Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/testing/selftests/kvm/access_tracking_perf_test.c
38189 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* access_tracking_perf_test
4
*
5
* Copyright (C) 2021, Google, Inc.
6
*
7
* This test measures the performance effects of KVM's access tracking.
8
* Access tracking is driven by the MMU notifiers test_young, clear_young, and
9
* clear_flush_young. These notifiers do not have a direct userspace API,
10
* however the clear_young notifier can be triggered either by
11
* 1. marking a pages as idle in /sys/kernel/mm/page_idle/bitmap OR
12
* 2. adding a new MGLRU generation using the lru_gen debugfs file.
13
* This test leverages page_idle to enable access tracking on guest memory
14
* unless MGLRU is enabled, in which case MGLRU is used.
15
*
16
* To measure performance this test runs a VM with a configurable number of
17
* vCPUs that each touch every page in disjoint regions of memory. Performance
18
* is measured in the time it takes all vCPUs to finish touching their
19
* predefined region.
20
*
21
* Note that a deterministic correctness test of access tracking is not possible
22
* by using page_idle or MGLRU aging as it exists today. This is for a few
23
* reasons:
24
*
25
* 1. page_idle and MGLRU only issue clear_young notifiers, which lack a TLB flush.
26
* This means subsequent guest accesses are not guaranteed to see page table
27
* updates made by KVM until some time in the future.
28
*
29
* 2. page_idle only operates on LRU pages. Newly allocated pages are not
30
* immediately allocated to LRU lists. Instead they are held in a "pagevec",
31
* which is drained to LRU lists some time in the future. There is no
32
* userspace API to force this drain to occur.
33
*
34
* These limitations are worked around in this test by using a large enough
35
* region of memory for each vCPU such that the number of translations cached in
36
* the TLB and the number of pages held in pagevecs are a small fraction of the
37
* overall workload. And if either of those conditions are not true (for example
38
* in nesting, where TLB size is unlimited) this test will print a warning
39
* rather than silently passing.
40
*/
41
#include <inttypes.h>
42
#include <limits.h>
43
#include <pthread.h>
44
#include <sys/mman.h>
45
#include <sys/types.h>
46
#include <sys/stat.h>
47
48
#include "kvm_util.h"
49
#include "test_util.h"
50
#include "memstress.h"
51
#include "guest_modes.h"
52
#include "processor.h"
53
#include "ucall_common.h"
54
55
#include "cgroup_util.h"
56
#include "lru_gen_util.h"
57
58
static const char *TEST_MEMCG_NAME = "access_tracking_perf_test";
59
60
/* Global variable used to synchronize all of the vCPU threads. */
61
static int iteration;
62
63
/* The cgroup memory controller root. Needed for lru_gen-based aging. */
64
char cgroup_root[PATH_MAX];
65
66
/* Defines what vCPU threads should do during a given iteration. */
67
static enum {
68
/* Run the vCPU to access all its memory. */
69
ITERATION_ACCESS_MEMORY,
70
/* Mark the vCPU's memory idle in page_idle. */
71
ITERATION_MARK_IDLE,
72
} iteration_work;
73
74
/* The iteration that was last completed by each vCPU. */
75
static int vcpu_last_completed_iteration[KVM_MAX_VCPUS];
76
77
/* Whether to overlap the regions of memory vCPUs access. */
78
static bool overlap_memory_access;
79
80
/*
81
* If the test should only warn if there are too many idle pages (i.e., it is
82
* expected).
83
* -1: Not yet set.
84
* 0: We do not expect too many idle pages, so FAIL if too many idle pages.
85
* 1: Having too many idle pages is expected, so merely print a warning if
86
* too many idle pages are found.
