Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/virt/kvm/kvm_main.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Kernel-based Virtual Machine (KVM) Hypervisor
4
*
5
* Copyright (C) 2006 Qumranet, Inc.
6
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
7
*
8
* Authors:
9
* Avi Kivity <[email protected]>
10
* Yaniv Kamay <[email protected]>
11
*/
12
13
#include <kvm/iodev.h>
14
15
#include <linux/kvm_host.h>
16
#include <linux/kvm.h>
17
#include <linux/module.h>
18
#include <linux/errno.h>
19
#include <linux/percpu.h>
20
#include <linux/mm.h>
21
#include <linux/miscdevice.h>
22
#include <linux/vmalloc.h>
23
#include <linux/reboot.h>
24
#include <linux/debugfs.h>
25
#include <linux/highmem.h>
26
#include <linux/file.h>
27
#include <linux/syscore_ops.h>
28
#include <linux/cpu.h>
29
#include <linux/sched/signal.h>
30
#include <linux/sched/mm.h>
31
#include <linux/sched/stat.h>
32
#include <linux/cpumask.h>
33
#include <linux/smp.h>
34
#include <linux/anon_inodes.h>
35
#include <linux/profile.h>
36
#include <linux/kvm_para.h>
37
#include <linux/pagemap.h>
38
#include <linux/mman.h>
39
#include <linux/swap.h>
40
#include <linux/bitops.h>
41
#include <linux/spinlock.h>
42
#include <linux/compat.h>
43
#include <linux/srcu.h>
44
#include <linux/hugetlb.h>
45
#include <linux/slab.h>
46
#include <linux/sort.h>
47
#include <linux/bsearch.h>
48
#include <linux/io.h>
49
#include <linux/lockdep.h>
50
#include <linux/kthread.h>
51
#include <linux/suspend.h>
52
53
#include <asm/processor.h>
54
#include <asm/ioctl.h>
55
#include <linux/uaccess.h>
56
57
#include "coalesced_mmio.h"
58
#include "async_pf.h"
59
#include "kvm_mm.h"
60
#include "vfio.h"
61
62
#include <trace/events/ipi.h>
63
64
#define CREATE_TRACE_POINTS
65
#include <trace/events/kvm.h>
66
67
#include <linux/kvm_dirty_ring.h>
68
69
70
/* Worst case buffer size needed for holding an integer. */
71
#define ITOA_MAX_LEN 12
72
73
MODULE_AUTHOR("Qumranet");
74
MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
75
MODULE_LICENSE("GPL");
76
77
/* Architectures should define their poll value according to the halt latency */
78
unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
79
module_param(halt_poll_ns, uint, 0644);
80
EXPORT_SYMBOL_GPL(halt_poll_ns);
81
82
/* Default doubles per-vcpu halt_poll_ns. */
83
unsigned int halt_poll_ns_grow = 2;
84
module_param(halt_poll_ns_grow, uint, 0644);
85
EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
86
87
/* The start value to grow halt_poll_ns from */
88
unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
89
module_param(halt_poll_ns_grow_start, uint, 0644);
90
EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
91
92
/* Default halves per-vcpu halt_poll_ns. */
93
unsigned int halt_poll_ns_shrink = 2;
94
module_param(halt_poll_ns_shrink, uint, 0644);
95
EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
96
97
/*
98
* Allow direct access (from KVM or the CPU) without MMU notifier protection
99
* to unpinned pages.
100
*/
101
static bool allow_unsafe_mappings;
102
module_param(allow_unsafe_mappings, bool, 0444);
103
104
/*
105
* Ordering of locks:
106
*
107
* kvm->lock --> kvm->slots_lock --> kvm->irq_lock
108
*/
109
110
DEFINE_MUTEX(kvm_lock);
111
LIST_HEAD(vm_list);
112
113
static struct kmem_cache *kvm_vcpu_cache;
114
115
static __read_mostly struct preempt_ops kvm_preempt_ops;
116
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
117
118
static struct dentry *kvm_debugfs_dir;
119
120
static const struct file_operations stat_fops_per_vm;
121
122
static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123
unsigned long arg);
124
#ifdef CONFIG_KVM_COMPAT
125
static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126
unsigned long arg);
127
#define KVM_COMPAT(c) .compat_ioctl = (c)
128
#else
129
/*
130
* For architectures that don't implement a compat infrastructure,
131
* adopt a double line of defense:
132
* - Prevent a compat task from opening /dev/kvm
133
* - If the open has been done by a 64bit task, and the KVM fd
134
* passed to a compat task, let the ioctls fail.
