Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/testing/selftests/kvm/lib/riscv/processor.c
49473 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* RISC-V code
4
*
5
* Copyright (C) 2021 Western Digital Corporation or its affiliates.
6
*/
7
8
#include <linux/compiler.h>
9
#include <assert.h>
10
11
#include "kvm_util.h"
12
#include "processor.h"
13
#include "ucall_common.h"
14
15
#define DEFAULT_RISCV_GUEST_STACK_VADDR_MIN 0xac0000
16
17
static vm_vaddr_t exception_handlers;
18
19
bool __vcpu_has_ext(struct kvm_vcpu *vcpu, uint64_t ext)
20
{
21
unsigned long value = 0;
22
int ret;
23
24
ret = __vcpu_get_reg(vcpu, ext, &value);
25
26
return !ret && !!value;
27
}
28
29
static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
30
{
31
return (v + vm->page_size) & ~(vm->page_size - 1);
32
}
33
34
static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry)
35
{
36
return ((entry & PGTBL_PTE_ADDR_MASK) >> PGTBL_PTE_ADDR_SHIFT) <<
37
PGTBL_PAGE_SIZE_SHIFT;
38
}
39
40
static uint64_t ptrs_per_pte(struct kvm_vm *vm)
41
{
42
return PGTBL_PAGE_SIZE / sizeof(uint64_t);
43
}
44
45
static uint64_t pte_index_mask[] = {
46
PGTBL_L0_INDEX_MASK,
47
PGTBL_L1_INDEX_MASK,
48
PGTBL_L2_INDEX_MASK,
49
PGTBL_L3_INDEX_MASK,
50
};
51
52
static uint32_t pte_index_shift[] = {
53
PGTBL_L0_INDEX_SHIFT,
54
PGTBL_L1_INDEX_SHIFT,
55
PGTBL_L2_INDEX_SHIFT,
56
PGTBL_L3_INDEX_SHIFT,
57
};
58
59
static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva, int level)
60
{
61
TEST_ASSERT(level > -1,
62
"Negative page table level (%d) not possible", level);
63
TEST_ASSERT(level < vm->pgtable_levels,
64
"Invalid page table level (%d)", level);
65
66
return (gva & pte_index_mask[level]) >> pte_index_shift[level];
67
}
68
69
void virt_arch_pgd_alloc(struct kvm_vm *vm)
70
{
71
size_t nr_pages = page_align(vm, ptrs_per_pte(vm) * 8) / vm->page_size;
72
73
if (vm->pgd_created)
74
return;
75
76
vm->pgd = vm_phy_pages_alloc(vm, nr_pages,
77
KVM_GUEST_PAGE_TABLE_MIN_PADDR,
78
vm->memslots[MEM_REGION_PT]);
79
vm->pgd_created = true;
80
}
81
82
void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
83
{
84
uint64_t *ptep, next_ppn;
85
int level = vm->pgtable_levels - 1;
86
87
TEST_ASSERT((vaddr % vm->page_size) == 0,
88
"Virtual address not on page boundary,\n"
89
" vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
90
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
91
(vaddr >> vm->page_shift)),
92
"Invalid virtual address, vaddr: 0x%lx", vaddr);
93
TEST_ASSERT((paddr % vm->page_size) == 0,
94
"Physical address not on page boundary,\n"
95
" paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
96
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
97
"Physical address beyond maximum supported,\n"
98
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
99
paddr, vm->max_gfn, vm->page_size);
100
101
ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, vaddr, level) * 8;
102
if (!*ptep) {
103
next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT;
104
*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
105
PGTBL_PTE_VALID_MASK;
106
}
107
level--;
108
109
while (level > -1) {
110
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
111
pte_index(vm, vaddr, level) * 8;
112
if (!*ptep && level > 0) {
113
next_ppn = vm_alloc_page_table(vm) >>
114
PGTBL_PAGE_SIZE_SHIFT;
115
*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
116
PGTBL_PTE_VALID_MASK;
117
}
118
level--;
119
}
120
121
paddr = paddr >> PGTBL_PAGE_SIZE_SHIFT;
122
*ptep = (paddr << PGTBL_PTE_ADDR_SHIFT) |
123
PGTBL_PTE_PERM_MASK | PGTBL_PTE_VALID_MASK;
124
}
125
126
vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
127
{
128
uint64_t *ptep;
129
int level = vm->pgtable_levels - 1;
130
131
if (!vm->pgd_created)
132
goto unmapped_gva;
133
134
ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, gva, level) * 8;
135
if (!ptep)
136
goto unmapped_gva;
137
level--;
138
139
while (level > -1) {
140
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
141
pte_index(vm, gva, level) * 8;
142
if (!ptep)
143
goto unmapped_gva;
144
level--;
