Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/testing/selftests/kvm/arm64/set_id_regs.c
38245 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* set_id_regs - Test for setting ID register from usersapce.
4
*
5
* Copyright (c) 2023 Google LLC.
6
*
7
*
8
* Test that KVM supports setting ID registers from userspace and handles the
9
* feature set correctly.
10
*/
11
12
#include <stdint.h>
13
#include "kvm_util.h"
14
#include "processor.h"
15
#include "test_util.h"
16
#include <linux/bitfield.h>
17
18
enum ftr_type {
19
FTR_EXACT, /* Use a predefined safe value */
20
FTR_LOWER_SAFE, /* Smaller value is safe */
21
FTR_HIGHER_SAFE, /* Bigger value is safe */
22
FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */
23
FTR_END, /* Mark the last ftr bits */
24
};
25
26
#define FTR_SIGNED true /* Value should be treated as signed */
27
#define FTR_UNSIGNED false /* Value should be treated as unsigned */
28
29
struct reg_ftr_bits {
30
char *name;
31
bool sign;
32
enum ftr_type type;
33
uint8_t shift;
34
uint64_t mask;
35
/*
36
* For FTR_EXACT, safe_val is used as the exact safe value.
37
* For FTR_LOWER_SAFE, safe_val is used as the minimal safe value.
38
*/
39
int64_t safe_val;
40
};
41
42
struct test_feature_reg {
43
uint32_t reg;
44
const struct reg_ftr_bits *ftr_bits;
45
};
46
47
#define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL) \
48
{ \
49
.name = #NAME, \
50
.sign = SIGNED, \
51
.type = TYPE, \
52
.shift = SHIFT, \
53
.mask = MASK, \
54
.safe_val = SAFE_VAL, \
55
}
56
57
#define REG_FTR_BITS(type, reg, field, safe_val) \
58
__REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \
59
reg##_##field##_MASK, safe_val)
60
61
#define S_REG_FTR_BITS(type, reg, field, safe_val) \
62
__REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \
63
reg##_##field##_MASK, safe_val)
64
65
#define REG_FTR_END \
66
{ \
67
.type = FTR_END, \
68
}
69
70
static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = {
71
S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DoubleLock, 0),
72
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, WRPs, 0),
73
S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0),
74
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP),
75
REG_FTR_END,
76
};
77
78
static const struct reg_ftr_bits ftr_id_dfr0_el1[] = {
79
S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3),
80
REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8),
81
REG_FTR_END,
82
};
83
84
static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = {
85
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0),
86
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0),
87
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0),
88
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0),
89
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0),
90
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0),
91
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0),
92
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0),
93
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0),
94
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TME, 0),
95
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0),
96
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0),
97
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0),
98
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0),
99
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0),
100
REG_FTR_END,
101
};
102
103
static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = {
104
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0),
105
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0),
106
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0),
107
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0),
108
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0),
109
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0),
110
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0),
111
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0),
112
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0),
113
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0),
114
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0),
115
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0),
116
REG_FTR_END,
117
};
118
119
static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = {
120
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0),
121
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0),
122
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0),
123
REG_FTR_END,
124
};
125
126
static const struct reg_ftr_bits ftr_id_aa64isar3_el1[] = {
127
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, FPRCVT, 0),
128
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, LSFE, 0),
129
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR3_EL1, FAMINMAX, 0),
130
REG_FTR_END,
131
};
132
133
static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = {
134
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0),
135
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0),
136
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0),
137
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0),
138
REG_FTR_BITS(FTR_EXACT, ID_AA64PFR0_EL1, GIC, 0),
139
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 1),
140
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 1),
141
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 1),
142
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 1),
143
REG_FTR_END,
144
};
145
146
static const struct reg_ftr_bits ftr_id_aa64pfr1_el1[] = {
147
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, DF2, 0),
148
