Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/testing/memblock/tests/alloc_api.c
26299 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
#include "alloc_api.h"
3
4
static int alloc_test_flags = TEST_F_NONE;
5
6
static inline const char * const get_memblock_alloc_name(int flags)
7
{
8
if (flags & TEST_F_RAW)
9
return "memblock_alloc_raw";
10
return "memblock_alloc";
11
}
12
13
static inline void *run_memblock_alloc(phys_addr_t size, phys_addr_t align)
14
{
15
if (alloc_test_flags & TEST_F_RAW)
16
return memblock_alloc_raw(size, align);
17
return memblock_alloc(size, align);
18
}
19
20
/*
21
* A simple test that tries to allocate a small memory region.
22
* Expect to allocate an aligned region near the end of the available memory.
23
*/
24
static int alloc_top_down_simple_check(void)
25
{
26
struct memblock_region *rgn = &memblock.reserved.regions[0];
27
void *allocated_ptr = NULL;
28
phys_addr_t size = SZ_2;
29
phys_addr_t expected_start;
30
31
PREFIX_PUSH();
32
setup_memblock();
33
34
expected_start = memblock_end_of_DRAM() - SMP_CACHE_BYTES;
35
36
allocated_ptr = run_memblock_alloc(size, SMP_CACHE_BYTES);
37
38
ASSERT_NE(allocated_ptr, NULL);
39
assert_mem_content(allocated_ptr, size, alloc_test_flags);
40
41
ASSERT_EQ(rgn->size, size);
42
ASSERT_EQ(rgn->base, expected_start);
43
44
ASSERT_EQ(memblock.reserved.cnt, 1);
45
ASSERT_EQ(memblock.reserved.total_size, size);
46
47
test_pass_pop();
48
49
return 0;
50
}
51
52
/*
53
* A test that tries to allocate memory next to a reserved region that starts at
54
* the misaligned address. Expect to create two separate entries, with the new
55
* entry aligned to the provided alignment:
56
*
57
* +
58
* | +--------+ +--------|
59
* | | rgn2 | | rgn1 |
60
* +------------+--------+---------+--------+
61
* ^
62
* |
63
* Aligned address boundary
64
*
65
* The allocation direction is top-down and region arrays are sorted from lower
66
* to higher addresses, so the new region will be the first entry in
67
* memory.reserved array. The previously reserved region does not get modified.
68
* Region counter and total size get updated.
69
*/
70
static int alloc_top_down_disjoint_check(void)
71
{
72
/* After allocation, this will point to the "old" region */
73
struct memblock_region *rgn1 = &memblock.reserved.regions[1];
74
struct memblock_region *rgn2 = &memblock.reserved.regions[0];
75
struct region r1;
76
void *allocated_ptr = NULL;
77
phys_addr_t r2_size = SZ_16;
78
/* Use custom alignment */
79
phys_addr_t alignment = SMP_CACHE_BYTES * 2;
80
phys_addr_t total_size;
81
phys_addr_t expected_start;
82
83
PREFIX_PUSH();
84
setup_memblock();
85
86
r1.base = memblock_end_of_DRAM() - SZ_2;
87
r1.size = SZ_2;
88
89
total_size = r1.size + r2_size;
90
expected_start = memblock_end_of_DRAM() - alignment;
91
92
memblock_reserve(r1.base, r1.size);
93
94
allocated_ptr = run_memblock_alloc(r2_size, alignment);
95
96
ASSERT_NE(allocated_ptr, NULL);
97
assert_mem_content(allocated_ptr, r2_size, alloc_test_flags);
98
99
ASSERT_EQ(rgn1->size, r1.size);
100
ASSERT_EQ(rgn1->base, r1.base);
101
102
ASSERT_EQ(rgn2->size, r2_size);
103
ASSERT_EQ(rgn2->base, expected_start);
104
105
ASSERT_EQ(memblock.reserved.cnt, 2);
106
ASSERT_EQ(memblock.reserved.total_size, total_size);
107
108
test_pass_pop();
109
110
return 0;
111
}
112
113
/*
114
* A test that tries to allocate memory when there is enough space at the end
115
* of the previously reserved block (i.e. first fit):
116
*
117
* | +--------+--------------|
118
* | | r1 | r2 |
119
* +--------------+--------+--------------+
120
*
121
* Expect a merge of both regions. Only the region size gets updated.