145
}
146
147
return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
148
149
unmapped_gva:
150
TEST_FAIL("No mapping for vm virtual address gva: 0x%lx level: %d",
151
gva, level);
152
exit(1);
153
}
154
155
static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent,
156
uint64_t page, int level)
157
{
158
#ifdef DEBUG
159
static const char *const type[] = { "pte", "pmd", "pud", "p4d"};
160
uint64_t pte, *ptep;
161
162
if (level < 0)
163
return;
164
165
for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
166
ptep = addr_gpa2hva(vm, pte);
167
if (!*ptep)
168
continue;
169
fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "",
170
type[level], pte, *ptep, ptep);
171
pte_dump(stream, vm, indent + 1,
172
pte_addr(vm, *ptep), level - 1);
173
}
174
#endif
175
}
176
177
void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
178
{
179
int level = vm->pgtable_levels - 1;
180
uint64_t pgd, *ptep;
181
182
if (!vm->pgd_created)
183
return;
184
185
for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pte(vm) * 8; pgd += 8) {
186
ptep = addr_gpa2hva(vm, pgd);
187
if (!*ptep)
188
continue;
189
fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "",
190
pgd, *ptep, ptep);
191
pte_dump(stream, vm, indent + 1,
192
pte_addr(vm, *ptep), level - 1);
193
}
194
}
195
196
void riscv_vcpu_mmu_setup(struct kvm_vcpu *vcpu)
197
{
198
struct kvm_vm *vm = vcpu->vm;
199
unsigned long satp;
200
201
/*
202
* The RISC-V Sv48 MMU mode supports 56-bit physical address
203
* for 48-bit virtual address with 4KB last level page size.
204
*/
205
switch (vm->mode) {
206
case VM_MODE_P52V48_4K:
207
case VM_MODE_P48V48_4K:
208
case VM_MODE_P40V48_4K:
209
break;
210
default:
211
TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
212
}
213
214
satp = (vm->pgd >> PGTBL_PAGE_SIZE_SHIFT) & SATP_PPN;
215
satp |= SATP_MODE_48;
216
217
vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(satp), satp);
218
}
219
220
void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
221
{
222
struct kvm_riscv_core core;
223
224
core.mode = vcpu_get_reg(vcpu, RISCV_CORE_REG(mode));
225
core.regs.pc = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc));
226
core.regs.ra = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.ra));
227
core.regs.sp = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.sp));
228
core.regs.gp = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.gp));
229
core.regs.tp = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.tp));
230
core.regs.t0 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t0));
231
core.regs.t1 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t1));
232
core.regs.t2 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t2));
233
core.regs.s0 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s0));
234
core.regs.s1 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s1));
235
core.regs.a0 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a0));
236
core.regs.a1 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a1));
237
core.regs.a2 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a2));
238
core.regs.a3 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a3));
239
core.regs.a4 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a4));
240
core.regs.a5 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a5));
241
core.regs.a6 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a6));
242
core.regs.a7 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a7));
243
core.regs.s2 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s2));
244
core.regs.s3 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s3));
245
core.regs.s4 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s4));
246
core.regs.s5 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s5));
247
core.regs.s6 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s6));
248
core.regs.s7 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s7));
249
core.regs.s8 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s8));
250
core.regs.s9 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s9));
