Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/testing/selftests/kvm/lib/x86/vmx.c
49620 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2018, Google LLC.
4
*/
5
6
#include <asm/msr-index.h>
7
8
#include "test_util.h"
9
#include "kvm_util.h"
10
#include "processor.h"
11
#include "vmx.h"
12
13
#define PAGE_SHIFT_4K 12
14
15
#define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
16
17
bool enable_evmcs;
18
19
struct hv_enlightened_vmcs *current_evmcs;
20
struct hv_vp_assist_page *current_vp_assist;
21
22
struct eptPageTableEntry {
23
uint64_t readable:1;
24
uint64_t writable:1;
25
uint64_t executable:1;
26
uint64_t memory_type:3;
27
uint64_t ignore_pat:1;
28
uint64_t page_size:1;
29
uint64_t accessed:1;
30
uint64_t dirty:1;
31
uint64_t ignored_11_10:2;
32
uint64_t address:40;
33
uint64_t ignored_62_52:11;
34
uint64_t suppress_ve:1;
35
};
36
37
struct eptPageTablePointer {
38
uint64_t memory_type:3;
39
uint64_t page_walk_length:3;
40
uint64_t ad_enabled:1;
41
uint64_t reserved_11_07:5;
42
uint64_t address:40;
43
uint64_t reserved_63_52:12;
44
};
45
int vcpu_enable_evmcs(struct kvm_vcpu *vcpu)
46
{
47
uint16_t evmcs_ver;
48
49
vcpu_enable_cap(vcpu, KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
50
(unsigned long)&evmcs_ver);
51
52
/* KVM should return supported EVMCS version range */
53
TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
54
(evmcs_ver & 0xff) > 0,
55
"Incorrect EVMCS version range: %x:%x",
56
evmcs_ver & 0xff, evmcs_ver >> 8);
57
58
return evmcs_ver;
59
}
60
61
/* Allocate memory regions for nested VMX tests.
62
*
63
* Input Args:
64
* vm - The VM to allocate guest-virtual addresses in.
65
*
66
* Output Args:
67
* p_vmx_gva - The guest virtual address for the struct vmx_pages.
68
*
69
* Return:
70
* Pointer to structure with the addresses of the VMX areas.
71
*/
72
struct vmx_pages *
73
vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
74
{
75
vm_vaddr_t vmx_gva = vm_vaddr_alloc_page(vm);
76
struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
77
78
/* Setup of a region of guest memory for the vmxon region. */
79
vmx->vmxon = (void *)vm_vaddr_alloc_page(vm);
80
vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
81
vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
82
83
/* Setup of a region of guest memory for a vmcs. */
84
vmx->vmcs = (void *)vm_vaddr_alloc_page(vm);
85
vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
86
vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
87
88
/* Setup of a region of guest memory for the MSR bitmap. */
89
vmx->msr = (void *)vm_vaddr_alloc_page(vm);
90
vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
91
vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
92
memset(vmx->msr_hva, 0, getpagesize());
93
94
/* Setup of a region of guest memory for the shadow VMCS. */
95
vmx->shadow_vmcs = (void *)vm_vaddr_alloc_page(vm);
96
vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
97
vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
98
99
/* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
100
vmx->vmread = (void *)vm_vaddr_alloc_page(vm);
101
vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
102
vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
103
memset(vmx->vmread_hva, 0, getpagesize());
104
105
vmx->vmwrite = (void *)vm_vaddr_alloc_page(vm);
106
vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
107
vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
108
memset(vmx->vmwrite_hva, 0, getpagesize());
109
110
*p_vmx_gva = vmx_gva;
111
return vmx;
112
}
113
114
bool prepare_for_vmx_operation(struct vmx_pages *vmx)
115
{
116
uint64_t feature_control;
117
uint64_t required;
118
unsigned long cr0;
119
unsigned long cr4;
120
121
/*
122
* Ensure bits in CR0 and CR4 are valid in VMX operation:
123
* - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
124
* - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
125
*/
126
__asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
127
cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
128
cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
129
__asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
130
131
__asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
132
cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
133
cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
134
/* Enable VMX operation */
135
cr4 |= X86_CR4_VMXE;
136
__asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
137
138
/*
139
* Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
140
* Bit 0: Lock bit. If clear, VMXON causes a #GP.
141
* Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
142
* outside of SMX causes a #GP.
