Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/tools/testing/selftests/kvm/x86/hyperv_clock.c
38237 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2021, Red Hat, Inc.
4
*
5
* Tests for Hyper-V clocksources
6
*/
7
#include "test_util.h"
8
#include "kvm_util.h"
9
#include "processor.h"
10
#include "hyperv.h"
11
12
struct ms_hyperv_tsc_page {
13
volatile u32 tsc_sequence;
14
u32 reserved1;
15
volatile u64 tsc_scale;
16
volatile s64 tsc_offset;
17
} __packed;
18
19
/* Simplified mul_u64_u64_shr() */
20
static inline u64 mul_u64_u64_shr64(u64 a, u64 b)
21
{
22
union {
23
u64 ll;
24
struct {
25
u32 low, high;
26
} l;
27
} rm, rn, rh, a0, b0;
28
u64 c;
29
30
a0.ll = a;
31
b0.ll = b;
32
33
rm.ll = (u64)a0.l.low * b0.l.high;
34
rn.ll = (u64)a0.l.high * b0.l.low;
35
rh.ll = (u64)a0.l.high * b0.l.high;
36
37
rh.l.low = c = rm.l.high + rn.l.high + rh.l.low;
38
rh.l.high = (c >> 32) + rh.l.high;
39
40
return rh.ll;
41
}
42
43
static inline void nop_loop(void)
44
{
45
int i;
46
47
for (i = 0; i < 100000000; i++)
48
asm volatile("nop");
49
}
50
51
static inline void check_tsc_msr_rdtsc(void)
52
{
53
u64 tsc_freq, r1, r2, t1, t2;
54
s64 delta_ns;
55
56
tsc_freq = rdmsr(HV_X64_MSR_TSC_FREQUENCY);
57
GUEST_ASSERT(tsc_freq > 0);
58
59
/* For increased accuracy, take mean rdtsc() before and afrer rdmsr() */
60
r1 = rdtsc();
61
t1 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
62
r1 = (r1 + rdtsc()) / 2;
63
nop_loop();
64
r2 = rdtsc();
65
t2 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
66
r2 = (r2 + rdtsc()) / 2;
67
68
GUEST_ASSERT(r2 > r1 && t2 > t1);
69
70
/* HV_X64_MSR_TIME_REF_COUNT is in 100ns */
71
delta_ns = ((t2 - t1) * 100) - ((r2 - r1) * 1000000000 / tsc_freq);
72
if (delta_ns < 0)
73
delta_ns = -delta_ns;
74
75
/* 1% tolerance */
76
GUEST_ASSERT(delta_ns * 100 < (t2 - t1) * 100);
77
}
78
79
static inline u64 get_tscpage_ts(struct ms_hyperv_tsc_page *tsc_page)
80
{
81
return mul_u64_u64_shr64(rdtsc(), tsc_page->tsc_scale) + tsc_page->tsc_offset;
82
}
83
84
static inline void check_tsc_msr_tsc_page(struct ms_hyperv_tsc_page *tsc_page)
85
{
86
u64 r1, r2, t1, t2;
87
88
/* Compare TSC page clocksource with HV_X64_MSR_TIME_REF_COUNT */
89
t1 = get_tscpage_ts(tsc_page);
90
r1 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
91
92
/* 10 ms tolerance */
93
GUEST_ASSERT(r1 >= t1 && r1 - t1 < 100000);
94
nop_loop();
95
96
t2 = get_tscpage_ts(tsc_page);
97
r2 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
98
GUEST_ASSERT(r2 >= t1 && r2 - t2 < 100000);
99
}
100
101
static void guest_main(struct ms_hyperv_tsc_page *tsc_page, vm_paddr_t tsc_page_gpa)
102
{
103
u64 tsc_scale, tsc_offset;
104
105
/* Set Guest OS id to enable Hyper-V emulation */
106
GUEST_SYNC(1);
107
wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
108
GUEST_SYNC(2);
109
110
check_tsc_msr_rdtsc();
111
112
GUEST_SYNC(3);
113
114
/* Set up TSC page is disabled state, check that it's clean */
115
wrmsr(HV_X64_MSR_REFERENCE_TSC, tsc_page_gpa);
116
GUEST_ASSERT(tsc_page->tsc_sequence == 0);
117
GUEST_ASSERT(tsc_page->tsc_scale == 0);
118
GUEST_ASSERT(tsc_page->tsc_offset == 0);
119
120
GUEST_SYNC(4);
121
122
/* Set up TSC page is enabled state */
123
wrmsr(HV_X64_MSR_REFERENCE_TSC, tsc_page_gpa | 0x1);
124
GUEST_ASSERT(tsc_page->tsc_sequence != 0);
125
126
GUEST_SYNC(5);
127
128
check_tsc_msr_tsc_page(tsc_page);
129
130
GUEST_SYNC(6);
131
132
tsc_offset = tsc_page->tsc_offset;
133
/* Call KVM_SET_CLOCK from userspace, check that TSC page was updated */
134
135
GUEST_SYNC(7);
136
/* Sanity check TSC page timestamp, it should be close to 0 */
137
GUEST_ASSERT(get_tscpage_ts(tsc_page) < 100000);
138
139
GUEST_ASSERT(tsc_page->tsc_offset != tsc_offset);
140
141
nop_loop();
142
143
/*
144
* Enable Re-enlightenment and check that TSC page stays constant across
145
* KVM_SET_CLOCK.
