Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/testing/selftests/kvm/include/kvm_util.h
38237 views
1
/* SPDX-License-Identifier: GPL-2.0-only */
2
/*
3
* Copyright (C) 2018, Google LLC.
4
*/
5
#ifndef SELFTEST_KVM_UTIL_H
6
#define SELFTEST_KVM_UTIL_H
7
8
#include "test_util.h"
9
10
#include <linux/compiler.h>
11
#include "linux/hashtable.h"
12
#include "linux/list.h"
13
#include <linux/kernel.h>
14
#include <linux/kvm.h>
15
#include "linux/rbtree.h"
16
#include <linux/types.h>
17
18
#include <asm/atomic.h>
19
#include <asm/kvm.h>
20
21
#include <sys/eventfd.h>
22
#include <sys/ioctl.h>
23
24
#include <pthread.h>
25
26
#include "kvm_syscalls.h"
27
#include "kvm_util_arch.h"
28
#include "kvm_util_types.h"
29
#include "sparsebit.h"
30
31
#define KVM_DEV_PATH "/dev/kvm"
32
#define KVM_MAX_VCPUS 512
33
34
#define NSEC_PER_SEC 1000000000L
35
36
struct userspace_mem_region {
37
struct kvm_userspace_memory_region2 region;
38
struct sparsebit *unused_phy_pages;
39
struct sparsebit *protected_phy_pages;
40
int fd;
41
off_t offset;
42
enum vm_mem_backing_src_type backing_src_type;
43
void *host_mem;
44
void *host_alias;
45
void *mmap_start;
46
void *mmap_alias;
47
size_t mmap_size;
48
struct rb_node gpa_node;
49
struct rb_node hva_node;
50
struct hlist_node slot_node;
51
};
52
53
struct kvm_binary_stats {
54
int fd;
55
struct kvm_stats_header header;
56
struct kvm_stats_desc *desc;
57
};
58
59
struct kvm_vcpu {
60
struct list_head list;
61
uint32_t id;
62
int fd;
63
struct kvm_vm *vm;
64
struct kvm_run *run;
65
#ifdef __x86_64__
66
struct kvm_cpuid2 *cpuid;
67
#endif
68
#ifdef __aarch64__
69
struct kvm_vcpu_init init;
70
#endif
71
struct kvm_binary_stats stats;
72
struct kvm_dirty_gfn *dirty_gfns;
73
uint32_t fetch_index;
74
uint32_t dirty_gfns_count;
75
};
76
77
struct userspace_mem_regions {
78
struct rb_root gpa_tree;
79
struct rb_root hva_tree;
80
DECLARE_HASHTABLE(slot_hash, 9);
81
};
82
83
enum kvm_mem_region_type {
84
MEM_REGION_CODE,
85
MEM_REGION_DATA,
86
MEM_REGION_PT,
87
MEM_REGION_TEST_DATA,
88
NR_MEM_REGIONS,
89
};
90
91
struct kvm_vm {
92
int mode;
93
unsigned long type;
94
int kvm_fd;
95
int fd;
96
unsigned int pgtable_levels;
97
unsigned int page_size;
98
unsigned int page_shift;
99
unsigned int pa_bits;
100
unsigned int va_bits;
101
uint64_t max_gfn;
102
struct list_head vcpus;
103
struct userspace_mem_regions regions;
104
struct sparsebit *vpages_valid;
105
struct sparsebit *vpages_mapped;
106
bool has_irqchip;
107
bool pgd_created;
108
vm_paddr_t ucall_mmio_addr;
109
vm_paddr_t pgd;
110
vm_vaddr_t handlers;
111
uint32_t dirty_ring_size;
112
uint64_t gpa_tag_mask;
113
114
struct kvm_vm_arch arch;
115
116
struct kvm_binary_stats stats;
117
118
/*
119
* KVM region slots. These are the default memslots used by page
120
* allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
121
* memslot.