135
*/
136
static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137
unsigned long arg) { return -EINVAL; }
138
139
static int kvm_no_compat_open(struct inode *inode, struct file *file)
140
{
141
return is_compat_task() ? -ENODEV : 0;
142
}
143
#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144
.open = kvm_no_compat_open
145
#endif
146
147
static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149
#define KVM_EVENT_CREATE_VM 0
150
#define KVM_EVENT_DESTROY_VM 1
151
static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152
static unsigned long long kvm_createvm_count;
153
static unsigned long long kvm_active_vms;
154
155
static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
157
__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158
{
159
}
160
161
/*
162
* Switches to specified vcpu, until a matching vcpu_put()
163
*/
164
void vcpu_load(struct kvm_vcpu *vcpu)
165
{
166
int cpu = get_cpu();
167
168
__this_cpu_write(kvm_running_vcpu, vcpu);
169
preempt_notifier_register(&vcpu->preempt_notifier);
170
kvm_arch_vcpu_load(vcpu, cpu);
171
put_cpu();
172
}
173
EXPORT_SYMBOL_GPL(vcpu_load);
174
175
void vcpu_put(struct kvm_vcpu *vcpu)
176
{
177
preempt_disable();
178
kvm_arch_vcpu_put(vcpu);
179
preempt_notifier_unregister(&vcpu->preempt_notifier);
180
__this_cpu_write(kvm_running_vcpu, NULL);
181
preempt_enable();
182
}
183
EXPORT_SYMBOL_GPL(vcpu_put);
184
185
/* TODO: merge with kvm_arch_vcpu_should_kick */
186
static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
187
{
188
int mode = kvm_vcpu_exiting_guest_mode(vcpu);
189
190
/*
191
* We need to wait for the VCPU to reenable interrupts and get out of
192
* READING_SHADOW_PAGE_TABLES mode.
193
*/
194
if (req & KVM_REQUEST_WAIT)
195
return mode != OUTSIDE_GUEST_MODE;
196
197
/*
198
* Need to kick a running VCPU, but otherwise there is nothing to do.
199
*/
200
return mode == IN_GUEST_MODE;
201
}
202
203
static void ack_kick(void *_completed)
204
{
205
}
206
207
static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
208
{
209
if (cpumask_empty(cpus))
210
return false;
211
212
smp_call_function_many(cpus, ack_kick, NULL, wait);
213
return true;
214
}
215
216
static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
217
struct cpumask *tmp, int current_cpu)
218
{
219
int cpu;
220
221
if (likely(!(req & KVM_REQUEST_NO_ACTION)))
222
__kvm_make_request(req, vcpu);
223
224
if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
225
return;
226
227
/*
228
* Note, the vCPU could get migrated to a different pCPU at any point
229
* after kvm_request_needs_ipi(), which could result in sending an IPI
230
* to the previous pCPU. But, that's OK because the purpose of the IPI
231
* is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
232
* satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
233
* after this point is also OK, as the requirement is only that KVM wait
234
* for vCPUs that were reading SPTEs _before_ any changes were
235
* finalized. See kvm_vcpu_kick() for more details on handling requests.
236
*/
237
if (kvm_request_needs_ipi(vcpu, req)) {
238
cpu = READ_ONCE(vcpu->cpu);
239
if (cpu != -1 && cpu != current_cpu)
240
__cpumask_set_cpu(cpu, tmp);
241
}
242
}
243
244
bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
245
unsigned long *vcpu_bitmap)
246
{
247
struct kvm_vcpu *vcpu;
248
struct cpumask *cpus;
249
int i, me;
250
bool called;
251
252
me = get_cpu();
253
254
cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
255
cpumask_clear(cpus);
256
257
for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
258
vcpu = kvm_get_vcpu(kvm, i);
259
if (!vcpu)
260
continue;
261
kvm_make_vcpu_request(vcpu, req, cpus, me);
262
}
263
264
called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
265
put_cpu();
266
267
return called;
268
}
269
270
bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
271
{
272
struct kvm_vcpu *vcpu;
273
struct cpumask *cpus;
274
unsigned long i;
275
bool called;
276
int me;
277
278
me = get_cpu();
279
280
cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
281
cpumask_clear(cpus);
282
283
kvm_for_each_vcpu(i, vcpu, kvm)
284
kvm_make_vcpu_request(vcpu, req, cpus, me);
285
286
called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
287
put_cpu();
288
289
return called;
290
}
291
EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
292
293
void kvm_flush_remote_tlbs(struct kvm *kvm)
294
{
295
++kvm->stat.generic.remote_tlb_flush_requests;
296
297
/*
298
* We want to publish modifications to the page tables before reading
299
* mode. Pairs with a memory barrier in arch-specific code.
300
* - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
301
* and smp_mb in walk_shadow_page_lockless_begin/end.
302
* - powerpc: smp_mb in kvmppc_prepare_to_enter.
303
*
304
* There is already an smp_mb__after_atomic() before
305
* kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
306
* barrier here.
307
*/
308
if (!kvm_arch_flush_remote_tlbs(kvm)
309
|| kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
310
++kvm->stat.generic.remote_tlb_flush;
311
}
312
EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
313
314
void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
315
{
316
if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
317
return;
318
319
/*
320
* Fall back to a flushing entire TLBs if the architecture range-based
321
* TLB invalidation is unsupported or can't be performed for whatever
322
* reason.
323
*/
324
kvm_flush_remote_tlbs(kvm);
325
}
326
327
void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
328
const struct kvm_memory_slot *memslot)
329
{
330
/*
331
* All current use cases for flushing the TLBs for a specific memslot
332
* are related to dirty logging, and many do the TLB flush out of
333
* mmu_lock. The interaction between the various operations on memslot
334
* must be serialized by slots_locks to ensure the TLB flush from one
335
* operation is observed by any other operation on the same memslot.
