
static int pid_max;
446
447
if (sched->pid_to_task == NULL) {
448
if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
449
pid_max = MAX_PID;
450
BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
451
}
452
if (pid >= (unsigned long)pid_max) {
453
BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
454
sizeof(struct task_desc *))) == NULL);
455
while (pid >= (unsigned long)pid_max)
456
sched->pid_to_task[pid_max++] = NULL;
457
}
458
459
task = sched->pid_to_task[pid];
460
461
if (task)
462
return task;
463
464
task = zalloc(sizeof(*task));
465
task->pid = pid;
466
task->nr = sched->nr_tasks;
467
strcpy(task->comm, comm);
468
/*
469
* every task starts in sleeping state - this gets ignored
470
* if there's no wakeup pointing to this sleep state:
471
*/
472
add_sched_event_sleep(sched, task, 0);
473
474
sched->pid_to_task[pid] = task;
475
sched->nr_tasks++;
476
sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
477
BUG_ON(!sched->tasks);
478
sched->tasks[task->nr] = task;
479
480
if (verbose > 0)
481
printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
482
483
return task;
484
}
485
486
487
static void print_task_traces(struct perf_sched *sched)
488
{
489
struct task_desc *task;
490
unsigned long i;
491
492
for (i = 0; i < sched->nr_tasks; i++) {
493
task = sched->tasks[i];
494
printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
495
task->nr, task->comm, task->pid, task->nr_events);
496
}
497
}
498
499
static void add_cross_task_wakeups(struct perf_sched *sched)
500
{
501
struct task_desc *task1, *task2;
502
unsigned long i, j;
503
504
for (i = 0; i < sched->nr_tasks; i++) {
505
task1 = sched->tasks[i];
506
j = i + 1;
507
if (j == sched->nr_tasks)
508
j = 0;
509
task2 = sched->tasks[j];
510
add_sched_event_wakeup(sched, task1, 0, task2);
511
}
512
}
513
514
static void perf_sched__process_event(struct perf_sched *sched,
515
struct sched_atom *atom)
516
{
517
int ret = 0;
518
519
switch (atom->type) {
520
case SCHED_EVENT_RUN:
521
burn_nsecs(sched, atom->duration);
522
break;
523
case SCHED_EVENT_SLEEP:
524
if (atom->wait_sem)
525
ret = sem_wait(atom->wait_sem);
526
BUG_ON(ret);
527
break;
528
case SCHED_EVENT_WAKEUP:
529
if (atom->wait_sem)
530
ret = sem_post(atom->wait_sem);
531
BUG_ON(ret);
532
break;
533
default:
534
BUG_ON(1);
535
}
536
}
537
538
static u64 get_cpu_usage_nsec_parent(void)
539
{
540
struct rusage ru;
541
u64 sum;
542
int err;
543
544
err = getrusage(RUSAGE_SELF, &ru);
545
BUG_ON(err);
546
547
sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
548
sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
549
550
return sum;
551
}
552
553
static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
554
{
555
struct perf_event_attr attr;
556
char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
557
int fd;
558
struct rlimit limit;
559
bool need_privilege = false;
560
561
memset(&attr, 0, sizeof(attr));
562
563
attr.type = PERF_TYPE_SOFTWARE;
564
attr.config = PERF_COUNT_SW_TASK_CLOCK;
565
566
force_again:
567
fd = sys_perf_event_open(&attr, 0, -1, -1,
568
perf_event_open_cloexec_flag());
569
570
if (fd < 0) {
571
if (errno == EMFILE) {
572
if (sched->force) {
573
BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
574
limit.rlim_cur += sched->nr_tasks - cur_task;
575
if (limit.rlim_cur > limit.rlim_max) {
576
limit.rlim_max = limit.rlim_cur;
577
need_privilege = true;
578
}
579
if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
580
if (need_privilege && errno == EPERM)
581
strcpy(info, "Need privilege\n");
582
} else
583
goto force_again;
584
} else
585
strcpy(info, "Have a try with -f option\n");
586
}
587
pr_err("Error: sys_perf_event_open() syscall returned "
588
"with %d (%s)\n%s", fd,
589
str_error_r(errno, sbuf, sizeof(sbuf)), info);
590
exit(EXIT_FAILURE);
591
}
592
return fd;
593
}
594
595
static u64 get_cpu_usage_nsec_self(int fd)
596
{
597
u64 runtime;
598
int ret;
599
600
ret = read(fd, &runtime, sizeof(runtime));
601
BUG_ON(ret != sizeof(runtime));
602
603
return runtime;
604
}
605
606
struct sched_thread_parms {
607
struct task_desc *task;
608
struct perf_sched *sched;
609
int fd;
610
};
611
612
static void *thread_func(void *ctx)
613
{
614
struct sched_thread_parms *parms = ctx;
615
struct task_desc *this_task = parms->task;
616
struct perf_sched *sched = parms->sched;
617
u64 cpu_usage_0, cpu_usage_1;
618
unsigned long i, ret;
619
char comm2[22];
620
int fd = parms->fd;
621
622
zfree(&parms);
623
624
sprintf(comm2, ":%s", this_task->comm);
625
prctl(PR_SET_NAME, comm2);
626
if (fd < 0)
627
return NULL;
628
629
while (!sched->thread_funcs_exit) {
630
ret = sem_post(&this_task->ready_for_work);
631
BUG_ON(ret);
632
mutex_lock(&sched->start_work_mutex);
633
mutex_unlock(&sched->start_work_mutex);
634
635
cpu_usage_0 = get_cpu_usage_nsec_self(fd);
636
637
for (i = 0; i < this_task->nr_events; i++) {
638
this_task->curr_event = i;
639
perf_sched__process_event(sched, this_task->atoms[i]);
640
}
641
642
cpu_usage_1 = get_cpu_usage_nsec_self(fd);
643
this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
644
ret = sem_post(&this_task->work_done_sem);
645
BUG_ON(ret);
646
647
mutex_lock(&sched->work_done_wait_mutex);
648
mutex_unlock(&sched->work_done_wait_mutex);
649
}
650
return NULL;
651
}
652
653
static void create_tasks(struct perf_sched *sched)
654
EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
655
EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
656
{
657
struct task_desc *task;
658
pthread_attr_t attr;
659
unsigned long i;
660
int err;
661
662
err = pthread_attr_init(&attr);
663
BUG_ON(err);
664
err = pthread_attr_setstacksize(&attr,
665
(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
666
BUG_ON(err);
667
mutex_lock(&sched->start_work_mutex);
668
mutex_lock(&sched->work_done_wait_mutex);
669
for (i = 0; i < sched->nr_tasks; i++) {
670
struct sched_thread_parms *parms = malloc(sizeof(*parms));
671
BUG_ON(parms == NULL);
672
parms->task = task = sched->tasks[i];
673
parms->sched = sched;
674
parms->fd = self_open_counters(sched, i);
675
sem_init(&task->ready_for_work, 0, 0);
676
sem_init(&task->work_done_sem, 0, 0);
677
task->curr_event = 0;
678
err = pthread_create(&task->thread, &attr, thread_func, parms);
679
BUG_ON(err);
680
}
681
}
682
683
static void destroy_tasks(struct perf_sched *sched)
684
UNLOCK_FUNCTION(sched->start_work_mutex)
685
UNLOCK_FUNCTION(sched->work_done_wait_mutex)
686
{
687
struct task_desc *task;
688
unsigned long i;
689
int err;
690
691
mutex_unlock(&sched->start_work_mutex);
692
mutex_unlock(&sched->work_done_wait_mutex);
693
/* Get rid of threads so they won't be upset by mutex destrunction */
694
for (i = 0; i < sched->nr_tasks; i++) {
695
task = sched->tasks[i];
696
err = pthread_join(task->thread, NULL);
697
BUG_ON(err);
698
sem_destroy(&task->ready_for_work);
699
sem_destroy(&task->work_done_sem);
700
}
701
}
702
703
static void wait_for_tasks(struct perf_sched *sched)
704
EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
705
EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
706
{
707
u64 cpu_usage_0, cpu_usage_1;
708
struct task_desc *task;
709
unsigned long i, ret;
710
711
sched->start_time = get_nsecs();
712
sched->cpu_usage = 0;
713
mutex_unlock(&sched->work_done_wait_mutex);
714
715
for (i = 0; i < sched->nr_tasks; i++) {
716
task = sched->tasks[i];
717
ret = sem_wait(&task->ready_for_work);
718
BUG_ON(ret);
719
sem_init(&task->ready_for_work, 0, 0);
720
}
721
mutex_lock(&sched->work_done_wait_mutex);
722
723
cpu_usage_0 = get_cpu_usage_nsec_parent();
724
725
mutex_unlock(&sched->start_work_mutex);
726
727
for (i = 0; i < sched->nr_tasks; i++) {
728
task = sched->tasks[i];
729
ret = sem_wait(&task->work_done_sem);
730
BUG_ON(ret);
731
sem_init(&task->work_done_sem, 0, 0);
732
sched->cpu_usage += task->cpu_usage;
733
task->cpu_usage = 0;
734
}
735
736
cpu_usage_1 = get_cpu_usage_nsec_parent();
737
if (!sched->runavg_cpu_usage)
738
sched->runavg_cpu_usage = sched->cpu_usage;
739
sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
740
741
sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
742
if (!sched->runavg_parent_cpu_usage)
743
sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
744
sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
745
sched->parent_cpu_usage)/sched->replay_repeat;
746
747
mutex_lock(&sched->start_work_mutex);
748
749
for (i = 0; i < sched->nr_tasks; i++) {
750
task = sched->tasks[i];
751
task->curr_event = 0;
752
}
753
}
754
755
static void run_one_test(struct perf_sched *sched)
756
EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
757
EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
758
{
759
u64 T0, T1, delta, avg_delta, fluct;
760
761
T0 = get_nsecs();
762
wait_for_tasks(sched);
763
T1 = get_nsecs();
764
765
delta = T1 - T0;
766
sched->sum_runtime += delta;
767
sched->nr_runs++;
768
769
avg_delta = sched->sum_runtime / sched->nr_runs;
770
if (delta < avg_delta)
771
fluct = avg_delta - delta;
772
else
773
fluct = delta - avg_delta;
774
sched->sum_fluct += fluct;
775
if (!sched->run_avg)
776
sched->run_avg = delta;
777
sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
778
779
printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
780
781
printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
782
783
printf("cpu: %0.2f / %0.2f",
784
(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
785
786
#if 0
787
/*
788
* rusage statistics done by the parent, these are less
789
* accurate than the sched->sum_exec_runtime based statistics:
790
*/
791
printf(" [%0.2f / %0.2f]",
792
(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
793
(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
794
#endif
795
796
printf("\n");
797
798
if (sched->nr_sleep_corrections)
799
printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
800
sched->nr_sleep_corrections = 0;
801
}
802
803
static void test_calibrations(struct perf_sched *sched)
804
{
805
u64 T0, T1;
806
807
T0 = get_nsecs();
808
burn_nsecs(sched, NSEC_PER_MSEC);
809
T1 = get_nsecs();
810
811
printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
812
813
T0 = get_nsecs();
814
sleep_nsecs(NSEC_PER_MSEC);
815
T1 = get_nsecs();
816
817
printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
818
}
819
820
static int
821
replay_wakeup_event(struct perf_sched *sched,
822
struct evsel *evsel, struct perf_sample *sample,
823
struct machine *machine __maybe_unused)
824
{
825
const char *comm = evsel__strval(evsel, sample, "comm");
826
const u32 pid = evsel__intval(evsel, sample, "pid");
827
struct task_desc *waker, *wakee;
828
829
if (verbose > 0) {
830
printf("sched_wakeup event %p\n", evsel);
831
832
printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
833
}
834
835
waker = register_pid(sched, sample->tid, "<unknown>");
836
wakee = register_pid(sched, pid, comm);
837
838
add_sched_event_wakeup(sched, waker, sample->time, wakee);
839
return 0;
840
}
841
842
static int replay_switch_event(struct perf_sched *sched,
843
struct evsel *evsel,
844
struct perf_sample *sample,
845
struct machine *machine __maybe_unused)
846
{
847
const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"),
848
*next_comm = evsel__strval(evsel, sample, "next_comm");
849
const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
850
next_pid = evsel__intval(evsel, sample, "next_pid");
851
struct task_desc *prev, __maybe_unused *next;
852
u64 timestamp0, timestamp = sample->time;
853
int cpu = sample->cpu;
854
s64 delta;
855
856
if (verbose > 0)
857
printf("sched_switch event %p\n", evsel);
858
859
if (cpu >= MAX_CPUS || cpu < 0)
860
return 0;
861
862
timestamp0 = sched->cpu_last_switched[cpu];
863
if (timestamp0)
864
delta = timestamp - timestamp0;
865
else
866
delta = 0;
867
868
