Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/testing/selftests/kvm/dirty_log_test.c
38189 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* KVM dirty page logging test
4
*
5
* Copyright (C) 2018, Red Hat, Inc.
6
*/
7
#include <stdio.h>
8
#include <stdlib.h>
9
#include <pthread.h>
10
#include <semaphore.h>
11
#include <sys/types.h>
12
#include <signal.h>
13
#include <errno.h>
14
#include <linux/bitmap.h>
15
#include <linux/bitops.h>
16
#include <linux/atomic.h>
17
#include <asm/barrier.h>
18
19
#include "kvm_util.h"
20
#include "test_util.h"
21
#include "guest_modes.h"
22
#include "processor.h"
23
#include "ucall_common.h"
24
25
#define DIRTY_MEM_BITS 30 /* 1G */
26
#define PAGE_SHIFT_4K 12
27
28
/* The memory slot index to track dirty pages */
29
#define TEST_MEM_SLOT_INDEX 1
30
31
/* Default guest test virtual memory offset */
32
#define DEFAULT_GUEST_TEST_MEM 0xc0000000
33
34
/* How many host loops to run (one KVM_GET_DIRTY_LOG for each loop) */
35
#define TEST_HOST_LOOP_N 32UL
36
37
/* Interval for each host loop (ms) */
38
#define TEST_HOST_LOOP_INTERVAL 10UL
39
40
/*
41
* Ensure the vCPU is able to perform a reasonable number of writes in each
42
* iteration to provide a lower bound on coverage.
43
*/
44
#define TEST_MIN_WRITES_PER_ITERATION 0x100
45
46
/* Dirty bitmaps are always little endian, so we need to swap on big endian */
47
#if defined(__s390x__)
48
# define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
49
# define test_bit_le(nr, addr) \
50
test_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
51
# define __set_bit_le(nr, addr) \
52
__set_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
53
# define __clear_bit_le(nr, addr) \
54
__clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
55
# define __test_and_set_bit_le(nr, addr) \
56
__test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
57
# define __test_and_clear_bit_le(nr, addr) \
58
__test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
59
#else
60
# define test_bit_le test_bit
61
# define __set_bit_le __set_bit
62
# define __clear_bit_le __clear_bit
63
# define __test_and_set_bit_le __test_and_set_bit
64
# define __test_and_clear_bit_le __test_and_clear_bit
65
#endif
66
67
#define TEST_DIRTY_RING_COUNT 65536
68
69
#define SIG_IPI SIGUSR1
70
71
/*
72
* Guest/Host shared variables. Ensure addr_gva2hva() and/or
73
* sync_global_to/from_guest() are used when accessing from
74
* the host. READ/WRITE_ONCE() should also be used with anything
75
* that may change.
76
*/
77
static uint64_t host_page_size;
78
static uint64_t guest_page_size;
79
static uint64_t guest_num_pages;
80
static uint64_t iteration;
81
static uint64_t nr_writes;
82
static bool vcpu_stop;
83
84
/*
85
* Guest physical memory offset of the testing memory slot.
86
* This will be set to the topmost valid physical address minus
87
* the test memory size.
88
*/
89
static uint64_t guest_test_phys_mem;
90
91
/*
92
* Guest virtual memory offset of the testing memory slot.
93
* Must not conflict with identity mapped test code.
94
*/
95
static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
96
97
/*
98
* Continuously write to the first 8 bytes of a random pages within
99
* the testing memory region.
100
*/
101
static void guest_code(void)
102
{
103
uint64_t addr;
104
105
#ifdef __s390x__
106
uint64_t i;
107
108
/*
109
* On s390x, all pages of a 1M segment are initially marked as dirty
110
* when a page of the segment is written to for the very first time.
111
* To compensate this specialty in this test, we need to touch all
112
* pages during the first iteration.