122
*/
123
static int alloc_top_down_before_check(void)
124
{
125
struct memblock_region *rgn = &memblock.reserved.regions[0];
126
void *allocated_ptr = NULL;
127
/*
128
* The first region ends at the aligned address to test region merging
129
*/
130
phys_addr_t r1_size = SMP_CACHE_BYTES;
131
phys_addr_t r2_size = SZ_512;
132
phys_addr_t total_size = r1_size + r2_size;
133
134
PREFIX_PUSH();
135
setup_memblock();
136
137
memblock_reserve_kern(memblock_end_of_DRAM() - total_size, r1_size);
138
139
allocated_ptr = run_memblock_alloc(r2_size, SMP_CACHE_BYTES);
140
141
ASSERT_NE(allocated_ptr, NULL);
142
assert_mem_content(allocated_ptr, r2_size, alloc_test_flags);
143
144
ASSERT_EQ(rgn->size, total_size);
145
ASSERT_EQ(rgn->base, memblock_end_of_DRAM() - total_size);
146
147
ASSERT_EQ(memblock.reserved.cnt, 1);
148
ASSERT_EQ(memblock.reserved.total_size, total_size);
149
150
test_pass_pop();
151
152
return 0;
153
}
154
155
/*
156
* A test that tries to allocate memory when there is not enough space at the
157
* end of the previously reserved block (i.e. second fit):
158
*
159
* | +-----------+------+ |
160
* | | r2 | r1 | |
161
* +------------+-----------+------+-----+
162
*
163
* Expect a merge of both regions. Both the base address and size of the region
164
* get updated.
165
*/
166
static int alloc_top_down_after_check(void)
167
{
168
struct memblock_region *rgn = &memblock.reserved.regions[0];
169
struct region r1;
170
void *allocated_ptr = NULL;
171
phys_addr_t r2_size = SZ_512;
172
phys_addr_t total_size;
173
174
PREFIX_PUSH();
175
setup_memblock();
176
177
/*
178
* The first region starts at the aligned address to test region merging
179
*/
180
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES;
181
r1.size = SZ_8;
182
183
total_size = r1.size + r2_size;
184
185
memblock_reserve_kern(r1.base, r1.size);
186
187
allocated_ptr = run_memblock_alloc(r2_size, SMP_CACHE_BYTES);
188
189
ASSERT_NE(allocated_ptr, NULL);
190
assert_mem_content(allocated_ptr, r2_size, alloc_test_flags);
191
192
ASSERT_EQ(rgn->size, total_size);
193
ASSERT_EQ(rgn->base, r1.base - r2_size);
194
195
ASSERT_EQ(memblock.reserved.cnt, 1);
196
ASSERT_EQ(memblock.reserved.total_size, total_size);
197
198
test_pass_pop();
199
200
return 0;
201
}
202
203
/*
204
* A test that tries to allocate memory when there are two reserved regions with
205
* a gap too small to fit the new region:
206
*
207
* | +--------+----------+ +------|
208
* | | r3 | r2 | | r1 |
209
* +-------+--------+----------+---+------+
210
*
211
* Expect to allocate a region before the one that starts at the lower address,
212
* and merge them into one. The region counter and total size fields get
213
* updated.
214
*/
215
static int alloc_top_down_second_fit_check(void)
216
{
217
struct memblock_region *rgn = &memblock.reserved.regions[0];
218
struct region r1, r2;
219
void *allocated_ptr = NULL;
220
phys_addr_t r3_size = SZ_1K;
221
phys_addr_t total_size;
222
223
PREFIX_PUSH();
224
setup_memblock();
225
226
r1.base = memblock_end_of_DRAM() - SZ_512;
227
r1.size = SZ_512;
228
229
r2.base = r1.base - SZ_512;
230
r2.size = SZ_256;
231
232
total_size = r1.size + r2.size + r3_size;
233
234
memblock_reserve_kern(r1.base, r1.size);
235
memblock_reserve_kern(r2.base, r2.size);
236
237
allocated_ptr = run_memblock_alloc(r3_size, SMP_CACHE_BYTES);
238
239
ASSERT_NE(allocated_ptr, NULL);
240
assert_mem_content(allocated_ptr, r3_size, alloc_test_flags);
241
242
ASSERT_EQ(rgn->size, r2.size + r3_size);
243
ASSERT_EQ(rgn->base, r2.base - r3_size);
244
245
ASSERT_EQ(memblock.reserved.cnt, 2);
246
ASSERT_EQ(memblock.reserved.total_size, total_size);
247
248
test_pass_pop();
249
250
return 0;
251
}
252
253
/*
254
* A test that tries to allocate memory when there are two reserved regions with
255
* a gap big enough to accommodate the new region:
256
*
257
* | +--------+--------+--------+ |
258
* | | r2 | r3 | r1 | |
259
* +-----+--------+--------+--------+-----+
260
*
261
* Expect to merge all of them, creating one big entry in memblock.reserved
262
* array. The region counter and total size fields get updated.