87
*/
88
static int idle_pages_warn_only = -1;
89
90
/* Whether or not to use MGLRU instead of page_idle for access tracking */
91
static bool use_lru_gen;
92
93
/* Total number of pages to expect in the memcg after touching everything */
94
static long test_pages;
95
96
/* Last generation we found the pages in */
97
static int lru_gen_last_gen = -1;
98
99
struct test_params {
100
/* The backing source for the region of memory. */
101
enum vm_mem_backing_src_type backing_src;
102
103
/* The amount of memory to allocate for each vCPU. */
104
uint64_t vcpu_memory_bytes;
105
106
/* The number of vCPUs to create in the VM. */
107
int nr_vcpus;
108
};
109
110
static uint64_t pread_uint64(int fd, const char *filename, uint64_t index)
111
{
112
uint64_t value;
113
off_t offset = index * sizeof(value);
114
115
TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value),
116
"pread from %s offset 0x%" PRIx64 " failed!",
117
filename, offset);
118
119
return value;
120
121
}
122
123
#define PAGEMAP_PRESENT (1ULL << 63)
124
#define PAGEMAP_PFN_MASK ((1ULL << 55) - 1)
125
126
static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva)
127
{
128
uint64_t hva = (uint64_t) addr_gva2hva(vm, gva);
129
uint64_t entry;
130
uint64_t pfn;
131
132
entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize());
133
if (!(entry & PAGEMAP_PRESENT))
134
return 0;
135
136
pfn = entry & PAGEMAP_PFN_MASK;
137
__TEST_REQUIRE(pfn, "Looking up PFNs requires CAP_SYS_ADMIN");
138
139
return pfn;
140
}
141
142
static bool is_page_idle(int page_idle_fd, uint64_t pfn)
143
{
144
uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64);
145
146
return !!((bits >> (pfn % 64)) & 1);
147
}
148
149
static void mark_page_idle(int page_idle_fd, uint64_t pfn)
150
{
151
uint64_t bits = 1ULL << (pfn % 64);
152
153
TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8,
154
"Set page_idle bits for PFN 0x%" PRIx64, pfn);
155
}
156
157
static void too_many_idle_pages(long idle_pages, long total_pages, int vcpu_idx)
158
{
159
char prefix[18] = {};
160
161
if (vcpu_idx >= 0)
162
snprintf(prefix, 18, "vCPU%d: ", vcpu_idx);
163
164
TEST_ASSERT(idle_pages_warn_only,
165
"%sToo many pages still idle (%lu out of %lu)",
166
prefix, idle_pages, total_pages);
167
168
printf("WARNING: %sToo many pages still idle (%lu out of %lu), "
169
"this will affect performance results.\n",
170
prefix, idle_pages, total_pages);
171
}
172
173
static void pageidle_mark_vcpu_memory_idle(struct kvm_vm *vm,
174
struct memstress_vcpu_args *vcpu_args)
175
{
176
int vcpu_idx = vcpu_args->vcpu_idx;
177
uint64_t base_gva = vcpu_args->gva;
178
uint64_t pages = vcpu_args->pages;
179
uint64_t page;
180
uint64_t still_idle = 0;
181
uint64_t no_pfn = 0;
182
int page_idle_fd;
183
int pagemap_fd;
184
185
/* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */
186
if (overlap_memory_access && vcpu_idx)
187
return;
188
189
page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
190
TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle.");
191
192
pagemap_fd = open("/proc/self/pagemap", O_RDONLY);
193
TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap.");
194
195
for (page = 0; page < pages; page++) {
196
uint64_t gva = base_gva + page * memstress_args.guest_page_size;
197
uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva);
198
199
if (!pfn) {
200
no_pfn++;
201
continue;
202
}
203
204
if (is_page_idle(page_idle_fd, pfn)) {
205
still_idle++;
206
continue;
207
}
208
209
mark_page_idle(page_idle_fd, pfn);
210
}
211
212
/*
213
* Assumption: Less than 1% of pages are going to be swapped out from
214
* under us during this test.
215
*/
216
TEST_ASSERT(no_pfn < pages / 100,
217
"vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.",
218
vcpu_idx, no_pfn, pages);
219
220
/*
221
* Check that at least 90% of memory has been marked idle (the rest
222
* might not be marked idle because the pages have not yet made it to an
223
* LRU list or the translations are still cached in the TLB). 90% is
224
* arbitrary; high enough that we ensure most memory access went through
225
* access tracking but low enough as to not make the test too brittle
226
* over time and across architectures.
227
*/
228
if (still_idle >= pages / 10)
229
too_many_idle_pages(still_idle, pages,
230
overlap_memory_access ? -1 : vcpu_idx);
231
232
close(page_idle_fd);
233
close(pagemap_fd);
234
}
235
236
int find_generation(struct memcg_stats *stats, long total_pages)
237
{
238
/*
239
* For finding the generation that contains our pages, use the same
240
* 90% threshold that page_idle uses.