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, CSV2_frac, 0),
149
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, SSBS, ID_AA64PFR1_EL1_SSBS_NI),
150
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, BT, 0),
151
REG_FTR_END,
152
};
153
154
static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = {
155
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0),
156
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0),
157
REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN4_2, 1),
158
REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN64_2, 1),
159
REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN16_2, 1),
160
S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0),
161
S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0),
162
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0),
163
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0),
164
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0),
165
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0),
166
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0),
167
REG_FTR_END,
168
};
169
170
static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = {
171
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0),
172
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0),
173
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HCX, 0),
174
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0),
175
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TWED, 0),
176
REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0),
177
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0),
178
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0),
179
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0),
180
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0),
181
REG_FTR_END,
182
};
183
184
static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = {
185
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0),
186
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0),
187
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0),
188
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0),
189
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0),
190
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0),
191
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0),
192
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0),
193
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0),
194
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0),
195
REG_FTR_END,
196
};
197
198
static const struct reg_ftr_bits ftr_id_aa64mmfr3_el1[] = {
199
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1POE, 0),
200
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1PIE, 0),
201
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, SCTLRX, 0),
202
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, TCRX, 0),
203
REG_FTR_END,
204
};
205
206
static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = {
207
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0),
208
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0),
209
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0),
210
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0),
211
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0),
212
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0),
213
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0),
214
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0),
215
REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0),
216
REG_FTR_END,
217
};
218
219
#define TEST_REG(id, table) \
220
{ \
221
.reg = id, \
222
.ftr_bits = &((table)[0]), \
223
}
224
225
static struct test_feature_reg test_regs[] = {
226
TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1),
227
TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1),
228
TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1),
229
TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1),
230
TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1),
231
TEST_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3_el1),
232
TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1),
233
TEST_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1_el1),
234
TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1),
235
TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1),
236
TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1),
237
TEST_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3_el1),
238
TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1),
239
};
240
241
#define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0);
242
243
static void guest_code(void)
244
{
245
GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1);
246
GUEST_REG_SYNC(SYS_ID_DFR0_EL1);
247
GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1);
248
GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1);
249
GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1);
250
GUEST_REG_SYNC(SYS_ID_AA64ISAR3_EL1);
251
GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1);
252
GUEST_REG_SYNC(SYS_ID_AA64PFR1_EL1);
253
GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1);
254
GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1);
255
GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1);
256
GUEST_REG_SYNC(SYS_ID_AA64MMFR3_EL1);
257
GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1);
258
GUEST_REG_SYNC(SYS_MPIDR_EL1);
259
GUEST_REG_SYNC(SYS_CLIDR_EL1);
260
GUEST_REG_SYNC(SYS_CTR_EL0);
261
GUEST_REG_SYNC(SYS_MIDR_EL1);
262
GUEST_REG_SYNC(SYS_REVIDR_EL1);
263
GUEST_REG_SYNC(SYS_AIDR_EL1);
264
265
GUEST_DONE();
266
}
267
268
/* Return a safe value to a given ftr_bits an ftr value */
269
uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