263
*/
264
static int alloc_in_between_generic_check(void)
265
{
266
struct memblock_region *rgn = &memblock.reserved.regions[0];
267
struct region r1, r2;
268
void *allocated_ptr = NULL;
269
phys_addr_t gap_size = SMP_CACHE_BYTES;
270
phys_addr_t r3_size = SZ_64;
271
/*
272
* Calculate regions size so there's just enough space for the new entry
273
*/
274
phys_addr_t rgn_size = (MEM_SIZE - (2 * gap_size + r3_size)) / 2;
275
phys_addr_t total_size;
276
277
PREFIX_PUSH();
278
setup_memblock();
279
280
r1.size = rgn_size;
281
r1.base = memblock_end_of_DRAM() - (gap_size + rgn_size);
282
283
r2.size = rgn_size;
284
r2.base = memblock_start_of_DRAM() + gap_size;
285
286
total_size = r1.size + r2.size + r3_size;
287
288
memblock_reserve_kern(r1.base, r1.size);
289
memblock_reserve_kern(r2.base, r2.size);
290
291
allocated_ptr = run_memblock_alloc(r3_size, SMP_CACHE_BYTES);
292
293
ASSERT_NE(allocated_ptr, NULL);
294
assert_mem_content(allocated_ptr, r3_size, alloc_test_flags);
295
296
ASSERT_EQ(rgn->size, total_size);
297
ASSERT_EQ(rgn->base, r1.base - r2.size - r3_size);
298
299
ASSERT_EQ(memblock.reserved.cnt, 1);
300
ASSERT_EQ(memblock.reserved.total_size, total_size);
301
302
test_pass_pop();
303
304
return 0;
305
}
306
307
/*
308
* A test that tries to allocate memory when the memory is filled with reserved
309
* regions with memory gaps too small to fit the new region:
310
*
311
* +-------+
312
* | new |
313
* +--+----+
314
* | +-----+ +-----+ +-----+ |
315
* | | res | | res | | res | |
316
* +----+-----+----+-----+----+-----+----+
317
*
318
* Expect no allocation to happen.
319
*/
320
static int alloc_small_gaps_generic_check(void)
321
{
322
void *allocated_ptr = NULL;
323
phys_addr_t region_size = SZ_1K;
324
phys_addr_t gap_size = SZ_256;
325
phys_addr_t region_end;
326
327
PREFIX_PUSH();
328
setup_memblock();
329
330
region_end = memblock_start_of_DRAM();
331
332
while (region_end < memblock_end_of_DRAM()) {
333
memblock_reserve(region_end + gap_size, region_size);
334
region_end += gap_size + region_size;
335
}
336
337
allocated_ptr = run_memblock_alloc(region_size, SMP_CACHE_BYTES);
338
339
ASSERT_EQ(allocated_ptr, NULL);
340
341
test_pass_pop();
342
343
return 0;
344
}
345
346
/*
347
* A test that tries to allocate memory when all memory is reserved.
348
* Expect no allocation to happen.
349
*/
350
static int alloc_all_reserved_generic_check(void)
351
{
352
void *allocated_ptr = NULL;
353
354
PREFIX_PUSH();
355
setup_memblock();
356
357
/* Simulate full memory */
358
memblock_reserve(memblock_start_of_DRAM(), MEM_SIZE);
359
360
allocated_ptr = run_memblock_alloc(SZ_256, SMP_CACHE_BYTES);
361
362
ASSERT_EQ(allocated_ptr, NULL);
363
364
test_pass_pop();
365
366
return 0;
367
}
368
369
/*
370
* A test that tries to allocate memory when the memory is almost full,
371
* with not enough space left for the new region:
372
*
373
* +-------+
374
* | new |
375
* +-------+
376
* |-----------------------------+ |
377
* | reserved | |
378
* +-----------------------------+---+
379
*
380
* Expect no allocation to happen.