143
*/
144
required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
145
required |= FEAT_CTL_LOCKED;
146
feature_control = rdmsr(MSR_IA32_FEAT_CTL);
147
if ((feature_control & required) != required)
148
wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
149
150
/* Enter VMX root operation. */
151
*(uint32_t *)(vmx->vmxon) = vmcs_revision();
152
if (vmxon(vmx->vmxon_gpa))
153
return false;
154
155
return true;
156
}
157
158
bool load_vmcs(struct vmx_pages *vmx)
159
{
160
/* Load a VMCS. */
161
*(uint32_t *)(vmx->vmcs) = vmcs_revision();
162
if (vmclear(vmx->vmcs_gpa))
163
return false;
164
165
if (vmptrld(vmx->vmcs_gpa))
166
return false;
167
168
/* Setup shadow VMCS, do not load it yet. */
169
*(uint32_t *)(vmx->shadow_vmcs) = vmcs_revision() | 0x80000000ul;
170
if (vmclear(vmx->shadow_vmcs_gpa))
171
return false;
172
173
return true;
174
}
175
176
static bool ept_vpid_cap_supported(uint64_t mask)
177
{
178
return rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & mask;
179
}
180
181
bool ept_1g_pages_supported(void)
182
{
183
return ept_vpid_cap_supported(VMX_EPT_VPID_CAP_1G_PAGES);
184
}
185
186
/*
187
* Initialize the control fields to the most basic settings possible.
188
*/
189
static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
190
{
191
uint32_t sec_exec_ctl = 0;
192
193
vmwrite(VIRTUAL_PROCESSOR_ID, 0);
194
vmwrite(POSTED_INTR_NV, 0);
195
196
vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
197
198
if (vmx->eptp_gpa) {
199
uint64_t ept_paddr;
200
struct eptPageTablePointer eptp = {
201
.memory_type = X86_MEMTYPE_WB,
202
.page_walk_length = 3, /* + 1 */
203
.ad_enabled = ept_vpid_cap_supported(VMX_EPT_VPID_CAP_AD_BITS),
204
.address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
205
};
206
207
memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
208
vmwrite(EPT_POINTER, ept_paddr);
209
sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
210
}
211
212
if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
213
vmwrite(CPU_BASED_VM_EXEC_CONTROL,
214
rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
215
else {
216
vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
217
GUEST_ASSERT(!sec_exec_ctl);
218
}
219
220
vmwrite(EXCEPTION_BITMAP, 0);
221
vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
222
vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
223
vmwrite(CR3_TARGET_COUNT, 0);
224
vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
225
VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */
226
vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
227
vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
228
vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
229
VM_ENTRY_IA32E_MODE); /* 64-bit guest */
230
vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
231
vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
232
vmwrite(TPR_THRESHOLD, 0);
233
234
vmwrite(CR0_GUEST_HOST_MASK, 0);
235
vmwrite(CR4_GUEST_HOST_MASK, 0);
236
vmwrite(CR0_READ_SHADOW, get_cr0());
237
vmwrite(CR4_READ_SHADOW, get_cr4());
238
239
vmwrite(MSR_BITMAP, vmx->msr_gpa);
240
vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
241
vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
242
}
243
244
/*
245
* Initialize the host state fields based on the current host state, with
246
* the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
247
* or vmresume.
248
*/
249
static inline void init_vmcs_host_state(void)
250
{
251
uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
252
253
vmwrite(HOST_ES_SELECTOR, get_es());
254
vmwrite(HOST_CS_SELECTOR, get_cs());
255
vmwrite(HOST_SS_SELECTOR, get_ss());
256
vmwrite(HOST_DS_SELECTOR, get_ds());
257
vmwrite(HOST_FS_SELECTOR, get_fs());
258
vmwrite(HOST_GS_SELECTOR, get_gs());
259
vmwrite(HOST_TR_SELECTOR, get_tr());
260
261
if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
262
vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
263
if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
264
vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
265
if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
266
vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
267
rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
268
269
vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
270
271
vmwrite(HOST_CR0, get_cr0());
272
vmwrite(HOST_CR3, get_cr3());
273
vmwrite(HOST_CR4, get_cr4());
274
vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
275
vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
276
vmwrite(HOST_TR_BASE,
277
get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
278
vmwrite(HOST_GDTR_BASE, get_gdt().address);
279
vmwrite(HOST_IDTR_BASE, get_idt().address);
280
vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
281
vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
282
}
283
284
/*
285
* Initialize the guest state fields essentially as a clone of
286
* the host state fields. Some host state fields have fixed
287
* values, and we set the corresponding guest state fields accordingly.