113
*/
114
for (i = 0; i < guest_num_pages; i++) {
115
addr = guest_test_virt_mem + i * guest_page_size;
116
vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration));
117
nr_writes++;
118
}
119
#endif
120
121
while (true) {
122
while (!READ_ONCE(vcpu_stop)) {
123
addr = guest_test_virt_mem;
124
addr += (guest_random_u64(&guest_rng) % guest_num_pages)
125
* guest_page_size;
126
addr = align_down(addr, host_page_size);
127
128
vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration));
129
nr_writes++;
130
}
131
132
GUEST_SYNC(1);
133
}
134
}
135
136
/* Host variables */
137
static bool host_quit;
138
139
/* Points to the test VM memory region on which we track dirty logs */
140
static void *host_test_mem;
141
static uint64_t host_num_pages;
142
143
/* For statistics only */
144
static uint64_t host_dirty_count;
145
static uint64_t host_clear_count;
146
147
/* Whether dirty ring reset is requested, or finished */
148
static sem_t sem_vcpu_stop;
149
static sem_t sem_vcpu_cont;
150
151
/*
152
* This is updated by the vcpu thread to tell the host whether it's a
153
* ring-full event. It should only be read until a sem_wait() of
154
* sem_vcpu_stop and before vcpu continues to run.
155
*/
156
static bool dirty_ring_vcpu_ring_full;
157
158
/*
159
* This is only used for verifying the dirty pages. Dirty ring has a very
160
* tricky case when the ring just got full, kvm will do userspace exit due to
161
* ring full. When that happens, the very last PFN is set but actually the
162
* data is not changed (the guest WRITE is not really applied yet), because
163
* we found that the dirty ring is full, refused to continue the vcpu, and
164
* recorded the dirty gfn with the old contents.
165
*
166
* For this specific case, it's safe to skip checking this pfn for this
167
* bit, because it's a redundant bit, and when the write happens later the bit
168
* will be set again. We use this variable to always keep track of the latest
169
* dirty gfn we've collected, so that if a mismatch of data found later in the
170
* verifying process, we let it pass.
171
*/
172
static uint64_t dirty_ring_last_page = -1ULL;
173
174
/*
175
* In addition to the above, it is possible (especially if this
176
* test is run nested) for the above scenario to repeat multiple times:
177
*
178
* The following can happen:
179
*
180
* - L1 vCPU: Memory write is logged to PML but not committed.
181
*
182
* - L1 test thread: Ignores the write because its last dirty ring entry
183
* Resets the dirty ring which:
184
* - Resets the A/D bits in EPT
185
* - Issues tlb flush (invept), which is intercepted by L0
186
*
187
* - L0: frees the whole nested ept mmu root as the response to invept,
188
* and thus ensures that when memory write is retried, it will fault again
189
*
190
* - L1 vCPU: Same memory write is logged to the PML but not committed again.
191
*
192
* - L1 test thread: Ignores the write because its last dirty ring entry (again)
193
* Resets the dirty ring which:
194
* - Resets the A/D bits in EPT (again)
195
* - Issues tlb flush (again) which is intercepted by L0
196
*
197
* ...
198
*
199
* N times
200
*
201
* - L1 vCPU: Memory write is logged in the PML and then committed.
202
* Lots of other memory writes are logged and committed.
203
* ...
204
*
205
* - L1 test thread: Sees the memory write along with other memory writes
206
* in the dirty ring, and since the write is usually not
207
* the last entry in the dirty-ring and has a very outdated
208
* iteration, the test fails.
209
*
210
*
211
* Note that this is only possible when the write was the last log entry
212
* write during iteration N-1, thus remember last iteration last log entry
213
* and also don't fail when it is reported in the next iteration, together with
214
* an outdated iteration count.