381
*/
382
static int alloc_no_space_generic_check(void)
383
{
384
void *allocated_ptr = NULL;
385
phys_addr_t available_size = SZ_256;
386
phys_addr_t reserved_size = MEM_SIZE - available_size;
387
388
PREFIX_PUSH();
389
setup_memblock();
390
391
/* Simulate almost-full memory */
392
memblock_reserve(memblock_start_of_DRAM(), reserved_size);
393
394
allocated_ptr = run_memblock_alloc(SZ_1K, SMP_CACHE_BYTES);
395
396
ASSERT_EQ(allocated_ptr, NULL);
397
398
test_pass_pop();
399
400
return 0;
401
}
402
403
/*
404
* A test that tries to allocate memory when the memory is almost full,
405
* but there is just enough space left:
406
*
407
* |---------------------------+---------|
408
* | reserved | new |
409
* +---------------------------+---------+
410
*
411
* Expect to allocate memory and merge all the regions. The total size field
412
* gets updated.
413
*/
414
static int alloc_limited_space_generic_check(void)
415
{
416
struct memblock_region *rgn = &memblock.reserved.regions[0];
417
void *allocated_ptr = NULL;
418
phys_addr_t available_size = SZ_256;
419
phys_addr_t reserved_size = MEM_SIZE - available_size;
420
421
PREFIX_PUSH();
422
setup_memblock();
423
424
/* Simulate almost-full memory */
425
memblock_reserve_kern(memblock_start_of_DRAM(), reserved_size);
426
427
allocated_ptr = run_memblock_alloc(available_size, SMP_CACHE_BYTES);
428
429
ASSERT_NE(allocated_ptr, NULL);
430
assert_mem_content(allocated_ptr, available_size, alloc_test_flags);
431
432
ASSERT_EQ(rgn->size, MEM_SIZE);
433
ASSERT_EQ(rgn->base, memblock_start_of_DRAM());
434
435
ASSERT_EQ(memblock.reserved.cnt, 1);
436
ASSERT_EQ(memblock.reserved.total_size, MEM_SIZE);
437
438
test_pass_pop();
439
440
return 0;
441
}
442
443
/*
444
* A test that tries to allocate memory when there is no available memory
445
* registered (i.e. memblock.memory has only a dummy entry).
446
* Expect no allocation to happen.
447
*/
448
static int alloc_no_memory_generic_check(void)
449
{
450
struct memblock_region *rgn = &memblock.reserved.regions[0];
451
void *allocated_ptr = NULL;
452
453
PREFIX_PUSH();
454
455
reset_memblock_regions();
456
457
allocated_ptr = run_memblock_alloc(SZ_1K, SMP_CACHE_BYTES);
458
459
ASSERT_EQ(allocated_ptr, NULL);
460
ASSERT_EQ(rgn->size, 0);
461
ASSERT_EQ(rgn->base, 0);
462
ASSERT_EQ(memblock.reserved.total_size, 0);
463
464
test_pass_pop();
465
466
return 0;
467
}
468
469
/*
470
* A test that tries to allocate a region that is larger than the total size of
471
* available memory (memblock.memory):
472
*
473
* +-----------------------------------+
474
* | new |
475
* +-----------------------------------+
476
* | |
477
* | |
478
* +---------------------------------+
479
*
480
* Expect no allocation to happen.
481
*/
482
static int alloc_too_large_generic_check(void)
483
{
484
struct memblock_region *rgn = &memblock.reserved.regions[0];
485
void *allocated_ptr = NULL;
486
487
PREFIX_PUSH();
488
setup_memblock();
489
490
allocated_ptr = run_memblock_alloc(MEM_SIZE + SZ_2, SMP_CACHE_BYTES);
491
492
ASSERT_EQ(allocated_ptr, NULL);
493
ASSERT_EQ(rgn->size, 0);
494
ASSERT_EQ(rgn->base, 0);
495
ASSERT_EQ(memblock.reserved.total_size, 0);
496
497
test_pass_pop();
498
499
return 0;
500
}
501
502
/*
503
* A simple test that tries to allocate a small memory region.