if (delta < 0) {
869
pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
870
return -1;
871
}
872
873
pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
874
prev_comm, prev_pid, next_comm, next_pid, delta);
875
876
prev = register_pid(sched, prev_pid, prev_comm);
877
next = register_pid(sched, next_pid, next_comm);
878
879
sched->cpu_last_switched[cpu] = timestamp;
880
881
add_sched_event_run(sched, prev, timestamp, delta);
882
add_sched_event_sleep(sched, prev, timestamp);
883
884
return 0;
885
}
886
887
static int replay_fork_event(struct perf_sched *sched,
888
union perf_event *event,
889
struct machine *machine)
890
{
891
struct thread *child, *parent;
892
893
child = machine__findnew_thread(machine, event->fork.pid,
894
event->fork.tid);
895
parent = machine__findnew_thread(machine, event->fork.ppid,
896
event->fork.ptid);
897
898
if (child == NULL || parent == NULL) {
899
pr_debug("thread does not exist on fork event: child %p, parent %p\n",
900
child, parent);
901
goto out_put;
902
}
903
904
if (verbose > 0) {
905
printf("fork event\n");
906
printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
907
printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child));
908
}
909
910
register_pid(sched, thread__tid(parent), thread__comm_str(parent));
911
register_pid(sched, thread__tid(child), thread__comm_str(child));
912
out_put:
913
thread__put(child);
914
thread__put(parent);
915
return 0;
916
}
917
918
struct sort_dimension {
919
const char *name;
920
sort_fn_t cmp;
921
struct list_head list;
922
};
923
924
static inline void init_prio(struct thread_runtime *r)
925
{
926
r->prio = -1;
927
}
928
929
/*
930
* handle runtime stats saved per thread
931
*/
932
static struct thread_runtime *thread__init_runtime(struct thread *thread)
933
{
934
struct thread_runtime *r;
935
936
r = zalloc(sizeof(struct thread_runtime));
937
if (!r)
938
return NULL;
939
940
init_stats(&r->run_stats);
941
init_prio(r);
942
thread__set_priv(thread, r);
943
944
return r;
945
}
946
947
static struct thread_runtime *thread__get_runtime(struct thread *thread)
948
{
949
struct thread_runtime *tr;
950
951
tr = thread__priv(thread);
952
if (tr == NULL) {
953
tr = thread__init_runtime(thread);
954
if (tr == NULL)
955
pr_debug("Failed to malloc memory for runtime data.\n");
956
}
957
958
return tr;
959
}
960
961
static int
962
thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
963
{
964
struct sort_dimension *sort;
965
int ret = 0;
966
967
BUG_ON(list_empty(list));
968
969
list_for_each_entry(sort, list, list) {
970
ret = sort->cmp(l, r);
971
if (ret)
972
return ret;
973
}
974
975
return ret;
976
}
977
978
static struct work_atoms *
979
thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
980
struct list_head *sort_list)
981
{
982
struct rb_node *node = root->rb_root.rb_node;
983
struct work_atoms key = { .thread = thread };
984
985
while (node) {
986
struct work_atoms *atoms;
987
int cmp;
988
989
atoms = container_of(node, struct work_atoms, node);
990
991
cmp = thread_lat_cmp(sort_list, &key, atoms);
992
if (cmp > 0)
993
node = node->rb_left;
994
else if (cmp < 0)
995
node = node->rb_right;
996
else {
997
BUG_ON(!RC_CHK_EQUAL(thread, atoms->thread));
998
return atoms;
999
}
1000
}
1001
return NULL;
1002
}
1003
1004
static void
1005
__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1006
struct list_head *sort_list)
1007
{
1008
struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1009
bool leftmost = true;
1010
1011
while (*new) {
1012
struct work_atoms *this;
1013
int cmp;
1014
1015
this = container_of(*new, struct work_atoms, node);
1016
parent = *new;
1017
1018
cmp = thread_lat_cmp(sort_list, data, this);
1019
1020
if (cmp > 0)
1021
new = &((*new)->rb_left);
1022
else {
1023
new = &((*new)->rb_right);
1024
leftmost = false;
1025
}
1026
}
1027
1028
rb_link_node(&data->node, parent, new);
1029
rb_insert_color_cached(&data->node, root, leftmost);
1030
}
1031
1032
static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1033
{
1034
struct work_atoms *atoms = zalloc(sizeof(*atoms));
1035
if (!atoms) {
1036
pr_err("No memory at %s\n", __func__);
1037
return -1;
1038
}
1039
1040
atoms->thread = thread__get(thread);
1041
INIT_LIST_HEAD(&atoms->work_list);
1042
__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1043
return 0;
1044
}
1045
1046
static int
1047
add_sched_out_event(struct work_atoms *atoms,
1048
char run_state,
1049
u64 timestamp)
1050
{
1051
struct work_atom *atom = zalloc(sizeof(*atom));
1052
if (!atom) {
1053
pr_err("Non memory at %s", __func__);
1054
return -1;
1055
}
1056
1057
atom->sched_out_time = timestamp;
1058
1059
if (run_state == 'R') {
1060
atom->state = THREAD_WAIT_CPU;
1061
atom->wake_up_time = atom->sched_out_time;
1062
}
1063
1064
list_add_tail(&atom->list, &atoms->work_list);
1065
return 0;
1066
}
1067
1068
static void
1069
add_runtime_event(struct work_atoms *atoms, u64 delta,
1070
u64 timestamp __maybe_unused)
1071
{
1072
struct work_atom *atom;
1073
1074
BUG_ON(list_empty(&atoms->work_list));
1075
1076
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1077
1078
atom->runtime += delta;
1079
atoms->total_runtime += delta;
1080
}
1081
1082
static void
1083
add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1084
{
1085
struct work_atom *atom;
1086
u64 delta;
1087
1088
if (list_empty(&atoms->work_list))
1089
return;
1090
1091
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1092
1093
if (atom->state != THREAD_WAIT_CPU)
1094
return;
1095
1096
if (timestamp < atom->wake_up_time) {
1097
atom->state = THREAD_IGNORE;
1098
return;
1099
}
1100
1101
atom->state = THREAD_SCHED_IN;
1102
atom->sched_in_time = timestamp;
1103
1104
delta = atom->sched_in_time - atom->wake_up_time;
1105
atoms->total_lat += delta;
1106
if (delta > atoms->max_lat) {
1107
atoms->max_lat = delta;
1108
atoms->max_lat_start = atom->wake_up_time;
1109
atoms->max_lat_end = timestamp;
1110
}
1111
atoms->nb_atoms++;
1112
}
1113
1114
static void free_work_atoms(struct work_atoms *atoms)
1115
{
1116
struct work_atom *atom, *tmp;
1117
1118
if (atoms == NULL)
1119
return;
1120
1121
list_for_each_entry_safe(atom, tmp, &atoms->work_list, list) {
1122
list_del(&atom->list);
1123
free(atom);
1124
}
1125
thread__zput(atoms->thread);
1126
free(atoms);
1127
}
1128
1129
static int latency_switch_event(struct perf_sched *sched,
1130
struct evsel *evsel,
1131
struct perf_sample *sample,
1132
struct machine *machine)
1133
{
1134
const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1135
next_pid = evsel__intval(evsel, sample, "next_pid");
1136
const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1137
struct work_atoms *out_events, *in_events;
1138
struct thread *sched_out, *sched_in;
1139
u64 timestamp0, timestamp = sample->time;
1140
int cpu = sample->cpu, err = -1;
1141
s64 delta;
1142
1143
BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1144
1145
timestamp0 = sched->cpu_last_switched[cpu];
1146
sched->cpu_last_switched[cpu] = timestamp;
1147
if (timestamp0)
1148
delta = timestamp - timestamp0;
1149
else
1150
delta = 0;
1151
1152
if (delta < 0) {
1153
pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1154
return -1;
1155
}
1156
1157
sched_out = machine__findnew_thread(machine, -1, prev_pid);
1158
sched_in = machine__findnew_thread(machine, -1, next_pid);
1159
if (sched_out == NULL || sched_in == NULL)
1160
goto out_put;
1161
1162
out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1163
if (!out_events) {
1164
if (thread_atoms_insert(sched, sched_out))
1165
goto out_put;
1166
out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1167
if (!out_events) {
1168
pr_err("out-event: Internal tree error");
1169
goto out_put;
1170
}
1171
}
1172
if (add_sched_out_event(out_events, prev_state, timestamp))
1173
return -1;
1174
1175
in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1176
if (!in_events) {
1177
if (thread_atoms_insert(sched, sched_in))
1178
goto out_put;
1179
in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1180
if (!in_events) {
1181
pr_err("in-event: Internal tree error");
1182
goto out_put;
1183
}
1184
/*
1185
* Take came in we have not heard about yet,
1186
* add in an initial atom in runnable state:
1187
*/
1188
if (add_sched_out_event(in_events, 'R', timestamp))
1189
goto out_put;
1190
}
1191
add_sched_in_event(in_events, timestamp);
1192
err = 0;
1193
out_put:
1194
thread__put(sched_out);
1195
thread__put(sched_in);
1196
return err;
1197
}
1198
1199
static int latency_runtime_event(struct perf_sched *sched,
1200
struct evsel *evsel,
1201
struct perf_sample *sample,
1202
struct machine *machine)
1203
{
1204
const u32 pid = evsel__intval(evsel, sample, "pid");
1205
const u64 runtime = evsel__intval(evsel, sample, "runtime");
1206
struct thread *thread = machine__findnew_thread(machine, -1, pid);
1207
struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1208
u64 timestamp = sample->time;
1209
int cpu = sample->cpu, err = -1;
1210
1211
if (thread == NULL)
1212
return -1;
1213
1214
BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1215
if (!atoms) {
1216
if (thread_atoms_insert(sched, thread))
1217
goto out_put;
1218
atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1219
if (!atoms) {
1220
pr_err("in-event: Internal tree error");
1221
goto out_put;
1222
}
1223
if (add_sched_out_event(atoms, 'R', timestamp))
1224
goto out_put;
1225
}
1226
1227
add_runtime_event(atoms, runtime, timestamp);
1228
err = 0;
1229
out_put:
1230
thread__put(thread);
1231
return err;
1232
}
1233
1234
static int latency_wakeup_event(struct perf_sched *sched,
1235
struct evsel *evsel,
1236
struct perf_sample *sample,
1237
struct machine *machine)
1238
{
1239
const u32 pid = evsel__intval(evsel, sample, "pid");
1240
struct work_atoms *atoms;
1241
struct work_atom *atom;
1242
struct thread *wakee;
1243
u64 timestamp = sample->time;
1244
int err = -1;
1245
1246
wakee = machine__findnew_thread(machine, -1, pid);
1247
if (wakee == NULL)
1248
return -1;
1249
atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1250
if (!atoms) {
1251
if (thread_atoms_insert(sched, wakee))
1252
goto out_put;
1253
atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1254
if (!atoms) {
1255
pr_err("wakeup-event: Internal tree error");
1256
goto out_put;
1257
}
1258
if (add_sched_out_event(atoms, 'S', timestamp))
1259
goto out_put;
1260
}
1261
1262
BUG_ON(list_empty(&atoms->work_list));
1263
1264
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1265
1266
/*
1267
* As we do not guarantee the wakeup event happens when
1268
* task is out of run queue, also may happen when task is
1269
* on run queue and wakeup only change ->state to TASK_RUNNING,
1270
* then we should not set the ->wake_up_time when wake up a
1271
* task which is on run queue.
1272
*
1273
* You WILL be missing events if you've recorded only
1274
* one CPU, or are only looking at only one, so don't
1275
* skip in this case.
1276
*/
1277
if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1278
goto out_ok;
1279
1280
sched->nr_timestamps++;
1281
if (atom->sched_out_time > timestamp) {
1282
sched->nr_unordered_timestamps++;
1283
goto out_ok;
1284
}
1285
1286
atom->state = THREAD_WAIT_CPU;
1287
atom->wake_up_time = timestamp;
1288
out_ok:
1289
err = 0;
1290
out_put:
1291
thread__put(wakee);
1292
return err;
1293
}
1294
1295
static int latency_migrate_task_event(struct perf_sched *sched,
1296
struct evsel *evsel,
1297
struct perf_sample *sample,
1298
struct machine *machine)
1299
{
1300
const u32 pid = evsel__intval(evsel, sample, "pid");
1301
u64 timestamp = sample->time;
1302
struct work_atoms *atoms;
1303
struct work_atom *atom;
1304
struct thread *migrant;
1305
int err = -1;
1306
1307
/*
1308
* Only need to worry about migration when profiling one CPU.