251
core.regs.s10 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s10));
252
core.regs.s11 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s11));
253
core.regs.t3 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t3));
254
core.regs.t4 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t4));
255
core.regs.t5 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t5));
256
core.regs.t6 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t6));
257
258
fprintf(stream,
259
" MODE: 0x%lx\n", core.mode);
260
fprintf(stream,
261
" PC: 0x%016lx RA: 0x%016lx SP: 0x%016lx GP: 0x%016lx\n",
262
core.regs.pc, core.regs.ra, core.regs.sp, core.regs.gp);
263
fprintf(stream,
264
" TP: 0x%016lx T0: 0x%016lx T1: 0x%016lx T2: 0x%016lx\n",
265
core.regs.tp, core.regs.t0, core.regs.t1, core.regs.t2);
266
fprintf(stream,
267
" S0: 0x%016lx S1: 0x%016lx A0: 0x%016lx A1: 0x%016lx\n",
268
core.regs.s0, core.regs.s1, core.regs.a0, core.regs.a1);
269
fprintf(stream,
270
" A2: 0x%016lx A3: 0x%016lx A4: 0x%016lx A5: 0x%016lx\n",
271
core.regs.a2, core.regs.a3, core.regs.a4, core.regs.a5);
272
fprintf(stream,
273
" A6: 0x%016lx A7: 0x%016lx S2: 0x%016lx S3: 0x%016lx\n",
274
core.regs.a6, core.regs.a7, core.regs.s2, core.regs.s3);
275
fprintf(stream,
276
" S4: 0x%016lx S5: 0x%016lx S6: 0x%016lx S7: 0x%016lx\n",
277
core.regs.s4, core.regs.s5, core.regs.s6, core.regs.s7);
278
fprintf(stream,
279
" S8: 0x%016lx S9: 0x%016lx S10: 0x%016lx S11: 0x%016lx\n",
280
core.regs.s8, core.regs.s9, core.regs.s10, core.regs.s11);
281
fprintf(stream,
282
" T3: 0x%016lx T4: 0x%016lx T5: 0x%016lx T6: 0x%016lx\n",
283
core.regs.t3, core.regs.t4, core.regs.t5, core.regs.t6);
284
}
285
286
static void __aligned(16) guest_unexp_trap(void)
287
{
288
sbi_ecall(KVM_RISCV_SELFTESTS_SBI_EXT,
289
KVM_RISCV_SELFTESTS_SBI_UNEXP,
290
0, 0, 0, 0, 0, 0);
291
}
292
293
void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
294
{
295
vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.pc), (unsigned long)guest_code);
296
}
297
298
struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
299
{
300
int r;
301
size_t stack_size;
302
unsigned long stack_vaddr;
303
unsigned long current_gp = 0;
304
struct kvm_mp_state mps;
305
struct kvm_vcpu *vcpu;
306
307
stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size :
308
vm->page_size;
309
stack_vaddr = __vm_vaddr_alloc(vm, stack_size,
310
DEFAULT_RISCV_GUEST_STACK_VADDR_MIN,
311
MEM_REGION_DATA);
312
313
vcpu = __vm_vcpu_add(vm, vcpu_id);
314
riscv_vcpu_mmu_setup(vcpu);
315
316
/*
317
* With SBI HSM support in KVM RISC-V, all secondary VCPUs are
318
* powered-off by default so we ensure that all secondary VCPUs
319
* are powered-on using KVM_SET_MP_STATE ioctl().
320
*/
321
mps.mp_state = KVM_MP_STATE_RUNNABLE;
322
r = __vcpu_ioctl(vcpu, KVM_SET_MP_STATE, &mps);
323
TEST_ASSERT(!r, "IOCTL KVM_SET_MP_STATE failed (error %d)", r);
324
325
/* Setup global pointer of guest to be same as the host */
326
asm volatile (
327
"add %0, gp, zero" : "=r" (current_gp) : : "memory");
328
vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.gp), current_gp);
329
330
/* Setup stack pointer and program counter of guest */
331
vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.sp), stack_vaddr + stack_size);
332
333
/* Setup sscratch for guest_get_vcpuid() */
334
vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(sscratch), vcpu_id);
335
336
/* Setup default exception vector of guest */
337
vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(stvec), (unsigned long)guest_unexp_trap);
338
339
return vcpu;
340
}
341
342
void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
343
{
344
va_list ap;
345
uint64_t id = RISCV_CORE_REG(regs.a0);
346
int i;
347
348
TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
349
" num: %u", num);
350
351
va_start(ap, num);
352
353
for (i = 0; i < num; i++) {
354
switch (i) {
355
case 0:
356
id = RISCV_CORE_REG(regs.a0);
357
break;
358
case 1:
359
id = RISCV_CORE_REG(regs.a1);
360
break;
361
case 2:
362
id = RISCV_CORE_REG(regs.a2);
363
break;