241
*/
242
int gen = lru_gen_find_generation(stats, total_pages * 9 / 10);
243
244
if (gen >= 0)
245
return gen;
246
247
if (!idle_pages_warn_only) {
248
TEST_FAIL("Could not find a generation with 90%% of guest memory (%ld pages).",
249
total_pages * 9 / 10);
250
return gen;
251
}
252
253
/*
254
* We couldn't find a generation with 90% of guest memory, which can
255
* happen if access tracking is unreliable. Simply look for a majority
256
* of pages.
257
*/
258
puts("WARNING: Couldn't find a generation with 90% of guest memory. "
259
"Performance results may not be accurate.");
260
gen = lru_gen_find_generation(stats, total_pages / 2);
261
TEST_ASSERT(gen >= 0,
262
"Could not find a generation with 50%% of guest memory (%ld pages).",
263
total_pages / 2);
264
return gen;
265
}
266
267
static void lru_gen_mark_memory_idle(struct kvm_vm *vm)
268
{
269
struct timespec ts_start;
270
struct timespec ts_elapsed;
271
struct memcg_stats stats;
272
int new_gen;
273
274
/* Make a new generation */
275
clock_gettime(CLOCK_MONOTONIC, &ts_start);
276
lru_gen_do_aging(&stats, TEST_MEMCG_NAME);
277
ts_elapsed = timespec_elapsed(ts_start);
278
279
/* Check the generation again */
280
new_gen = find_generation(&stats, test_pages);
281
282
/*
283
* This function should only be invoked with newly-accessed pages,
284
* so pages should always move to a newer generation.
285
*/
286
if (new_gen <= lru_gen_last_gen) {
287
/* We did not move to a newer generation. */
288
long idle_pages = lru_gen_sum_memcg_stats_for_gen(lru_gen_last_gen,
289
&stats);
290
291
too_many_idle_pages(min_t(long, idle_pages, test_pages),
292
test_pages, -1);
293
}
294
pr_info("%-30s: %ld.%09lds\n",
295
"Mark memory idle (lru_gen)", ts_elapsed.tv_sec,
296
ts_elapsed.tv_nsec);
297
lru_gen_last_gen = new_gen;
298
}
299
300
static void assert_ucall(struct kvm_vcpu *vcpu, uint64_t expected_ucall)
301
{
302
struct ucall uc;
303
uint64_t actual_ucall = get_ucall(vcpu, &uc);
304
305
TEST_ASSERT(expected_ucall == actual_ucall,
306
"Guest exited unexpectedly (expected ucall %" PRIu64
307
", got %" PRIu64 ")",
308
expected_ucall, actual_ucall);
309
}
310
311
static bool spin_wait_for_next_iteration(int *current_iteration)
312
{
313
int last_iteration = *current_iteration;
314
315
do {
316
if (READ_ONCE(memstress_args.stop_vcpus))
317
return false;
318
319
*current_iteration = READ_ONCE(iteration);
320
} while (last_iteration == *current_iteration);
321
322
return true;
323
}
324
325
static void vcpu_thread_main(struct memstress_vcpu_args *vcpu_args)
326
{
327
struct kvm_vcpu *vcpu = vcpu_args->vcpu;
328
struct kvm_vm *vm = memstress_args.vm;
329
int vcpu_idx = vcpu_args->vcpu_idx;
330
int current_iteration = 0;
331
332
while (spin_wait_for_next_iteration(&current_iteration)) {
333
switch (READ_ONCE(iteration_work)) {
334
case ITERATION_ACCESS_MEMORY:
335
vcpu_run(vcpu);
336
assert_ucall(vcpu, UCALL_SYNC);
337
break;
338
case ITERATION_MARK_IDLE:
339
pageidle_mark_vcpu_memory_idle(vm, vcpu_args);
340
break;
341
}
342
343
vcpu_last_completed_iteration[vcpu_idx] = current_iteration;
344
}
345
}
346
347
static void spin_wait_for_vcpu(int vcpu_idx, int target_iteration)
348
{
349
while (READ_ONCE(vcpu_last_completed_iteration[vcpu_idx]) !=
350
target_iteration) {
351
continue;
352
}
353
}
354
355
/* The type of memory accesses to perform in the VM. */
356
enum access_type {
357
ACCESS_READ,
358
ACCESS_WRITE,
359
};
360
361
static void run_iteration(struct kvm_vm *vm, int nr_vcpus, const char *description)
362
{
363
struct timespec ts_start;
364
struct timespec ts_elapsed;
365
int next_iteration, i;
366
367
/* Kick off the vCPUs by incrementing iteration. */
368
next_iteration = ++iteration;
369
370
clock_gettime(CLOCK_MONOTONIC, &ts_start);
371
372
/* Wait for all vCPUs to finish the iteration. */
373
for (i = 0; i < nr_vcpus; i++)
374
spin_wait_for_vcpu(i, next_iteration);
375
376
ts_elapsed = timespec_elapsed(ts_start);
377
pr_info("%-30s: %ld.%09lds\n",
378
description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec);
379
}
380
381
static void access_memory(struct kvm_vm *vm, int nr_vcpus,
382
enum access_type access, const char *description)
383
{
384
memstress_set_write_percent(vm, (access == ACCESS_READ) ? 0 : 100);
385
iteration_work = ITERATION_ACCESS_MEMORY;
386
run_iteration(vm, nr_vcpus, description);
387
}
388
389
static void mark_memory_idle(struct kvm_vm *vm, int nr_vcpus)
390
{
391
if (use_lru_gen)
392
return lru_gen_mark_memory_idle(vm);
393
394
/*
395
* Even though this parallelizes the work across vCPUs, this is still a
396
* very slow operation because page_idle forces the test to mark one pfn
397
* at a time and the clear_young notifier may serialize on the KVM MMU
398
* lock.