122
*/
123
uint32_t memslots[NR_MEM_REGIONS];
124
};
125
126
struct vcpu_reg_sublist {
127
const char *name;
128
long capability;
129
int feature;
130
int feature_type;
131
bool finalize;
132
__u64 *regs;
133
__u64 regs_n;
134
__u64 *rejects_set;
135
__u64 rejects_set_n;
136
__u64 *skips_set;
137
__u64 skips_set_n;
138
};
139
140
struct vcpu_reg_list {
141
char *name;
142
struct vcpu_reg_sublist sublists[];
143
};
144
145
#define for_each_sublist(c, s) \
146
for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
147
148
#define kvm_for_each_vcpu(vm, i, vcpu) \
149
for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \
150
if (!((vcpu) = vm->vcpus[i])) \
151
continue; \
152
else
153
154
struct userspace_mem_region *
155
memslot2region(struct kvm_vm *vm, uint32_t memslot);
156
157
static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
158
enum kvm_mem_region_type type)
159
{
160
assert(type < NR_MEM_REGIONS);
161
return memslot2region(vm, vm->memslots[type]);
162
}
163
164
/* Minimum allocated guest virtual and physical addresses */
165
#define KVM_UTIL_MIN_VADDR 0x2000
166
#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
167
168
#define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000
169
#define DEFAULT_STACK_PGS 5
170
171
enum vm_guest_mode {
172
VM_MODE_P52V48_4K,
173
VM_MODE_P52V48_16K,
174
VM_MODE_P52V48_64K,
175
VM_MODE_P48V48_4K,
176
VM_MODE_P48V48_16K,
177
VM_MODE_P48V48_64K,
178
VM_MODE_P40V48_4K,
179
VM_MODE_P40V48_16K,
180
VM_MODE_P40V48_64K,
181
VM_MODE_PXXVYY_4K, /* For 48-bit or 57-bit VA, depending on host support */
182
VM_MODE_P47V64_4K,
183
VM_MODE_P44V64_4K,
184
VM_MODE_P36V48_4K,
185
VM_MODE_P36V48_16K,
186
VM_MODE_P36V48_64K,
187
VM_MODE_P47V47_16K,
188
VM_MODE_P36V47_16K,
189
NUM_VM_MODES,
190
};
191
192
struct vm_shape {
193
uint32_t type;
194
uint8_t mode;
195
uint8_t pad0;
196
uint16_t pad1;
197
};
198
199
kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t));
200
201
#define VM_TYPE_DEFAULT 0
202
203
#define VM_SHAPE(__mode) \
204
({ \
205
struct vm_shape shape = { \
206
.mode = (__mode), \
207
.type = VM_TYPE_DEFAULT \
208
}; \
209
\
210
shape; \
211
})
212
213
#if defined(__aarch64__)
214
215
extern enum vm_guest_mode vm_mode_default;
216
217
#define VM_MODE_DEFAULT vm_mode_default
218
#define MIN_PAGE_SHIFT 12U
219
#define ptes_per_page(page_size) ((page_size) / 8)
220
221
#elif defined(__x86_64__)
222
223
#define VM_MODE_DEFAULT VM_MODE_PXXVYY_4K
224
#define MIN_PAGE_SHIFT 12U
225
#define ptes_per_page(page_size) ((page_size) / 8)
226
227
#elif defined(__s390x__)
228
229
#define VM_MODE_DEFAULT VM_MODE_P44V64_4K
230
#define MIN_PAGE_SHIFT 12U
231
#define ptes_per_page(page_size) ((page_size) / 16)
232
233
#elif defined(__riscv)
234
235
#if __riscv_xlen == 32
236
#error "RISC-V 32-bit kvm selftests not supported"
237
#endif
238
239
#define VM_MODE_DEFAULT VM_MODE_P40V48_4K
240
#define MIN_PAGE_SHIFT 12U
241
#define ptes_per_page(page_size) ((page_size) / 8)
242
243
#elif defined(__loongarch__)
244
#define VM_MODE_DEFAULT VM_MODE_P47V47_16K
245
#define MIN_PAGE_SHIFT 12U
246
#define ptes_per_page(page_size) ((page_size) / 8)
247
248
#endif
249
250
#define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT)
251
252
#define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT)
253
#define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE)
254
255
struct vm_guest_mode_params {
256
unsigned int pa_bits;
257
unsigned int va_bits;
258
unsigned int page_size;
259
unsigned int page_shift;
260
};
261
extern const struct vm_guest_mode_params vm_guest_mode_params[];
262
263
int __open_path_or_exit(const char *path, int flags, const char *enoent_help);
264
int open_path_or_exit(const char *path, int flags);
265
int open_kvm_dev_path_or_exit(void);
266
267
int kvm_get_module_param_integer(const char *module_name, const char *param);
268
bool kvm_get_module_param_bool(const char *module_name, const char *param);
269
270
static inline bool get_kvm_param_bool(const char *param)
271
{
272
return kvm_get_module_param_bool("kvm", param);
273
}
274
275
static inline int get_kvm_param_integer(const char *param)
276
{
277
return kvm_get_module_param_integer("kvm", param);
278
}
279
280
unsigned int kvm_check_cap(long cap);
281
282
static inline bool kvm_has_cap(long cap)
283
{
284
return kvm_check_cap(cap);
285
}
286
287
/*
288
* Use the "inner", double-underscore macro when reporting errors from within
289
* other macros so that the name of ioctl() and not its literal numeric value
290
* is printed on error. The "outer" macro is strongly preferred when reporting
291
* errors "directly", i.e. without an additional layer of macros, as it reduces
292
* the probability of passing in the wrong string.