504
* Expect to allocate an aligned region at the beginning of the available
505
* memory.
506
*/
507
static int alloc_bottom_up_simple_check(void)
508
{
509
struct memblock_region *rgn = &memblock.reserved.regions[0];
510
void *allocated_ptr = NULL;
511
512
PREFIX_PUSH();
513
setup_memblock();
514
515
allocated_ptr = run_memblock_alloc(SZ_2, SMP_CACHE_BYTES);
516
517
ASSERT_NE(allocated_ptr, NULL);
518
assert_mem_content(allocated_ptr, SZ_2, alloc_test_flags);
519
520
ASSERT_EQ(rgn->size, SZ_2);
521
ASSERT_EQ(rgn->base, memblock_start_of_DRAM());
522
523
ASSERT_EQ(memblock.reserved.cnt, 1);
524
ASSERT_EQ(memblock.reserved.total_size, SZ_2);
525
526
test_pass_pop();
527
528
return 0;
529
}
530
531
/*
532
* A test that tries to allocate memory next to a reserved region that starts at
533
* the misaligned address. Expect to create two separate entries, with the new
534
* entry aligned to the provided alignment:
535
*
536
* +
537
* | +----------+ +----------+ |
538
* | | rgn1 | | rgn2 | |
539
* +----+----------+---+----------+-----+
540
* ^
541
* |
542
* Aligned address boundary
543
*
544
* The allocation direction is bottom-up, so the new region will be the second
545
* entry in memory.reserved array. The previously reserved region does not get
546
* modified. Region counter and total size get updated.
547
*/
548
static int alloc_bottom_up_disjoint_check(void)
549
{
550
struct memblock_region *rgn1 = &memblock.reserved.regions[0];
551
struct memblock_region *rgn2 = &memblock.reserved.regions[1];
552
struct region r1;
553
void *allocated_ptr = NULL;
554
phys_addr_t r2_size = SZ_16;
555
/* Use custom alignment */
556
phys_addr_t alignment = SMP_CACHE_BYTES * 2;
557
phys_addr_t total_size;
558
phys_addr_t expected_start;
559
560
PREFIX_PUSH();
561
setup_memblock();
562
563
r1.base = memblock_start_of_DRAM() + SZ_2;
564
r1.size = SZ_2;
565
566
total_size = r1.size + r2_size;
567
expected_start = memblock_start_of_DRAM() + alignment;
568
569
memblock_reserve(r1.base, r1.size);
570
571
allocated_ptr = run_memblock_alloc(r2_size, alignment);
572
573
ASSERT_NE(allocated_ptr, NULL);
574
assert_mem_content(allocated_ptr, r2_size, alloc_test_flags);
575
576
ASSERT_EQ(rgn1->size, r1.size);
577
ASSERT_EQ(rgn1->base, r1.base);
578
579
ASSERT_EQ(rgn2->size, r2_size);
580
ASSERT_EQ(rgn2->base, expected_start);
581
582
ASSERT_EQ(memblock.reserved.cnt, 2);
583
ASSERT_EQ(memblock.reserved.total_size, total_size);
584
585
test_pass_pop();
586
587
return 0;
588
}
589
590
/*
591
* A test that tries to allocate memory when there is enough space at
592
* the beginning of the previously reserved block (i.e. first fit):
593
*
594
* |------------------+--------+ |
595
* | r1 | r2 | |
596
* +------------------+--------+---------+
597
*
598
* Expect a merge of both regions. Only the region size gets updated.