270
{
271
uint64_t ftr_max = ftr_bits->mask >> ftr_bits->shift;
272
273
TEST_ASSERT(ftr_max > 1, "This test doesn't support single bit features");
274
275
if (ftr_bits->sign == FTR_UNSIGNED) {
276
switch (ftr_bits->type) {
277
case FTR_EXACT:
278
ftr = ftr_bits->safe_val;
279
break;
280
case FTR_LOWER_SAFE:
281
if (ftr > ftr_bits->safe_val)
282
ftr--;
283
break;
284
case FTR_HIGHER_SAFE:
285
if (ftr < ftr_max)
286
ftr++;
287
break;
288
case FTR_HIGHER_OR_ZERO_SAFE:
289
if (ftr == ftr_max)
290
ftr = 0;
291
else if (ftr != 0)
292
ftr++;
293
break;
294
default:
295
break;
296
}
297
} else if (ftr != ftr_max) {
298
switch (ftr_bits->type) {
299
case FTR_EXACT:
300
ftr = ftr_bits->safe_val;
301
break;
302
case FTR_LOWER_SAFE:
303
if (ftr > ftr_bits->safe_val)
304
ftr--;
305
break;
306
case FTR_HIGHER_SAFE:
307
if (ftr < ftr_max - 1)
308
ftr++;
309
break;
310
case FTR_HIGHER_OR_ZERO_SAFE:
311
if (ftr != 0 && ftr != ftr_max - 1)
312
ftr++;
313
break;
314
default:
315
break;
316
}
317
}
318
319
return ftr;
320
}
321
322
/* Return an invalid value to a given ftr_bits an ftr value */
323
uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
324
{
325
uint64_t ftr_max = ftr_bits->mask >> ftr_bits->shift;
326
327
TEST_ASSERT(ftr_max > 1, "This test doesn't support single bit features");
328
329
if (ftr_bits->sign == FTR_UNSIGNED) {
330
switch (ftr_bits->type) {
331
case FTR_EXACT:
332
ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
333
break;
334
case FTR_LOWER_SAFE:
335
ftr++;
336
break;
337
case FTR_HIGHER_SAFE:
338
ftr--;
339
break;
340
case FTR_HIGHER_OR_ZERO_SAFE:
341
if (ftr == 0)
342
ftr = ftr_max;
343
else
344
ftr--;
345
break;
346
default:
347
break;
348
}
349
} else if (ftr != ftr_max) {
350
switch (ftr_bits->type) {
351
case FTR_EXACT:
352
ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
353
break;
354
case FTR_LOWER_SAFE:
355
ftr++;
356
break;
357
case FTR_HIGHER_SAFE:
358
ftr--;
359
break;
360
case FTR_HIGHER_OR_ZERO_SAFE:
361
if (ftr == 0)
362
ftr = ftr_max - 1;
363
else
364
ftr--;
365
break;
366
default:
367
break;
368
}
369
} else {
370
ftr = 0;
371
}
372
373
return ftr;
374
}
375
376
static uint64_t test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg,
377
const struct reg_ftr_bits *ftr_bits)
378
{
379
uint8_t shift = ftr_bits->shift;
380
uint64_t mask = ftr_bits->mask;
381
uint64_t val, new_val, ftr;
382
383
val = vcpu_get_reg(vcpu, reg);
384
ftr = (val & mask) >> shift;
385
386
ftr = get_safe_value(ftr_bits, ftr);
387
388
ftr <<= shift;
389
val &= ~mask;
390
val |= ftr;
391
392
vcpu_set_reg(vcpu, reg, val);
393
new_val = vcpu_get_reg(vcpu, reg);
394
TEST_ASSERT_EQ(new_val, val);
395
396
return new_val;
397
}
398
399
static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg,
400
const struct reg_ftr_bits *ftr_bits)
401
{
402
uint8_t shift = ftr_bits->shift;
403
uint64_t mask = ftr_bits->mask;
404
uint64_t val, old_val, ftr;
405
int r;
406
407
val = vcpu_get_reg(vcpu, reg);
408
ftr = (val & mask) >> shift;
409
410
ftr = get_invalid_value(ftr_bits, ftr);
411
412
old_val = val;
413
ftr <<= shift;
414
val &= ~mask;
415
val |= ftr;
416
417
r = __vcpu_set_reg(vcpu, reg, val);
418
TEST_ASSERT(r < 0 && errno == EINVAL,
419
"Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno);
420
421
val = vcpu_get_reg(vcpu, reg);
422
TEST_ASSERT_EQ(val, old_val);
423
}
424
425
static uint64_t test_reg_vals[KVM_ARM_FEATURE_ID_RANGE_SIZE];
426
427
#define encoding_to_range_idx(encoding) \
428
KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(encoding), sys_reg_Op1(encoding), \
429
sys_reg_CRn(encoding), sys_reg_CRm(encoding), \
430
sys_reg_Op2(encoding))
431
432
433
static void test_vm_ftr_id_regs(struct kvm_vcpu *vcpu, bool aarch64_only)
434
{
435
uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
436
struct reg_mask_range range = {
437
.addr = (__u64)masks,
438
};
439
int ret;
440
441
/* KVM should return error when reserved field is not zero */
442
range.reserved[0] = 1;
443
ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
444
TEST_ASSERT(ret, "KVM doesn't check invalid parameters.");
445
446
/* Get writable masks for feature ID registers */
447
memset(range.reserved, 0, sizeof(range.reserved));
448
vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
449
450
for (int i = 0; i < ARRAY_SIZE(test_regs); i++) {
451
const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits;
452
uint32_t reg_id = test_regs[i].reg;
453
uint64_t reg = KVM_ARM64_SYS_REG(reg_id);
454
int idx;
455
456
/* Get the index to masks array for the idreg */
457
idx = encoding_to_range_idx(reg_id);
458
459
for (int j = 0; ftr_bits[j].type != FTR_END; j++) {
460
/* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */
461
if (aarch64_only && sys_reg_CRm(reg_id) < 4) {
462
ksft_test_result_skip("%s on AARCH64 only system\n",
463
ftr_bits[j].name);
464
continue;
465
}
466
467
/* Make sure the feature field is writable */
468
TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask);
469
470
test_reg_set_fail(vcpu, reg, &ftr_bits[j]);
471
472
test_reg_vals[idx] = test_reg_set_success(vcpu, reg,
473
&ftr_bits[j]);
474
475
ksft_test_result_pass("%s\n", ftr_bits[j].name);
476
}
477
}
478
}
479
480
#define MPAM_IDREG_TEST 6
481
static void test_user_set_mpam_reg(struct kvm_vcpu *vcpu)
482
{
483
uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
484
struct reg_mask_range range = {
485
.addr = (__u64)masks,
486
};
487
uint64_t val;
488
int idx, err;
489
490
/*
491
* If ID_AA64PFR0.MPAM is _not_ officially modifiable and is zero,
492
* check that if it can be set to 1, (i.e. it is supported by the
493
* hardware), that it can't be set to other values.
