Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/testing/selftests/kvm/lib/memstress.c
38237 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2020, Google LLC.
4
*/
5
#include <inttypes.h>
6
#include <linux/bitmap.h>
7
8
#include "kvm_util.h"
9
#include "memstress.h"
10
#include "processor.h"
11
#include "ucall_common.h"
12
13
struct memstress_args memstress_args;
14
15
/*
16
* Guest virtual memory offset of the testing memory slot.
17
* Must not conflict with identity mapped test code.
18
*/
19
static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
20
21
struct vcpu_thread {
22
/* The index of the vCPU. */
23
int vcpu_idx;
24
25
/* The pthread backing the vCPU. */
26
pthread_t thread;
27
28
/* Set to true once the vCPU thread is up and running. */
29
bool running;
30
};
31
32
/* The vCPU threads involved in this test. */
33
static struct vcpu_thread vcpu_threads[KVM_MAX_VCPUS];
34
35
/* The function run by each vCPU thread, as provided by the test. */
36
static void (*vcpu_thread_fn)(struct memstress_vcpu_args *);
37
38
/* Set to true once all vCPU threads are up and running. */
39
static bool all_vcpu_threads_running;
40
41
static struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
42
43
/*
44
* Continuously write to the first 8 bytes of each page in the
45
* specified region.
46
*/
47
void memstress_guest_code(uint32_t vcpu_idx)
48
{
49
struct memstress_args *args = &memstress_args;
50
struct memstress_vcpu_args *vcpu_args = &args->vcpu_args[vcpu_idx];
51
struct guest_random_state rand_state;
52
uint64_t gva;
53
uint64_t pages;
54
uint64_t addr;
55
uint64_t page;
56
int i;
57
58
rand_state = new_guest_random_state(guest_random_seed + vcpu_idx);
59
60
gva = vcpu_args->gva;
61
pages = vcpu_args->pages;
62
63
/* Make sure vCPU args data structure is not corrupt. */
64
GUEST_ASSERT(vcpu_args->vcpu_idx == vcpu_idx);
65
66
while (true) {
67
for (i = 0; i < sizeof(memstress_args); i += args->guest_page_size)
68
(void) *((volatile char *)args + i);
69
70
for (i = 0; i < pages; i++) {
71
if (args->random_access)
72
page = guest_random_u32(&rand_state) % pages;
73
else
74
page = i;
75
76
addr = gva + (page * args->guest_page_size);
77
78
if (__guest_random_bool(&rand_state, args->write_percent))
79
*(uint64_t *)addr = 0x0123456789ABCDEF;
80
else
81
READ_ONCE(*(uint64_t *)addr);
82
}
83
84
GUEST_SYNC(1);
85
}
86
}
87
88
void memstress_setup_vcpus(struct kvm_vm *vm, int nr_vcpus,
89
struct kvm_vcpu *vcpus[],
90
uint64_t vcpu_memory_bytes,
91
bool partition_vcpu_memory_access)
92
{
93
struct memstress_args *args = &memstress_args;
94
struct memstress_vcpu_args *vcpu_args;
95
int i;
96
97
for (i = 0; i < nr_vcpus; i++) {
98
vcpu_args = &args->vcpu_args[i];
99
100
vcpu_args->vcpu = vcpus[i];
101
vcpu_args->vcpu_idx = i;
102
103
if (partition_vcpu_memory_access) {
104
vcpu_args->gva = guest_test_virt_mem +
105
(i * vcpu_memory_bytes);
106
vcpu_args->pages = vcpu_memory_bytes /
107
args->guest_page_size;
108
vcpu_args->gpa = args->gpa + (i * vcpu_memory_bytes);
109
} else {
110
vcpu_args->gva = guest_test_virt_mem;
111
vcpu_args->pages = (nr_vcpus * vcpu_memory_bytes) /
112
args->guest_page_size;
113
vcpu_args->gpa = args->gpa;
114
}
115
116
vcpu_args_set(vcpus[i], 1, i);
117
118
pr_debug("Added VCPU %d with test mem gpa [%lx, %lx)\n",
119
i, vcpu_args->gpa, vcpu_args->gpa +
120
(vcpu_args->pages * args->guest_page_size));
121
}
122
}
123
124
struct kvm_vm *memstress_create_vm(enum vm_guest_mode mode, int nr_vcpus,
125
uint64_t vcpu_memory_bytes, int slots,
126
enum vm_mem_backing_src_type backing_src,
127
bool partition_vcpu_memory_access)
128
{
129
struct memstress_args *args = &memstress_args;
130
struct kvm_vm *vm;
131
uint64_t guest_num_pages, slot0_pages = 0;
132
uint64_t backing_src_pagesz = get_backing_src_pagesz(backing_src);
133
uint64_t region_end_gfn;
134
int i;
135
136
pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
137
138
/* By default vCPUs will write to memory. */
139
args->write_percent = 100;
140
141
/*
142
* Snapshot the non-huge page size. This is used by the guest code to
143
* access/dirty pages at the logging granularity.