1309
*/
1310
if (sched->profile_cpu == -1)
1311
return 0;
1312
1313
migrant = machine__findnew_thread(machine, -1, pid);
1314
if (migrant == NULL)
1315
return -1;
1316
atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1317
if (!atoms) {
1318
if (thread_atoms_insert(sched, migrant))
1319
goto out_put;
1320
register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1321
atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1322
if (!atoms) {
1323
pr_err("migration-event: Internal tree error");
1324
goto out_put;
1325
}
1326
if (add_sched_out_event(atoms, 'R', timestamp))
1327
goto out_put;
1328
}
1329
1330
BUG_ON(list_empty(&atoms->work_list));
1331
1332
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1333
atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1334
1335
sched->nr_timestamps++;
1336
1337
if (atom->sched_out_time > timestamp)
1338
sched->nr_unordered_timestamps++;
1339
err = 0;
1340
out_put:
1341
thread__put(migrant);
1342
return err;
1343
}
1344
1345
static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1346
{
1347
int i;
1348
int ret;
1349
u64 avg;
1350
char max_lat_start[32], max_lat_end[32];
1351
1352
if (!work_list->nb_atoms)
1353
return;
1354
/*
1355
* Ignore idle threads:
1356
*/
1357
if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1358
return;
1359
1360
sched->all_runtime += work_list->total_runtime;
1361
sched->all_count += work_list->nb_atoms;
1362
1363
if (work_list->num_merged > 1) {
1364
ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread),
1365
work_list->num_merged);
1366
} else {
1367
ret = printf(" %s:%d ", thread__comm_str(work_list->thread),
1368
thread__tid(work_list->thread));
1369
}
1370
1371
for (i = 0; i < 24 - ret; i++)
1372
printf(" ");
1373
1374
avg = work_list->total_lat / work_list->nb_atoms;
1375
timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1376
timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1377
1378
printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1379
(double)work_list->total_runtime / NSEC_PER_MSEC,
1380
work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1381
(double)work_list->max_lat / NSEC_PER_MSEC,
1382
max_lat_start, max_lat_end);
1383
}
1384
1385
static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1386
{
1387
pid_t l_tid, r_tid;
1388
1389
if (RC_CHK_EQUAL(l->thread, r->thread))
1390
return 0;
1391
l_tid = thread__tid(l->thread);
1392
r_tid = thread__tid(r->thread);
1393
if (l_tid < r_tid)
1394
return -1;
1395
if (l_tid > r_tid)
1396
return 1;
1397
return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1398
}
1399
1400
static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1401
{
1402
u64 avgl, avgr;
1403
1404
if (!l->nb_atoms)
1405
return -1;
1406
1407
if (!r->nb_atoms)
1408
return 1;
1409
1410
avgl = l->total_lat / l->nb_atoms;
1411
avgr = r->total_lat / r->nb_atoms;
1412
1413
if (avgl < avgr)
1414
return -1;
1415
if (avgl > avgr)
1416
return 1;
1417
1418
return 0;
1419
}
1420
1421
static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1422
{
1423
if (l->max_lat < r->max_lat)
1424
return -1;
1425
if (l->max_lat > r->max_lat)
1426
return 1;
1427
1428
return 0;
1429
}
1430
1431
static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1432
{
1433
if (l->nb_atoms < r->nb_atoms)
1434
return -1;
1435
if (l->nb_atoms > r->nb_atoms)
1436
return 1;
1437
1438
return 0;
1439
}
1440
1441
static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1442
{
1443
if (l->total_runtime < r->total_runtime)
1444
return -1;
1445
if (l->total_runtime > r->total_runtime)
1446
return 1;
1447
1448
return 0;
1449
}
1450
1451
static int sort_dimension__add(const char *tok, struct list_head *list)
1452
{
1453
size_t i;
1454
static struct sort_dimension avg_sort_dimension = {
1455
.name = "avg",
1456
.cmp = avg_cmp,
1457
};
1458
static struct sort_dimension max_sort_dimension = {
1459
.name = "max",
1460
.cmp = max_cmp,
1461
};
1462
static struct sort_dimension pid_sort_dimension = {
1463
.name = "pid",
1464
.cmp = pid_cmp,
1465
};
1466
static struct sort_dimension runtime_sort_dimension = {
1467
.name = "runtime",
1468
.cmp = runtime_cmp,
1469
};
1470
static struct sort_dimension switch_sort_dimension = {
1471
.name = "switch",
1472
.cmp = switch_cmp,
1473
};
1474
struct sort_dimension *available_sorts[] = {
1475
&pid_sort_dimension,
1476
&avg_sort_dimension,
1477
&max_sort_dimension,
1478
&switch_sort_dimension,
1479
&runtime_sort_dimension,
1480
};
1481
1482
for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1483
if (!strcmp(available_sorts[i]->name, tok)) {
1484
list_add_tail(&available_sorts[i]->list, list);
1485
1486
return 0;
1487
}
1488
}
1489
1490
return -1;
1491
}
1492
1493
static void perf_sched__sort_lat(struct perf_sched *sched)
1494
{
1495
struct rb_node *node;
1496
struct rb_root_cached *root = &sched->atom_root;
1497
again:
1498
for (;;) {
1499
struct work_atoms *data;
1500
node = rb_first_cached(root);
1501
if (!node)
1502
break;
1503
1504
rb_erase_cached(node, root);
1505
data = rb_entry(node, struct work_atoms, node);
1506
__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1507
}
1508
if (root == &sched->atom_root) {
1509
root = &sched->merged_atom_root;
1510
goto again;
1511
}
1512
}
1513
1514
static int process_sched_wakeup_event(const struct perf_tool *tool,
1515
struct evsel *evsel,
1516
struct perf_sample *sample,
1517
struct machine *machine)
1518
{
1519
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1520
1521
if (sched->tp_handler->wakeup_event)
1522
return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1523
1524
return 0;
1525
}
1526
1527
static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
1528
struct evsel *evsel __maybe_unused,
1529
struct perf_sample *sample __maybe_unused,
1530
struct machine *machine __maybe_unused)
1531
{
1532
return 0;
1533
}
1534
1535
static bool thread__has_color(struct thread *thread)
1536
{
1537
return thread__priv(thread) != NULL;
1538
}
1539
1540
static struct thread*
1541
map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1542
{
1543
struct thread *thread = machine__findnew_thread(machine, pid, tid);
1544
bool color = false;
1545
1546
if (!sched->map.color_pids || !thread || thread__priv(thread))
1547
return thread;
1548
1549
if (thread_map__has(sched->map.color_pids, tid))
1550
color = true;
1551
1552
thread__set_priv(thread, color ? ((void*)1) : NULL);
1553
return thread;
1554
}
1555
1556
static bool sched_match_task(struct perf_sched *sched, const char *comm_str)
1557
{
1558
bool fuzzy_match = sched->map.fuzzy;
1559
struct strlist *task_names = sched->map.task_names;
1560
struct str_node *node;
1561
1562
strlist__for_each_entry(node, task_names) {
1563
bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) :
1564
!strcmp(comm_str, node->s);
1565
if (match_found)
1566
return true;
1567
}
1568
1569
return false;
1570
}
1571
1572
static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr,
1573
const char *color, bool sched_out)
1574
{
1575
for (int i = 0; i < cpus_nr; i++) {
1576
struct perf_cpu cpu = {
1577
.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1578
};
1579
struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1580
struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu];
1581
struct thread_runtime *curr_tr;
1582
const char *pid_color = color;
1583
const char *cpu_color = color;
1584
char symbol = ' ';
1585
struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread;
1586
1587
if (thread_to_check && thread__has_color(thread_to_check))
1588
pid_color = COLOR_PIDS;
1589
1590
if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1591
cpu_color = COLOR_CPUS;
1592
1593
if (cpu.cpu == this_cpu.cpu)
1594
symbol = '*';
1595
1596
color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol);
1597
1598
thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] :
1599
sched->curr_thread[cpu.cpu];
1600
1601
if (thread_to_check) {
1602
curr_tr = thread__get_runtime(thread_to_check);
1603
if (curr_tr == NULL)
1604
return;
1605
1606
if (sched_out) {
1607
if (cpu.cpu == this_cpu.cpu)
1608
color_fprintf(stdout, color, "- ");
1609
else {
1610
curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1611
if (curr_tr != NULL)
1612
color_fprintf(stdout, pid_color, "%2s ",
1613
curr_tr->shortname);
1614
}
1615
} else
1616
color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1617
} else
1618
color_fprintf(stdout, color, " ");
1619
}
1620
}
1621
1622
static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1623
struct perf_sample *sample, struct machine *machine)
1624
{
1625
const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1626
const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid");
1627
struct thread *sched_in, *sched_out;
1628
struct thread_runtime *tr;
1629
int new_shortname;
1630
u64 timestamp0, timestamp = sample->time;
1631
s64 delta;
1632
struct perf_cpu this_cpu = {
1633
.cpu = sample->cpu,
1634
};
1635
int cpus_nr;
1636
int proceed;
1637
bool new_cpu = false;
1638
const char *color = PERF_COLOR_NORMAL;
1639
char stimestamp[32];
1640
const char *str;
1641
int ret = -1;
1642
1643
BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1644
1645
if (this_cpu.cpu > sched->max_cpu.cpu)
1646
sched->max_cpu = this_cpu;
1647
1648
if (sched->map.comp) {
1649
cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1650
if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1651
sched->map.comp_cpus[cpus_nr++] = this_cpu;
1652
new_cpu = true;
1653
}
1654
} else
1655
cpus_nr = sched->max_cpu.cpu;
1656
1657
timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1658
sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1659
if (timestamp0)
1660
delta = timestamp - timestamp0;
1661
else
1662
delta = 0;
1663
1664
if (delta < 0) {
1665
pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1666
return -1;
1667
}
1668
1669
sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1670
sched_out = map__findnew_thread(sched, machine, -1, prev_pid);
1671
if (sched_in == NULL || sched_out == NULL)
1672
goto out;
1673
1674
tr = thread__get_runtime(sched_in);
1675
if (tr == NULL)
1676
goto out;
1677
1678
thread__put(sched->curr_thread[this_cpu.cpu]);
1679
thread__put(sched->curr_out_thread[this_cpu.cpu]);
1680
1681
sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1682
sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out);
1683
1684
ret = 0;
1685
1686
str = thread__comm_str(sched_in);
1687
new_shortname = 0;
1688
if (!tr->shortname[0]) {
1689
if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1690
/*
1691
* Don't allocate a letter-number for swapper:0
1692
* as a shortname. Instead, we use '.' for it.
1693
*/
1694
tr->shortname[0] = '.';
1695
tr->shortname[1] = ' ';
1696
} else if (!sched->map.task_name || sched_match_task(sched, str)) {
1697
tr->shortname[0] = sched->next_shortname1;
1698
tr->shortname[1] = sched->next_shortname2;
1699
1700
if (sched->next_shortname1 < 'Z') {
1701
sched->next_shortname1++;
1702
} else {
1703
sched->next_shortname1 = 'A';
1704
if (sched->next_shortname2 < '9')
1705
sched->next_shortname2++;
1706
else
1707
sched->next_shortname2 = '0';
1708
}
1709
} else {
1710
tr->shortname[0] = '-';
1711
tr->shortname[1] = ' ';
1712
}
1713
new_shortname = 1;
1714
}
1715
1716
if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1717
goto out;
1718
1719
proceed = 0;
1720
str = thread__comm_str(sched_in);
1721
/*
1722
* Check which of sched_in and sched_out matches the passed --task-name
1723
* arguments and call the corresponding print_sched_map.
1724
*/
1725
if (sched->map.task_name && !sched_match_task(sched, str)) {
1726
if (!sched_match_task(sched, thread__comm_str(sched_out)))
1727
goto out;
1728
else
1729
goto sched_out;
1730
1731
} else {
1732
str = thread__comm_str(sched_out);
1733
if (!(sched->map.task_name && !sched_match_task(sched, str)))
1734
proceed = 1;
1735
}
1736
1737
printf(" ");
1738
1739
print_sched_map(sched, this_cpu, cpus_nr, color, false);
1740
1741
timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1742
color_fprintf(stdout, color, " %12s secs ", stimestamp);
1743
if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1744
const char *pid_color = color;
1745
1746
if (thread__has_color(sched_in))
1747
pid_color = COLOR_PIDS;
1748
1749
color_fprintf(stdout, pid_color, "%s => %s:%d",
1750
tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1751
tr->comm_changed = false;
1752
}
1753
1754
if (sched->map.comp && new_cpu)
1755
color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu);
1756
1757
if (proceed != 1) {
1758
color_fprintf(stdout, color, "\n");
1759
goto out;
1760
}
1761
1762
sched_out:
1763
if (sched->map.task_name) {
1764
tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]);
1765
if (strcmp(tr->shortname, "") == 0)
1766
goto out;
1767
1768
if (proceed == 1)
1769
color_fprintf(stdout, color, "\n");
1770
1771
printf(" ");
1772
print_sched_map(sched, this_cpu, cpus_nr, color, true);
1773
timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1774
color_fprintf(stdout, color, " %12s secs ", stimestamp);
1775
}
1776
1777
color_fprintf(stdout, color, "\n");
1778
1779
out:
1780
thread__put(sched_out);
1781
thread__put(sched_in);
1782
1783
return ret;
1784
}
1785
1786
static int process_sched_switch_event(const struct perf_tool *tool,
1787
struct evsel *evsel,
1788
struct perf_sample *sample,
1789
struct machine *machine)
1790
{
1791
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1792
int this_cpu = sample->cpu, err = 0;
1793
u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1794
next_pid = evsel__intval(evsel, sample, "next_pid");
1795
1796
if (sched->curr_pid[this_cpu] != (u32)-1) {
1797
/*
1798
* Are we trying to switch away a PID that is
1799
* not current?