146
*/
147
wrmsr(HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0x1 << 16 | 0xff);
148
wrmsr(HV_X64_MSR_TSC_EMULATION_CONTROL, 0x1);
149
tsc_offset = tsc_page->tsc_offset;
150
tsc_scale = tsc_page->tsc_scale;
151
GUEST_SYNC(8);
152
GUEST_ASSERT(tsc_page->tsc_offset == tsc_offset);
153
GUEST_ASSERT(tsc_page->tsc_scale == tsc_scale);
154
155
GUEST_SYNC(9);
156
157
check_tsc_msr_tsc_page(tsc_page);
158
159
/*
160
* Disable re-enlightenment and TSC page, check that KVM doesn't update
161
* it anymore.
162
*/
163
wrmsr(HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
164
wrmsr(HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
165
wrmsr(HV_X64_MSR_REFERENCE_TSC, 0);
166
memset(tsc_page, 0, sizeof(*tsc_page));
167
168
GUEST_SYNC(10);
169
GUEST_ASSERT(tsc_page->tsc_sequence == 0);
170
GUEST_ASSERT(tsc_page->tsc_offset == 0);
171
GUEST_ASSERT(tsc_page->tsc_scale == 0);
172
173
GUEST_DONE();
174
}
175
176
static void host_check_tsc_msr_rdtsc(struct kvm_vcpu *vcpu)
177
{
178
u64 tsc_freq, r1, r2, t1, t2;
179
s64 delta_ns;
180
181
tsc_freq = vcpu_get_msr(vcpu, HV_X64_MSR_TSC_FREQUENCY);
182
TEST_ASSERT(tsc_freq > 0, "TSC frequency must be nonzero");
183
184
/* For increased accuracy, take mean rdtsc() before and afrer ioctl */
185
r1 = rdtsc();
186
t1 = vcpu_get_msr(vcpu, HV_X64_MSR_TIME_REF_COUNT);
187
r1 = (r1 + rdtsc()) / 2;
188
nop_loop();
189
r2 = rdtsc();
190
t2 = vcpu_get_msr(vcpu, HV_X64_MSR_TIME_REF_COUNT);
191
r2 = (r2 + rdtsc()) / 2;
192
193
TEST_ASSERT(t2 > t1, "Time reference MSR is not monotonic (%ld <= %ld)", t1, t2);
194
195
/* HV_X64_MSR_TIME_REF_COUNT is in 100ns */
196
delta_ns = ((t2 - t1) * 100) - ((r2 - r1) * 1000000000 / tsc_freq);
197
if (delta_ns < 0)
198
delta_ns = -delta_ns;
199
200
/* 1% tolerance */
201
TEST_ASSERT(delta_ns * 100 < (t2 - t1) * 100,
202
"Elapsed time does not match (MSR=%ld, TSC=%ld)",
203
(t2 - t1) * 100, (r2 - r1) * 1000000000 / tsc_freq);
204
}
205
206
int main(void)
207
{
208
struct kvm_vcpu *vcpu;
209
struct kvm_vm *vm;
210
struct ucall uc;
211
vm_vaddr_t tsc_page_gva;
212
int stage;
213
214
TEST_REQUIRE(kvm_has_cap(KVM_CAP_HYPERV_TIME));
215
TEST_REQUIRE(sys_clocksource_is_based_on_tsc());
216
217
vm = vm_create_with_one_vcpu(&vcpu, guest_main);
218
219
vcpu_set_hv_cpuid(vcpu);
220
221
tsc_page_gva = vm_vaddr_alloc_page(vm);
222
memset(addr_gva2hva(vm, tsc_page_gva), 0x0, getpagesize());
223
TEST_ASSERT((addr_gva2gpa(vm, tsc_page_gva) & (getpagesize() - 1)) == 0,
224
"TSC page has to be page aligned");
225
vcpu_args_set(vcpu, 2, tsc_page_gva, addr_gva2gpa(vm, tsc_page_gva));
226
227
host_check_tsc_msr_rdtsc(vcpu);
228
229
for (stage = 1;; stage++) {
230
vcpu_run(vcpu);
231
TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
232
233
switch (get_ucall(vcpu, &uc)) {
234
case UCALL_ABORT:
235
REPORT_GUEST_ASSERT(uc);
236
/* NOT REACHED */
237
case UCALL_SYNC:
238
break;
239
case UCALL_DONE:
240
/* Keep in sync with guest_main() */
241
TEST_ASSERT(stage == 11, "Testing ended prematurely, stage %d",
242
stage);
243
goto out;
244
default:
245
TEST_FAIL("Unknown ucall %lu", uc.cmd);
246
}
247
248
TEST_ASSERT(!strcmp((const char *)uc.args[0], "hello") &&
249
uc.args[1] == stage,
250
"Stage %d: Unexpected register values vmexit, got %lx",
251
stage, (ulong)uc.args[1]);
252
253
/* Reset kvmclock triggering TSC page update */
254
if (stage == 7 || stage == 8 || stage == 10) {
255
struct kvm_clock_data clock = {0};
256
257
vm_ioctl(vm, KVM_SET_CLOCK, &clock);
258
}
259
}
260
261
out:
262
kvm_vm_free(vm);
263
}
264
265