336
*/
337
lockdep_assert_held(&kvm->slots_lock);
338
kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
339
}
340
341
static void kvm_flush_shadow_all(struct kvm *kvm)
342
{
343
kvm_arch_flush_shadow_all(kvm);
344
kvm_arch_guest_memory_reclaimed(kvm);
345
}
346
347
#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
348
static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
349
gfp_t gfp_flags)
350
{
351
void *page;
352
353
gfp_flags |= mc->gfp_zero;
354
355
if (mc->kmem_cache)
356
return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
357
358
page = (void *)__get_free_page(gfp_flags);
359
if (page && mc->init_value)
360
memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
361
return page;
362
}
363
364
int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
365
{
366
gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
367
void *obj;
368
369
if (mc->nobjs >= min)
370
return 0;
371
372
if (unlikely(!mc->objects)) {
373
if (WARN_ON_ONCE(!capacity))
374
return -EIO;
375
376
/*
377
* Custom init values can be used only for page allocations,
378
* and obviously conflict with __GFP_ZERO.
379
*/
380
if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
381
return -EIO;
382
383
mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
384
if (!mc->objects)
385
return -ENOMEM;
386
387
mc->capacity = capacity;
388
}
389
390
/* It is illegal to request a different capacity across topups. */
391
if (WARN_ON_ONCE(mc->capacity != capacity))
392
return -EIO;
393
394
while (mc->nobjs < mc->capacity) {
395
obj = mmu_memory_cache_alloc_obj(mc, gfp);
396
if (!obj)
397
return mc->nobjs >= min ? 0 : -ENOMEM;
398
mc->objects[mc->nobjs++] = obj;
399
}
400
return 0;
401
}
402
403
int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
404
{
405
return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
406
}
407
408
int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
409
{
410
return mc->nobjs;
411
}
412
413
void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
414
{
415
while (mc->nobjs) {
416
if (mc->kmem_cache)
417
kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
418
else
419
free_page((unsigned long)mc->objects[--mc->nobjs]);
420
}
421
422
kvfree(mc->objects);
423
424
mc->objects = NULL;
425
mc->capacity = 0;
426
}
427
428
void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
429
{
430
void *p;
431
432
if (WARN_ON(!mc->nobjs))
433
p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
434
else
435
p = mc->objects[--mc->nobjs];
436
BUG_ON(!p);
437
return p;
438
}
439
#endif
440
441
static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
442
{
443
mutex_init(&vcpu->mutex);
444
vcpu->cpu = -1;
445
vcpu->kvm = kvm;
446
vcpu->vcpu_id = id;
447
vcpu->pid = NULL;
448
rwlock_init(&vcpu->pid_lock);
449
#ifndef __KVM_HAVE_ARCH_WQP
450
rcuwait_init(&vcpu->wait);
451
#endif
452
kvm_async_pf_vcpu_init(vcpu);
453
454
kvm_vcpu_set_in_spin_loop(vcpu, false);
455
kvm_vcpu_set_dy_eligible(vcpu, false);
456
vcpu->preempted = false;
457
vcpu->ready = false;
458
preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
459
vcpu->last_used_slot = NULL;
460
461
/* Fill the stats id string for the vcpu */
462
snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
463
task_pid_nr(current), id);
464
}
465
466
static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
467
{
468
kvm_arch_vcpu_destroy(vcpu);
469
kvm_dirty_ring_free(&vcpu->dirty_ring);
470
471
/*
472
* No need for rcu_read_lock as VCPU_RUN is the only place that changes
473
* the vcpu->pid pointer, and at destruction time all file descriptors
474
* are already gone.
475
*/
476
put_pid(vcpu->pid);
477
478
free_page((unsigned long)vcpu->run);
479
kmem_cache_free(kvm_vcpu_cache, vcpu);
480
}
481
482
void kvm_destroy_vcpus(struct kvm *kvm)
483
{
484
unsigned long i;
485
struct kvm_vcpu *vcpu;
486
487
kvm_for_each_vcpu(i, vcpu, kvm) {
488
kvm_vcpu_destroy(vcpu);
489
xa_erase(&kvm->vcpu_array, i);
490
491
/*
492
* Assert that the vCPU isn't visible in any way, to ensure KVM
493
* doesn't trigger a use-after-free if destroying vCPUs results
494
* in VM-wide request, e.g. to flush remote TLBs when tearing
495
* down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires.
496
*/
497
WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i));
498
}
499
500
atomic_set(&kvm->online_vcpus, 0);
501
}
502
EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
503
504
#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
505
static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
506
{
507
return container_of(mn, struct kvm, mmu_notifier);
508
}
509
510
typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
511
512
typedef void (*on_lock_fn_t)(struct kvm *kvm);
513
514
struct kvm_mmu_notifier_range {
515
/*
516
* 64-bit addresses, as KVM notifiers can operate on host virtual
517
* addresses (unsigned long) and guest physical addresses (64-bit).
518
*/
519
u64 start;
520
u64 end;
521
union kvm_mmu_notifier_arg arg;
522
gfn_handler_t handler;
523
on_lock_fn_t on_lock;
524
bool flush_on_ret;
525
bool may_block;
526
bool lockless;
527
};
528
529
/*
530
* The inner-most helper returns a tuple containing the return value from the
531
* arch- and action-specific handler, plus a flag indicating whether or not at
532
* least one memslot was found, i.e. if the handler found guest memory.