1800
*/
1801
if (sched->curr_pid[this_cpu] != prev_pid)
1802
sched->nr_context_switch_bugs++;
1803
}
1804
1805
if (sched->tp_handler->switch_event)
1806
err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1807
1808
sched->curr_pid[this_cpu] = next_pid;
1809
return err;
1810
}
1811
1812
static int process_sched_runtime_event(const struct perf_tool *tool,
1813
struct evsel *evsel,
1814
struct perf_sample *sample,
1815
struct machine *machine)
1816
{
1817
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1818
1819
if (sched->tp_handler->runtime_event)
1820
return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1821
1822
return 0;
1823
}
1824
1825
static int perf_sched__process_fork_event(const struct perf_tool *tool,
1826
union perf_event *event,
1827
struct perf_sample *sample,
1828
struct machine *machine)
1829
{
1830
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1831
1832
/* run the fork event through the perf machinery */
1833
perf_event__process_fork(tool, event, sample, machine);
1834
1835
/* and then run additional processing needed for this command */
1836
if (sched->tp_handler->fork_event)
1837
return sched->tp_handler->fork_event(sched, event, machine);
1838
1839
return 0;
1840
}
1841
1842
static int process_sched_migrate_task_event(const struct perf_tool *tool,
1843
struct evsel *evsel,
1844
struct perf_sample *sample,
1845
struct machine *machine)
1846
{
1847
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1848
1849
if (sched->tp_handler->migrate_task_event)
1850
return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1851
1852
return 0;
1853
}
1854
1855
typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1856
struct evsel *evsel,
1857
struct perf_sample *sample,
1858
struct machine *machine);
1859
1860
static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused,
1861
union perf_event *event __maybe_unused,
1862
struct perf_sample *sample,
1863
struct evsel *evsel,
1864
struct machine *machine)
1865
{
1866
int err = 0;
1867
1868
if (evsel->handler != NULL) {
1869
tracepoint_handler f = evsel->handler;
1870
err = f(tool, evsel, sample, machine);
1871
}
1872
1873
return err;
1874
}
1875
1876
static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused,
1877
union perf_event *event,
1878
struct perf_sample *sample,
1879
struct machine *machine)
1880
{
1881
struct thread *thread;
1882
struct thread_runtime *tr;
1883
int err;
1884
1885
err = perf_event__process_comm(tool, event, sample, machine);
1886
if (err)
1887
return err;
1888
1889
thread = machine__find_thread(machine, sample->pid, sample->tid);
1890
if (!thread) {
1891
pr_err("Internal error: can't find thread\n");
1892
return -1;
1893
}
1894
1895
tr = thread__get_runtime(thread);
1896
if (tr == NULL) {
1897
thread__put(thread);
1898
return -1;
1899
}
1900
1901
tr->comm_changed = true;
1902
thread__put(thread);
1903
1904
return 0;
1905
}
1906
1907
static int perf_sched__read_events(struct perf_sched *sched)
1908
{
1909
struct evsel_str_handler handlers[] = {
1910
{ "sched:sched_switch", process_sched_switch_event, },
1911
{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1912
{ "sched:sched_wakeup", process_sched_wakeup_event, },
1913
{ "sched:sched_waking", process_sched_wakeup_event, },
1914
{ "sched:sched_wakeup_new", process_sched_wakeup_event, },
1915
{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1916
};
1917
struct perf_session *session;
1918
struct perf_data data = {
1919
.path = input_name,
1920
.mode = PERF_DATA_MODE_READ,
1921
.force = sched->force,
1922
};
1923
int rc = -1;
1924
1925
session = perf_session__new(&data, &sched->tool);
1926
if (IS_ERR(session)) {
1927
pr_debug("Error creating perf session");
1928
return PTR_ERR(session);
1929
}
1930
1931
symbol__init(perf_session__env(session));
1932
1933
/* prefer sched_waking if it is captured */
1934
if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1935
handlers[2].handler = process_sched_wakeup_ignore;
1936
1937
if (perf_session__set_tracepoints_handlers(session, handlers))
1938
goto out_delete;
1939
1940
if (perf_session__has_traces(session, "record -R")) {
1941
int err = perf_session__process_events(session);
1942
if (err) {
1943
pr_err("Failed to process events, error %d", err);
1944
goto out_delete;
1945
}
1946
1947
sched->nr_events = session->evlist->stats.nr_events[0];
1948
sched->nr_lost_events = session->evlist->stats.total_lost;
1949
sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1950
}
1951
1952
rc = 0;
1953
out_delete:
1954
perf_session__delete(session);
1955
return rc;
1956
}
1957
1958
/*
1959
* scheduling times are printed as msec.usec
1960
*/
1961
static inline void print_sched_time(unsigned long long nsecs, int width)
1962
{
1963
unsigned long msecs;
1964
unsigned long usecs;
1965
1966
msecs = nsecs / NSEC_PER_MSEC;
1967
nsecs -= msecs * NSEC_PER_MSEC;
1968
usecs = nsecs / NSEC_PER_USEC;
1969
printf("%*lu.%03lu ", width, msecs, usecs);
1970
}
1971
1972
/*
1973
* returns runtime data for event, allocating memory for it the
1974
* first time it is used.
1975
*/
1976
static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1977
{
1978
struct evsel_runtime *r = evsel->priv;
1979
1980
if (r == NULL) {
1981
r = zalloc(sizeof(struct evsel_runtime));
1982
evsel->priv = r;
1983
}
1984
1985
return r;
1986
}
1987
1988
/*
1989
* save last time event was seen per cpu
1990
*/
1991
static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1992
{
1993
struct evsel_runtime *r = evsel__get_runtime(evsel);
1994
1995
if (r == NULL)
1996
return;
1997
1998
if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1999
int i, n = __roundup_pow_of_two(cpu+1);
2000
void *p = r->last_time;
2001
2002
p = realloc(r->last_time, n * sizeof(u64));
2003
if (!p)
2004
return;
2005
2006
r->last_time = p;
2007
for (i = r->ncpu; i < n; ++i)
2008
r->last_time[i] = (u64) 0;
2009
2010
r->ncpu = n;
2011
}
2012
2013
r->last_time[cpu] = timestamp;
2014
}
2015
2016
/* returns last time this event was seen on the given cpu */
2017
static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
2018
{
2019
struct evsel_runtime *r = evsel__get_runtime(evsel);
2020
2021
if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
2022
return 0;
2023
2024
return r->last_time[cpu];
2025
}
2026
2027
static void timehist__evsel_priv_destructor(void *priv)
2028
{
2029
struct evsel_runtime *r = priv;
2030
2031
if (r) {
2032
free(r->last_time);
2033
free(r);
2034
}
2035
}
2036
2037
static int comm_width = 30;
2038
2039
static char *timehist_get_commstr(struct thread *thread)
2040
{
2041
static char str[32];
2042
const char *comm = thread__comm_str(thread);
2043
pid_t tid = thread__tid(thread);
2044
pid_t pid = thread__pid(thread);
2045
int n;
2046
2047
if (pid == 0)
2048
n = scnprintf(str, sizeof(str), "%s", comm);
2049
2050
else if (tid != pid)
2051
n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
2052
2053
else
2054
n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
2055
2056
if (n > comm_width)
2057
comm_width = n;
2058
2059
return str;
2060
}
2061
2062
/* prio field format: xxx or xxx->yyy */
2063
#define MAX_PRIO_STR_LEN 8
2064
static char *timehist_get_priostr(struct evsel *evsel,
2065
struct thread *thread,
2066
struct perf_sample *sample)
2067
{
2068
static char prio_str[16];
2069
int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio");
2070
struct thread_runtime *tr = thread__priv(thread);
2071
2072
if (tr->prio != prev_prio && tr->prio != -1)
2073
scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio);
2074
else
2075
scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio);
2076
2077
return prio_str;
2078
}
2079
2080
static void timehist_header(struct perf_sched *sched)
2081
{
2082
u32 ncpus = sched->max_cpu.cpu + 1;
2083
u32 i, j;
2084
2085
printf("%15s %6s ", "time", "cpu");
2086
2087
if (sched->show_cpu_visual) {
2088
printf(" ");
2089
for (i = 0, j = 0; i < ncpus; ++i) {
2090
printf("%x", j++);
2091
if (j > 15)
2092
j = 0;
2093
}
2094
printf(" ");
2095
}
2096
2097
printf(" %-*s", comm_width, "task name");
2098
2099
if (sched->show_prio)
2100
printf(" %-*s", MAX_PRIO_STR_LEN, "prio");
2101
2102
printf(" %9s %9s %9s", "wait time", "sch delay", "run time");
2103
2104
if (sched->pre_migrations)
2105
printf(" %9s", "pre-mig time");
2106
2107
if (sched->show_state)
2108
printf(" %s", "state");
2109
2110
printf("\n");
2111
2112
/*
2113
* units row
2114
*/
2115
printf("%15s %-6s ", "", "");
2116
2117
if (sched->show_cpu_visual)
2118
printf(" %*s ", ncpus, "");
2119
2120
printf(" %-*s", comm_width, "[tid/pid]");
2121
2122
if (sched->show_prio)
2123
printf(" %-*s", MAX_PRIO_STR_LEN, "");
2124
2125
printf(" %9s %9s %9s", "(msec)", "(msec)", "(msec)");
2126
2127
if (sched->pre_migrations)
2128
printf(" %9s", "(msec)");
2129
2130
printf("\n");
2131
2132
/*
2133
* separator
2134
*/
2135
printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2136
2137
if (sched->show_cpu_visual)
2138
printf(" %.*s ", ncpus, graph_dotted_line);
2139
2140
printf(" %.*s", comm_width, graph_dotted_line);
2141
2142
if (sched->show_prio)
2143
printf(" %.*s", MAX_PRIO_STR_LEN, graph_dotted_line);
2144
2145
printf(" %.9s %.9s %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line);
2146
2147
if (sched->pre_migrations)
2148
printf(" %.9s", graph_dotted_line);
2149
2150
if (sched->show_state)
2151
printf(" %.5s", graph_dotted_line);
2152
2153
printf("\n");
2154
}
2155
2156
static void timehist_print_sample(struct perf_sched *sched,
2157
struct evsel *evsel,
2158
struct perf_sample *sample,
2159
struct addr_location *al,
2160
struct thread *thread,
2161
u64 t, const char state)
2162
{
2163
struct thread_runtime *tr = thread__priv(thread);
2164
const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2165
const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2166
u32 max_cpus = sched->max_cpu.cpu + 1;
2167
char tstr[64];
2168
char nstr[30];
2169
u64 wait_time;
2170
2171
if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2172
return;
2173
2174
timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2175
printf("%15s [%04d] ", tstr, sample->cpu);
2176
2177
if (sched->show_cpu_visual) {
2178
u32 i;
2179
char c;
2180
2181
printf(" ");
2182
for (i = 0; i < max_cpus; ++i) {
2183
/* flag idle times with 'i'; others are sched events */
2184
if (i == sample->cpu)
2185
c = (thread__tid(thread) == 0) ? 'i' : 's';
2186
else
2187
c = ' ';
2188
printf("%c", c);
2189
}
2190
printf(" ");
2191
}
2192
2193
if (!thread__comm_set(thread)) {
2194
const char *prev_comm = evsel__strval(evsel, sample, "prev_comm");
2195
thread__set_comm(thread, prev_comm, sample->time);
2196
}
2197
2198
printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2199
2200
if (sched->show_prio)
2201
printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample));
2202
2203
wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2204
print_sched_time(wait_time, 6);
2205
2206
print_sched_time(tr->dt_delay, 6);
2207
print_sched_time(tr->dt_run, 6);
2208
if (sched->pre_migrations)
2209
print_sched_time(tr->dt_pre_mig, 6);
2210
2211
if (sched->show_state)
2212
printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2213
2214
if (sched->show_next) {
2215
snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2216
printf(" %-*s", comm_width, nstr);
2217
}
2218
2219
if (sched->show_wakeups && !sched->show_next)
2220
printf(" %-*s", comm_width, "");
2221
2222
if (thread__tid(thread) == 0)
2223
goto out;
2224
2225
if (sched->show_callchain)
2226
printf(" ");
2227
2228
sample__fprintf_sym(sample, al, 0,
2229
EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2230
EVSEL__PRINT_CALLCHAIN_ARROW |
2231
EVSEL__PRINT_SKIP_IGNORED,
2232
get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout);
2233
2234
out:
2235
printf("\n");
2236
}
2237
2238
/*
2239
* Explanation of delta-time stats:
2240
*
2241
* t = time of current schedule out event
2242
* tprev = time of previous sched out event
2243
* also time of schedule-in event for current task
2244
* last_time = time of last sched change event for current task
2245
* (i.e, time process was last scheduled out)
2246
* ready_to_run = time of wakeup for current task
2247
* migrated = time of task migration to another CPU
2248
*
2249
* -----|-------------|-------------|-------------|-------------|-----
2250
* last ready migrated tprev t
2251
* time to run
2252
*
2253
* |---------------- dt_wait ----------------|
2254
* |--------- dt_delay ---------|-- dt_run --|
2255
* |- dt_pre_mig -|
2256
*
2257
* dt_run = run time of current task
2258
* dt_wait = time between last schedule out event for task and tprev
2259
* represents time spent off the cpu
2260
* dt_delay = time between wakeup and schedule-in of task
2261
* dt_pre_mig = time between wakeup and migration to another CPU
2262
*/
2263
2264
static void timehist_update_runtime_stats(struct thread_runtime *r,
2265
u64 t, u64 tprev)
2266
{
2267
r->dt_delay = 0;
2268
r->dt_sleep = 0;
2269
r->dt_iowait = 0;
2270
r->dt_preempt = 0;
2271
r->dt_run = 0;
2272
r->dt_pre_mig = 0;
2273
2274
if (tprev) {
2275
r->dt_run = t - tprev;
2276
if (r->ready_to_run) {
2277
if (r->ready_to_run > tprev)
2278
pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2279
else
2280
r->dt_delay = tprev - r->ready_to_run;
2281
2282
if ((r->migrated > r->ready_to_run) && (r->migrated < tprev))
2283
r->dt_pre_mig = r->migrated - r->ready_to_run;
2284
}
2285
2286
if (r->last_time > tprev)
2287
pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2288
else if (r->last_time) {
2289
u64 dt_wait = tprev - r->last_time;
2290
2291
if (r->last_state == 'R')
2292
r->dt_preempt = dt_wait;
2293
else if (r->last_state == 'D')
2294
r->dt_iowait = dt_wait;
2295
else
2296
r->dt_sleep = dt_wait;
2297
}
2298
}
2299
2300
update_stats(&r->run_stats, r->dt_run);
2301
2302
r->total_run_time += r->dt_run;
2303
r->total_delay_time += r->dt_delay;
2304
r->total_sleep_time += r->dt_sleep;
2305
r->total_iowait_time += r->dt_iowait;
2306
r->total_preempt_time += r->dt_preempt;
2307
r->total_pre_mig_time += r->dt_pre_mig;
2308
}
2309
2310
static bool is_idle_sample(struct perf_sample *sample,
2311
struct evsel *evsel)
2312
{
2313
/* pid 0 == swapper == idle task */
2314
if (evsel__name_is(evsel, "sched:sched_switch"))
2315
return evsel__intval(evsel, sample, "prev_pid") == 0;
2316
2317
return sample->pid == 0;
2318
}
2319
2320
static void save_task_callchain(struct perf_sched *sched,
2321
struct perf_sample *sample,
2322
struct evsel *evsel,
2323
struct machine *machine)
2324
{
2325
struct callchain_cursor *cursor;
2326
struct thread *thread;
2327
2328
/* want main thread for process - has maps */
2329
thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2330
if (thread == NULL) {
2331
pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2332
return;
2333
}
2334
2335
if (!sched->show_callchain || sample->callchain == NULL) {
2336
thread__put(thread);
2337
return;
2338
}
2339
2340
cursor = get_tls_callchain_cursor();
2341
2342
if (thread__resolve_callchain(thread, cursor, evsel, sample,
2343
NULL, NULL, sched->max_stack + 2) != 0) {
2344
if (verbose > 0)
2345
pr_err("Failed to resolve callchain. Skipping\n");
2346
2347
thread__put(thread);
2348
return;
2349
}
2350
2351
callchain_cursor_commit(cursor);
2352
thread__put(thread);
2353
2354
while (true) {
2355
struct callchain_cursor_node *node;
2356
struct symbol *sym;
2357
2358
node = callchain_cursor_current(cursor);
2359
if (node == NULL)
2360
break;
2361
2362
sym = node->ms.sym;
2363
if (sym) {
2364
if (!strcmp(sym->name, "schedule") ||
2365
!strcmp(sym->name, "__schedule") ||
2366
!strcmp(sym->name, "preempt_schedule"))
2367
sym->ignore = 1;
2368
}
2369
2370
callchain_cursor_advance(cursor);
2371
}
2372
}
2373
2374
static int init_idle_thread(struct thread *thread)
2375
{
2376
struct idle_thread_runtime *itr;
2377
2378
thread__set_comm(thread, idle_comm, 0);
2379
2380
itr = zalloc(sizeof(*itr));
2381
if (itr == NULL)
2382
return -ENOMEM;
2383
2384
init_prio(&itr->tr);
2385
init_stats(&itr->tr.run_stats);
2386
callchain_init(&itr->callchain);
2387
callchain_cursor_reset(&itr->cursor);
2388
thread__set_priv(thread, itr);
2389
2390
return 0;
2391
}
2392
2393
/*
2394
* Track idle stats per cpu by maintaining a local thread
2395
* struct for the idle task on each cpu.