293
*/
294
#define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret)
295
#define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
296
297
#define kvm_do_ioctl(fd, cmd, arg) \
298
({ \
299
kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \
300
ioctl(fd, cmd, arg); \
301
})
302
303
#define __kvm_ioctl(kvm_fd, cmd, arg) \
304
kvm_do_ioctl(kvm_fd, cmd, arg)
305
306
#define kvm_ioctl(kvm_fd, cmd, arg) \
307
({ \
308
int ret = __kvm_ioctl(kvm_fd, cmd, arg); \
309
\
310
TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \
311
})
312
313
static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
314
315
#define __vm_ioctl(vm, cmd, arg) \
316
({ \
317
static_assert_is_vm(vm); \
318
kvm_do_ioctl((vm)->fd, cmd, arg); \
319
})
320
321
/*
322
* Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if
323
* the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM,
324
* probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before
325
* selftests existed and (b) should never outright fail, i.e. is supposed to
326
* return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the
327
* VM and its vCPUs, including KVM_CHECK_EXTENSION.
328
*/
329
#define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \
330
do { \
331
int __errno = errno; \
332
\
333
static_assert_is_vm(vm); \
334
\
335
if (cond) \
336
break; \
337
\
338
if (errno == EIO && \
339
__vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \
340
TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \
341
TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \
342
} \
343
errno = __errno; \
344
TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \
345
} while (0)
346
347
#define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \
348
__TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm)
349
350
#define vm_ioctl(vm, cmd, arg) \
351
({ \
352
int ret = __vm_ioctl(vm, cmd, arg); \
353
\
354
__TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \
355
})
356
357
static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
358
359
#define __vcpu_ioctl(vcpu, cmd, arg) \
360
({ \
361
static_assert_is_vcpu(vcpu); \
362
kvm_do_ioctl((vcpu)->fd, cmd, arg); \
363
})
364
365
#define vcpu_ioctl(vcpu, cmd, arg) \
366
({ \
367
int ret = __vcpu_ioctl(vcpu, cmd, arg); \
368
\
369
__TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \
370
})
371
372
/*
373
* Looks up and returns the value corresponding to the capability
374
* (KVM_CAP_*) given by cap.
375
*/
376
static inline int vm_check_cap(struct kvm_vm *vm, long cap)
377
{
378
int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
379
380
TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm);
381
return ret;
382
}
383
384
static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
385
{
386
struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
387
388
return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
389
}
390
static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
391
{
392
struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
393
394
vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
395
}
396
397
static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa,
398
uint64_t size, uint64_t attributes)
399
{
400
struct kvm_memory_attributes attr = {
401
.attributes = attributes,
402
.address = gpa,
403
.size = size,
404
.flags = 0,
405
};
406
407
/*
408
* KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows
409
* need significant enhancements to support multiple attributes.
