Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/testing/selftests/kvm/lib/arm64/processor.c
49184 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* AArch64 code
4
*
5
* Copyright (C) 2018, Red Hat, Inc.
6
*/
7
8
#include <linux/compiler.h>
9
#include <assert.h>
10
11
#include "guest_modes.h"
12
#include "kvm_util.h"
13
#include "processor.h"
14
#include "ucall_common.h"
15
#include "vgic.h"
16
17
#include <linux/bitfield.h>
18
#include <linux/sizes.h>
19
20
#define DEFAULT_ARM64_GUEST_STACK_VADDR_MIN 0xac0000
21
22
static vm_vaddr_t exception_handlers;
23
24
static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
25
{
26
return (v + vm->page_size) & ~(vm->page_size - 1);
27
}
28
29
static uint64_t pgd_index(struct kvm_vm *vm, vm_vaddr_t gva)
30
{
31
unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
32
uint64_t mask = (1UL << (vm->va_bits - shift)) - 1;
33
34
return (gva >> shift) & mask;
35
}
36
37
static uint64_t pud_index(struct kvm_vm *vm, vm_vaddr_t gva)
38
{
39
unsigned int shift = 2 * (vm->page_shift - 3) + vm->page_shift;
40
uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
41
42
TEST_ASSERT(vm->pgtable_levels == 4,
43
"Mode %d does not have 4 page table levels", vm->mode);
44
45
return (gva >> shift) & mask;
46
}
47
48
static uint64_t pmd_index(struct kvm_vm *vm, vm_vaddr_t gva)
49
{
50
unsigned int shift = (vm->page_shift - 3) + vm->page_shift;
51
uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
52
53
TEST_ASSERT(vm->pgtable_levels >= 3,
54
"Mode %d does not have >= 3 page table levels", vm->mode);
55
56
return (gva >> shift) & mask;
57
}
58
59
static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva)
60
{
61
uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
62
return (gva >> vm->page_shift) & mask;
63
}
64
65
static inline bool use_lpa2_pte_format(struct kvm_vm *vm)
66
{
67
return (vm->page_size == SZ_4K || vm->page_size == SZ_16K) &&
68
(vm->pa_bits > 48 || vm->va_bits > 48);
69
}
70
71
static uint64_t addr_pte(struct kvm_vm *vm, uint64_t pa, uint64_t attrs)
72
{
73
uint64_t pte;
74
75
if (use_lpa2_pte_format(vm)) {
76
pte = pa & PTE_ADDR_MASK_LPA2(vm->page_shift);
77
pte |= FIELD_GET(GENMASK(51, 50), pa) << PTE_ADDR_51_50_LPA2_SHIFT;
78
attrs &= ~PTE_ADDR_51_50_LPA2;
79
} else {
80
pte = pa & PTE_ADDR_MASK(vm->page_shift);
81
if (vm->page_shift == 16)
82
pte |= FIELD_GET(GENMASK(51, 48), pa) << PTE_ADDR_51_48_SHIFT;
83
}
84
pte |= attrs;
85
86
return pte;
87
}
88
89
static uint64_t pte_addr(struct kvm_vm *vm, uint64_t pte)
90
{
91
uint64_t pa;
92
93
if (use_lpa2_pte_format(vm)) {
94
pa = pte & PTE_ADDR_MASK_LPA2(vm->page_shift);
95
pa |= FIELD_GET(PTE_ADDR_51_50_LPA2, pte) << 50;
96
} else {
97
pa = pte & PTE_ADDR_MASK(vm->page_shift);
98
if (vm->page_shift == 16)
99
pa |= FIELD_GET(PTE_ADDR_51_48, pte) << 48;
100
}
101
102
return pa;
103
}
104
105
static uint64_t ptrs_per_pgd(struct kvm_vm *vm)
106
{
107
unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
108
return 1 << (vm->va_bits - shift);
109
}
110
111
static uint64_t __maybe_unused ptrs_per_pte(struct kvm_vm *vm)
112
{
113
return 1 << (vm->page_shift - 3);
114
}
115
116
void virt_arch_pgd_alloc(struct kvm_vm *vm)
117
{
118
size_t nr_pages = page_align(vm, ptrs_per_pgd(vm) * 8) / vm->page_size;
119
120
if (vm->pgd_created)
121
return;
122
123
vm->pgd = vm_phy_pages_alloc(vm, nr_pages,
124
KVM_GUEST_PAGE_TABLE_MIN_PADDR,
125
vm->memslots[MEM_REGION_PT]);
126
vm->pgd_created = true;
127
}
128
129
static void _virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