533
*
534
* Note, most notifiers are averse to booleans, so even though KVM tracks the
535
* return from arch code as a bool, outer helpers will cast it to an int. :-(
536
*/
537
typedef struct kvm_mmu_notifier_return {
538
bool ret;
539
bool found_memslot;
540
} kvm_mn_ret_t;
541
542
/*
543
* Use a dedicated stub instead of NULL to indicate that there is no callback
544
* function/handler. The compiler technically can't guarantee that a real
545
* function will have a non-zero address, and so it will generate code to
546
* check for !NULL, whereas comparing against a stub will be elided at compile
547
* time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
548
*/
549
static void kvm_null_fn(void)
550
{
551
552
}
553
#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
554
555
/* Iterate over each memslot intersecting [start, last] (inclusive) range */
556
#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
557
for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
558
node; \
559
node = interval_tree_iter_next(node, start, last)) \
560
561
static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm,
562
const struct kvm_mmu_notifier_range *range)
563
{
564
struct kvm_mmu_notifier_return r = {
565
.ret = false,
566
.found_memslot = false,
567
};
568
struct kvm_gfn_range gfn_range;
569
struct kvm_memory_slot *slot;
570
struct kvm_memslots *slots;
571
int i, idx;
572
573
if (WARN_ON_ONCE(range->end <= range->start))
574
return r;
575
576
/* A null handler is allowed if and only if on_lock() is provided. */
577
if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
578
IS_KVM_NULL_FN(range->handler)))
579
return r;
580
581
/* on_lock will never be called for lockless walks */
582
if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock)))
583
return r;
584
585
idx = srcu_read_lock(&kvm->srcu);
586
587
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
588
struct interval_tree_node *node;
589
590
slots = __kvm_memslots(kvm, i);
591
kvm_for_each_memslot_in_hva_range(node, slots,
592
range->start, range->end - 1) {
593
unsigned long hva_start, hva_end;
594
595
slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
596
hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
597
hva_end = min_t(unsigned long, range->end,
598
slot->userspace_addr + (slot->npages << PAGE_SHIFT));
599
600
/*
601
* To optimize for the likely case where the address
602
* range is covered by zero or one memslots, don't
603
* bother making these conditional (to avoid writes on
604
* the second or later invocation of the handler).
605
*/
606
gfn_range.arg = range->arg;
607
gfn_range.may_block = range->may_block;
608
/*
609
* HVA-based notifications aren't relevant to private
610
* mappings as they don't have a userspace mapping.
611
*/
612
gfn_range.attr_filter = KVM_FILTER_SHARED;
613
614
/*
615
* {gfn(page) | page intersects with [hva_start, hva_end)} =
616
* {gfn_start, gfn_start+1, ..., gfn_end-1}.
617
*/
618
gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
619
gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
620
gfn_range.slot = slot;
621
gfn_range.lockless = range->lockless;
622
623
if (!r.found_memslot) {
624
r.found_memslot = true;
625
if (!range->lockless) {
626
KVM_MMU_LOCK(kvm);
627
if (!IS_KVM_NULL_FN(range->on_lock))
628
range->on_lock(kvm);
629
630
if (IS_KVM_NULL_FN(range->handler))
631
goto mmu_unlock;
632
}
633
}
634
r.ret |= range->handler(kvm, &gfn_range);
635
}
636
}
637
638
if (range->flush_on_ret && r.ret)
639
kvm_flush_remote_tlbs(kvm);
640
641
mmu_unlock:
642
if (r.found_memslot && !range->lockless)
643
KVM_MMU_UNLOCK(kvm);
644
645
srcu_read_unlock(&kvm->srcu, idx);
646
647
return r;
648
}
649
650
static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn,
651
unsigned long start,
652
unsigned long end,
653
gfn_handler_t handler,
654
bool flush_on_ret)
655
{
656
struct kvm *kvm = mmu_notifier_to_kvm(mn);
657
const struct kvm_mmu_notifier_range range = {
658
.start = start,
659
.end = end,
660
.handler = handler,
661
.on_lock = (void *)kvm_null_fn,
662
.flush_on_ret = flush_on_ret,
663
.may_block = false,
664
.lockless = IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING),
665
};
666
667
return kvm_handle_hva_range(kvm, &range).ret;
668
}
669
670
static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn,
671
unsigned long start,
672
unsigned long end,
673
gfn_handler_t handler)
674
{
675
return kvm_age_hva_range(mn, start, end, handler, false);
676
}
677
678
void kvm_mmu_invalidate_begin(struct kvm *kvm)
679
{
680
lockdep_assert_held_write(&kvm->mmu_lock);
681
/*
682
* The count increase must become visible at unlock time as no
683
* spte can be established without taking the mmu_lock and
684
* count is also read inside the mmu_lock critical section.
685
*/
686
kvm->mmu_invalidate_in_progress++;
687
688
if (likely(kvm->mmu_invalidate_in_progress == 1)) {
689
kvm->mmu_invalidate_range_start = INVALID_GPA;
690
kvm->mmu_invalidate_range_end = INVALID_GPA;
691
}
692
}
693
694
void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
695
{
696
lockdep_assert_held_write(&kvm->mmu_lock);
697
698
WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
699
700
if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
701
kvm->mmu_invalidate_range_start = start;
702
kvm->mmu_invalidate_range_end = end;
703
} else {
704
/*
705
* Fully tracking multiple concurrent ranges has diminishing
706
* returns. Keep things simple and just find the minimal range
707
* which includes the current and new ranges. As there won't be
708
* enough information to subtract a range after its invalidate
709
* completes, any ranges invalidated concurrently will
710
* accumulate and persist until all outstanding invalidates
711
* complete.