494
*/
495
496
/* Get writable masks for feature ID registers */
497
memset(range.reserved, 0, sizeof(range.reserved));
498
vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
499
500
/* Writeable? Nothing to test! */
501
idx = encoding_to_range_idx(SYS_ID_AA64PFR0_EL1);
502
if ((masks[idx] & ID_AA64PFR0_EL1_MPAM_MASK) == ID_AA64PFR0_EL1_MPAM_MASK) {
503
ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is officially writable, nothing to test\n");
504
return;
505
}
506
507
/* Get the id register value */
508
val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
509
510
/* Try to set MPAM=0. This should always be possible. */
511
val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
512
val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 0);
513
err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
514
if (err)
515
ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM=0 was not accepted\n");
516
else
517
ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=0 worked\n");
518
519
/* Try to set MPAM=1 */
520
val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
521
val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 1);
522
err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
523
if (err)
524
ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is not writable, nothing to test\n");
525
else
526
ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=1 was writable\n");
527
528
/* Try to set MPAM=2 */
529
val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
530
val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 2);
531
err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
532
if (err)
533
ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM not arbitrarily modifiable\n");
534
else
535
ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM value should not be ignored\n");
536
537
/* And again for ID_AA64PFR1_EL1.MPAM_frac */
538
idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
539
if ((masks[idx] & ID_AA64PFR1_EL1_MPAM_frac_MASK) == ID_AA64PFR1_EL1_MPAM_frac_MASK) {
540
ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is officially writable, nothing to test\n");
541
return;
542
}
543
544
/* Get the id register value */
545
val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
546
547
/* Try to set MPAM_frac=0. This should always be possible. */
548
val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
549
val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 0);
550
err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
551
if (err)
552
ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM_frac=0 was not accepted\n");
553
else
554
ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=0 worked\n");
555
556
/* Try to set MPAM_frac=1 */
557
val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
558
val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 1);
559
err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
560
if (err)
561
ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is not writable, nothing to test\n");
562
else
563
ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=1 was writable\n");
564
565
/* Try to set MPAM_frac=2 */
566
val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
567
val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 2);
568
err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
569
if (err)
570
ksft_test_result_pass("ID_AA64PFR1_EL1.MPAM_frac not arbitrarily modifiable\n");
571
else
572
ksft_test_result_fail("ID_AA64PFR1_EL1.MPAM_frac value should not be ignored\n");
573
}
574
575
#define MTE_IDREG_TEST 1
576
static void test_user_set_mte_reg(struct kvm_vcpu *vcpu)
577
{
578
uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
579
struct reg_mask_range range = {
580
.addr = (__u64)masks,
581
};
582
uint64_t val;
583
uint64_t mte;
584
uint64_t mte_frac;
585
int idx, err;
586
587
val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
588
mte = FIELD_GET(ID_AA64PFR1_EL1_MTE, val);
589
if (!mte) {
590
ksft_test_result_skip("MTE capability not supported, nothing to test\n");
591
return;
592
}
593
594
/* Get writable masks for feature ID registers */
595
memset(range.reserved, 0, sizeof(range.reserved));
596
vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
597
598
idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
599
if ((masks[idx] & ID_AA64PFR1_EL1_MTE_frac_MASK) == ID_AA64PFR1_EL1_MTE_frac_MASK) {
600
ksft_test_result_skip("ID_AA64PFR1_EL1.MTE_frac is officially writable, nothing to test\n");
601
return;
602
}
603
604
/*
605
* When MTE is supported but MTE_ASYMM is not (ID_AA64PFR1_EL1.MTE == 2)
606
* ID_AA64PFR1_EL1.MTE_frac == 0xF indicates MTE_ASYNC is unsupported
607
* and MTE_frac == 0 indicates it is supported.