144
*/
145
args->guest_page_size = vm_guest_mode_params[mode].page_size;
146
147
guest_num_pages = vm_adjust_num_guest_pages(mode,
148
(nr_vcpus * vcpu_memory_bytes) / args->guest_page_size);
149
150
TEST_ASSERT(vcpu_memory_bytes % getpagesize() == 0,
151
"Guest memory size is not host page size aligned.");
152
TEST_ASSERT(vcpu_memory_bytes % args->guest_page_size == 0,
153
"Guest memory size is not guest page size aligned.");
154
TEST_ASSERT(guest_num_pages % slots == 0,
155
"Guest memory cannot be evenly divided into %d slots.",
156
slots);
157
158
/*
159
* If using nested, allocate extra pages for the nested page tables and
160
* in-memory data structures.
161
*/
162
if (args->nested)
163
slot0_pages += memstress_nested_pages(nr_vcpus);
164
165
/*
166
* Pass guest_num_pages to populate the page tables for test memory.
167
* The memory is also added to memslot 0, but that's a benign side
168
* effect as KVM allows aliasing HVAs in meslots.
169
*/
170
vm = __vm_create_with_vcpus(VM_SHAPE(mode), nr_vcpus,
171
slot0_pages + guest_num_pages,
172
memstress_guest_code, vcpus);
173
174
args->vm = vm;
175
176
/* Put the test region at the top guest physical memory. */
177
region_end_gfn = vm->max_gfn + 1;
178
179
#ifdef __x86_64__
180
/*
181
* When running vCPUs in L2, restrict the test region to 48 bits to
182
* avoid needing 5-level page tables to identity map L2.
183
*/
184
if (args->nested)
185
region_end_gfn = min(region_end_gfn, (1UL << 48) / args->guest_page_size);
186
#endif
187
/*
188
* If there should be more memory in the guest test region than there
189
* can be pages in the guest, it will definitely cause problems.
190
*/
191
TEST_ASSERT(guest_num_pages < region_end_gfn,
192
"Requested more guest memory than address space allows.\n"
193
" guest pages: %" PRIx64 " max gfn: %" PRIx64
194
" nr_vcpus: %d wss: %" PRIx64 "]",
195
guest_num_pages, region_end_gfn - 1, nr_vcpus, vcpu_memory_bytes);
196
197
args->gpa = (region_end_gfn - guest_num_pages - 1) * args->guest_page_size;
198
args->gpa = align_down(args->gpa, backing_src_pagesz);
199
#ifdef __s390x__
200
/* Align to 1M (segment size) */
201
args->gpa = align_down(args->gpa, 1 << 20);
202
#endif
203
args->size = guest_num_pages * args->guest_page_size;
204
pr_info("guest physical test memory: [0x%lx, 0x%lx)\n",
205
args->gpa, args->gpa + args->size);
206
207
/* Add extra memory slots for testing */
208
for (i = 0; i < slots; i++) {
209
uint64_t region_pages = guest_num_pages / slots;
210
vm_paddr_t region_start = args->gpa + region_pages * args->guest_page_size * i;
211
212
vm_userspace_mem_region_add(vm, backing_src, region_start,
213
MEMSTRESS_MEM_SLOT_INDEX + i,
214
region_pages, 0);
215
}
216
217
/* Do mapping for the demand paging memory slot */
218
virt_map(vm, guest_test_virt_mem, args->gpa, guest_num_pages);
219
220
memstress_setup_vcpus(vm, nr_vcpus, vcpus, vcpu_memory_bytes,
221
partition_vcpu_memory_access);
222
223
if (args->nested) {
224
pr_info("Configuring vCPUs to run in L2 (nested).\n");
225
memstress_setup_nested(vm, nr_vcpus, vcpus);
226
}
227
228
/* Export the shared variables to the guest. */
229
sync_global_to_guest(vm, memstress_args);
230
231
return vm;
232
}
233
234
void memstress_destroy_vm(struct kvm_vm *vm)
235
{
236
kvm_vm_free(vm);
237
}
238
239
void memstress_set_write_percent(struct kvm_vm *vm, uint32_t write_percent)
240
{
241
memstress_args.write_percent = write_percent;
242
sync_global_to_guest(vm, memstress_args.write_percent);
243
}
244
245
void memstress_set_random_access(struct kvm_vm *vm, bool random_access)
246
{
247
memstress_args.random_access = random_access;
248
sync_global_to_guest(vm, memstress_args.random_access);
249
}
250
251
uint64_t __weak memstress_nested_pages(int nr_vcpus)
252
{
253
return 0;
254
}
255
256
void __weak memstress_setup_nested(struct kvm_vm *vm, int nr_vcpus, struct kvm_vcpu **vcpus)
257
{
258
pr_info("%s() not support on this architecture, skipping.\n", __func__);
259
exit(KSFT_SKIP);
260
}
261
262
static void *vcpu_thread_main(void *data)
263
{
264
struct vcpu_thread *vcpu = data;
265
int vcpu_idx = vcpu->vcpu_idx;
266
267
if (memstress_args.pin_vcpus)
268
pin_self_to_cpu(memstress_args.vcpu_to_pcpu[vcpu_idx]);
269
270
WRITE_ONCE(vcpu->running, true);
271
272
/*
273
* Wait for all vCPU threads to be up and running before calling the test-
274
* provided vCPU thread function. This prevents thread creation (which
275
* requires taking the mmap_sem in write mode) from interfering with the
276
* guest faulting in its memory.