712
*/
713
kvm->mmu_invalidate_range_start =
714
min(kvm->mmu_invalidate_range_start, start);
715
kvm->mmu_invalidate_range_end =
716
max(kvm->mmu_invalidate_range_end, end);
717
}
718
}
719
720
bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
721
{
722
kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
723
return kvm_unmap_gfn_range(kvm, range);
724
}
725
726
static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
727
const struct mmu_notifier_range *range)
728
{
729
struct kvm *kvm = mmu_notifier_to_kvm(mn);
730
const struct kvm_mmu_notifier_range hva_range = {
731
.start = range->start,
732
.end = range->end,
733
.handler = kvm_mmu_unmap_gfn_range,
734
.on_lock = kvm_mmu_invalidate_begin,
735
.flush_on_ret = true,
736
.may_block = mmu_notifier_range_blockable(range),
737
};
738
739
trace_kvm_unmap_hva_range(range->start, range->end);
740
741
/*
742
* Prevent memslot modification between range_start() and range_end()
743
* so that conditionally locking provides the same result in both
744
* functions. Without that guarantee, the mmu_invalidate_in_progress
745
* adjustments will be imbalanced.
746
*
747
* Pairs with the decrement in range_end().
748
*/
749
spin_lock(&kvm->mn_invalidate_lock);
750
kvm->mn_active_invalidate_count++;
751
spin_unlock(&kvm->mn_invalidate_lock);
752
753
/*
754
* Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
755
* before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
756
* each cache's lock. There are relatively few caches in existence at
757
* any given time, and the caches themselves can check for hva overlap,
758
* i.e. don't need to rely on memslot overlap checks for performance.
759
* Because this runs without holding mmu_lock, the pfn caches must use
760
* mn_active_invalidate_count (see above) instead of
761
* mmu_invalidate_in_progress.
762
*/
763
gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
764
765
/*
766
* If one or more memslots were found and thus zapped, notify arch code
767
* that guest memory has been reclaimed. This needs to be done *after*
768
* dropping mmu_lock, as x86's reclaim path is slooooow.
769
*/
770
if (kvm_handle_hva_range(kvm, &hva_range).found_memslot)
771
kvm_arch_guest_memory_reclaimed(kvm);
772
773
return 0;
774
}
775
776
void kvm_mmu_invalidate_end(struct kvm *kvm)
777
{
778
lockdep_assert_held_write(&kvm->mmu_lock);
779
780
/*
781
* This sequence increase will notify the kvm page fault that
782
* the page that is going to be mapped in the spte could have
783
* been freed.
784
*/
785
kvm->mmu_invalidate_seq++;
786
smp_wmb();
787
/*
788
* The above sequence increase must be visible before the
789
* below count decrease, which is ensured by the smp_wmb above
790
* in conjunction with the smp_rmb in mmu_invalidate_retry().
791
*/
792
kvm->mmu_invalidate_in_progress--;
793
KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
794
795
/*
796
* Assert that at least one range was added between start() and end().
797
* Not adding a range isn't fatal, but it is a KVM bug.
798
*/
799
WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
800
}
801
802
static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
803
const struct mmu_notifier_range *range)
804
{
805
struct kvm *kvm = mmu_notifier_to_kvm(mn);
806
const struct kvm_mmu_notifier_range hva_range = {
807
.start = range->start,
808
.end = range->end,
809
.handler = (void *)kvm_null_fn,
810
.on_lock = kvm_mmu_invalidate_end,
811
.flush_on_ret = false,
812
.may_block = mmu_notifier_range_blockable(range),
813
};
814
bool wake;
815
816
kvm_handle_hva_range(kvm, &hva_range);
817
818
/* Pairs with the increment in range_start(). */
819
spin_lock(&kvm->mn_invalidate_lock);
820
if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
821
--kvm->mn_active_invalidate_count;
822
wake = !kvm->mn_active_invalidate_count;
823
spin_unlock(&kvm->mn_invalidate_lock);
824
825
/*
826
* There can only be one waiter, since the wait happens under
827
* slots_lock.
828
*/
829
if (wake)
830
rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
831
}
832
833
static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
834
struct mm_struct *mm,
835
unsigned long start,
836
unsigned long end)
837
{
838
trace_kvm_age_hva(start, end);
839
840
return kvm_age_hva_range(mn, start, end, kvm_age_gfn,
841
!IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
842
}
843
844
static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
845
struct mm_struct *mm,
846
unsigned long start,
847
unsigned long end)
848
{
849
trace_kvm_age_hva(start, end);
850
851
/*
852
* Even though we do not flush TLB, this will still adversely
853
* affect performance on pre-Haswell Intel EPT, where there is
854
* no EPT Access Bit to clear so that we have to tear down EPT
855
* tables instead. If we find this unacceptable, we can always
856
* add a parameter to kvm_age_hva so that it effectively doesn't
857
* do anything on clear_young.
858
*
859
* Also note that currently we never issue secondary TLB flushes
860
* from clear_young, leaving this job up to the regular system
861
* cadence. If we find this inaccurate, we might come up with a
862
* more sophisticated heuristic later.