410
*/
411
TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE,
412
"Update me to support multiple attributes!");
413
414
vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr);
415
}
416
417
418
static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa,
419
uint64_t size)
420
{
421
vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
422
}
423
424
static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa,
425
uint64_t size)
426
{
427
vm_set_memory_attributes(vm, gpa, size, 0);
428
}
429
430
void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size,
431
bool punch_hole);
432
433
static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa,
434
uint64_t size)
435
{
436
vm_guest_mem_fallocate(vm, gpa, size, true);
437
}
438
439
static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa,
440
uint64_t size)
441
{
442
vm_guest_mem_fallocate(vm, gpa, size, false);
443
}
444
445
void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
446
const char *vm_guest_mode_string(uint32_t i);
447
448
void kvm_vm_free(struct kvm_vm *vmp);
449
void kvm_vm_restart(struct kvm_vm *vmp);
450
void kvm_vm_release(struct kvm_vm *vmp);
451
void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
452
int kvm_memfd_alloc(size_t size, bool hugepages);
453
454
void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
455
456
static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
457
{
458
struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
459
460
vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
461
}
462
463
static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
464
uint64_t first_page, uint32_t num_pages)
465
{
466
struct kvm_clear_dirty_log args = {
467
.dirty_bitmap = log,
468
.slot = slot,
469
.first_page = first_page,
470
.num_pages = num_pages
471
};
472
473
vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
474
}
475
476
static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
477
{
478
return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
479
}
480
481
static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm,
482
uint64_t address,
483
uint64_t size, bool pio)
484
{
485
struct kvm_coalesced_mmio_zone zone = {
486
.addr = address,
487
.size = size,
488
.pio = pio,
489
};
490
491
vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone);
492
}
493
494
static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm,
495
uint64_t address,
496
uint64_t size, bool pio)
497
{
498
struct kvm_coalesced_mmio_zone zone = {
499
.addr = address,
500
.size = size,
501
.pio = pio,
502
};
503
504
vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone);
505
}
506
507
static inline int vm_get_stats_fd(struct kvm_vm *vm)
508
{
509
int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
510
511
TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm);
512
return fd;
513
}
514
515
static inline int __kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
516
uint32_t flags)
517
{
518
struct kvm_irqfd irqfd = {
519
.fd = eventfd,
520
.gsi = gsi,
521
.flags = flags,
522
.resamplefd = -1,
523
};
524
525
return __vm_ioctl(vm, KVM_IRQFD, &irqfd);
526
}
527
528
static inline void kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
529
uint32_t flags)
530
{
531
int ret = __kvm_irqfd(vm, gsi, eventfd, flags);
532
533
TEST_ASSERT_VM_VCPU_IOCTL(!ret, KVM_IRQFD, ret, vm);
534
}
535
536
static inline void kvm_assign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
537
{
538
kvm_irqfd(vm, gsi, eventfd, 0);
539
}
540
541
static inline void kvm_deassign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
542
{
543
kvm_irqfd(vm, gsi, eventfd, KVM_IRQFD_FLAG_DEASSIGN);
544
}
545
546
static inline int kvm_new_eventfd(void)
547
{
548
int fd = eventfd(0, 0);
549
550
TEST_ASSERT(fd >= 0, __KVM_SYSCALL_ERROR("eventfd()", fd));
551
return fd;
552
}
553
554
static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
555
{
556
ssize_t ret;
557
558
ret = pread(stats_fd, header, sizeof(*header), 0);
559
TEST_ASSERT(ret == sizeof(*header),
560
"Failed to read '%lu' header bytes, ret = '%ld'",
561
sizeof(*header), ret);
562
}
563
564
struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
565
struct kvm_stats_header *header);
566
567
static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
568
{
569
/*
570
* The base size of the descriptor is defined by KVM's ABI, but the
571
* size of the name field is variable, as far as KVM's ABI is
572
* concerned. For a given instance of KVM, the name field is the same
573
* size for all stats and is provided in the overall stats header.
574
*/
575
return sizeof(struct kvm_stats_desc) + header->name_size;
576
}
577
578
static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
579
int index,
580
struct kvm_stats_header *header)
581
{
582
/*
583
* Note, size_desc includes the size of the name field, which is
584
* variable. i.e. this is NOT equivalent to &stats_desc[i].