2396
*/
2397
static int init_idle_threads(int ncpu)
2398
{
2399
int i, ret;
2400
2401
idle_threads = zalloc(ncpu * sizeof(struct thread *));
2402
if (!idle_threads)
2403
return -ENOMEM;
2404
2405
idle_max_cpu = ncpu;
2406
2407
/* allocate the actual thread struct if needed */
2408
for (i = 0; i < ncpu; ++i) {
2409
idle_threads[i] = thread__new(0, 0);
2410
if (idle_threads[i] == NULL)
2411
return -ENOMEM;
2412
2413
ret = init_idle_thread(idle_threads[i]);
2414
if (ret < 0)
2415
return ret;
2416
}
2417
2418
return 0;
2419
}
2420
2421
static void free_idle_threads(void)
2422
{
2423
int i;
2424
2425
if (idle_threads == NULL)
2426
return;
2427
2428
for (i = 0; i < idle_max_cpu; ++i) {
2429
struct thread *idle = idle_threads[i];
2430
2431
if (idle) {
2432
struct idle_thread_runtime *itr;
2433
2434
itr = thread__priv(idle);
2435
if (itr)
2436
thread__put(itr->last_thread);
2437
2438
thread__delete(idle);
2439
}
2440
}
2441
2442
free(idle_threads);
2443
}
2444
2445
static struct thread *get_idle_thread(int cpu)
2446
{
2447
/*
2448
* expand/allocate array of pointers to local thread
2449
* structs if needed
2450
*/
2451
if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2452
int i, j = __roundup_pow_of_two(cpu+1);
2453
void *p;
2454
2455
p = realloc(idle_threads, j * sizeof(struct thread *));
2456
if (!p)
2457
return NULL;
2458
2459
idle_threads = (struct thread **) p;
2460
for (i = idle_max_cpu; i < j; ++i)
2461
idle_threads[i] = NULL;
2462
2463
idle_max_cpu = j;
2464
}
2465
2466
/* allocate a new thread struct if needed */
2467
if (idle_threads[cpu] == NULL) {
2468
idle_threads[cpu] = thread__new(0, 0);
2469
2470
if (idle_threads[cpu]) {
2471
if (init_idle_thread(idle_threads[cpu]) < 0)
2472
return NULL;
2473
}
2474
}
2475
2476
return thread__get(idle_threads[cpu]);
2477
}
2478
2479
static void save_idle_callchain(struct perf_sched *sched,
2480
struct idle_thread_runtime *itr,
2481
struct perf_sample *sample)
2482
{
2483
struct callchain_cursor *cursor;
2484
2485
if (!sched->show_callchain || sample->callchain == NULL)
2486
return;
2487
2488
cursor = get_tls_callchain_cursor();
2489
if (cursor == NULL)
2490
return;
2491
2492
callchain_cursor__copy(&itr->cursor, cursor);
2493
}
2494
2495
static struct thread *timehist_get_thread(struct perf_sched *sched,
2496
struct perf_sample *sample,
2497
struct machine *machine,
2498
struct evsel *evsel)
2499
{
2500
struct thread *thread;
2501
2502
if (is_idle_sample(sample, evsel)) {
2503
thread = get_idle_thread(sample->cpu);
2504
if (thread == NULL)
2505
pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2506
2507
} else {
2508
/* there were samples with tid 0 but non-zero pid */
2509
thread = machine__findnew_thread(machine, sample->pid,
2510
sample->tid ?: sample->pid);
2511
if (thread == NULL) {
2512
pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2513
sample->tid);
2514
}
2515
2516
save_task_callchain(sched, sample, evsel, machine);
2517
if (sched->idle_hist) {
2518
struct thread *idle;
2519
struct idle_thread_runtime *itr;
2520
2521
idle = get_idle_thread(sample->cpu);
2522
if (idle == NULL) {
2523
pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2524
return NULL;
2525
}
2526
2527
itr = thread__priv(idle);
2528
if (itr == NULL)
2529
return NULL;
2530
2531
thread__put(itr->last_thread);
2532
itr->last_thread = thread__get(thread);
2533
2534
/* copy task callchain when entering to idle */
2535
if (evsel__intval(evsel, sample, "next_pid") == 0)
2536
save_idle_callchain(sched, itr, sample);
2537
}
2538
}
2539
2540
return thread;
2541
}
2542
2543
static bool timehist_skip_sample(struct perf_sched *sched,
2544
struct thread *thread,
2545
struct evsel *evsel,
2546
struct perf_sample *sample)
2547
{
2548
bool rc = false;
2549
int prio = -1;
2550
struct thread_runtime *tr = NULL;
2551
2552
if (thread__is_filtered(thread)) {
2553
rc = true;
2554
sched->skipped_samples++;
2555
}
2556
2557
if (sched->prio_str) {
2558
/*
2559
* Because priority may be changed during task execution,
2560
* first read priority from prev sched_in event for current task.
2561
* If prev sched_in event is not saved, then read priority from
2562
* current task sched_out event.
2563
*/
2564
tr = thread__get_runtime(thread);
2565
if (tr && tr->prio != -1)
2566
prio = tr->prio;
2567
else if (evsel__name_is(evsel, "sched:sched_switch"))
2568
prio = evsel__intval(evsel, sample, "prev_prio");
2569
2570
if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) {
2571
rc = true;
2572
sched->skipped_samples++;
2573
}
2574
}
2575
2576
if (sched->idle_hist) {
2577
if (!evsel__name_is(evsel, "sched:sched_switch"))
2578
rc = true;
2579
else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2580
evsel__intval(evsel, sample, "next_pid") != 0)
2581
rc = true;
2582
}
2583
2584
return rc;
2585
}
2586
2587
static void timehist_print_wakeup_event(struct perf_sched *sched,
2588
struct evsel *evsel,
2589
struct perf_sample *sample,
2590
struct machine *machine,
2591
struct thread *awakened)
2592
{
2593
struct thread *thread;
2594
char tstr[64];
2595
2596
thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2597
if (thread == NULL)
2598
return;
2599
2600
/* show wakeup unless both awakee and awaker are filtered */
2601
if (timehist_skip_sample(sched, thread, evsel, sample) &&
2602
timehist_skip_sample(sched, awakened, evsel, sample)) {
2603
thread__put(thread);
2604
return;
2605
}
2606
2607
timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2608
printf("%15s [%04d] ", tstr, sample->cpu);
2609
if (sched->show_cpu_visual)
2610
printf(" %*s ", sched->max_cpu.cpu + 1, "");
2611
2612
printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2613
2614
/* dt spacer */
2615
printf(" %9s %9s %9s ", "", "", "");
2616
2617
printf("awakened: %s", timehist_get_commstr(awakened));
2618
2619
printf("\n");
2620
2621
thread__put(thread);
2622
}
2623
2624
static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
2625
union perf_event *event __maybe_unused,
2626
struct evsel *evsel __maybe_unused,
2627
struct perf_sample *sample __maybe_unused,
2628
struct machine *machine __maybe_unused)
2629
{
2630
return 0;
2631
}
2632
2633
static int timehist_sched_wakeup_event(const struct perf_tool *tool,
2634
union perf_event *event __maybe_unused,
2635
struct evsel *evsel,
2636
struct perf_sample *sample,
2637
struct machine *machine)
2638
{
2639
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2640
struct thread *thread;
2641
struct thread_runtime *tr = NULL;
2642
/* want pid of awakened task not pid in sample */
2643
const u32 pid = evsel__intval(evsel, sample, "pid");
2644
2645
thread = machine__findnew_thread(machine, 0, pid);
2646
if (thread == NULL)
2647
return -1;
2648
2649
tr = thread__get_runtime(thread);
2650
if (tr == NULL) {
2651
thread__put(thread);
2652
return -1;
2653
}
2654
2655
if (tr->ready_to_run == 0)
2656
tr->ready_to_run = sample->time;
2657
2658
/* show wakeups if requested */
2659
if (sched->show_wakeups &&
2660
!perf_time__skip_sample(&sched->ptime, sample->time))
2661
timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2662
2663
thread__put(thread);
2664
return 0;
2665
}
2666
2667
static void timehist_print_migration_event(struct perf_sched *sched,
2668
struct evsel *evsel,
2669
struct perf_sample *sample,
2670
struct machine *machine,
2671
struct thread *migrated)
2672
{
2673
struct thread *thread;
2674
char tstr[64];
2675
u32 max_cpus;
2676
u32 ocpu, dcpu;
2677
2678
if (sched->summary_only)
2679
return;
2680
2681
max_cpus = sched->max_cpu.cpu + 1;
2682
ocpu = evsel__intval(evsel, sample, "orig_cpu");
2683
dcpu = evsel__intval(evsel, sample, "dest_cpu");
2684
2685
thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2686
if (thread == NULL)
2687
return;
2688
2689
if (timehist_skip_sample(sched, thread, evsel, sample) &&
2690
timehist_skip_sample(sched, migrated, evsel, sample)) {
2691
thread__put(thread);
2692
return;
2693
}
2694
2695
timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2696
printf("%15s [%04d] ", tstr, sample->cpu);
2697
2698
if (sched->show_cpu_visual) {
2699
u32 i;
2700
char c;
2701
2702
printf(" ");
2703
for (i = 0; i < max_cpus; ++i) {
2704
c = (i == sample->cpu) ? 'm' : ' ';
2705
printf("%c", c);
2706
}
2707
printf(" ");
2708
}
2709
2710
printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2711
2712
/* dt spacer */
2713
printf(" %9s %9s %9s ", "", "", "");
2714
2715
printf("migrated: %s", timehist_get_commstr(migrated));
2716
printf(" cpu %d => %d", ocpu, dcpu);
2717
2718
printf("\n");
2719
thread__put(thread);
2720
}
2721
2722
static int timehist_migrate_task_event(const struct perf_tool *tool,
2723
union perf_event *event __maybe_unused,
2724
struct evsel *evsel,
2725
struct perf_sample *sample,
2726
struct machine *machine)
2727
{
2728
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2729
struct thread *thread;
2730
struct thread_runtime *tr = NULL;
2731
/* want pid of migrated task not pid in sample */
2732
const u32 pid = evsel__intval(evsel, sample, "pid");
2733
2734
thread = machine__findnew_thread(machine, 0, pid);
2735
if (thread == NULL)
2736
return -1;
2737
2738
tr = thread__get_runtime(thread);
2739
if (tr == NULL) {
2740
thread__put(thread);
2741
return -1;
2742
}
2743
2744
tr->migrations++;
2745
tr->migrated = sample->time;
2746
2747
/* show migrations if requested */
2748
if (sched->show_migrations) {
2749
timehist_print_migration_event(sched, evsel, sample,
2750
machine, thread);
2751
}
2752
thread__put(thread);
2753
2754
return 0;
2755
}
2756
2757
static void timehist_update_task_prio(struct evsel *evsel,
2758
struct perf_sample *sample,
2759
struct machine *machine)
2760
{
2761
struct thread *thread;
2762
struct thread_runtime *tr = NULL;
2763
const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2764
const u32 next_prio = evsel__intval(evsel, sample, "next_prio");
2765
2766
if (next_pid == 0)
2767
thread = get_idle_thread(sample->cpu);
2768
else
2769
thread = machine__findnew_thread(machine, -1, next_pid);
2770
2771
if (thread == NULL)
2772
return;
2773
2774
tr = thread__get_runtime(thread);
2775
if (tr != NULL)
2776
tr->prio = next_prio;
2777
2778
thread__put(thread);
2779
}
2780
2781
static int timehist_sched_change_event(const struct perf_tool *tool,
2782
union perf_event *event,
2783
struct evsel *evsel,
2784
struct perf_sample *sample,
2785
struct machine *machine)
2786
{
2787
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2788
struct perf_time_interval *ptime = &sched->ptime;
2789
struct addr_location al;
2790
struct thread *thread = NULL;
2791
struct thread_runtime *tr = NULL;
2792
u64 tprev, t = sample->time;
2793
int rc = 0;
2794
const char state = evsel__taskstate(evsel, sample, "prev_state");
2795
2796
addr_location__init(&al);
2797
if (machine__resolve(machine, &al, sample) < 0) {
2798
pr_err("problem processing %d event. skipping it\n",
2799
event->header.type);
2800
rc = -1;
2801
goto out;
2802
}
2803
2804
if (sched->show_prio || sched->prio_str)
2805
timehist_update_task_prio(evsel, sample, machine);
2806
2807
thread = timehist_get_thread(sched, sample, machine, evsel);
2808
if (thread == NULL) {
2809
rc = -1;
2810
goto out;
2811
}
2812
2813
if (timehist_skip_sample(sched, thread, evsel, sample))
2814
goto out;
2815
2816
tr = thread__get_runtime(thread);
2817
if (tr == NULL) {
2818
rc = -1;
2819
goto out;
2820
}
2821
2822
tprev = evsel__get_time(evsel, sample->cpu);
2823
2824
/*
2825
* If start time given:
2826
* - sample time is under window user cares about - skip sample
2827
* - tprev is under window user cares about - reset to start of window
2828
*/
2829
if (ptime->start && ptime->start > t)
2830
goto out;
2831
2832
if (tprev && ptime->start > tprev)
2833
tprev = ptime->start;
2834
2835
/*
2836
* If end time given:
2837
* - previous sched event is out of window - we are done
2838
* - sample time is beyond window user cares about - reset it
2839
* to close out stats for time window interest
2840
* - If tprev is 0, that is, sched_in event for current task is
2841
* not recorded, cannot determine whether sched_in event is
2842
* within time window interest - ignore it
2843
*/
2844
if (ptime->end) {
2845
if (!tprev || tprev > ptime->end)
2846
goto out;
2847
2848
if (t > ptime->end)
2849
t = ptime->end;
2850
}
2851
2852
if (!sched->idle_hist || thread__tid(thread) == 0) {
2853
if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2854
timehist_update_runtime_stats(tr, t, tprev);
2855
2856
if (sched->idle_hist) {
2857
struct idle_thread_runtime *itr = (void *)tr;
2858
struct thread_runtime *last_tr;
2859
2860
if (itr->last_thread == NULL)
2861
goto out;
2862
2863
/* add current idle time as last thread's runtime */
2864
last_tr = thread__get_runtime(itr->last_thread);
2865
if (last_tr == NULL)
2866
goto out;
2867
2868
timehist_update_runtime_stats(last_tr, t, tprev);
2869
/*
2870
* remove delta time of last thread as it's not updated
2871
* and otherwise it will show an invalid value next
2872
* time. we only care total run time and run stat.