215
*/
216
static uint64_t dirty_ring_prev_iteration_last_page;
217
218
enum log_mode_t {
219
/* Only use KVM_GET_DIRTY_LOG for logging */
220
LOG_MODE_DIRTY_LOG = 0,
221
222
/* Use both KVM_[GET|CLEAR]_DIRTY_LOG for logging */
223
LOG_MODE_CLEAR_LOG = 1,
224
225
/* Use dirty ring for logging */
226
LOG_MODE_DIRTY_RING = 2,
227
228
LOG_MODE_NUM,
229
230
/* Run all supported modes */
231
LOG_MODE_ALL = LOG_MODE_NUM,
232
};
233
234
/* Mode of logging to test. Default is to run all supported modes */
235
static enum log_mode_t host_log_mode_option = LOG_MODE_ALL;
236
/* Logging mode for current run */
237
static enum log_mode_t host_log_mode;
238
static pthread_t vcpu_thread;
239
static uint32_t test_dirty_ring_count = TEST_DIRTY_RING_COUNT;
240
241
static bool clear_log_supported(void)
242
{
243
return kvm_has_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
244
}
245
246
static void clear_log_create_vm_done(struct kvm_vm *vm)
247
{
248
u64 manual_caps;
249
250
manual_caps = kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
251
TEST_ASSERT(manual_caps, "MANUAL_CAPS is zero!");
252
manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
253
KVM_DIRTY_LOG_INITIALLY_SET);
254
vm_enable_cap(vm, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, manual_caps);
255
}
256
257
static void dirty_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
258
void *bitmap, uint32_t num_pages,
259
uint32_t *unused)
260
{
261
kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap);
262
}
263
264
static void clear_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
265
void *bitmap, uint32_t num_pages,
266
uint32_t *unused)
267
{
268
kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap);
269
kvm_vm_clear_dirty_log(vcpu->vm, slot, bitmap, 0, num_pages);
270
}
271
272
/* Should only be called after a GUEST_SYNC */
273
static void vcpu_handle_sync_stop(void)
274
{
275
if (READ_ONCE(vcpu_stop)) {
276
sem_post(&sem_vcpu_stop);
277
sem_wait(&sem_vcpu_cont);
278
}
279
}
280
281
static void default_after_vcpu_run(struct kvm_vcpu *vcpu)
282
{
283
struct kvm_run *run = vcpu->run;
284
285
TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC,
286
"Invalid guest sync status: exit_reason=%s",
287
exit_reason_str(run->exit_reason));
288
289
vcpu_handle_sync_stop();
290
}
291
292
static bool dirty_ring_supported(void)
293
{
294
return (kvm_has_cap(KVM_CAP_DIRTY_LOG_RING) ||
295
kvm_has_cap(KVM_CAP_DIRTY_LOG_RING_ACQ_REL));
296
}
297
298
static void dirty_ring_create_vm_done(struct kvm_vm *vm)
299
{
300
uint64_t pages;
301
uint32_t limit;
302
303
/*
304
* We rely on vcpu exit due to full dirty ring state. Adjust
305
* the ring buffer size to ensure we're able to reach the
306
* full dirty ring state.
307
*/
308
pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3;
309
pages = vm_adjust_num_guest_pages(vm->mode, pages);
310
if (vm->page_size < getpagesize())
311
pages = vm_num_host_pages(vm->mode, pages);
312
313
limit = 1 << (31 - __builtin_clz(pages));
314
test_dirty_ring_count = 1 << (31 - __builtin_clz(test_dirty_ring_count));
315
test_dirty_ring_count = min(limit, test_dirty_ring_count);
316
pr_info("dirty ring count: 0x%x\n", test_dirty_ring_count);
317
318
/*
319
* Switch to dirty ring mode after VM creation but before any
320
* of the vcpu creation.
321
*/
322
vm_enable_dirty_ring(vm, test_dirty_ring_count *
323
sizeof(struct kvm_dirty_gfn));
324
}
325
326
static inline bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
327
{
328
return smp_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
329
}
330
331
static inline void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
332
{
333
smp_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
334
}
335
336
static uint32_t dirty_ring_collect_one(struct kvm_dirty_gfn *dirty_gfns,
337
int slot, void *bitmap,
338
uint32_t num_pages, uint32_t *fetch_index)
339
{
340
struct kvm_dirty_gfn *cur;
341
uint32_t count = 0;
342
343
while (true) {
344
cur = &dirty_gfns[*fetch_index % test_dirty_ring_count];
345
if (!dirty_gfn_is_dirtied(cur))
346
break;
347
TEST_ASSERT(cur->slot == slot, "Slot number didn't match: "
348
"%u != %u", cur->slot, slot);
349
TEST_ASSERT(cur->offset < num_pages, "Offset overflow: "
350
"0x%llx >= 0x%x", cur->offset, num_pages);
351
__set_bit_le(cur->offset, bitmap);
352
dirty_ring_last_page = cur->offset;
353
dirty_gfn_set_collected(cur);
354
(*fetch_index)++;
355
count++;
356
}
357
358
return count;
359
}
360
361
static void dirty_ring_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
362
void *bitmap, uint32_t num_pages,
363
uint32_t *ring_buf_idx)
364
{
365
uint32_t count, cleared;
366
367
/* Only have one vcpu */
368
count = dirty_ring_collect_one(vcpu_map_dirty_ring(vcpu),
369
slot, bitmap, num_pages,
370
ring_buf_idx);
371
372
cleared = kvm_vm_reset_dirty_ring(vcpu->vm);
373
374
/*
375
* Cleared pages should be the same as collected, as KVM is supposed to
376
* clear only the entries that have been harvested.