863
*/
864
return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn);
865
}
866
867
static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
868
struct mm_struct *mm,
869
unsigned long address)
870
{
871
trace_kvm_test_age_hva(address);
872
873
return kvm_age_hva_range_no_flush(mn, address, address + 1,
874
kvm_test_age_gfn);
875
}
876
877
static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
878
struct mm_struct *mm)
879
{
880
struct kvm *kvm = mmu_notifier_to_kvm(mn);
881
int idx;
882
883
idx = srcu_read_lock(&kvm->srcu);
884
kvm_flush_shadow_all(kvm);
885
srcu_read_unlock(&kvm->srcu, idx);
886
}
887
888
static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
889
.invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
890
.invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
891
.clear_flush_young = kvm_mmu_notifier_clear_flush_young,
892
.clear_young = kvm_mmu_notifier_clear_young,
893
.test_young = kvm_mmu_notifier_test_young,
894
.release = kvm_mmu_notifier_release,
895
};
896
897
static int kvm_init_mmu_notifier(struct kvm *kvm)
898
{
899
kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
900
return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
901
}
902
903
#else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
904
905
static int kvm_init_mmu_notifier(struct kvm *kvm)
906
{
907
return 0;
908
}
909
910
#endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
911
912
#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
913
static int kvm_pm_notifier_call(struct notifier_block *bl,
914
unsigned long state,
915
void *unused)
916
{
917
struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
918
919
return kvm_arch_pm_notifier(kvm, state);
920
}
921
922
static void kvm_init_pm_notifier(struct kvm *kvm)
923
{
924
kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
925
/* Suspend KVM before we suspend ftrace, RCU, etc. */
926
kvm->pm_notifier.priority = INT_MAX;
927
register_pm_notifier(&kvm->pm_notifier);
928
}
929
930
static void kvm_destroy_pm_notifier(struct kvm *kvm)
931
{
932
unregister_pm_notifier(&kvm->pm_notifier);
933
}
934
#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
935
static void kvm_init_pm_notifier(struct kvm *kvm)
936
{
937
}
938
939
static void kvm_destroy_pm_notifier(struct kvm *kvm)
940
{
941
}
942
#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
943
944
static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
945
{
946
if (!memslot->dirty_bitmap)
947
return;
948
949
vfree(memslot->dirty_bitmap);
950
memslot->dirty_bitmap = NULL;
951
}
952
953
/* This does not remove the slot from struct kvm_memslots data structures */
954
static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
955
{
956
if (slot->flags & KVM_MEM_GUEST_MEMFD)
957
kvm_gmem_unbind(slot);
958
959
kvm_destroy_dirty_bitmap(slot);
960
961
kvm_arch_free_memslot(kvm, slot);
962
963
kfree(slot);
964
}
965
966
static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
967
{
968
struct hlist_node *idnode;
969
struct kvm_memory_slot *memslot;
970
int bkt;
971
972
/*
973
* The same memslot objects live in both active and inactive sets,
974
* arbitrarily free using index '1' so the second invocation of this
975
* function isn't operating over a structure with dangling pointers
976
* (even though this function isn't actually touching them).
977
*/
978
if (!slots->node_idx)
979
return;
980
981
hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
982
kvm_free_memslot(kvm, memslot);
983
}
984
985
static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
986
{
987
switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
988
case KVM_STATS_TYPE_INSTANT:
989
return 0444;
990
case KVM_STATS_TYPE_CUMULATIVE:
991
case KVM_STATS_TYPE_PEAK:
992
default:
993
return 0644;
994
}
995
}
996
997
998
static void kvm_destroy_vm_debugfs(struct kvm *kvm)
999
{
1000
int i;
1001
int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1002
kvm_vcpu_stats_header.num_desc;
1003
1004
if (IS_ERR(kvm->debugfs_dentry))
1005
return;
1006
1007
debugfs_remove_recursive(kvm->debugfs_dentry);
1008
1009
if (kvm->debugfs_stat_data) {
1010
for (i = 0; i < kvm_debugfs_num_entries; i++)
1011
kfree(kvm->debugfs_stat_data[i]);
1012
kfree(kvm->debugfs_stat_data);
1013
}
1014
}
1015
1016
static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1017
{
1018
static DEFINE_MUTEX(kvm_debugfs_lock);
1019
struct dentry *dent;
1020
char dir_name[ITOA_MAX_LEN * 2];
1021
struct kvm_stat_data *stat_data;
1022
const struct _kvm_stats_desc *pdesc;
1023
int i, ret = -ENOMEM;
1024
int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1025
kvm_vcpu_stats_header.num_desc;
1026
1027
if (!debugfs_initialized())
1028
return 0;
1029
1030
snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1031
mutex_lock(&kvm_debugfs_lock);
1032
dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1033
if (dent) {
1034
pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1035
dput(dent);
1036
mutex_unlock(&kvm_debugfs_lock);
1037
return 0;
1038
}
1039
dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1040
mutex_unlock(&kvm_debugfs_lock);
1041
if (IS_ERR(dent))
1042
return 0;
1043
1044
kvm->debugfs_dentry = dent;
1045
kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1046
sizeof(*kvm->debugfs_stat_data),
1047
GFP_KERNEL_ACCOUNT);
1048
if (!kvm->debugfs_stat_data)
1049
goto out_err;
1050
1051
for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1052
pdesc = &kvm_vm_stats_desc[i];
1053
stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1054
if (!stat_data)
1055
goto out_err;
1056
1057
stat_data->kvm = kvm;
1058
stat_data->desc = pdesc;
1059
stat_data->kind = KVM_STAT_VM;
1060
kvm->debugfs_stat_data[i] = stat_data;
1061
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1062
kvm->debugfs_dentry, stat_data,
1063
&stat_fops_per_vm);
1064
}
1065
1066
for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1067
pdesc = &kvm_vcpu_stats_desc[i];
1068
stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1069
if (!stat_data)
1070
goto out_err;
1071
1072
stat_data->kvm = kvm;
1073
stat_data->desc = pdesc;
1074
stat_data->kind = KVM_STAT_VCPU;
1075
kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1076
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1077
kvm->debugfs_dentry, stat_data,
1078
&stat_fops_per_vm);
1079
}
1080
1081
kvm_arch_create_vm_debugfs(kvm);
1082
return 0;
1083
out_err:
1084
kvm_destroy_vm_debugfs(kvm);
1085
return ret;
1086
}
1087
1088
/*
1089
* Called just after removing the VM from the vm_list, but before doing any
1090
* other destruction.