2873
*/
2874
last_tr->dt_run = 0;
2875
last_tr->dt_delay = 0;
2876
last_tr->dt_sleep = 0;
2877
last_tr->dt_iowait = 0;
2878
last_tr->dt_preempt = 0;
2879
2880
if (itr->cursor.nr)
2881
callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2882
2883
itr->last_thread = NULL;
2884
}
2885
2886
if (!sched->summary_only)
2887
timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2888
}
2889
2890
out:
2891
if (sched->hist_time.start == 0 && t >= ptime->start)
2892
sched->hist_time.start = t;
2893
if (ptime->end == 0 || t <= ptime->end)
2894
sched->hist_time.end = t;
2895
2896
if (tr) {
2897
/* time of this sched_switch event becomes last time task seen */
2898
tr->last_time = sample->time;
2899
2900
/* last state is used to determine where to account wait time */
2901
tr->last_state = state;
2902
2903
/* sched out event for task so reset ready to run time and migrated time */
2904
if (state == 'R')
2905
tr->ready_to_run = t;
2906
else
2907
tr->ready_to_run = 0;
2908
2909
tr->migrated = 0;
2910
}
2911
2912
evsel__save_time(evsel, sample->time, sample->cpu);
2913
2914
thread__put(thread);
2915
addr_location__exit(&al);
2916
return rc;
2917
}
2918
2919
static int timehist_sched_switch_event(const struct perf_tool *tool,
2920
union perf_event *event,
2921
struct evsel *evsel,
2922
struct perf_sample *sample,
2923
struct machine *machine __maybe_unused)
2924
{
2925
return timehist_sched_change_event(tool, event, evsel, sample, machine);
2926
}
2927
2928
static int process_lost(const struct perf_tool *tool __maybe_unused,
2929
union perf_event *event,
2930
struct perf_sample *sample,
2931
struct machine *machine __maybe_unused)
2932
{
2933
char tstr[64];
2934
2935
timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2936
printf("%15s ", tstr);
2937
printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2938
2939
return 0;
2940
}
2941
2942
2943
static void print_thread_runtime(struct thread *t,
2944
struct thread_runtime *r)
2945
{
2946
double mean = avg_stats(&r->run_stats);
2947
float stddev;
2948
2949
printf("%*s %5d %9" PRIu64 " ",
2950
comm_width, timehist_get_commstr(t), thread__ppid(t),
2951
(u64) r->run_stats.n);
2952
2953
print_sched_time(r->total_run_time, 8);
2954
stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2955
print_sched_time(r->run_stats.min, 6);
2956
printf(" ");
2957
print_sched_time((u64) mean, 6);
2958
printf(" ");
2959
print_sched_time(r->run_stats.max, 6);
2960
printf(" ");
2961
printf("%5.2f", stddev);
2962
printf(" %5" PRIu64, r->migrations);
2963
printf("\n");
2964
}
2965
2966
static void print_thread_waittime(struct thread *t,
2967
struct thread_runtime *r)
2968
{
2969
printf("%*s %5d %9" PRIu64 " ",
2970
comm_width, timehist_get_commstr(t), thread__ppid(t),
2971
(u64) r->run_stats.n);
2972
2973
print_sched_time(r->total_run_time, 8);
2974
print_sched_time(r->total_sleep_time, 6);
2975
printf(" ");
2976
print_sched_time(r->total_iowait_time, 6);
2977
printf(" ");
2978
print_sched_time(r->total_preempt_time, 6);
2979
printf(" ");
2980
print_sched_time(r->total_delay_time, 6);
2981
printf("\n");
2982
}
2983
2984
struct total_run_stats {
2985
struct perf_sched *sched;
2986
u64 sched_count;
2987
u64 task_count;
2988
u64 total_run_time;
2989
};
2990
2991
static int show_thread_runtime(struct thread *t, void *priv)
2992
{
2993
struct total_run_stats *stats = priv;
2994
struct thread_runtime *r;
2995
2996
if (thread__is_filtered(t))
2997
return 0;
2998
2999
r = thread__priv(t);
3000
if (r && r->run_stats.n) {
3001
stats->task_count++;
3002
stats->sched_count += r->run_stats.n;
3003
stats->total_run_time += r->total_run_time;
3004
3005
if (stats->sched->show_state)
3006
print_thread_waittime(t, r);
3007
else
3008
print_thread_runtime(t, r);
3009
}
3010
3011
return 0;
3012
}
3013
3014
static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
3015
{
3016
const char *sep = " <- ";
3017
struct callchain_list *chain;
3018
size_t ret = 0;
3019
char bf[1024];
3020
bool first;
3021
3022
if (node == NULL)
3023
return 0;
3024
3025
ret = callchain__fprintf_folded(fp, node->parent);
3026
first = (ret == 0);
3027
3028
list_for_each_entry(chain, &node->val, list) {
3029
if (chain->ip >= PERF_CONTEXT_MAX)
3030
continue;
3031
if (chain->ms.sym && chain->ms.sym->ignore)
3032
continue;
3033
ret += fprintf(fp, "%s%s", first ? "" : sep,
3034
callchain_list__sym_name(chain, bf, sizeof(bf),
3035
false));
3036
first = false;
3037
}
3038
3039
return ret;
3040
}
3041
3042
static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
3043
{
3044
size_t ret = 0;
3045
FILE *fp = stdout;
3046
struct callchain_node *chain;
3047
struct rb_node *rb_node = rb_first_cached(root);
3048
3049
printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
3050
printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
3051
graph_dotted_line);
3052
3053
while (rb_node) {
3054
chain = rb_entry(rb_node, struct callchain_node, rb_node);
3055
rb_node = rb_next(rb_node);
3056
3057
ret += fprintf(fp, " ");
3058
print_sched_time(chain->hit, 12);
3059
ret += 16; /* print_sched_time returns 2nd arg + 4 */
3060
ret += fprintf(fp, " %8d ", chain->count);
3061
ret += callchain__fprintf_folded(fp, chain);
3062
ret += fprintf(fp, "\n");
3063
}
3064
3065
return ret;
3066
}
3067
3068
static void timehist_print_summary(struct perf_sched *sched,
3069
struct perf_session *session)
3070
{
3071
struct machine *m = &session->machines.host;
3072
struct total_run_stats totals;
3073
u64 task_count;
3074
struct thread *t;
3075
struct thread_runtime *r;
3076
int i;
3077
u64 hist_time = sched->hist_time.end - sched->hist_time.start;
3078
3079
memset(&totals, 0, sizeof(totals));
3080
totals.sched = sched;
3081
3082
if (sched->idle_hist) {
3083
printf("\nIdle-time summary\n");
3084
printf("%*s parent sched-out ", comm_width, "comm");
3085
printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
3086
} else if (sched->show_state) {
3087
printf("\nWait-time summary\n");
3088
printf("%*s parent sched-in ", comm_width, "comm");
3089
printf(" run-time sleep iowait preempt delay\n");
3090
} else {
3091
printf("\nRuntime summary\n");
3092
printf("%*s parent sched-in ", comm_width, "comm");
3093
printf(" run-time min-run avg-run max-run stddev migrations\n");
3094
}
3095
printf("%*s (count) ", comm_width, "");
3096
printf(" (msec) (msec) (msec) (msec) %s\n",
3097
sched->show_state ? "(msec)" : "%");
3098
printf("%.117s\n", graph_dotted_line);
3099
3100
machine__for_each_thread(m, show_thread_runtime, &totals);
3101
task_count = totals.task_count;
3102
if (!task_count)
3103
printf("<no still running tasks>\n");
3104
3105
/* CPU idle stats not tracked when samples were skipped */
3106
if (sched->skipped_samples && !sched->idle_hist)
3107
return;
3108
3109
printf("\nIdle stats:\n");
3110
for (i = 0; i < idle_max_cpu; ++i) {
3111
if (cpu_list && !test_bit(i, cpu_bitmap))
3112
continue;
3113
3114
t = idle_threads[i];
3115
if (!t)
3116
continue;
3117
3118
r = thread__priv(t);
3119
if (r && r->run_stats.n) {
3120
totals.sched_count += r->run_stats.n;
3121
printf(" CPU %2d idle for ", i);
3122
print_sched_time(r->total_run_time, 6);
3123
printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
3124
} else
3125
printf(" CPU %2d idle entire time window\n", i);
3126
}
3127
3128
if (sched->idle_hist && sched->show_callchain) {
3129
callchain_param.mode = CHAIN_FOLDED;
3130
callchain_param.value = CCVAL_PERIOD;
3131
3132
callchain_register_param(&callchain_param);
3133
3134
printf("\nIdle stats by callchain:\n");
3135
for (i = 0; i < idle_max_cpu; ++i) {
3136
struct idle_thread_runtime *itr;
3137
3138
t = idle_threads[i];
3139
if (!t)
3140
continue;
3141
3142
itr = thread__priv(t);
3143
if (itr == NULL)
3144
continue;
3145
3146
callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
3147
0, &callchain_param);
3148
3149
printf(" CPU %2d:", i);
3150
print_sched_time(itr->tr.total_run_time, 6);
3151
printf(" msec\n");
3152
timehist_print_idlehist_callchain(&itr->sorted_root);
3153
printf("\n");
3154
}
3155
}
3156
3157
printf("\n"
3158
" Total number of unique tasks: %" PRIu64 "\n"
3159
"Total number of context switches: %" PRIu64 "\n",
3160
totals.task_count, totals.sched_count);
3161
3162
printf(" Total run time (msec): ");
3163
print_sched_time(totals.total_run_time, 2);
3164
printf("\n");
3165
3166
printf(" Total scheduling time (msec): ");
3167
print_sched_time(hist_time, 2);
3168
printf(" (x %d)\n", sched->max_cpu.cpu);
3169
}
3170
3171
typedef int (*sched_handler)(const struct perf_tool *tool,
3172
union perf_event *event,
3173
struct evsel *evsel,
3174
struct perf_sample *sample,
3175
struct machine *machine);
3176
3177
static int perf_timehist__process_sample(const struct perf_tool *tool,
3178
union perf_event *event,
3179
struct perf_sample *sample,
3180
struct evsel *evsel,
3181
struct machine *machine)
3182
{
3183
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3184
int err = 0;
3185
struct perf_cpu this_cpu = {
3186
.cpu = sample->cpu,
3187
};
3188
3189
if (this_cpu.cpu > sched->max_cpu.cpu)
3190
sched->max_cpu = this_cpu;
3191
3192
if (evsel->handler != NULL) {
3193
sched_handler f = evsel->handler;
3194
3195
err = f(tool, event, evsel, sample, machine);
3196
}
3197
3198
return err;
3199
}
3200
3201
static int timehist_check_attr(struct perf_sched *sched,
3202
struct evlist *evlist)
3203
{
3204
struct evsel *evsel;
3205
struct evsel_runtime *er;
3206
3207
list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3208
er = evsel__get_runtime(evsel);
3209
if (er == NULL) {
3210
pr_err("Failed to allocate memory for evsel runtime data\n");
3211
return -1;
3212
}
3213
3214
/* only need to save callchain related to sched_switch event */
3215
if (sched->show_callchain &&
3216
evsel__name_is(evsel, "sched:sched_switch") &&
3217
!evsel__has_callchain(evsel)) {
3218
pr_info("Samples of sched_switch event do not have callchains.\n");
3219
sched->show_callchain = 0;
3220
symbol_conf.use_callchain = 0;
3221
}
3222
}
3223
3224
return 0;
3225
}
3226
3227
static int timehist_parse_prio_str(struct perf_sched *sched)
3228
{
3229
char *p;
3230
unsigned long start_prio, end_prio;
3231
const char *str = sched->prio_str;
3232
3233
if (!str)
3234
return 0;
3235
3236
while (isdigit(*str)) {
3237
p = NULL;
3238
start_prio = strtoul(str, &p, 0);
3239
if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-'))
3240
return -1;
3241
3242
if (*p == '-') {
3243
str = ++p;
3244
p = NULL;
3245
end_prio = strtoul(str, &p, 0);
3246
3247
if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ','))
3248
return -1;
3249
3250
if (end_prio < start_prio)
3251
return -1;
3252
} else {
3253
end_prio = start_prio;
3254
}
3255
3256
for (; start_prio <= end_prio; start_prio++)
3257
__set_bit(start_prio, sched->prio_bitmap);
3258
3259
if (*p)
3260
++p;
3261
3262
str = p;
3263
}
3264
3265
return 0;
3266
}
3267
3268
static int perf_sched__timehist(struct perf_sched *sched)
3269
{
3270
struct evsel_str_handler handlers[] = {
3271
{ "sched:sched_switch", timehist_sched_switch_event, },
3272
{ "sched:sched_wakeup", timehist_sched_wakeup_event, },
3273
{ "sched:sched_waking", timehist_sched_wakeup_event, },
3274
{ "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
3275
};
3276
const struct evsel_str_handler migrate_handlers[] = {
3277
{ "sched:sched_migrate_task", timehist_migrate_task_event, },
3278
};
3279
struct perf_data data = {
3280
.path = input_name,
3281
.mode = PERF_DATA_MODE_READ,
3282
.force = sched->force,
3283
};
3284
3285
struct perf_session *session;
3286
struct perf_env *env;
3287
struct evlist *evlist;
3288
int err = -1;
3289
3290
/*
3291
* event handlers for timehist option
3292
*/
3293
sched->tool.sample = perf_timehist__process_sample;
3294
sched->tool.mmap = perf_event__process_mmap;
3295
sched->tool.comm = perf_event__process_comm;
3296
sched->tool.exit = perf_event__process_exit;
3297
sched->tool.fork = perf_event__process_fork;
3298
sched->tool.lost = process_lost;
3299
sched->tool.attr = perf_event__process_attr;
3300
sched->tool.tracing_data = perf_event__process_tracing_data;
3301
sched->tool.build_id = perf_event__process_build_id;
3302
3303
sched->tool.ordering_requires_timestamps = true;
3304
3305
symbol_conf.use_callchain = sched->show_callchain;
3306
3307
session = perf_session__new(&data, &sched->tool);