377
*/
378
TEST_ASSERT(cleared == count, "Reset dirty pages (%u) mismatch "
379
"with collected (%u)", cleared, count);
380
}
381
382
static void dirty_ring_after_vcpu_run(struct kvm_vcpu *vcpu)
383
{
384
struct kvm_run *run = vcpu->run;
385
386
/* A ucall-sync or ring-full event is allowed */
387
if (get_ucall(vcpu, NULL) == UCALL_SYNC) {
388
vcpu_handle_sync_stop();
389
} else if (run->exit_reason == KVM_EXIT_DIRTY_RING_FULL) {
390
WRITE_ONCE(dirty_ring_vcpu_ring_full, true);
391
vcpu_handle_sync_stop();
392
} else {
393
TEST_ASSERT(false, "Invalid guest sync status: "
394
"exit_reason=%s",
395
exit_reason_str(run->exit_reason));
396
}
397
}
398
399
struct log_mode {
400
const char *name;
401
/* Return true if this mode is supported, otherwise false */
402
bool (*supported)(void);
403
/* Hook when the vm creation is done (before vcpu creation) */
404
void (*create_vm_done)(struct kvm_vm *vm);
405
/* Hook to collect the dirty pages into the bitmap provided */
406
void (*collect_dirty_pages) (struct kvm_vcpu *vcpu, int slot,
407
void *bitmap, uint32_t num_pages,
408
uint32_t *ring_buf_idx);
409
/* Hook to call when after each vcpu run */
410
void (*after_vcpu_run)(struct kvm_vcpu *vcpu);
411
} log_modes[LOG_MODE_NUM] = {
412
{
413
.name = "dirty-log",
414
.collect_dirty_pages = dirty_log_collect_dirty_pages,
415
.after_vcpu_run = default_after_vcpu_run,
416
},
417
{
418
.name = "clear-log",
419
.supported = clear_log_supported,
420
.create_vm_done = clear_log_create_vm_done,
421
.collect_dirty_pages = clear_log_collect_dirty_pages,
422
.after_vcpu_run = default_after_vcpu_run,
423
},
424
{
425
.name = "dirty-ring",
426
.supported = dirty_ring_supported,
427
.create_vm_done = dirty_ring_create_vm_done,
428
.collect_dirty_pages = dirty_ring_collect_dirty_pages,
429
.after_vcpu_run = dirty_ring_after_vcpu_run,
430
},
431
};
432
433
static void log_modes_dump(void)
434
{
435
int i;
436
437
printf("all");
438
for (i = 0; i < LOG_MODE_NUM; i++)
439
printf(", %s", log_modes[i].name);
440
printf("\n");
441
}
442
443
static bool log_mode_supported(void)
444
{
445
struct log_mode *mode = &log_modes[host_log_mode];
446
447
if (mode->supported)
448
return mode->supported();
449
450
return true;
451
}
452
453
static void log_mode_create_vm_done(struct kvm_vm *vm)
454
{
455
struct log_mode *mode = &log_modes[host_log_mode];
456
457
if (mode->create_vm_done)
458
mode->create_vm_done(vm);
459
}
460
461
static void log_mode_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
462
void *bitmap, uint32_t num_pages,
463
uint32_t *ring_buf_idx)
464
{
465
struct log_mode *mode = &log_modes[host_log_mode];
466
467
TEST_ASSERT(mode->collect_dirty_pages != NULL,
468
"collect_dirty_pages() is required for any log mode!");
469