1091
*/
1092
void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1093
{
1094
}
1095
1096
/*
1097
* Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1098
* be setup already, so we can create arch-specific debugfs entries under it.
1099
* Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1100
* a per-arch destroy interface is not needed.
1101
*/
1102
void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1103
{
1104
}
1105
1106
static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1107
{
1108
struct kvm *kvm = kvm_arch_alloc_vm();
1109
struct kvm_memslots *slots;
1110
int r, i, j;
1111
1112
if (!kvm)
1113
return ERR_PTR(-ENOMEM);
1114
1115
KVM_MMU_LOCK_INIT(kvm);
1116
mmgrab(current->mm);
1117
kvm->mm = current->mm;
1118
kvm_eventfd_init(kvm);
1119
mutex_init(&kvm->lock);
1120
mutex_init(&kvm->irq_lock);
1121
mutex_init(&kvm->slots_lock);
1122
mutex_init(&kvm->slots_arch_lock);
1123
spin_lock_init(&kvm->mn_invalidate_lock);
1124
rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1125
xa_init(&kvm->vcpu_array);
1126
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1127
xa_init(&kvm->mem_attr_array);
1128
#endif
1129
1130
INIT_LIST_HEAD(&kvm->gpc_list);
1131
spin_lock_init(&kvm->gpc_lock);
1132
1133
INIT_LIST_HEAD(&kvm->devices);
1134
kvm->max_vcpus = KVM_MAX_VCPUS;
1135
1136
BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1137
1138
/*
1139
* Force subsequent debugfs file creations to fail if the VM directory
1140
* is not created (by kvm_create_vm_debugfs()).
1141
*/
1142
kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1143
1144
snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1145
task_pid_nr(current));
1146
1147
r = -ENOMEM;
1148
if (init_srcu_struct(&kvm->srcu))
1149
goto out_err_no_srcu;
1150
if (init_srcu_struct(&kvm->irq_srcu))
1151
goto out_err_no_irq_srcu;
1152
1153
r = kvm_init_irq_routing(kvm);
1154
if (r)
1155
goto out_err_no_irq_routing;
1156
1157
refcount_set(&kvm->users_count, 1);
1158
1159
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1160
for (j = 0; j < 2; j++) {
1161
slots = &kvm->__memslots[i][j];
1162
1163
atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1164
slots->hva_tree = RB_ROOT_CACHED;
1165
slots->gfn_tree = RB_ROOT;
1166
hash_init(slots->id_hash);
1167
slots->node_idx = j;
1168
1169
/* Generations must be different for each address space. */
1170
slots->generation = i;
1171
}
1172
1173
rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1174
}
1175
1176
r = -ENOMEM;
1177
for (i = 0; i < KVM_NR_BUSES; i++) {
1178
rcu_assign_pointer(kvm->buses[i],
1179
kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1180
if (!kvm->buses[i])
1181
goto out_err_no_arch_destroy_vm;
1182
}
1183
1184
r = kvm_arch_init_vm(kvm, type);
1185
if (r)
1186
goto out_err_no_arch_destroy_vm;
1187
1188
r = kvm_enable_virtualization();
1189
if (r)
1190
goto out_err_no_disable;
1191
1192
#ifdef CONFIG_HAVE_KVM_IRQCHIP
1193
INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1194
#endif
1195
1196
r = kvm_init_mmu_notifier(kvm);
1197
if (r)
1198
goto out_err_no_mmu_notifier;
1199
1200
r = kvm_coalesced_mmio_init(kvm);
1201
if (r < 0)
1202
goto out_no_coalesced_mmio;
1203
1204
r = kvm_create_vm_debugfs(kvm, fdname);
1205
if (r)
1206
goto out_err_no_debugfs;
1207
1208
mutex_lock(&kvm_lock);
1209
list_add(&kvm->vm_list, &vm_list);
1210
mutex_unlock(&kvm_lock);
1211
1212
preempt_notifier_inc();
1213
kvm_init_pm_notifier(kvm);
1214
1215
return kvm;
1216
1217
out_err_no_debugfs:
1218
kvm_coalesced_mmio_free(kvm);
1219
out_no_coalesced_mmio:
1220
#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1221
if (kvm->mmu_notifier.ops)
1222
mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1223
#endif
1224
out_err_no_mmu_notifier:
1225
kvm_disable_virtualization();
1226
out_err_no_disable:
1227
kvm_arch_destroy_vm(kvm);
1228
out_err_no_arch_destroy_vm:
1229
WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1230
for (i = 0; i < KVM_NR_BUSES; i++)
1231
kfree(kvm_get_bus(kvm, i));
1232
kvm_free_irq_routing(kvm);
1233
out_err_no_irq_routing:
1234
cleanup_srcu_struct(&kvm->irq_srcu);
1235
out_err_no_irq_srcu:
1236
cleanup_srcu_struct(&kvm->srcu);
1237
out_err_no_srcu:
1238
kvm_arch_free_vm(kvm);
1239
mmdrop(current->mm);
1240
return ERR_PTR(r);
1241
}
1242
1243
static void kvm_destroy_devices(struct kvm *kvm)
1244
{
1245
struct kvm_device *dev, *tmp;
1246
1247
/*
1248
* We do not need to take the kvm->lock here, because nobody else
1249
* has a reference to the struct kvm at this point and therefore
1250
* cannot access the devices list anyhow.