130
uint64_t flags)
131
{
132
uint8_t attr_idx = flags & (PTE_ATTRINDX_MASK >> PTE_ATTRINDX_SHIFT);
133
uint64_t pg_attr;
134
uint64_t *ptep;
135
136
TEST_ASSERT((vaddr % vm->page_size) == 0,
137
"Virtual address not on page boundary,\n"
138
" vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
139
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
140
(vaddr >> vm->page_shift)),
141
"Invalid virtual address, vaddr: 0x%lx", vaddr);
142
TEST_ASSERT((paddr % vm->page_size) == 0,
143
"Physical address not on page boundary,\n"
144
" paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
145
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
146
"Physical address beyond beyond maximum supported,\n"
147
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
148
paddr, vm->max_gfn, vm->page_size);
149
150
ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, vaddr) * 8;
151
if (!*ptep)
152
*ptep = addr_pte(vm, vm_alloc_page_table(vm),
153
PGD_TYPE_TABLE | PTE_VALID);
154
155
switch (vm->pgtable_levels) {
156
case 4:
157
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, vaddr) * 8;
158
if (!*ptep)
159
*ptep = addr_pte(vm, vm_alloc_page_table(vm),
160
PUD_TYPE_TABLE | PTE_VALID);
161
/* fall through */
162
case 3:
163
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, vaddr) * 8;
164
if (!*ptep)
165
*ptep = addr_pte(vm, vm_alloc_page_table(vm),
166
PMD_TYPE_TABLE | PTE_VALID);
167
/* fall through */
168
case 2:
169
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, vaddr) * 8;
170
break;
171
default:
172
TEST_FAIL("Page table levels must be 2, 3, or 4");
173
}
174
175
pg_attr = PTE_AF | PTE_ATTRINDX(attr_idx) | PTE_TYPE_PAGE | PTE_VALID;
176
if (!use_lpa2_pte_format(vm))
177
pg_attr |= PTE_SHARED;
178
179
*ptep = addr_pte(vm, paddr, pg_attr);
180
}
181
182
void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
183
{
184
uint64_t attr_idx = MT_NORMAL;
185
186
_virt_pg_map(vm, vaddr, paddr, attr_idx);
187
}
188
189
uint64_t *virt_get_pte_hva_at_level(struct kvm_vm *vm, vm_vaddr_t gva, int level)
190
{
191
uint64_t *ptep;
192
193
if (!vm->pgd_created)
194
goto unmapped_gva;
195
196
ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, gva) * 8;
197
if (!ptep)
198
goto unmapped_gva;
199
if (level == 0)
200
return ptep;
201
202
switch (vm->pgtable_levels) {
203
case 4:
204
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, gva) * 8;
205
if (!ptep)
206
goto unmapped_gva;
207
if (level == 1)
208
break;
209
/* fall through */
210
case 3:
211
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, gva) * 8;
212
if (!ptep)
213
goto unmapped_gva;
214
if (level == 2)
215
break;
216
/* fall through */
217
case 2:
218
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, gva) * 8;
219
if (!ptep)
220
goto unmapped_gva;
221
break;
222
default:
223
TEST_FAIL("Page table levels must be 2, 3, or 4");
224
}
225
226
return ptep;
227
228
unmapped_gva:
229
TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
230
exit(EXIT_FAILURE);
231
}
232
233
uint64_t *virt_get_pte_hva(struct kvm_vm *vm, vm_vaddr_t gva)
234
{
235
return virt_get_pte_hva_at_level(vm, gva, 3);
236
}
237
238
vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
239
{
240
uint64_t *ptep = virt_get_pte_hva(vm, gva);
241
242
return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
243
}
244
245
static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent, uint64_t page, int level)
246
{
247
#ifdef DEBUG
248
static const char * const type[] = { "", "pud", "pmd", "pte" };
249
uint64_t pte, *ptep;