mode->collect_dirty_pages(vcpu, slot, bitmap, num_pages, ring_buf_idx);
470
}
471
472
static void log_mode_after_vcpu_run(struct kvm_vcpu *vcpu)
473
{
474
struct log_mode *mode = &log_modes[host_log_mode];
475
476
if (mode->after_vcpu_run)
477
mode->after_vcpu_run(vcpu);
478
}
479
480
static void *vcpu_worker(void *data)
481
{
482
struct kvm_vcpu *vcpu = data;
483
484
sem_wait(&sem_vcpu_cont);
485
486
while (!READ_ONCE(host_quit)) {
487
/* Let the guest dirty the random pages */
488
vcpu_run(vcpu);
489
log_mode_after_vcpu_run(vcpu);
490
}
491
492
return NULL;
493
}
494
495
static void vm_dirty_log_verify(enum vm_guest_mode mode, unsigned long **bmap)
496
{
497
uint64_t page, nr_dirty_pages = 0, nr_clean_pages = 0;
498
uint64_t step = vm_num_host_pages(mode, 1);
499
500
for (page = 0; page < host_num_pages; page += step) {
501
uint64_t val = *(uint64_t *)(host_test_mem + page * host_page_size);
502
bool bmap0_dirty = __test_and_clear_bit_le(page, bmap[0]);
503
504
/*
505
* Ensure both bitmaps are cleared, as a page can be written
506
* multiple times per iteration, i.e. can show up in both
507
* bitmaps, and the dirty ring is additive, i.e. doesn't purge
508
* bitmap entries from previous collections.
509
*/
510
if (__test_and_clear_bit_le(page, bmap[1]) || bmap0_dirty) {
511
nr_dirty_pages++;
512
513
/*
514
* If the page is dirty, the value written to memory
515
* should be the current iteration number.
516
*/
517
if (val == iteration)
518
continue;
519
520
if (host_log_mode == LOG_MODE_DIRTY_RING) {
521
/*
522
* The last page in the ring from previous
523
* iteration can be written with the value
524
* from the previous iteration, as the value to
525
* be written may be cached in a CPU register.
526
*/
527
if (page == dirty_ring_prev_iteration_last_page &&
528
val == iteration - 1)
529
continue;
530
531
/*
532
* Any value from a previous iteration is legal
533
* for the last entry, as the write may not yet
534
* have retired, i.e. the page may hold whatever
535
* it had before this iteration started.
536
*/
537
if (page == dirty_ring_last_page &&
538
val < iteration)
539
continue;
540
} else if (!val && iteration == 1 && bmap0_dirty) {
541
/*
542
* When testing get+clear, the dirty bitmap
543
* starts with all bits set, and so the first
544
* iteration can observe a "dirty" page that
545
* was never written, but only in the first
546
* bitmap (collecting the bitmap also clears
547
* all dirty pages).
548
*/
549
continue;
550
}
551
552
TEST_FAIL("Dirty page %lu value (%lu) != iteration (%lu) "
553
"(last = %lu, prev_last = %lu)",
554
page, val, iteration, dirty_ring_last_page,
555
dirty_ring_prev_iteration_last_page);
556
} else {
557
nr_clean_pages++;
558
/*
559
* If cleared, the value written can be any
560
* value smaller than the iteration number.