608
*
609
* As MTE_frac was previously unconditionally read as 0, check
610
* that the set to 0 succeeds but does not change MTE_frac
611
* from unsupported (0xF) to supported (0).
612
*
613
*/
614
mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val);
615
if (mte != ID_AA64PFR1_EL1_MTE_MTE2 ||
616
mte_frac != ID_AA64PFR1_EL1_MTE_frac_NI) {
617
ksft_test_result_skip("MTE_ASYNC or MTE_ASYMM are supported, nothing to test\n");
618
return;
619
}
620
621
/* Try to set MTE_frac=0. */
622
val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK;
623
val |= FIELD_PREP(ID_AA64PFR1_EL1_MTE_frac_MASK, 0);
624
err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
625
if (err) {
626
ksft_test_result_fail("ID_AA64PFR1_EL1.MTE_frac=0 was not accepted\n");
627
return;
628
}
629
630
val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
631
mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val);
632
if (mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI)
633
ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac=0 accepted and still 0xF\n");
634
else
635
ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac no longer 0xF\n");
636
}
637
638
static void test_guest_reg_read(struct kvm_vcpu *vcpu)
639
{
640
bool done = false;
641
struct ucall uc;
642
643
while (!done) {
644
vcpu_run(vcpu);
645
646
switch (get_ucall(vcpu, &uc)) {
647
case UCALL_ABORT:
648
REPORT_GUEST_ASSERT(uc);
649
break;
650
case UCALL_SYNC:
651
/* Make sure the written values are seen by guest */
652
TEST_ASSERT_EQ(test_reg_vals[encoding_to_range_idx(uc.args[2])],
653
uc.args[3]);
654
break;
655
case UCALL_DONE:
656
done = true;
657
break;
658
default:
659
TEST_FAIL("Unexpected ucall: %lu", uc.cmd);
660
}
661
}
662
}
663
664
/* Politely lifted from arch/arm64/include/asm/cache.h */
665
/* Ctypen, bits[3(n - 1) + 2 : 3(n - 1)], for n = 1 to 7 */
666
#define CLIDR_CTYPE_SHIFT(level) (3 * (level - 1))
667
#define CLIDR_CTYPE_MASK(level) (7 << CLIDR_CTYPE_SHIFT(level))
668
#define CLIDR_CTYPE(clidr, level) \
669
(((clidr) & CLIDR_CTYPE_MASK(level)) >> CLIDR_CTYPE_SHIFT(level))
670
671
static void test_clidr(struct kvm_vcpu *vcpu)
672
{
673
uint64_t clidr;
674
int level;
675
676
clidr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1));
677
678
/* find the first empty level in the cache hierarchy */
679
for (level = 1; level <= 7; level++) {
680
if (!CLIDR_CTYPE(clidr, level))
681
break;
682
}
683
684
/*
685
* If you have a mind-boggling 7 levels of cache, congratulations, you
686
* get to fix this.