599
*/
600
static int alloc_bottom_up_before_check(void)
601
{
602
struct memblock_region *rgn = &memblock.reserved.regions[0];
603
void *allocated_ptr = NULL;
604
phys_addr_t r1_size = SZ_512;
605
phys_addr_t r2_size = SZ_128;
606
phys_addr_t total_size = r1_size + r2_size;
607
608
PREFIX_PUSH();
609
setup_memblock();
610
611
memblock_reserve_kern(memblock_start_of_DRAM() + r1_size, r2_size);
612
613
allocated_ptr = run_memblock_alloc(r1_size, SMP_CACHE_BYTES);
614
615
ASSERT_NE(allocated_ptr, NULL);
616
assert_mem_content(allocated_ptr, r1_size, alloc_test_flags);
617
618
ASSERT_EQ(rgn->size, total_size);
619
ASSERT_EQ(rgn->base, memblock_start_of_DRAM());
620
621
ASSERT_EQ(memblock.reserved.cnt, 1);
622
ASSERT_EQ(memblock.reserved.total_size, total_size);
623
624
test_pass_pop();
625
626
return 0;
627
}
628
629
/*
630
* A test that tries to allocate memory when there is not enough space at
631
* the beginning of the previously reserved block (i.e. second fit):
632
*
633
* | +--------+--------------+ |
634
* | | r1 | r2 | |
635
* +----+--------+--------------+---------+
636
*
637
* Expect a merge of both regions. Only the region size gets updated.
638
*/
639
static int alloc_bottom_up_after_check(void)
640
{
641
struct memblock_region *rgn = &memblock.reserved.regions[0];
642
struct region r1;
643
void *allocated_ptr = NULL;
644
phys_addr_t r2_size = SZ_512;
645
phys_addr_t total_size;
646
647
PREFIX_PUSH();
648
setup_memblock();
649
650
/*
651
* The first region starts at the aligned address to test region merging
652
*/
653
r1.base = memblock_start_of_DRAM() + SMP_CACHE_BYTES;
654
r1.size = SZ_64;
655
656
total_size = r1.size + r2_size;
657
658
memblock_reserve_kern(r1.base, r1.size);
659
660
allocated_ptr = run_memblock_alloc(r2_size, SMP_CACHE_BYTES);
661
662
ASSERT_NE(allocated_ptr, NULL);
663
assert_mem_content(allocated_ptr, r2_size, alloc_test_flags);
664
665
ASSERT_EQ(rgn->size, total_size);
666
ASSERT_EQ(rgn->base, r1.base);
667
668
ASSERT_EQ(memblock.reserved.cnt, 1);
669
ASSERT_EQ(memblock.reserved.total_size, total_size);
670
671
test_pass_pop();
672
673
return 0;
674
}
675
676
/*
677
* A test that tries to allocate memory when there are two reserved regions, the
678
* first one starting at the beginning of the available memory, with a gap too
679
* small to fit the new region:
680
*
681
* |------------+ +--------+--------+ |
682
* | r1 | | r2 | r3 | |
683
* +------------+-----+--------+--------+--+
684
*
685
* Expect to allocate after the second region, which starts at the higher
686
* address, and merge them into one. The region counter and total size fields
687
* get updated.
688
*/
689
static int alloc_bottom_up_second_fit_check(void)
690
{
691
struct memblock_region *rgn = &memblock.reserved.regions[1];
692
struct region r1, r2;
693
void *allocated_ptr = NULL;
694
phys_addr_t r3_size = SZ_1K;
695
phys_addr_t total_size;
696
697
PREFIX_PUSH();
698
setup_memblock();
699
700
r1.base = memblock_start_of_DRAM();
701
r1.size = SZ_512;
702
703
r2.base = r1.base + r1.size + SZ_512;
704
r2.size = SZ_256;
705
706
total_size = r1.size + r2.size + r3_size;
707
708
memblock_reserve_kern(r1.base, r1.size);
709
memblock_reserve_kern(r2.base, r2.size);
710
711
allocated_ptr = run_memblock_alloc(r3_size, SMP_CACHE_BYTES);
712
713
ASSERT_NE(allocated_ptr, NULL);
714
assert_mem_content(allocated_ptr, r3_size, alloc_test_flags);
715
716
ASSERT_EQ(rgn->size, r2.size + r3_size);
717
ASSERT_EQ(rgn->base, r2.base);
718
719
ASSERT_EQ(memblock.reserved.cnt, 2);
720
ASSERT_EQ(memblock.reserved.total_size, total_size);
721
722
test_pass_pop();
723
724
return 0;
725
}
726
727
/* Test case wrappers */
728
static int alloc_simple_check(void)
729
{
730
test_print("\tRunning %s...\n", __func__);