277
*/
278
while (!READ_ONCE(all_vcpu_threads_running))
279
;
280
281
vcpu_thread_fn(&memstress_args.vcpu_args[vcpu_idx]);
282
283
return NULL;
284
}
285
286
void memstress_start_vcpu_threads(int nr_vcpus,
287
void (*vcpu_fn)(struct memstress_vcpu_args *))
288
{
289
int i;
290
291
vcpu_thread_fn = vcpu_fn;
292
WRITE_ONCE(all_vcpu_threads_running, false);
293
WRITE_ONCE(memstress_args.stop_vcpus, false);
294
295
for (i = 0; i < nr_vcpus; i++) {
296
struct vcpu_thread *vcpu = &vcpu_threads[i];
297
298
vcpu->vcpu_idx = i;
299
WRITE_ONCE(vcpu->running, false);
300
301
pthread_create(&vcpu->thread, NULL, vcpu_thread_main, vcpu);
302
}
303
304
for (i = 0; i < nr_vcpus; i++) {
305
while (!READ_ONCE(vcpu_threads[i].running))
306
;
307
}
308
309
WRITE_ONCE(all_vcpu_threads_running, true);
310
}
311
312
void memstress_join_vcpu_threads(int nr_vcpus)
313
{
314
int i;
315
316
WRITE_ONCE(memstress_args.stop_vcpus, true);
317
318
for (i = 0; i < nr_vcpus; i++)
319
pthread_join(vcpu_threads[i].thread, NULL);
320
}
321
322
static void toggle_dirty_logging(struct kvm_vm *vm, int slots, bool enable)
323
{
324
int i;
325
326
for (i = 0; i < slots; i++) {
327
int slot = MEMSTRESS_MEM_SLOT_INDEX + i;
328
int flags = enable ? KVM_MEM_LOG_DIRTY_PAGES : 0;
329
330
vm_mem_region_set_flags(vm, slot, flags);
331
}
332
}
333
334
void memstress_enable_dirty_logging(struct kvm_vm *vm, int slots)
335
{
336
toggle_dirty_logging(vm, slots, true);
337
}
338
339
void memstress_disable_dirty_logging(struct kvm_vm *vm, int slots)
340
{
341
toggle_dirty_logging(vm, slots, false);
342
}
343
344
void memstress_get_dirty_log(struct kvm_vm *vm, unsigned long *bitmaps[], int slots)
345
{
346
int i;
347
348
for (i = 0; i < slots; i++) {
349
int slot = MEMSTRESS_MEM_SLOT_INDEX + i;
350
351
kvm_vm_get_dirty_log(vm, slot, bitmaps[i]);
352
}
353
}
354
355
void memstress_clear_dirty_log(struct kvm_vm *vm, unsigned long *bitmaps[],
356
int slots, uint64_t pages_per_slot)
357
{
358
int i;
359
360
for (i = 0; i < slots; i++) {
361
int slot = MEMSTRESS_MEM_SLOT_INDEX + i;
362
363
kvm_vm_clear_dirty_log(vm, slot, bitmaps[i], 0, pages_per_slot);
364
}
365
}
366
367
unsigned long **memstress_alloc_bitmaps(int slots, uint64_t pages_per_slot)
368
{
369
unsigned long **bitmaps;
370
int i;
371
372
bitmaps = malloc(slots * sizeof(bitmaps[0]));
373
TEST_ASSERT(bitmaps, "Failed to allocate bitmaps array.");
374
375
for (i = 0; i < slots; i++) {
376
bitmaps[i] = bitmap_zalloc(pages_per_slot);
377
TEST_ASSERT(bitmaps[i], "Failed to allocate slot bitmap.");
378
}
379
380
return bitmaps;
381
}
382
383
void memstress_free_bitmaps(unsigned long *bitmaps[], int slots)
384
{
385
int i;
386
387
for (i = 0; i < slots; i++)
388
free(bitmaps[i]);
389
390
free(bitmaps);
391
}
392
393