250
251
if (level == 4)
252
return;
253
254
for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
255
ptep = addr_gpa2hva(vm, pte);
256
if (!*ptep)
257
continue;
258
fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "", type[level], pte, *ptep, ptep);
259
pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level + 1);
260
}
261
#endif
262
}
263
264
void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
265
{
266
int level = 4 - (vm->pgtable_levels - 1);
267
uint64_t pgd, *ptep;
268
269
if (!vm->pgd_created)
270
return;
271
272
for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pgd(vm) * 8; pgd += 8) {
273
ptep = addr_gpa2hva(vm, pgd);
274
if (!*ptep)
275
continue;
276
fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "", pgd, *ptep, ptep);
277
pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level);
278
}
279
}
280
281
bool vm_supports_el2(struct kvm_vm *vm)
282
{
283
const char *value = getenv("NV");
284
285
if (value && *value == '0')
286
return false;
287
288
return vm_check_cap(vm, KVM_CAP_ARM_EL2) && vm->arch.has_gic;
289
}
290
291
void kvm_get_default_vcpu_target(struct kvm_vm *vm, struct kvm_vcpu_init *init)
292
{
293
struct kvm_vcpu_init preferred = {};
294
295
vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &preferred);
296
if (vm_supports_el2(vm))
297
preferred.features[0] |= BIT(KVM_ARM_VCPU_HAS_EL2);
298
299
*init = preferred;
300
}
301
302
void aarch64_vcpu_setup(struct kvm_vcpu *vcpu, struct kvm_vcpu_init *init)
303
{
304
struct kvm_vcpu_init default_init = { .target = -1, };
305
struct kvm_vm *vm = vcpu->vm;
306
uint64_t sctlr_el1, tcr_el1, ttbr0_el1;
307
308
if (!init) {
309
kvm_get_default_vcpu_target(vm, &default_init);
310
init = &default_init;
311
}
312
313
vcpu_ioctl(vcpu, KVM_ARM_VCPU_INIT, init);
314
vcpu->init = *init;
315
316
/*
317
* Enable FP/ASIMD to avoid trapping when accessing Q0-Q15
318
* registers, which the variable argument list macros do.
319
*/
320
vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_CPACR_EL1), 3 << 20);
321
322
sctlr_el1 = vcpu_get_reg(vcpu, ctxt_reg_alias(vcpu, SYS_SCTLR_EL1));
323
tcr_el1 = vcpu_get_reg(vcpu, ctxt_reg_alias(vcpu, SYS_TCR_EL1));
324
325
/* Configure base granule size */
326
switch (vm->mode) {
327
case VM_MODE_PXXVYY_4K:
328
TEST_FAIL("AArch64 does not support 4K sized pages "
329
"with ANY-bit physical address ranges");
330
case VM_MODE_P52V48_64K:
331
case VM_MODE_P48V48_64K:
332
case VM_MODE_P40V48_64K:
333
case VM_MODE_P36V48_64K:
334
tcr_el1 |= TCR_TG0_64K;
335
break;
336
case VM_MODE_P52V48_16K:
337
case VM_MODE_P48V48_16K:
338
case VM_MODE_P40V48_16K:
339
case VM_MODE_P36V48_16K:
340
case VM_MODE_P36V47_16K:
341
tcr_el1 |= TCR_TG0_16K;
342
break;
343
case VM_MODE_P52V48_4K:
344
case VM_MODE_P48V48_4K:
345
case VM_MODE_P40V48_4K:
346
case VM_MODE_P36V48_4K:
347
tcr_el1 |= TCR_TG0_4K;
348
break;
349
default:
350
TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
351
}
352
353
ttbr0_el1 = vm->pgd & GENMASK(47, vm->page_shift);
354
355
/* Configure output size */
356
switch (vm->mode) {
357
case VM_MODE_P52V48_4K:
358
case VM_MODE_P52V48_16K:
359
case VM_MODE_P52V48_64K:
360
tcr_el1 |= TCR_IPS_52_BITS;
361
ttbr0_el1 |= FIELD_GET(GENMASK(51, 48), vm->pgd) << 2;
362
break;
363
case VM_MODE_P48V48_4K:
364
case VM_MODE_P48V48_16K:
365
case VM_MODE_P48V48_64K:
366
tcr_el1 |= TCR_IPS_48_BITS;
367
break;
368
case VM_MODE_P40V48_4K:
369
case VM_MODE_P40V48_16K:
370
case VM_MODE_P40V48_64K:
371
tcr_el1 |= TCR_IPS_40_BITS;
372
break;
373
case VM_MODE_P36V48_4K:
374
case VM_MODE_P36V48_16K:
375
case VM_MODE_P36V48_64K:
376
case VM_MODE_P36V47_16K:
377
tcr_el1 |= TCR_IPS_36_BITS;
378
break;
379
default:
380
TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
381
}
382
383
sctlr_el1 |= SCTLR_ELx_M | SCTLR_ELx_C | SCTLR_ELx_I;
384
385
tcr_el1 |= TCR_IRGN0_WBWA | TCR_ORGN0_WBWA | TCR_SH0_INNER;
386
tcr_el1 |= TCR_T0SZ(vm->va_bits);
387
if (use_lpa2_pte_format(vm))
388
tcr_el1 |= TCR_DS;
389
390
vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_SCTLR_EL1), sctlr_el1);
391
vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_TCR_EL1), tcr_el1);
392
vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_MAIR_EL1), DEFAULT_MAIR_EL1);
393
vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_TTBR0_EL1), ttbr0_el1);
394
vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TPIDR_EL1), vcpu->id);
395
396
if (!vcpu_has_el2(vcpu))
397
return;
398
399
vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_HCR_EL2),
400
HCR_EL2_RW | HCR_EL2_TGE | HCR_EL2_E2H);
401
}
402
403
void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
404
{
405
uint64_t pstate, pc;
406
407
pstate = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pstate));
408
pc = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc));
409
410
fprintf(stream, "%*spstate: 0x%.16lx pc: 0x%.16lx\n",
411
indent, "", pstate, pc);
412
}
413
414
void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
415
{
416
vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
417
}
418
419
static struct kvm_vcpu *__aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
420
struct kvm_vcpu_init *init)
421
{
422
size_t stack_size;
423
uint64_t stack_vaddr;
424
struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
425
426
stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size :
427
vm->page_size;
428
stack_vaddr = __vm_vaddr_alloc(vm, stack_size,
429
DEFAULT_ARM64_GUEST_STACK_VADDR_MIN,
430
MEM_REGION_DATA);
431
432
aarch64_vcpu_setup(vcpu, init);
433
434
vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_SP_EL1), stack_vaddr + stack_size);
435
return vcpu;
436
}
437
438
struct kvm_vcpu *aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
439
struct kvm_vcpu_init *init, void *guest_code)
440
{
441
struct kvm_vcpu *vcpu = __aarch64_vcpu_add(vm, vcpu_id, init);
442
443
vcpu_arch_set_entry_point(vcpu, guest_code);
444
445
return vcpu;
446
}
447
448
struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
449
{
450
return __aarch64_vcpu_add(vm, vcpu_id, NULL);
451
}
452
453
void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
454
{
455
va_list ap;
456
int i;
457
458
TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
459
" num: %u", num);
460
461
va_start(ap, num);
462
463
for (i = 0; i < num; i++) {
464
vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.regs[i]),
465
va_arg(ap, uint64_t));
466
}
467
468
va_end(ap);
469
}
470
471
void kvm_exit_unexpected_exception(int vector, uint64_t ec, bool valid_ec)
472
{
473
ucall(UCALL_UNHANDLED, 3, vector, ec, valid_ec);
474
while (1)
475
;
476
}
477
478
void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
479
{
480
struct ucall uc;
481
482
if (get_ucall(vcpu, &uc) != UCALL_UNHANDLED)
483
return;
484
485
if (uc.args[2]) /* valid_ec */ {
486
assert(VECTOR_IS_SYNC(uc.args[0]));
487
TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)",
488
uc.args[0], uc.args[1]);
489
} else {
490
assert(!VECTOR_IS_SYNC(uc.args[0]));
491
TEST_FAIL("Unexpected exception (vector:0x%lx)",
492
uc.args[0]);
493
}
494
}
495
496