561
*/
562
TEST_ASSERT(val < iteration,
563
"Clear page %lu value (%lu) >= iteration (%lu) "
564
"(last = %lu, prev_last = %lu)",
565
page, val, iteration, dirty_ring_last_page,
566
dirty_ring_prev_iteration_last_page);
567
}
568
}
569
570
pr_info("Iteration %2ld: dirty: %-6lu clean: %-6lu writes: %-6lu\n",
571
iteration, nr_dirty_pages, nr_clean_pages, nr_writes);
572
573
host_dirty_count += nr_dirty_pages;
574
host_clear_count += nr_clean_pages;
575
}
576
577
static struct kvm_vm *create_vm(enum vm_guest_mode mode, struct kvm_vcpu **vcpu,
578
uint64_t extra_mem_pages, void *guest_code)
579
{
580
struct kvm_vm *vm;
581
582
pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
583
584
vm = __vm_create(VM_SHAPE(mode), 1, extra_mem_pages);
585
586
log_mode_create_vm_done(vm);
587
*vcpu = vm_vcpu_add(vm, 0, guest_code);
588
kvm_arch_vm_finalize_vcpus(vm);
589
return vm;
590
}
591
592
struct test_params {
593
unsigned long iterations;
594
unsigned long interval;
595
uint64_t phys_offset;
596
};
597
598
static void run_test(enum vm_guest_mode mode, void *arg)
599
{
600
struct test_params *p = arg;
601
struct kvm_vcpu *vcpu;
602
struct kvm_vm *vm;
603
unsigned long *bmap[2];
604
uint32_t ring_buf_idx = 0;
605
int sem_val;
606
607
if (!log_mode_supported()) {
608
print_skip("Log mode '%s' not supported",
609
log_modes[host_log_mode].name);
610
return;
611
}
612
613
/*
614
* We reserve page table for 2 times of extra dirty mem which
615
* will definitely cover the original (1G+) test range. Here
616
* we do the calculation with 4K page size which is the
617
* smallest so the page number will be enough for all archs
618
* (e.g., 64K page size guest will need even less memory for
619
* page tables).
620
*/
621
vm = create_vm(mode, &vcpu,
622
2ul << (DIRTY_MEM_BITS - PAGE_SHIFT_4K), guest_code);
623
624
guest_page_size = vm->page_size;
625
/*
626
* A little more than 1G of guest page sized pages. Cover the
627
* case where the size is not aligned to 64 pages.
628
*/
629
guest_num_pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3;
630
guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages);
631
632
host_page_size = getpagesize();
633
host_num_pages = vm_num_host_pages(mode, guest_num_pages);
634
635
if (!p->phys_offset) {
636
guest_test_phys_mem = (vm->max_gfn - guest_num_pages) *
637
guest_page_size;
638
guest_test_phys_mem = align_down(guest_test_phys_mem, host_page_size);
639
} else {
640
guest_test_phys_mem = p->phys_offset;
641
}
642
643
#ifdef __s390x__
644
/* Align to 1M (segment size) */
645
guest_test_phys_mem = align_down(guest_test_phys_mem, 1 << 20);
646
647
/*
648
* The workaround in guest_code() to write all pages prior to the first
649
* iteration isn't compatible with the dirty ring, as the dirty ring
650
* support relies on the vCPU to actually stop when vcpu_stop is set so
651
* that the vCPU doesn't hang waiting for the dirty ring to be emptied.
652
*/
653
TEST_ASSERT(host_log_mode != LOG_MODE_DIRTY_RING,
654
"Test needs to be updated to support s390 dirty ring");
655
#endif
656
657
pr_info("guest physical test memory offset: 0x%lx\n", guest_test_phys_mem);
658
659
bmap[0] = bitmap_zalloc(host_num_pages);
660
bmap[1] = bitmap_zalloc(host_num_pages);
661
662
/* Add an extra memory slot for testing dirty logging */
663
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
664
guest_test_phys_mem,
665
TEST_MEM_SLOT_INDEX,
666
guest_num_pages,
667
KVM_MEM_LOG_DIRTY_PAGES);
668
669
/* Do mapping for the dirty track memory slot */
670
virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages);
671
672
/* Cache the HVA pointer of the region */
673
host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem);
674
675
/* Export the shared variables to the guest */
676
sync_global_to_guest(vm, host_page_size);
677
sync_global_to_guest(vm, guest_page_size);
678
sync_global_to_guest(vm, guest_test_virt_mem);
679
sync_global_to_guest(vm, guest_num_pages);
680
681
host_dirty_count = 0;
682
host_clear_count = 0;
683
WRITE_ONCE(host_quit, false);
684
685
/*
686
* Ensure the previous iteration didn't leave a dangling semaphore, i.e.