731
memblock_set_bottom_up(false);
732
alloc_top_down_simple_check();
733
memblock_set_bottom_up(true);
734
alloc_bottom_up_simple_check();
735
736
return 0;
737
}
738
739
static int alloc_disjoint_check(void)
740
{
741
test_print("\tRunning %s...\n", __func__);
742
memblock_set_bottom_up(false);
743
alloc_top_down_disjoint_check();
744
memblock_set_bottom_up(true);
745
alloc_bottom_up_disjoint_check();
746
747
return 0;
748
}
749
750
static int alloc_before_check(void)
751
{
752
test_print("\tRunning %s...\n", __func__);
753
memblock_set_bottom_up(false);
754
alloc_top_down_before_check();
755
memblock_set_bottom_up(true);
756
alloc_bottom_up_before_check();
757
758
return 0;
759
}
760
761
static int alloc_after_check(void)
762
{
763
test_print("\tRunning %s...\n", __func__);
764
memblock_set_bottom_up(false);
765
alloc_top_down_after_check();
766
memblock_set_bottom_up(true);
767
alloc_bottom_up_after_check();
768
769
return 0;
770
}
771
772
static int alloc_in_between_check(void)
773
{
774
test_print("\tRunning %s...\n", __func__);
775
run_top_down(alloc_in_between_generic_check);
776
run_bottom_up(alloc_in_between_generic_check);
777
778
return 0;
779
}
780
781
static int alloc_second_fit_check(void)
782
{
783
test_print("\tRunning %s...\n", __func__);
784
memblock_set_bottom_up(false);
785
alloc_top_down_second_fit_check();
786
memblock_set_bottom_up(true);
787
alloc_bottom_up_second_fit_check();
788
789
return 0;
790
}
791
792
static int alloc_small_gaps_check(void)
793
{
794
test_print("\tRunning %s...\n", __func__);
795
run_top_down(alloc_small_gaps_generic_check);
796
run_bottom_up(alloc_small_gaps_generic_check);
797
798
return 0;
799
}
800
801
static int alloc_all_reserved_check(void)
802
{
803
test_print("\tRunning %s...\n", __func__);
804
run_top_down(alloc_all_reserved_generic_check);
805
run_bottom_up(alloc_all_reserved_generic_check);
806
807
return 0;
808
}
809
810
static int alloc_no_space_check(void)
811
{
812
test_print("\tRunning %s...\n", __func__);
813
run_top_down(alloc_no_space_generic_check);
814
run_bottom_up(alloc_no_space_generic_check);
815
816
return 0;
817
}
818
819
static int alloc_limited_space_check(void)
820
{
821
test_print("\tRunning %s...\n", __func__);
822
run_top_down(alloc_limited_space_generic_check);
823
run_bottom_up(alloc_limited_space_generic_check);
824
825
return 0;
826
}
827
828
static int alloc_no_memory_check(void)
829
{
830
test_print("\tRunning %s...\n", __func__);
831
run_top_down(alloc_no_memory_generic_check);
832
run_bottom_up(alloc_no_memory_generic_check);
833
834
return 0;
835
}
836
837
static int alloc_too_large_check(void)
838
{
839
test_print("\tRunning %s...\n", __func__);
840
run_top_down(alloc_too_large_generic_check);
841
run_bottom_up(alloc_too_large_generic_check);
842
843
return 0;
844
}
845
846
static int memblock_alloc_checks_internal(int flags)
847
{
848
const char *func = get_memblock_alloc_name(flags);
849
850
alloc_test_flags = flags;
851
prefix_reset();
852
prefix_push(func);
853
test_print("Running %s tests...\n", func);
854
855
reset_memblock_attributes();
856
dummy_physical_memory_init();
857
858
alloc_simple_check();
859
alloc_disjoint_check();
860
alloc_before_check();
861
alloc_after_check();
862
alloc_second_fit_check();
863
alloc_small_gaps_check();
864
alloc_in_between_check();
865
alloc_all_reserved_check();
866
alloc_no_space_check();
867
alloc_limited_space_check();
868
alloc_no_memory_check();
869
alloc_too_large_check();
870
871
dummy_physical_memory_cleanup();
872
873
prefix_pop();
874
875
return 0;
876
}
877
878
int memblock_alloc_checks(void)
879
{
880
memblock_alloc_checks_internal(TEST_F_NONE);
881
memblock_alloc_checks_internal(TEST_F_RAW);
882
883
return 0;
884
}
885
886