struct handlers {
497
handler_fn exception_handlers[VECTOR_NUM][ESR_ELx_EC_MAX + 1];
498
};
499
500
void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
501
{
502
extern char vectors;
503
504
vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_VBAR_EL1), (uint64_t)&vectors);
505
}
506
507
void route_exception(struct ex_regs *regs, int vector)
508
{
509
struct handlers *handlers = (struct handlers *)exception_handlers;
510
bool valid_ec;
511
int ec = 0;
512
513
switch (vector) {
514
case VECTOR_SYNC_CURRENT:
515
case VECTOR_SYNC_LOWER_64:
516
ec = ESR_ELx_EC(read_sysreg(esr_el1));
517
valid_ec = true;
518
break;
519
case VECTOR_IRQ_CURRENT:
520
case VECTOR_IRQ_LOWER_64:
521
case VECTOR_FIQ_CURRENT:
522
case VECTOR_FIQ_LOWER_64:
523
case VECTOR_ERROR_CURRENT:
524
case VECTOR_ERROR_LOWER_64:
525
ec = 0;
526
valid_ec = false;
527
break;
528
default:
529
valid_ec = false;
530
goto unexpected_exception;
531
}
532
533
if (handlers && handlers->exception_handlers[vector][ec])
534
return handlers->exception_handlers[vector][ec](regs);
535
536
unexpected_exception:
537
kvm_exit_unexpected_exception(vector, ec, valid_ec);
538
}
539
540
void vm_init_descriptor_tables(struct kvm_vm *vm)
541
{
542
vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers),
543
vm->page_size, MEM_REGION_DATA);
544
545
*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
546
}
547
548
void vm_install_sync_handler(struct kvm_vm *vm, int vector, int ec,
549
void (*handler)(struct ex_regs *))
550
{
551
struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
552
553
assert(VECTOR_IS_SYNC(vector));
554
assert(vector < VECTOR_NUM);
555
assert(ec <= ESR_ELx_EC_MAX);
556
handlers->exception_handlers[vector][ec] = handler;
557
}
558
559
void vm_install_exception_handler(struct kvm_vm *vm, int vector,
560
void (*handler)(struct ex_regs *))
561
{
562
struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
563
564
assert(!VECTOR_IS_SYNC(vector));
565
assert(vector < VECTOR_NUM);
566
handlers->exception_handlers[vector][0] = handler;
567
}
568
569
uint32_t guest_get_vcpuid(void)
570
{
571
return read_sysreg(tpidr_el1);
572
}
573
574
static uint32_t max_ipa_for_page_size(uint32_t vm_ipa, uint32_t gran,
575
uint32_t not_sup_val, uint32_t ipa52_min_val)
576
{
577
if (gran == not_sup_val)
578
return 0;
579
else if (gran >= ipa52_min_val && vm_ipa >= 52)
580
return 52;
581
else
582
return min(vm_ipa, 48U);
583
}
584
585
void aarch64_get_supported_page_sizes(uint32_t ipa, uint32_t *ipa4k,
586
uint32_t *ipa16k, uint32_t *ipa64k)
587
{
588
struct kvm_vcpu_init preferred_init;
589
int kvm_fd, vm_fd, vcpu_fd, err;
590
uint64_t val;
591
uint32_t gran;
592
struct kvm_one_reg reg = {
593
.id = KVM_ARM64_SYS_REG(SYS_ID_AA64MMFR0_EL1),
594
.addr = (uint64_t)&val,
595
};
596
597
kvm_fd = open_kvm_dev_path_or_exit();
598
vm_fd = __kvm_ioctl(kvm_fd, KVM_CREATE_VM, (void *)(unsigned long)ipa);
599
TEST_ASSERT(vm_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm_fd));
600
601
vcpu_fd = ioctl(vm_fd, KVM_CREATE_VCPU, 0);
602
TEST_ASSERT(vcpu_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu_fd));
603
604
err = ioctl(vm_fd, KVM_ARM_PREFERRED_TARGET, &preferred_init);
605
TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_PREFERRED_TARGET, err));
606
err = ioctl(vcpu_fd, KVM_ARM_VCPU_INIT, &preferred_init);
607
TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_VCPU_INIT, err));
608
609
err = ioctl(vcpu_fd, KVM_GET_ONE_REG, &reg);
610
TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_GET_ONE_REG, vcpu_fd));