288
*/
289
static inline void init_vmcs_guest_state(void *rip, void *rsp)
290
{
291
vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
292
vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
293
vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
294
vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
295
vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
296
vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
297
vmwrite(GUEST_LDTR_SELECTOR, 0);
298
vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
299
vmwrite(GUEST_INTR_STATUS, 0);
300
vmwrite(GUEST_PML_INDEX, 0);
301
302
vmwrite(VMCS_LINK_POINTER, -1ll);
303
vmwrite(GUEST_IA32_DEBUGCTL, 0);
304
vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
305
vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
306
vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
307
vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
308
309
vmwrite(GUEST_ES_LIMIT, -1);
310
vmwrite(GUEST_CS_LIMIT, -1);
311
vmwrite(GUEST_SS_LIMIT, -1);
312
vmwrite(GUEST_DS_LIMIT, -1);
313
vmwrite(GUEST_FS_LIMIT, -1);
314
vmwrite(GUEST_GS_LIMIT, -1);
315
vmwrite(GUEST_LDTR_LIMIT, -1);
316
vmwrite(GUEST_TR_LIMIT, 0x67);
317
vmwrite(GUEST_GDTR_LIMIT, 0xffff);
318
vmwrite(GUEST_IDTR_LIMIT, 0xffff);
319
vmwrite(GUEST_ES_AR_BYTES,
320
vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
321
vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
322
vmwrite(GUEST_SS_AR_BYTES, 0xc093);
323
vmwrite(GUEST_DS_AR_BYTES,
324
vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
325
vmwrite(GUEST_FS_AR_BYTES,
326
vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
327
vmwrite(GUEST_GS_AR_BYTES,
328
vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
329
vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
330
vmwrite(GUEST_TR_AR_BYTES, 0x8b);
331
vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
332
vmwrite(GUEST_ACTIVITY_STATE, 0);
333
vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
334
vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
335
336
vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
337
vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
338
vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
339
vmwrite(GUEST_ES_BASE, 0);
340
vmwrite(GUEST_CS_BASE, 0);
341
vmwrite(GUEST_SS_BASE, 0);
342
vmwrite(GUEST_DS_BASE, 0);
343
vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
344
vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
345
vmwrite(GUEST_LDTR_BASE, 0);
346
vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
347
vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
348
vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
349
vmwrite(GUEST_DR7, 0x400);
350
vmwrite(GUEST_RSP, (uint64_t)rsp);
351
vmwrite(GUEST_RIP, (uint64_t)rip);
352
vmwrite(GUEST_RFLAGS, 2);
353
vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
354
vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
355
vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
356
}
357
358
void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
359
{
360
init_vmcs_control_fields(vmx);
361
init_vmcs_host_state();
362
init_vmcs_guest_state(guest_rip, guest_rsp);
363
}
364
365
static void nested_create_pte(struct kvm_vm *vm,
366
struct eptPageTableEntry *pte,
367
uint64_t nested_paddr,
368
uint64_t paddr,
369
int current_level,
370
int target_level)
371
{
372
if (!pte->readable) {
373
pte->writable = true;
374
pte->readable = true;
375
pte->executable = true;
376
pte->page_size = (current_level == target_level);
377
if (pte->page_size)
378
pte->address = paddr >> vm->page_shift;
379
else
380
pte->address = vm_alloc_page_table(vm) >> vm->page_shift;
381
} else {
382
/*
383
* Entry already present. Assert that the caller doesn't want
384
* a hugepage at this level, and that there isn't a hugepage at
385
* this level.