585
*/
586
return (void *)stats + index * get_stats_descriptor_size(header);
587
}
588
589
void read_stat_data(int stats_fd, struct kvm_stats_header *header,
590
struct kvm_stats_desc *desc, uint64_t *data,
591
size_t max_elements);
592
593
void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
594
uint64_t *data, size_t max_elements);
595
596
#define __get_stat(stats, stat) \
597
({ \
598
uint64_t data; \
599
\
600
kvm_get_stat(stats, #stat, &data, 1); \
601
data; \
602
})
603
604
#define vm_get_stat(vm, stat) __get_stat(&(vm)->stats, stat)
605
#define vcpu_get_stat(vcpu, stat) __get_stat(&(vcpu)->stats, stat)
606
607
static inline bool read_smt_control(char *buf, size_t buf_size)
608
{
609
FILE *f = fopen("/sys/devices/system/cpu/smt/control", "r");
610
bool ret;
611
612
if (!f)
613
return false;
614
615
ret = fread(buf, sizeof(*buf), buf_size, f) > 0;
616
fclose(f);
617
618
return ret;
619
}
620
621
static inline bool is_smt_possible(void)
622
{
623
char buf[16];
624
625
if (read_smt_control(buf, sizeof(buf)) &&
626
(!strncmp(buf, "forceoff", 8) || !strncmp(buf, "notsupported", 12)))
627
return false;
628
629
return true;
630
}
631
632
static inline bool is_smt_on(void)
633
{
634
char buf[16];
635
636
if (read_smt_control(buf, sizeof(buf)) && !strncmp(buf, "on", 2))
637
return true;
638
639
return false;
640
}
641
642
void vm_create_irqchip(struct kvm_vm *vm);
643
644
static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
645
uint64_t flags)
646
{
647
struct kvm_create_guest_memfd guest_memfd = {
648
.size = size,
649
.flags = flags,
650
};
651
652
return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
653
}
654
655
static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
656
uint64_t flags)
657
{
658
int fd = __vm_create_guest_memfd(vm, size, flags);
659
660
TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd));
661
return fd;
662
}
663
664
void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
665
uint64_t gpa, uint64_t size, void *hva);
666
int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
667
uint64_t gpa, uint64_t size, void *hva);
668
void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
669
uint64_t gpa, uint64_t size, void *hva,
670
uint32_t guest_memfd, uint64_t guest_memfd_offset);
671
int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
672
uint64_t gpa, uint64_t size, void *hva,
673
uint32_t guest_memfd, uint64_t guest_memfd_offset);
674
675
void vm_userspace_mem_region_add(struct kvm_vm *vm,
676
enum vm_mem_backing_src_type src_type,
677
uint64_t gpa, uint32_t slot, uint64_t npages,
678
uint32_t flags);
679
void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
680
uint64_t gpa, uint32_t slot, uint64_t npages, uint32_t flags,
681
int guest_memfd_fd, uint64_t guest_memfd_offset);
682
683
#ifndef vm_arch_has_protected_memory
684
static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm)
685
{
686
return false;
687
}
688
#endif
689
690
void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
691
void vm_mem_region_reload(struct kvm_vm *vm, uint32_t slot);
692
void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
693
void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
694
struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
695
void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
696
vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
697
vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
698
vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
699
enum kvm_mem_region_type type);
700
vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
701
vm_vaddr_t vaddr_min,
702
enum kvm_mem_region_type type);
703
vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
704
vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
705
enum kvm_mem_region_type type);
706
vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
707
708
void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
709
unsigned int npages);
710
void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
711
void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
712
vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
713
void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
714
715
#ifndef vcpu_arch_put_guest
716
#define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0)
717
#endif
718
719
static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa)
720
{
721
return gpa & ~vm->gpa_tag_mask;
722
}
723
724
void vcpu_run(struct kvm_vcpu *vcpu);
725
int _vcpu_run(struct kvm_vcpu *vcpu);
726
727
static inline int __vcpu_run(struct kvm_vcpu *vcpu)
728
{
729
return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
730
}
731
732
void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
733
struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
734
735
static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
736
uint64_t arg0)
737
{
738
struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
739
740
vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
741
}
742
743
static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
744
struct kvm_guest_debug *debug)
745
{
746
vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
747
}
748
749
static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
750
struct kvm_mp_state *mp_state)
751
{
752
vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
753
}
754
static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
755
struct kvm_mp_state *mp_state)
756
{
757
vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
758
}
759
760
static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
761
{
762
vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
763
}
764
765
static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
766
{
767
vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
768
}
769
static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
770
{
771
vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
772
773
}
774
static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
775
{
776
vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
777
}
778
static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
779
{
780
return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
781
}
782
static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