611
612
gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN4, val);
613
*ipa4k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN4_NI,
614
ID_AA64MMFR0_EL1_TGRAN4_52_BIT);
615
616
gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN64, val);
617
*ipa64k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN64_NI,
618
ID_AA64MMFR0_EL1_TGRAN64_IMP);
619
620
gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN16, val);
621
*ipa16k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN16_NI,
622
ID_AA64MMFR0_EL1_TGRAN16_52_BIT);
623
624
close(vcpu_fd);
625
close(vm_fd);
626
close(kvm_fd);
627
}
628
629
#define __smccc_call(insn, function_id, arg0, arg1, arg2, arg3, arg4, arg5, \
630
arg6, res) \
631
asm volatile("mov w0, %w[function_id]\n" \
632
"mov x1, %[arg0]\n" \
633
"mov x2, %[arg1]\n" \
634
"mov x3, %[arg2]\n" \
635
"mov x4, %[arg3]\n" \
636
"mov x5, %[arg4]\n" \
637
"mov x6, %[arg5]\n" \
638
"mov x7, %[arg6]\n" \
639
#insn "#0\n" \
640
"mov %[res0], x0\n" \
641
"mov %[res1], x1\n" \
642
"mov %[res2], x2\n" \
643
"mov %[res3], x3\n" \
644
: [res0] "=r"(res->a0), [res1] "=r"(res->a1), \
645
[res2] "=r"(res->a2), [res3] "=r"(res->a3) \
646
: [function_id] "r"(function_id), [arg0] "r"(arg0), \
647
[arg1] "r"(arg1), [arg2] "r"(arg2), [arg3] "r"(arg3), \
648
[arg4] "r"(arg4), [arg5] "r"(arg5), [arg6] "r"(arg6) \
649
: "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7")
650
651
652
void smccc_hvc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
653
uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
654
uint64_t arg6, struct arm_smccc_res *res)
655
{
656
__smccc_call(hvc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
657
arg6, res);
658
}
659
660
void smccc_smc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
661
uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
662
uint64_t arg6, struct arm_smccc_res *res)
663
{
664
__smccc_call(smc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
665
arg6, res);
666
}
667
668
void kvm_selftest_arch_init(void)
669
{
670
/*
671
* arm64 doesn't have a true default mode, so start by computing the
672
* available IPA space and page sizes early.
673
*/
674
guest_modes_append_default();
675
}
676
677
void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
678
{
679
/*
680
* arm64 selftests use only TTBR0_EL1, meaning that the valid VA space
681
* is [0, 2^(64 - TCR_EL1.T0SZ)).
682
*/
683
sparsebit_set_num(vm->vpages_valid, 0,
684
(1ULL << vm->va_bits) >> vm->page_shift);
685
}
686
687
/* Helper to call wfi instruction. */
688
void wfi(void)
689
{
690
asm volatile("wfi");
691
}
692
693
static bool request_mte;
694
static bool request_vgic = true;
695
696
void test_wants_mte(void)
697
{
698
request_mte = true;
699
}
700
701
void test_disable_default_vgic(void)
702
{
703
request_vgic = false;
704
}
705
706
void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus)
707
{
708
if (request_mte && vm_check_cap(vm, KVM_CAP_ARM_MTE))
709
vm_enable_cap(vm, KVM_CAP_ARM_MTE, 0);
710
711
if (request_vgic && kvm_supports_vgic_v3()) {
712
vm->arch.gic_fd = __vgic_v3_setup(vm, nr_vcpus, 64);
713
vm->arch.has_gic = true;
714
}
715
}
716
717
void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm)
718
{
719
if (vm->arch.has_gic)
720
__vgic_v3_init(vm->arch.gic_fd);
721
}
722
723
void kvm_arch_vm_release(struct kvm_vm *vm)
724
{
725
if (vm->arch.has_gic)
726
close(vm->arch.gic_fd);
727
}
728
729
bool kvm_arch_has_default_irqchip(void)
730
{
731
return request_vgic && kvm_supports_vgic_v3();
732
}
733
734