364
case 3:
365
id = RISCV_CORE_REG(regs.a3);
366
break;
367
case 4:
368
id = RISCV_CORE_REG(regs.a4);
369
break;
370
case 5:
371
id = RISCV_CORE_REG(regs.a5);
372
break;
373
case 6:
374
id = RISCV_CORE_REG(regs.a6);
375
break;
376
case 7:
377
id = RISCV_CORE_REG(regs.a7);
378
break;
379
}
380
vcpu_set_reg(vcpu, id, va_arg(ap, uint64_t));
381
}
382
383
va_end(ap);
384
}
385
386
void kvm_exit_unexpected_exception(int vector, int ec)
387
{
388
ucall(UCALL_UNHANDLED, 2, vector, ec);
389
}
390
391
void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
392
{
393
struct ucall uc;
394
395
if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) {
396
TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)",
397
uc.args[0], uc.args[1]);
398
}
399
}
400
401
struct handlers {
402
exception_handler_fn exception_handlers[NR_VECTORS][NR_EXCEPTIONS];
403
};
404
405
void route_exception(struct pt_regs *regs)
406
{
407
struct handlers *handlers = (struct handlers *)exception_handlers;
408
int vector = 0, ec;
409
410
ec = regs->cause & ~CAUSE_IRQ_FLAG;
411
if (ec >= NR_EXCEPTIONS)
412
goto unexpected_exception;
413
414
/* Use the same handler for all the interrupts */
415
if (regs->cause & CAUSE_IRQ_FLAG) {
416
vector = 1;
417
ec = 0;
418
}
419
420
if (handlers && handlers->exception_handlers[vector][ec])
421
return handlers->exception_handlers[vector][ec](regs);
422
423
unexpected_exception:
424
return kvm_exit_unexpected_exception(vector, ec);
425
}
426
427
void vcpu_init_vector_tables(struct kvm_vcpu *vcpu)
428
{
429
extern char exception_vectors;
430
431
vcpu_set_reg(vcpu, RISCV_GENERAL_CSR_REG(stvec), (unsigned long)&exception_vectors);
432
}
433
434
void vm_init_vector_tables(struct kvm_vm *vm)
435
{
436
vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers),
437
vm->page_size, MEM_REGION_DATA);
438
439
*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
440
}
441
442
void vm_install_exception_handler(struct kvm_vm *vm, int vector, exception_handler_fn handler)
443
{
444
struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
445
446
assert(vector < NR_EXCEPTIONS);
447
handlers->exception_handlers[0][vector] = handler;
448
}
449
450
void vm_install_interrupt_handler(struct kvm_vm *vm, exception_handler_fn handler)
451
{
452
struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
453
454
handlers->exception_handlers[1][0] = handler;
455
}
456
457
uint32_t guest_get_vcpuid(void)
458
{
459
return csr_read(CSR_SSCRATCH);
460
}
461
462
struct sbiret sbi_ecall(int ext, int fid, unsigned long arg0,
463
unsigned long arg1, unsigned long arg2,
464
unsigned long arg3, unsigned long arg4,
465
unsigned long arg5)
466
{
467
register uintptr_t a0 asm ("a0") = (uintptr_t)(arg0);
468
register uintptr_t a1 asm ("a1") = (uintptr_t)(arg1);
469
register uintptr_t a2 asm ("a2") = (uintptr_t)(arg2);
470
register uintptr_t a3 asm ("a3") = (uintptr_t)(arg3);
471
register uintptr_t a4 asm ("a4") = (uintptr_t)(arg4);
472
register uintptr_t a5 asm ("a5") = (uintptr_t)(arg5);
473
register uintptr_t a6 asm ("a6") = (uintptr_t)(fid);
474
register uintptr_t a7 asm ("a7") = (uintptr_t)(ext);
475
struct sbiret ret;
476
477
asm volatile (
478
"ecall"
479
: "+r" (a0), "+r" (a1)
480
: "r" (a2), "r" (a3), "r" (a4), "r" (a5), "r" (a6), "r" (a7)
481
: "memory");
482
ret.error = a0;
483
ret.value = a1;
484
485
return ret;
486
}
487
488
bool guest_sbi_probe_extension(int extid, long *out_val)
489
{
490
struct sbiret ret;
491
492
ret = sbi_ecall(SBI_EXT_BASE, SBI_EXT_BASE_PROBE_EXT, extid,
493
0, 0, 0, 0, 0);
494
495
__GUEST_ASSERT(!ret.error || ret.error == SBI_ERR_NOT_SUPPORTED,
496
"ret.error=%ld, ret.value=%ld\n", ret.error, ret.value);
497
498
if (ret.error == SBI_ERR_NOT_SUPPORTED)
499
return false;
500
501
if (out_val)
502
*out_val = ret.value;
503
504
return true;
505
}
506
507
unsigned long get_host_sbi_spec_version(void)
508
{
509
struct sbiret ret;
510
511
ret = sbi_ecall(SBI_EXT_BASE, SBI_EXT_BASE_GET_SPEC_VERSION, 0,
512
0, 0, 0, 0, 0);
513
514
GUEST_ASSERT(!ret.error);
515
516
return ret.value;
517
}
518
519