399
*/
400
pr_debug("Marking VM memory idle (slow)...\n");
401
iteration_work = ITERATION_MARK_IDLE;
402
run_iteration(vm, nr_vcpus, "Mark memory idle (page_idle)");
403
}
404
405
static void run_test(enum vm_guest_mode mode, void *arg)
406
{
407
struct test_params *params = arg;
408
struct kvm_vm *vm;
409
int nr_vcpus = params->nr_vcpus;
410
411
vm = memstress_create_vm(mode, nr_vcpus, params->vcpu_memory_bytes, 1,
412
params->backing_src, !overlap_memory_access);
413
414
/*
415
* If guest_page_size is larger than the host's page size, the
416
* guest (memstress) will only fault in a subset of the host's pages.
417
*/
418
test_pages = params->nr_vcpus * params->vcpu_memory_bytes /
419
max(memstress_args.guest_page_size,
420
(uint64_t)getpagesize());
421
422
memstress_start_vcpu_threads(nr_vcpus, vcpu_thread_main);
423
424
pr_info("\n");
425
access_memory(vm, nr_vcpus, ACCESS_WRITE, "Populating memory");
426
427
if (use_lru_gen) {
428
struct memcg_stats stats;
429
430
/*
431
* Do a page table scan now. Following initial population, aging
432
* may not cause the pages to move to a newer generation. Do
433
* an aging pass now so that future aging passes always move
434
* pages to a newer generation.
435
*/
436
printf("Initial aging pass (lru_gen)\n");
437
lru_gen_do_aging(&stats, TEST_MEMCG_NAME);
438
TEST_ASSERT(lru_gen_sum_memcg_stats(&stats) >= test_pages,
439
"Not all pages accounted for (looking for %ld). "
440
"Was the memcg set up correctly?", test_pages);
441
access_memory(vm, nr_vcpus, ACCESS_WRITE, "Re-populating memory");
442
lru_gen_read_memcg_stats(&stats, TEST_MEMCG_NAME);
443
lru_gen_last_gen = find_generation(&stats, test_pages);
444
}
445
446
/* As a control, read and write to the populated memory first. */
447
access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to populated memory");
448
access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from populated memory");
449
450
/* Repeat on memory that has been marked as idle. */
451
mark_memory_idle(vm, nr_vcpus);
452
access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to idle memory");
453
mark_memory_idle(vm, nr_vcpus);
454
access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from idle memory");
455
456
memstress_join_vcpu_threads(nr_vcpus);
457
memstress_destroy_vm(vm);
458
}
459
460
static int access_tracking_unreliable(void)
461
{
462
#ifdef __x86_64__
463
/*
464
* When running nested, the TLB size may be effectively unlimited (for
465
* example, this is the case when running on KVM L0), and KVM doesn't
466
* explicitly flush the TLB when aging SPTEs. As a result, more pages
467
* are cached and the guest won't see the "idle" bit cleared.
468
*/
469
if (this_cpu_has(X86_FEATURE_HYPERVISOR)) {
470
puts("Skipping idle page count sanity check, because the test is run nested");
471
return 1;
472
}
473
#endif
474
/*
475
* When NUMA balancing is enabled, guest memory will be unmapped to get
476
* NUMA faults, dropping the Accessed bits.