687
* that the main task and vCPU worker were synchronized and completed
688
* verification of all iterations.
689
*/
690
sem_getvalue(&sem_vcpu_stop, &sem_val);
691
TEST_ASSERT_EQ(sem_val, 0);
692
sem_getvalue(&sem_vcpu_cont, &sem_val);
693
TEST_ASSERT_EQ(sem_val, 0);
694
695
TEST_ASSERT_EQ(vcpu_stop, false);
696
697
pthread_create(&vcpu_thread, NULL, vcpu_worker, vcpu);
698
699
for (iteration = 1; iteration <= p->iterations; iteration++) {
700
unsigned long i;
701
702
sync_global_to_guest(vm, iteration);
703
704
WRITE_ONCE(nr_writes, 0);
705
sync_global_to_guest(vm, nr_writes);
706
707
dirty_ring_prev_iteration_last_page = dirty_ring_last_page;
708
WRITE_ONCE(dirty_ring_vcpu_ring_full, false);
709
710
sem_post(&sem_vcpu_cont);
711
712
/*
713
* Let the vCPU run beyond the configured interval until it has
714
* performed the minimum number of writes. This verifies the
715
* guest is making forward progress, e.g. isn't stuck because
716
* of a KVM bug, and puts a firm floor on test coverage.
717
*/
718
for (i = 0; i < p->interval || nr_writes < TEST_MIN_WRITES_PER_ITERATION; i++) {
719
/*
720
* Sleep in 1ms chunks to keep the interval math simple
721
* and so that the test doesn't run too far beyond the
722
* specified interval.
723
*/
724
usleep(1000);
725
726
sync_global_from_guest(vm, nr_writes);
727
728
/*
729
* Reap dirty pages while the guest is running so that
730
* dirty ring full events are resolved, i.e. so that a
731
* larger interval doesn't always end up with a vCPU
732
* that's effectively blocked. Collecting while the
733
* guest is running also verifies KVM doesn't lose any
734
* state.
735
*
736
* For bitmap modes, KVM overwrites the entire bitmap,
737
* i.e. collecting the bitmaps is destructive. Collect
738
* the bitmap only on the first pass, otherwise this
739
* test would lose track of dirty pages.
740
*/
741
if (i && host_log_mode != LOG_MODE_DIRTY_RING)
742
continue;
743
744
/*
745
* For the dirty ring, empty the ring on subsequent
746
* passes only if the ring was filled at least once,
747
* to verify KVM's handling of a full ring (emptying
748
* the ring on every pass would make it unlikely the
749
* vCPU would ever fill the fing).
750
*/
751
if (i && !READ_ONCE(dirty_ring_vcpu_ring_full))
752
continue;
753
754
log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX,
755
bmap[0], host_num_pages,
756
&ring_buf_idx);
757
}
758
759
/*
760
* Stop the vCPU prior to collecting and verifying the dirty
761
* log. If the vCPU is allowed to run during collection, then
762
* pages that are written during this iteration may be missed,
763
* i.e. collected in the next iteration. And if the vCPU is
764
* writing memory during verification, pages that this thread
765
* sees as clean may be written with this iteration's value.
766
*/
767
WRITE_ONCE(vcpu_stop, true);
768
sync_global_to_guest(vm, vcpu_stop);
769
sem_wait(&sem_vcpu_stop);
770
771
/*
772
* Clear vcpu_stop after the vCPU thread has acknowledge the
773
* stop request and is waiting, i.e. is definitely not running!
774
*/
775
WRITE_ONCE(vcpu_stop, false);
776
sync_global_to_guest(vm, vcpu_stop);
777
778
/*
779
* Sync the number of writes performed before verification, the
780
* info will be printed along with the dirty/clean page counts.
781
*/
782
sync_global_from_guest(vm, nr_writes);
783
784
/*
785
* NOTE: for dirty ring, it's possible that we didn't stop at
786
* GUEST_SYNC but instead we stopped because ring is full;
787
* that's okay too because ring full means we're only missing
788
* the flush of the last page, and since we handle the last
789
* page specially verification will succeed anyway.