386
*/
387
TEST_ASSERT(current_level != target_level,
388
"Cannot create hugepage at level: %u, nested_paddr: 0x%lx",
389
current_level, nested_paddr);
390
TEST_ASSERT(!pte->page_size,
391
"Cannot create page table at level: %u, nested_paddr: 0x%lx",
392
current_level, nested_paddr);
393
}
394
}
395
396
397
void __nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
398
uint64_t nested_paddr, uint64_t paddr, int target_level)
399
{
400
const uint64_t page_size = PG_LEVEL_SIZE(target_level);
401
struct eptPageTableEntry *pt = vmx->eptp_hva, *pte;
402
uint16_t index;
403
404
TEST_ASSERT(vm->mode == VM_MODE_PXXVYY_4K,
405
"Unknown or unsupported guest mode: 0x%x", vm->mode);
406
407
TEST_ASSERT((nested_paddr >> 48) == 0,
408
"Nested physical address 0x%lx is > 48-bits and requires 5-level EPT",
409
nested_paddr);
410
TEST_ASSERT((nested_paddr % page_size) == 0,
411
"Nested physical address not on page boundary,\n"
412
" nested_paddr: 0x%lx page_size: 0x%lx",
413
nested_paddr, page_size);
414
TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
415
"Physical address beyond beyond maximum supported,\n"
416
" nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
417
paddr, vm->max_gfn, vm->page_size);
418
TEST_ASSERT((paddr % page_size) == 0,
419
"Physical address not on page boundary,\n"
420
" paddr: 0x%lx page_size: 0x%lx",
421
paddr, page_size);
422
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
423
"Physical address beyond beyond maximum supported,\n"
424
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
425
paddr, vm->max_gfn, vm->page_size);
426
427
for (int level = PG_LEVEL_512G; level >= PG_LEVEL_4K; level--) {
428
index = (nested_paddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
429
pte = &pt[index];
430
431
nested_create_pte(vm, pte, nested_paddr, paddr, level, target_level);
432
433
if (pte->page_size)
434
break;
435
436
pt = addr_gpa2hva(vm, pte->address * vm->page_size);
437
}
438
439
/*
440
* For now mark these as accessed and dirty because the only
441
* testcase we have needs that. Can be reconsidered later.
442
*/
443
pte->accessed = true;
444
pte->dirty = true;
445
446
}
447
448
void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
449
uint64_t nested_paddr, uint64_t paddr)
450
{
451
__nested_pg_map(vmx, vm, nested_paddr, paddr, PG_LEVEL_4K);
452
}
453
454
/*
455
* Map a range of EPT guest physical addresses to the VM's physical address
456
*
457
* Input Args:
458
* vm - Virtual Machine
459
* nested_paddr - Nested guest physical address to map
460
* paddr - VM Physical Address
461
* size - The size of the range to map
462
* level - The level at which to map the range
463
*
464
* Output Args: None
465
*
466
* Return: None
467
*
468
* Within the VM given by vm, creates a nested guest translation for the
469
* page range starting at nested_paddr to the page range starting at paddr.
470
*/
471
void __nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
472
uint64_t nested_paddr, uint64_t paddr, uint64_t size,
473
int level)
474
{
475
size_t page_size = PG_LEVEL_SIZE(level);
476
size_t npages = size / page_size;
477
478
TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
479
TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
480
481
while (npages--) {
482
__nested_pg_map(vmx, vm, nested_paddr, paddr, level);
483
nested_paddr += page_size;
484
paddr += page_size;
485
}
486
}
487
488
void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
489
uint64_t nested_paddr, uint64_t paddr, uint64_t size)
490
{
491
__nested_map(vmx, vm, nested_paddr, paddr, size, PG_LEVEL_4K);
492
}
493
494
/* Prepare an identity extended page table that maps all the
495
* physical pages in VM.
496
*/
497
void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
498
uint32_t memslot)
499
{
500
sparsebit_idx_t i, last;
501
struct userspace_mem_region *region =
502
memslot2region(vm, memslot);
503
504
i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
505
last = i + (region->region.memory_size >> vm->page_shift);
506
for (;;) {
507
i = sparsebit_next_clear(region->unused_phy_pages, i);
508
if (i > last)
509
break;
510
511
nested_map(vmx, vm,
512
(uint64_t)i << vm->page_shift,
513
(uint64_t)i << vm->page_shift,
514
1 << vm->page_shift);
515
}
516
}
517
518
/* Identity map a region with 1GiB Pages. */
519
void nested_identity_map_1g(struct vmx_pages *vmx, struct kvm_vm *vm,
520
uint64_t addr, uint64_t size)
521
{
522
__nested_map(vmx, vm, addr, addr, size, PG_LEVEL_1G);
523
}
524
525
bool kvm_cpu_has_ept(void)
526
{
527
uint64_t ctrl;
528
529
ctrl = kvm_get_feature_msr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) >> 32;
530
if (!(ctrl & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
531
return false;
532
533
ctrl = kvm_get_feature_msr(MSR_IA32_VMX_PROCBASED_CTLS2) >> 32;
534
return ctrl & SECONDARY_EXEC_ENABLE_EPT;
535
}
536
537
void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm)
538
{
539
TEST_ASSERT(kvm_cpu_has_ept(), "KVM doesn't support nested EPT");
540
541
vmx->eptp = (void *)vm_vaddr_alloc_page(vm);
542
vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
543
vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
544
}
545
546
void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm)
547
{
548
vmx->apic_access = (void *)vm_vaddr_alloc_page(vm);
549
vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access);
550
vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access);
551
}
552
553