783
{
784
vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
785
}
786
static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
787
{
788
vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
789
}
790
791
static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
792
{
793
struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
794
795
return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
796
}
797
static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
798
{
799
struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
800
801
return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
802
}
803
static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id)
804
{
805
uint64_t val;
806
struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
807
808
TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
809
810
vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
811
return val;
812
}
813
static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
814
{
815
struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
816
817
TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
818
819
vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
820
}
821
822
#ifdef __KVM_HAVE_VCPU_EVENTS
823
static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
824
struct kvm_vcpu_events *events)
825
{
826
vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
827
}
828
static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
829
struct kvm_vcpu_events *events)
830
{
831
vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
832
}
833
#endif
834
#ifdef __x86_64__
835
static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
836
struct kvm_nested_state *state)
837
{
838
vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
839
}
840
static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
841
struct kvm_nested_state *state)
842
{
843
return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
844
}
845
846
static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
847
struct kvm_nested_state *state)
848
{
849
vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
850
}
851
#endif
852
static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
853
{
854
int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
855
856
TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm);
857
return fd;
858
}
859
860
int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
861
862
static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
863
{
864
int ret = __kvm_has_device_attr(dev_fd, group, attr);
865
866
TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
867
}
868
869
int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
870
871
static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
872
uint64_t attr, void *val)
873
{
874
int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
875
876
TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
877
}
878
879
int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
880
881
static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
882
uint64_t attr, void *val)
883
{
884
int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
885
886
TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
887
}
888
889
static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
890
uint64_t attr)
891
{
892
return __kvm_has_device_attr(vcpu->fd, group, attr);
893
}
894
895
static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
896
uint64_t attr)
897
{
898
kvm_has_device_attr(vcpu->fd, group, attr);
899
}
900
901
static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
902
uint64_t attr, void *val)
903
{
904
return __kvm_device_attr_get(vcpu->fd, group, attr, val);
905
}
906
907
static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
908
uint64_t attr, void *val)
909
{
910
kvm_device_attr_get(vcpu->fd, group, attr, val);
911
}
912
913
static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
914
uint64_t attr, void *val)
915
{
916
return __kvm_device_attr_set(vcpu->fd, group, attr, val);
917
}
918
919
static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
920
uint64_t attr, void *val)
921
{
922
kvm_device_attr_set(vcpu->fd, group, attr, val);
923
}
924
925
int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
926
int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
927
928
static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
929
{
930
int fd = __kvm_create_device(vm, type);
931
932
TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
933
return fd;
934
}
935
936
void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
937
938
/*
939
* VM VCPU Args Set
940
*
941
* Input Args:
942
* vm - Virtual Machine
943
* num - number of arguments
944
* ... - arguments, each of type uint64_t
945
*
946
* Output Args: None
947
*
948
* Return: None
949
*
950
* Sets the first @num input parameters for the function at @vcpu's entry point,
951
* per the C calling convention of the architecture, to the values given as
952
* variable args. Each of the variable args is expected to be of type uint64_t.
953
* The maximum @num can be is specific to the architecture.
954
*/
955
void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
956
957
void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
958
int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
959
960
#define KVM_MAX_IRQ_ROUTES 4096
961
962
struct kvm_irq_routing *kvm_gsi_routing_create(void);
963
void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
964
uint32_t gsi, uint32_t pin);
965
int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
966
void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
967
968
const char *exit_reason_str(unsigned int exit_reason);
969
970
vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
971
uint32_t memslot);
972
vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
973
vm_paddr_t paddr_min, uint32_t memslot,
974
bool protected);
975
vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
976
977
static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
978
vm_paddr_t paddr_min, uint32_t memslot)
979
{
980
/*
981
* By default, allocate memory as protected for VMs that support
982
* protected memory, as the majority of memory for such VMs is
983
* protected, i.e. using shared memory is effectively opt-in.