477
*/
478
if (is_numa_balancing_enabled()) {
479
puts("Skipping idle page count sanity check, because NUMA balancing is enabled");
480
return 1;
481
}
482
return 0;
483
}
484
485
static int run_test_for_each_guest_mode(const char *cgroup, void *arg)
486
{
487
for_each_guest_mode(run_test, arg);
488
return 0;
489
}
490
491
static void help(char *name)
492
{
493
puts("");
494
printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o] [-s mem_type]\n",
495
name);
496
puts("");
497
printf(" -h: Display this help message.");
498
guest_modes_help();
499
printf(" -b: specify the size of the memory region which should be\n"
500
" dirtied by each vCPU. e.g. 10M or 3G.\n"
501
" (default: 1G)\n");
502
printf(" -v: specify the number of vCPUs to run.\n");
503
printf(" -o: Overlap guest memory accesses instead of partitioning\n"
504
" them into a separate region of memory for each vCPU.\n");
505
printf(" -w: Control whether the test warns or fails if more than 10%%\n"
506
" of pages are still seen as idle/old after accessing guest\n"
507
" memory. >0 == warn only, 0 == fail, <0 == auto. For auto\n"
508
" mode, the test fails by default, but switches to warn only\n"
509
" if NUMA balancing is enabled or the test detects it's running\n"
510
" in a VM.\n");
511
backing_src_help("-s");
512
puts("");
513
exit(0);
514
}
515
516
void destroy_cgroup(char *cg)
517
{
518
printf("Destroying cgroup: %s\n", cg);
519
}
520
521
int main(int argc, char *argv[])
522
{
523
struct test_params params = {
524
.backing_src = DEFAULT_VM_MEM_SRC,
525
.vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE,
526
.nr_vcpus = 1,
527
};
528
char *new_cg = NULL;
529
int page_idle_fd;
530
int opt;
531
532
guest_modes_append_default();
533
534
while ((opt = getopt(argc, argv, "hm:b:v:os:w:")) != -1) {
535
switch (opt) {
536
case 'm':
537
guest_modes_cmdline(optarg);
538
break;
539
case 'b':
540
params.vcpu_memory_bytes = parse_size(optarg);
541
break;
542
case 'v':
543
params.nr_vcpus = atoi_positive("Number of vCPUs", optarg);
544
break;
545
case 'o':
546
overlap_memory_access = true;
547
break;
548
case 's':
549
params.backing_src = parse_backing_src_type(optarg);
550
break;
551
case 'w':
552
idle_pages_warn_only =
553
atoi_non_negative("Idle pages warning",
554
optarg);
555
break;
556
case 'h':
557
default:
558
help(argv[0]);
559
break;
560
}
561
}
562
563
if (idle_pages_warn_only == -1)
564
idle_pages_warn_only = access_tracking_unreliable();
565
566
if (lru_gen_usable()) {
567
bool cg_created = true;
568
int ret;
569
570
puts("Using lru_gen for aging");
571
use_lru_gen = true;
572
573
if (cg_find_controller_root(cgroup_root, sizeof(cgroup_root), "memory"))
574
ksft_exit_skip("Cannot find memory cgroup controller\n");
575
576
new_cg = cg_name(cgroup_root, TEST_MEMCG_NAME);
577
printf("Creating cgroup: %s\n", new_cg);
578
if (cg_create(new_cg)) {
579
if (errno == EEXIST) {
580
printf("Found existing cgroup");
581
cg_created = false;
582
} else {
583
ksft_exit_skip("could not create new cgroup: %s\n", new_cg);
584
}
585
}
586
587
/*
588
* This will fork off a new process to run the test within
589
* a new memcg, so we need to properly propagate the return
590
* value up.
591
*/
592
ret = cg_run(new_cg, &run_test_for_each_guest_mode, &params);
593
if (cg_created)
594
cg_destroy(new_cg);
595
if (ret < 0)
596
TEST_FAIL("child did not spawn or was abnormally killed");
597
if (ret)
598
return ret;
599
} else {
600
page_idle_fd = __open_path_or_exit("/sys/kernel/mm/page_idle/bitmap", O_RDWR,
601
"Is CONFIG_IDLE_PAGE_TRACKING enabled?");
602
close(page_idle_fd);
603
604
puts("Using page_idle for aging");
605
run_test_for_each_guest_mode(NULL, &params);
606
}
607
608
return 0;
609
}
610
611