687
*/
688
TEST_ASSERT(level <= 7, "can't find an empty level in cache hierarchy");
689
690
/* stick in a unified cache level */
691
clidr |= BIT(2) << CLIDR_CTYPE_SHIFT(level);
692
693
vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), clidr);
694
test_reg_vals[encoding_to_range_idx(SYS_CLIDR_EL1)] = clidr;
695
}
696
697
static void test_ctr(struct kvm_vcpu *vcpu)
698
{
699
u64 ctr;
700
701
ctr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0));
702
ctr &= ~CTR_EL0_DIC_MASK;
703
if (ctr & CTR_EL0_IminLine_MASK)
704
ctr--;
705
706
vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), ctr);
707
test_reg_vals[encoding_to_range_idx(SYS_CTR_EL0)] = ctr;
708
}
709
710
static void test_id_reg(struct kvm_vcpu *vcpu, u32 id)
711
{
712
u64 val;
713
714
val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(id));
715
val++;
716
vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(id), val);
717
test_reg_vals[encoding_to_range_idx(id)] = val;
718
}
719
720
static void test_vcpu_ftr_id_regs(struct kvm_vcpu *vcpu)
721
{
722
test_clidr(vcpu);
723
test_ctr(vcpu);
724
725
test_id_reg(vcpu, SYS_MPIDR_EL1);
726
ksft_test_result_pass("%s\n", __func__);
727
}
728
729
static void test_vcpu_non_ftr_id_regs(struct kvm_vcpu *vcpu)
730
{
731
test_id_reg(vcpu, SYS_MIDR_EL1);
732
test_id_reg(vcpu, SYS_REVIDR_EL1);
733
test_id_reg(vcpu, SYS_AIDR_EL1);
734
735
ksft_test_result_pass("%s\n", __func__);
736
}
737
738
static void test_assert_id_reg_unchanged(struct kvm_vcpu *vcpu, uint32_t encoding)
739
{
740
size_t idx = encoding_to_range_idx(encoding);
741
uint64_t observed;
742
743
observed = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding));
744
TEST_ASSERT_EQ(test_reg_vals[idx], observed);
745
}
746
747
static void test_reset_preserves_id_regs(struct kvm_vcpu *vcpu)
748
{
749
/*
750
* Calls KVM_ARM_VCPU_INIT behind the scenes, which will do an
751
* architectural reset of the vCPU.
752
*/
753
aarch64_vcpu_setup(vcpu, NULL);
754
755
for (int i = 0; i < ARRAY_SIZE(test_regs); i++)
756
test_assert_id_reg_unchanged(vcpu, test_regs[i].reg);
757
758
test_assert_id_reg_unchanged(vcpu, SYS_MPIDR_EL1);
759
test_assert_id_reg_unchanged(vcpu, SYS_CLIDR_EL1);
760
test_assert_id_reg_unchanged(vcpu, SYS_CTR_EL0);
761
test_assert_id_reg_unchanged(vcpu, SYS_MIDR_EL1);
762
test_assert_id_reg_unchanged(vcpu, SYS_REVIDR_EL1);
763
test_assert_id_reg_unchanged(vcpu, SYS_AIDR_EL1);
764
765
ksft_test_result_pass("%s\n", __func__);
766
}
767
768
int main(void)
769
{
770
struct kvm_vcpu *vcpu;
771
struct kvm_vm *vm;
772
bool aarch64_only;
773
uint64_t val, el0;
774
int test_cnt, i, j;
775
776
TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES));
777
TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_WRITABLE_IMP_ID_REGS));
778
779
test_wants_mte();
780
781
vm = vm_create(1);
782
vm_enable_cap(vm, KVM_CAP_ARM_WRITABLE_IMP_ID_REGS, 0);
783
vcpu = vm_vcpu_add(vm, 0, guest_code);
784
kvm_arch_vm_finalize_vcpus(vm);
785
786
/* Check for AARCH64 only system */
787
val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
788
el0 = FIELD_GET(ID_AA64PFR0_EL1_EL0, val);
789
aarch64_only = (el0 == ID_AA64PFR0_EL1_EL0_IMP);
790
791
ksft_print_header();
792
793
test_cnt = 3 + MPAM_IDREG_TEST + MTE_IDREG_TEST;
794
for (i = 0; i < ARRAY_SIZE(test_regs); i++)
795
for (j = 0; test_regs[i].ftr_bits[j].type != FTR_END; j++)
796
test_cnt++;
797
798
ksft_set_plan(test_cnt);
799
800
test_vm_ftr_id_regs(vcpu, aarch64_only);
801
test_vcpu_ftr_id_regs(vcpu);
802
test_vcpu_non_ftr_id_regs(vcpu);
803
test_user_set_mpam_reg(vcpu);
804
test_user_set_mte_reg(vcpu);
805
806
test_guest_reg_read(vcpu);
807
808
test_reset_preserves_id_regs(vcpu);
809
810
kvm_vm_free(vm);
811
812
ksft_finished();
813
}
814
815