984
*/
985
return __vm_phy_pages_alloc(vm, num, paddr_min, memslot,
986
vm_arch_has_protected_memory(vm));
987
}
988
989
/*
990
* ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also
991
* loads the test binary into guest memory and creates an IRQ chip (x86 only).
992
* __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
993
* calculate the amount of memory needed for per-vCPU data, e.g. stacks.
994
*/
995
struct kvm_vm *____vm_create(struct vm_shape shape);
996
struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
997
uint64_t nr_extra_pages);
998
999
static inline struct kvm_vm *vm_create_barebones(void)
1000
{
1001
return ____vm_create(VM_SHAPE_DEFAULT);
1002
}
1003
1004
static inline struct kvm_vm *vm_create_barebones_type(unsigned long type)
1005
{
1006
const struct vm_shape shape = {
1007
.mode = VM_MODE_DEFAULT,
1008
.type = type,
1009
};
1010
1011
return ____vm_create(shape);
1012
}
1013
1014
static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
1015
{
1016
return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0);
1017
}
1018
1019
struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
1020
uint64_t extra_mem_pages,
1021
void *guest_code, struct kvm_vcpu *vcpus[]);
1022
1023
static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
1024
void *guest_code,
1025
struct kvm_vcpu *vcpus[])
1026
{
1027
return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0,
1028
guest_code, vcpus);
1029
}
1030
1031
1032
struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
1033
struct kvm_vcpu **vcpu,
1034
uint64_t extra_mem_pages,
1035
void *guest_code);
1036
1037
/*
1038
* Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
1039
* additional pages of guest memory. Returns the VM and vCPU (via out param).
1040
*/
1041
static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1042
uint64_t extra_mem_pages,
1043
void *guest_code)
1044
{
1045
return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu,
1046
extra_mem_pages, guest_code);
1047
}
1048
1049
static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1050
void *guest_code)
1051
{
1052
return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
1053
}
1054
1055
static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape,
1056
struct kvm_vcpu **vcpu,
1057
void *guest_code)
1058
{
1059
return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code);
1060
}
1061
1062
struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
1063
1064
void kvm_set_files_rlimit(uint32_t nr_vcpus);
1065
1066
int __pin_task_to_cpu(pthread_t task, int cpu);
1067
1068
static inline void pin_task_to_cpu(pthread_t task, int cpu)
1069
{
1070
int r;
1071
1072
r = __pin_task_to_cpu(task, cpu);
1073
TEST_ASSERT(!r, "Failed to set thread affinity to pCPU '%u'", cpu);
1074
}
1075
1076
static inline int pin_task_to_any_cpu(pthread_t task)
1077
{
1078
int cpu = sched_getcpu();
1079
1080
pin_task_to_cpu(task, cpu);
1081
return cpu;
1082
}
1083
1084
static inline void pin_self_to_cpu(int cpu)
1085
{
1086
pin_task_to_cpu(pthread_self(), cpu);
1087
}
1088
1089
static inline int pin_self_to_any_cpu(void)
1090
{
1091
return pin_task_to_any_cpu(pthread_self());
1092
}
1093
1094
void kvm_print_vcpu_pinning_help(void);
1095
void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
1096
int nr_vcpus);
1097
1098
unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
1099
unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
1100
unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
1101
unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
1102
static inline unsigned int
1103
vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1104
{
1105
unsigned int n;
1106
n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
1107
#ifdef __s390x__
1108
/* s390 requires 1M aligned guest sizes */
1109
n = (n + 255) & ~255;
1110
#endif
1111
return n;
1112
}
1113
1114
#define sync_global_to_guest(vm, g) ({ \
1115
typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1116
memcpy(_p, &(g), sizeof(g)); \
1117
})
1118
1119
#define sync_global_from_guest(vm, g) ({ \
1120
typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1121
memcpy(&(g), _p, sizeof(g)); \
1122
})
1123
1124
/*
1125
* Write a global value, but only in the VM's (guest's) domain. Primarily used
1126
* for "globals" that hold per-VM values (VMs always duplicate code and global
1127
* data into their own region of physical memory), but can be used anytime it's
1128
* undesirable to change the host's copy of the global.