790
*/
791
log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX,
792
bmap[1], host_num_pages,
793
&ring_buf_idx);
794
vm_dirty_log_verify(mode, bmap);
795
}
796
797
WRITE_ONCE(host_quit, true);
798
sem_post(&sem_vcpu_cont);
799
800
pthread_join(vcpu_thread, NULL);
801
802
pr_info("Total bits checked: dirty (%lu), clear (%lu)\n",
803
host_dirty_count, host_clear_count);
804
805
free(bmap[0]);
806
free(bmap[1]);
807
kvm_vm_free(vm);
808
}
809
810
static void help(char *name)
811
{
812
puts("");
813
printf("usage: %s [-h] [-i iterations] [-I interval] "
814
"[-p offset] [-m mode]\n", name);
815
puts("");
816
printf(" -c: hint to dirty ring size, in number of entries\n");
817
printf(" (only useful for dirty-ring test; default: %"PRIu32")\n",
818
TEST_DIRTY_RING_COUNT);
819
printf(" -i: specify iteration counts (default: %"PRIu64")\n",
820
TEST_HOST_LOOP_N);
821
printf(" -I: specify interval in ms (default: %"PRIu64" ms)\n",
822
TEST_HOST_LOOP_INTERVAL);
823
printf(" -p: specify guest physical test memory offset\n"
824
" Warning: a low offset can conflict with the loaded test code.\n");
825
printf(" -M: specify the host logging mode "
826
"(default: run all log modes). Supported modes: \n\t");
827
log_modes_dump();
828
guest_modes_help();
829
puts("");
830
exit(0);
831
}
832
833
int main(int argc, char *argv[])
834
{
835
struct test_params p = {
836
.iterations = TEST_HOST_LOOP_N,
837
.interval = TEST_HOST_LOOP_INTERVAL,
838
};
839
int opt, i;
840
841
sem_init(&sem_vcpu_stop, 0, 0);
842
sem_init(&sem_vcpu_cont, 0, 0);
843
844
guest_modes_append_default();
845
846
while ((opt = getopt(argc, argv, "c:hi:I:p:m:M:")) != -1) {
847
switch (opt) {
848
case 'c':
849
test_dirty_ring_count = strtol(optarg, NULL, 10);
850
break;
851
case 'i':
852
p.iterations = strtol(optarg, NULL, 10);
853
break;
854
case 'I':
855
p.interval = strtol(optarg, NULL, 10);
856
break;
857
case 'p':
858
p.phys_offset = strtoull(optarg, NULL, 0);
859
break;
860
case 'm':
861
guest_modes_cmdline(optarg);
862
break;
863
case 'M':
864
if (!strcmp(optarg, "all")) {
865
host_log_mode_option = LOG_MODE_ALL;
866
break;
867
}
868
for (i = 0; i < LOG_MODE_NUM; i++) {
869
if (!strcmp(optarg, log_modes[i].name)) {
870
pr_info("Setting log mode to: '%s'\n",
871
optarg);
872
host_log_mode_option = i;
873
break;
874
}
875
}
876
if (i == LOG_MODE_NUM) {
877
printf("Log mode '%s' invalid. Please choose "
878
"from: ", optarg);
879
log_modes_dump();
880
exit(1);
881
}
882
break;
883
case 'h':
884
default:
885
help(argv[0]);
886
break;
887
}
888
}
889
890
TEST_ASSERT(p.iterations > 0, "Iterations must be greater than zero");
891
TEST_ASSERT(p.interval > 0, "Interval must be greater than zero");
892
893
pr_info("Test iterations: %"PRIu64", interval: %"PRIu64" (ms)\n",
894
p.iterations, p.interval);
895
896
if (host_log_mode_option == LOG_MODE_ALL) {
897
/* Run each log mode */
898
for (i = 0; i < LOG_MODE_NUM; i++) {
899
pr_info("Testing Log Mode '%s'\n", log_modes[i].name);
900
host_log_mode = i;
901
for_each_guest_mode(run_test, &p);
902
}
903
} else {
904
host_log_mode = host_log_mode_option;
905
for_each_guest_mode(run_test, &p);
906
}
907
908
return 0;
909
}
910
911