3308
if (IS_ERR(session))
3309
return PTR_ERR(session);
3310
3311
env = perf_session__env(session);
3312
if (cpu_list) {
3313
err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3314
if (err < 0)
3315
goto out;
3316
}
3317
3318
evlist = session->evlist;
3319
3320
symbol__init(env);
3321
3322
if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3323
pr_err("Invalid time string\n");
3324
err = -EINVAL;
3325
goto out;
3326
}
3327
3328
if (timehist_check_attr(sched, evlist) != 0)
3329
goto out;
3330
3331
if (timehist_parse_prio_str(sched) != 0) {
3332
pr_err("Invalid prio string\n");
3333
goto out;
3334
}
3335
3336
setup_pager();
3337
3338
evsel__set_priv_destructor(timehist__evsel_priv_destructor);
3339
3340
/* prefer sched_waking if it is captured */
3341
if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3342
handlers[1].handler = timehist_sched_wakeup_ignore;
3343
3344
/* setup per-evsel handlers */
3345
if (perf_session__set_tracepoints_handlers(session, handlers))
3346
goto out;
3347
3348
/* sched_switch event at a minimum needs to exist */
3349
if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3350
pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3351
goto out;
3352
}
3353
3354
if ((sched->show_migrations || sched->pre_migrations) &&
3355
perf_session__set_tracepoints_handlers(session, migrate_handlers))
3356
goto out;
3357
3358
/* pre-allocate struct for per-CPU idle stats */
3359
sched->max_cpu.cpu = env->nr_cpus_online;
3360
if (sched->max_cpu.cpu == 0)
3361
sched->max_cpu.cpu = 4;
3362
if (init_idle_threads(sched->max_cpu.cpu))
3363
goto out;
3364
3365
/* summary_only implies summary option, but don't overwrite summary if set */
3366
if (sched->summary_only)
3367
sched->summary = sched->summary_only;
3368
3369
if (!sched->summary_only)
3370
timehist_header(sched);
3371
3372
err = perf_session__process_events(session);
3373
if (err) {
3374
pr_err("Failed to process events, error %d", err);
3375
goto out;
3376
}
3377
3378
sched->nr_events = evlist->stats.nr_events[0];
3379
sched->nr_lost_events = evlist->stats.total_lost;
3380
sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3381
3382
if (sched->summary)
3383
timehist_print_summary(sched, session);
3384
3385
out:
3386
free_idle_threads();
3387
perf_session__delete(session);
3388
3389
return err;
3390
}
3391
3392
3393
static void print_bad_events(struct perf_sched *sched)
3394
{
3395
if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3396
printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3397
(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3398
sched->nr_unordered_timestamps, sched->nr_timestamps);
3399
}
3400
if (sched->nr_lost_events && sched->nr_events) {
3401
printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3402
(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3403
sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3404
}
3405
if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3406
printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3407
(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3408
sched->nr_context_switch_bugs, sched->nr_timestamps);
3409
if (sched->nr_lost_events)
3410
printf(" (due to lost events?)");
3411
printf("\n");
3412
}
3413
}
3414
3415
static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3416
{
3417
struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3418
struct work_atoms *this;
3419
const char *comm = thread__comm_str(data->thread), *this_comm;
3420
bool leftmost = true;
3421
3422
while (*new) {
3423
int cmp;
3424
3425
this = container_of(*new, struct work_atoms, node);
3426
parent = *new;
3427
3428
this_comm = thread__comm_str(this->thread);
3429
cmp = strcmp(comm, this_comm);
3430
if (cmp > 0) {
3431
new = &((*new)->rb_left);
3432
} else if (cmp < 0) {
3433
new = &((*new)->rb_right);
3434
leftmost = false;
3435
} else {
3436
this->num_merged++;
3437
this->total_runtime += data->total_runtime;
3438
this->nb_atoms += data->nb_atoms;
3439
this->total_lat += data->total_lat;
3440
list_splice_init(&data->work_list, &this->work_list);
3441
if (this->max_lat < data->max_lat) {
3442
this->max_lat = data->max_lat;
3443
this->max_lat_start = data->max_lat_start;
3444
this->max_lat_end = data->max_lat_end;
3445
}
3446
free_work_atoms(data);
3447
return;
3448
}
3449
}
3450
3451
data->num_merged++;
3452
rb_link_node(&data->node, parent, new);
3453
rb_insert_color_cached(&data->node, root, leftmost);
3454
}
3455
3456
static void perf_sched__merge_lat(struct perf_sched *sched)
3457
{
3458
struct work_atoms *data;
3459
struct rb_node *node;
3460
3461
if (sched->skip_merge)
3462
return;
3463
3464
while ((node = rb_first_cached(&sched->atom_root))) {
3465
rb_erase_cached(node, &sched->atom_root);
3466
data = rb_entry(node, struct work_atoms, node);
3467
__merge_work_atoms(&sched->merged_atom_root, data);
3468
}
3469
}
3470
3471
static int setup_cpus_switch_event(struct perf_sched *sched)
3472
{
3473
unsigned int i;
3474
3475
sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3476
if (!sched->cpu_last_switched)
3477
return -1;
3478
3479
sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3480
if (!sched->curr_pid) {
3481
zfree(&sched->cpu_last_switched);
3482
return -1;
3483
}
3484
3485
for (i = 0; i < MAX_CPUS; i++)
3486
sched->curr_pid[i] = -1;
3487
3488
return 0;
3489
}
3490
3491
static void free_cpus_switch_event(struct perf_sched *sched)
3492
{
3493
zfree(&sched->curr_pid);
3494
zfree(&sched->cpu_last_switched);
3495
}
3496
3497
static int perf_sched__lat(struct perf_sched *sched)
3498
{
3499
int rc = -1;
3500
struct rb_node *next;
3501
3502
setup_pager();
3503
3504
if (setup_cpus_switch_event(sched))
3505
return rc;
3506
3507
if (perf_sched__read_events(sched))
3508
goto out_free_cpus_switch_event;
3509
3510
perf_sched__merge_lat(sched);
3511
perf_sched__sort_lat(sched);
3512
3513
printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3514
printf(" Task | Runtime ms | Count | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n");
3515
printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3516
3517
next = rb_first_cached(&sched->sorted_atom_root);
3518
3519
while (next) {
3520
struct work_atoms *work_list;
3521
3522
work_list = rb_entry(next, struct work_atoms, node);
3523
output_lat_thread(sched, work_list);
3524
next = rb_next(next);
3525
}
3526
3527
printf(" -----------------------------------------------------------------------------------------------------------------\n");
3528
printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3529
(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3530
3531
printf(" ---------------------------------------------------\n");
3532
3533
print_bad_events(sched);
3534
printf("\n");
3535
3536
rc = 0;
3537
3538
while ((next = rb_first_cached(&sched->sorted_atom_root))) {
3539
struct work_atoms *data;
3540
3541
data = rb_entry(next, struct work_atoms, node);
3542
rb_erase_cached(next, &sched->sorted_atom_root);
3543
free_work_atoms(data);
3544
}
3545
out_free_cpus_switch_event:
3546
free_cpus_switch_event(sched);
3547
return rc;
3548
}
3549
3550
static int setup_map_cpus(struct perf_sched *sched)
3551
{
3552
sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF);
3553
3554
if (sched->map.comp) {
3555
sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3556
if (!sched->map.comp_cpus)
3557
return -1;
3558
}
3559
3560
if (sched->map.cpus_str) {
3561
sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3562
if (!sched->map.cpus) {
3563
pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3564
zfree(&sched->map.comp_cpus);
3565
return -1;
3566
}
3567
}
3568
3569
return 0;
3570
}
3571
3572
static int setup_color_pids(struct perf_sched *sched)
3573
{
3574
struct perf_thread_map *map;
3575
3576
if (!sched->map.color_pids_str)
3577
return 0;
3578
3579
map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3580
if (!map) {
3581
pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3582
return -1;
3583
}
3584
3585
sched->map.color_pids = map;
3586
return 0;
3587
}
3588
3589
static int setup_color_cpus(struct perf_sched *sched)
3590
{
3591
struct perf_cpu_map *map;
3592
3593
if (!sched->map.color_cpus_str)
3594
return 0;
3595
3596
map = perf_cpu_map__new(sched->map.color_cpus_str);
3597
if (!map) {
3598
pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3599
return -1;
3600
}
3601
3602
sched->map.color_cpus = map;
3603
return 0;
3604
}
3605
3606
static int perf_sched__map(struct perf_sched *sched)
3607
{
3608
int rc = -1;
3609
3610
sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3611
if (!sched->curr_thread)
3612
return rc;
3613
3614
sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread)));
3615
if (!sched->curr_out_thread)
3616
goto out_free_curr_thread;
3617
3618
if (setup_cpus_switch_event(sched))
3619
goto out_free_curr_out_thread;
3620
3621
if (setup_map_cpus(sched))
3622
goto out_free_cpus_switch_event;
3623
3624
if (setup_color_pids(sched))
3625
goto out_put_map_cpus;
3626
3627
if (setup_color_cpus(sched))
3628
goto out_put_color_pids;
3629
3630
setup_pager();
3631
if (perf_sched__read_events(sched))
3632
goto out_put_color_cpus;
3633
3634
rc = 0;
3635
print_bad_events(sched);
3636
3637
out_put_color_cpus:
3638
perf_cpu_map__put(sched->map.color_cpus);
3639
3640
out_put_color_pids:
3641
perf_thread_map__put(sched->map.color_pids);
3642
3643
out_put_map_cpus:
3644
zfree(&sched->map.comp_cpus);
3645
perf_cpu_map__put(sched->map.cpus);
3646
3647
out_free_cpus_switch_event:
3648
free_cpus_switch_event(sched);
3649
3650
out_free_curr_out_thread:
3651
for (int i = 0; i < MAX_CPUS; i++)
3652
thread__put(sched->curr_out_thread[i]);
3653
zfree(&sched->curr_out_thread);
3654
3655
out_free_curr_thread:
3656
for (int i = 0; i < MAX_CPUS; i++)
3657
thread__put(sched->curr_thread[i]);
3658
zfree(&sched->curr_thread);
3659
return rc;
3660
}
3661
3662
static int perf_sched__replay(struct perf_sched *sched)
3663
{
3664
int ret;
3665
unsigned long i;
3666
3667
mutex_init(&sched->start_work_mutex);
3668
mutex_init(&sched->work_done_wait_mutex);
3669
3670
ret = setup_cpus_switch_event(sched);
3671
if (ret)
3672
goto out_mutex_destroy;
3673
3674
calibrate_run_measurement_overhead(sched);
3675
calibrate_sleep_measurement_overhead(sched);
3676
3677
test_calibrations(sched);
3678
3679
ret = perf_sched__read_events(sched);
3680
if (ret)
3681
goto out_free_cpus_switch_event;
3682
3683
printf("nr_run_events: %ld\n", sched->nr_run_events);
3684
printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3685
printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3686
3687
if (sched->targetless_wakeups)
3688
printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3689
if (sched->multitarget_wakeups)
3690
printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3691
if (sched->nr_run_events_optimized)
3692
printf("run atoms optimized: %ld\n",
3693
sched->nr_run_events_optimized);
3694
3695
print_task_traces(sched);
3696
add_cross_task_wakeups(sched);
3697
3698
sched->thread_funcs_exit = false;
3699
create_tasks(sched);
3700
printf("------------------------------------------------------------\n");
3701
if (sched->replay_repeat == 0)
3702
sched->replay_repeat = UINT_MAX;
3703
3704
for (i = 0; i < sched->replay_repeat; i++)
3705
run_one_test(sched);
3706
3707
sched->thread_funcs_exit = true;
3708
destroy_tasks(sched);
3709
3710
out_free_cpus_switch_event:
3711
free_cpus_switch_event(sched);
3712
3713
out_mutex_destroy:
3714
mutex_destroy(&sched->start_work_mutex);
3715
mutex_destroy(&sched->work_done_wait_mutex);
3716
return ret;
3717
}
3718
3719
static void setup_sorting(struct perf_sched *sched, const struct option *options,
3720
const char * const usage_msg[])
3721
{
3722
char *tmp, *tok, *str = strdup(sched->sort_order);
3723
3724
for (tok = strtok_r(str, ", ", &tmp);
3725
tok; tok = strtok_r(NULL, ", ", &tmp)) {
3726
if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3727
usage_with_options_msg(usage_msg, options,
3728
"Unknown --sort key: `%s'", tok);
3729
}
3730
}
3731
3732
free(str);
3733
3734
sort_dimension__add("pid", &sched->cmp_pid);
3735
}
3736
3737
static bool schedstat_events_exposed(void)
3738
{
3739
/*
3740
* Select "sched:sched_stat_wait" event to check
3741
* whether schedstat tracepoints are exposed.