1129
*/
1130
#define write_guest_global(vm, g, val) ({ \
1131
typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1132
typeof(g) _val = val; \
1133
\
1134
memcpy(_p, &(_val), sizeof(g)); \
1135
})
1136
1137
void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
1138
1139
void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
1140
uint8_t indent);
1141
1142
static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
1143
uint8_t indent)
1144
{
1145
vcpu_arch_dump(stream, vcpu, indent);
1146
}
1147
1148
/*
1149
* Adds a vCPU with reasonable defaults (e.g. a stack)
1150
*
1151
* Input Args:
1152
* vm - Virtual Machine
1153
* vcpu_id - The id of the VCPU to add to the VM.
1154
*/
1155
struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
1156
void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code);
1157
1158
static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
1159
void *guest_code)
1160
{
1161
struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id);
1162
1163
vcpu_arch_set_entry_point(vcpu, guest_code);
1164
1165
return vcpu;
1166
}
1167
1168
/* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
1169
struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
1170
1171
static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
1172
uint32_t vcpu_id)
1173
{
1174
return vm_arch_vcpu_recreate(vm, vcpu_id);
1175
}
1176
1177
void vcpu_arch_free(struct kvm_vcpu *vcpu);
1178
1179
void virt_arch_pgd_alloc(struct kvm_vm *vm);
1180
1181
static inline void virt_pgd_alloc(struct kvm_vm *vm)
1182
{
1183
virt_arch_pgd_alloc(vm);
1184
}
1185
1186
/*
1187
* VM Virtual Page Map
1188
*
1189
* Input Args:
1190
* vm - Virtual Machine
1191
* vaddr - VM Virtual Address
1192
* paddr - VM Physical Address
1193
* memslot - Memory region slot for new virtual translation tables
1194
*
1195
* Output Args: None
1196
*
1197
* Return: None
1198
*
1199
* Within @vm, creates a virtual translation for the page starting
1200
* at @vaddr to the page starting at @paddr.
1201
*/
1202
void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
1203
1204
static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
1205
{
1206
virt_arch_pg_map(vm, vaddr, paddr);
1207
sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1208
}
1209
1210
1211
/*
1212
* Address Guest Virtual to Guest Physical
1213
*
1214
* Input Args:
1215
* vm - Virtual Machine
1216
* gva - VM virtual address
1217
*
1218
* Output Args: None
1219
*
1220
* Return:
1221
* Equivalent VM physical address
1222
*
1223
* Returns the VM physical address of the translated VM virtual
1224
* address given by @gva.
1225
*/
1226
vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
1227
1228
static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
1229
{
1230
return addr_arch_gva2gpa(vm, gva);
1231
}
1232
1233
/*
1234
* Virtual Translation Tables Dump
1235
*
1236
* Input Args:
1237
* stream - Output FILE stream
1238
* vm - Virtual Machine
1239
* indent - Left margin indent amount
1240
*
1241
* Output Args: None
1242
*
1243
* Return: None
1244
*
1245
* Dumps to the FILE stream given by @stream, the contents of all the
1246
* virtual translation tables for the VM given by @vm.
1247
*/
1248
void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
1249
1250
static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1251
{
1252
virt_arch_dump(stream, vm, indent);
1253
}
1254
1255
1256
static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
1257
{
1258
return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
1259
}
1260
1261
/*
1262
* Arch hook that is invoked via a constructor, i.e. before exeucting main(),
1263
* to allow for arch-specific setup that is common to all tests, e.g. computing
1264
* the default guest "mode".
1265
*/
1266
void kvm_selftest_arch_init(void);
1267
1268
void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus);
1269
void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm);
1270
void kvm_arch_vm_release(struct kvm_vm *vm);
1271
1272
bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr);
1273
1274
uint32_t guest_get_vcpuid(void);
1275
1276
bool kvm_arch_has_default_irqchip(void);
1277
1278
#endif /* SELFTEST_KVM_UTIL_H */
1279
1280