3742
*/
3743
return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3744
false : true;
3745
}
3746
3747
static int __cmd_record(int argc, const char **argv)
3748
{
3749
unsigned int rec_argc, i, j;
3750
char **rec_argv;
3751
const char **rec_argv_copy;
3752
const char * const record_args[] = {
3753
"record",
3754
"-a",
3755
"-R",
3756
"-m", "1024",
3757
"-c", "1",
3758
"-e", "sched:sched_switch",
3759
"-e", "sched:sched_stat_runtime",
3760
"-e", "sched:sched_process_fork",
3761
"-e", "sched:sched_wakeup_new",
3762
"-e", "sched:sched_migrate_task",
3763
};
3764
3765
/*
3766
* The tracepoints trace_sched_stat_{wait, sleep, iowait}
3767
* are not exposed to user if CONFIG_SCHEDSTATS is not set,
3768
* to prevent "perf sched record" execution failure, determine
3769
* whether to record schedstat events according to actual situation.
3770
*/
3771
const char * const schedstat_args[] = {
3772
"-e", "sched:sched_stat_wait",
3773
"-e", "sched:sched_stat_sleep",
3774
"-e", "sched:sched_stat_iowait",
3775
};
3776
unsigned int schedstat_argc = schedstat_events_exposed() ?
3777
ARRAY_SIZE(schedstat_args) : 0;
3778
3779
struct tep_event *waking_event;
3780
int ret;
3781
3782
/*
3783
* +2 for either "-e", "sched:sched_wakeup" or
3784
* "-e", "sched:sched_waking"
3785
*/
3786
rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3787
rec_argv = calloc(rec_argc + 1, sizeof(char *));
3788
if (rec_argv == NULL)
3789
return -ENOMEM;
3790
rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3791
if (rec_argv_copy == NULL) {
3792
free(rec_argv);
3793
return -ENOMEM;
3794
}
3795
3796
for (i = 0; i < ARRAY_SIZE(record_args); i++)
3797
rec_argv[i] = strdup(record_args[i]);
3798
3799
rec_argv[i++] = strdup("-e");
3800
waking_event = trace_event__tp_format("sched", "sched_waking");
3801
if (!IS_ERR(waking_event))
3802
rec_argv[i++] = strdup("sched:sched_waking");
3803
else
3804
rec_argv[i++] = strdup("sched:sched_wakeup");
3805
3806
for (j = 0; j < schedstat_argc; j++)
3807
rec_argv[i++] = strdup(schedstat_args[j]);
3808
3809
for (j = 1; j < (unsigned int)argc; j++, i++)
3810
rec_argv[i] = strdup(argv[j]);
3811
3812
BUG_ON(i != rec_argc);
3813
3814
memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3815
ret = cmd_record(rec_argc, rec_argv_copy);
3816
3817
for (i = 0; i < rec_argc; i++)
3818
free(rec_argv[i]);
3819
free(rec_argv);
3820
free(rec_argv_copy);
3821
3822
return ret;
3823
}
3824
3825
int cmd_sched(int argc, const char **argv)
3826
{
3827
static const char default_sort_order[] = "avg, max, switch, runtime";
3828
struct perf_sched sched = {
3829
.cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3830
.sort_list = LIST_HEAD_INIT(sched.sort_list),
3831
.sort_order = default_sort_order,
3832
.replay_repeat = 10,
3833
.profile_cpu = -1,
3834
.next_shortname1 = 'A',
3835
.next_shortname2 = '0',
3836
.skip_merge = 0,
3837
.show_callchain = 1,
3838
.max_stack = 5,
3839
};
3840
const struct option sched_options[] = {
3841
OPT_STRING('i', "input", &input_name, "file",
3842
"input file name"),
3843
OPT_INCR('v', "verbose", &verbose,
3844
"be more verbose (show symbol address, etc)"),
3845
OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3846
"dump raw trace in ASCII"),
3847
OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3848
OPT_END()
3849
};
3850
const struct option latency_options[] = {
3851
OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3852
"sort by key(s): runtime, switch, avg, max"),
3853
OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3854
"CPU to profile on"),
3855
OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3856
"latency stats per pid instead of per comm"),
3857
OPT_PARENT(sched_options)
3858
};
3859
const struct option replay_options[] = {
3860
OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3861
"repeat the workload replay N times (0: infinite)"),
3862
OPT_PARENT(sched_options)
3863
};
3864
const struct option map_options[] = {
3865
OPT_BOOLEAN(0, "compact", &sched.map.comp,
3866
"map output in compact mode"),
3867
OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3868
"highlight given pids in map"),
3869
OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3870
"highlight given CPUs in map"),
3871
OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3872
"display given CPUs in map"),
3873
OPT_STRING(0, "task-name", &sched.map.task_name, "task",
3874
"map output only for the given task name(s)."),
3875
OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy,
3876
"given command name can be partially matched (fuzzy matching)"),
3877
OPT_PARENT(sched_options)
3878
};
3879
const struct option timehist_options[] = {
3880
OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3881
"file", "vmlinux pathname"),
3882
OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3883
"file", "kallsyms pathname"),
3884
OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3885
"Display call chains if present (default on)"),
3886
OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3887
"Maximum number of functions to display backtrace."),
3888
OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3889
"Look for files with symbols relative to this directory"),
3890
OPT_BOOLEAN('s', "summary", &sched.summary_only,
3891
"Show only syscall summary with statistics"),
3892
OPT_BOOLEAN('S', "with-summary", &sched.summary,
3893
"Show all syscalls and summary with statistics"),
3894
OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3895
OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3896
OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3897
OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3898
OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3899
OPT_STRING(0, "time", &sched.time_str, "str",
3900
"Time span for analysis (start,stop)"),
3901
OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3902
OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3903
"analyze events only for given process id(s)"),
3904
OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3905
"analyze events only for given thread id(s)"),
3906
OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3907
OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"),
3908
OPT_STRING(0, "prio", &sched.prio_str, "prio",
3909
"analyze events only for given task priority(ies)"),
3910
OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"),
3911
OPT_PARENT(sched_options)
3912
};
3913
3914
const char * const latency_usage[] = {
3915
"perf sched latency [<options>]",
3916
NULL
3917
};
3918
const char * const replay_usage[] = {
3919
"perf sched replay [<options>]",
3920
NULL
3921
};
3922
const char * const map_usage[] = {
3923
"perf sched map [<options>]",
3924
NULL
3925
};
3926
const char * const timehist_usage[] = {
3927
"perf sched timehist [<options>]",
3928
NULL
3929
};
3930
const char *const sched_subcommands[] = { "record", "latency", "map",
3931
"replay", "script",
3932
"timehist", NULL };
3933
const char *sched_usage[] = {
3934
NULL,
3935
NULL
3936
};
3937
struct trace_sched_handler lat_ops = {
3938
.wakeup_event = latency_wakeup_event,
3939
.switch_event = latency_switch_event,
3940
.runtime_event = latency_runtime_event,
3941
.migrate_task_event = latency_migrate_task_event,
3942
};
3943
struct trace_sched_handler map_ops = {
3944
.switch_event = map_switch_event,
3945
};
3946
struct trace_sched_handler replay_ops = {
3947
.wakeup_event = replay_wakeup_event,
3948
.switch_event = replay_switch_event,
3949
.fork_event = replay_fork_event,
3950
};
3951
int ret;
3952
3953
perf_tool__init(&sched.tool, /*ordered_events=*/true);
3954
sched.tool.sample = perf_sched__process_tracepoint_sample;
3955
sched.tool.comm = perf_sched__process_comm;
3956
sched.tool.namespaces = perf_event__process_namespaces;
3957
sched.tool.lost = perf_event__process_lost;
3958
sched.tool.fork = perf_sched__process_fork_event;
3959
3960
argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3961
sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3962
if (!argc)
3963
usage_with_options(sched_usage, sched_options);
3964
3965
thread__set_priv_destructor(free);
3966
3967
/*
3968
* Aliased to 'perf script' for now:
3969
*/
3970
if (!strcmp(argv[0], "script")) {
3971
ret = cmd_script(argc, argv);
3972
} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3973
ret = __cmd_record(argc, argv);
3974
} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3975
sched.tp_handler = &lat_ops;
3976
if (argc > 1) {
3977
argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3978
if (argc)
3979
usage_with_options(latency_usage, latency_options);
3980
}
3981
setup_sorting(&sched, latency_options, latency_usage);
3982
ret = perf_sched__lat(&sched);
3983
} else if (!strcmp(argv[0], "map")) {
3984
if (argc) {
3985
argc = parse_options(argc, argv, map_options, map_usage, 0);
3986
if (argc)
3987
usage_with_options(map_usage, map_options);
3988
3989
if (sched.map.task_name) {
3990
sched.map.task_names = strlist__new(sched.map.task_name, NULL);
3991
if (sched.map.task_names == NULL) {
3992
fprintf(stderr, "Failed to parse task names\n");
3993
ret = -1;
3994
goto out;
3995
}
3996
}
3997
}
3998
sched.tp_handler = &map_ops;
3999
setup_sorting(&sched, latency_options, latency_usage);
4000
ret = perf_sched__map(&sched);
4001
} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
4002
sched.tp_handler = &replay_ops;
4003
if (argc) {
4004
argc = parse_options(argc, argv, replay_options, replay_usage, 0);
4005
if (argc)
4006
usage_with_options(replay_usage, replay_options);
4007
}
4008
ret = perf_sched__replay(&sched);
4009
} else if (!strcmp(argv[0], "timehist")) {
4010
if (argc) {
4011
argc = parse_options(argc, argv, timehist_options,
4012
timehist_usage, 0);
4013
if (argc)
4014
usage_with_options(timehist_usage, timehist_options);
4015
}
4016
if ((sched.show_wakeups || sched.show_next) &&
4017
sched.summary_only) {
4018
pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
4019
parse_options_usage(timehist_usage, timehist_options, "s", true);
4020
if (sched.show_wakeups)
4021
parse_options_usage(NULL, timehist_options, "w", true);
4022
if (sched.show_next)
4023
parse_options_usage(NULL, timehist_options, "n", true);
4024
ret = -EINVAL;
4025
goto out;
4026
}
4027
ret = symbol__validate_sym_arguments();
4028
if (!ret)
4029
ret = perf_sched__timehist(&sched);
4030
} else {
4031
usage_with_options(sched_usage, sched_options);
4032
}
4033
4034
out:
4035
/* free usage string allocated by parse_options_subcommand */
4036
free((void *)sched_usage[0]);
4037
4038
return ret;
4039
}
4040
4041