1251
*
1252
* The device list is generally managed as an rculist, but list_del()
1253
* is used intentionally here. If a bug in KVM introduced a reader that
1254
* was not backed by a reference on the kvm struct, the hope is that
1255
* it'd consume the poisoned forward pointer instead of suffering a
1256
* use-after-free, even though this cannot be guaranteed.
1257
*/
1258
list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1259
list_del(&dev->vm_node);
1260
dev->ops->destroy(dev);
1261
}
1262
}
1263
1264
static void kvm_destroy_vm(struct kvm *kvm)
1265
{
1266
int i;
1267
struct mm_struct *mm = kvm->mm;
1268
1269
kvm_destroy_pm_notifier(kvm);
1270
kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1271
kvm_destroy_vm_debugfs(kvm);
1272
mutex_lock(&kvm_lock);
1273
list_del(&kvm->vm_list);
1274
mutex_unlock(&kvm_lock);
1275
kvm_arch_pre_destroy_vm(kvm);
1276
1277
kvm_free_irq_routing(kvm);
1278
for (i = 0; i < KVM_NR_BUSES; i++) {
1279
struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1280
1281
if (bus)
1282
kvm_io_bus_destroy(bus);
1283
kvm->buses[i] = NULL;
1284
}
1285
kvm_coalesced_mmio_free(kvm);
1286
#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1287
mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1288
/*
1289
* At this point, pending calls to invalidate_range_start()
1290
* have completed but no more MMU notifiers will run, so
1291
* mn_active_invalidate_count may remain unbalanced.
1292
* No threads can be waiting in kvm_swap_active_memslots() as the
1293
* last reference on KVM has been dropped, but freeing
1294
* memslots would deadlock without this manual intervention.
1295
*
1296
* If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1297
* notifier between a start() and end(), then there shouldn't be any
1298
* in-progress invalidations.
1299
*/
1300
WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1301
if (kvm->mn_active_invalidate_count)
1302
kvm->mn_active_invalidate_count = 0;
1303
else
1304
WARN_ON(kvm->mmu_invalidate_in_progress);
1305
#else
1306
kvm_flush_shadow_all(kvm);
1307
#endif
1308
kvm_arch_destroy_vm(kvm);
1309
kvm_destroy_devices(kvm);
1310
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1311
kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1312
kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1313
}
1314
cleanup_srcu_struct(&kvm->irq_srcu);
1315
cleanup_srcu_struct(&kvm->srcu);
1316
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1317
xa_destroy(&kvm->mem_attr_array);
1318
#endif
1319
kvm_arch_free_vm(kvm);
1320
preempt_notifier_dec();
1321
kvm_disable_virtualization();
1322
mmdrop(mm);
1323
}
1324
1325
void kvm_get_kvm(struct kvm *kvm)
1326
{
1327
refcount_inc(&kvm->users_count);
1328
}
1329
EXPORT_SYMBOL_GPL(kvm_get_kvm);
1330
1331
/*
1332
* Make sure the vm is not during destruction, which is a safe version of
1333
* kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1334
*/
1335
bool kvm_get_kvm_safe(struct kvm *kvm)
1336
{
1337
return refcount_inc_not_zero(&kvm->users_count);
1338
}
1339
EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1340
1341
void kvm_put_kvm(struct kvm *kvm)
1342
{
1343
if (refcount_dec_and_test(&kvm->users_count))
1344
kvm_destroy_vm(kvm);
1345
}
1346
EXPORT_SYMBOL_GPL(kvm_put_kvm);
1347
1348
/*
1349
* Used to put a reference that was taken on behalf of an object associated
1350
* with a user-visible file descriptor, e.g. a vcpu or device, if installation
1351
* of the new file descriptor fails and the reference cannot be transferred to
1352
* its final owner. In such cases, the caller is still actively using @kvm and
1353
* will fail miserably if the refcount unexpectedly hits zero.
1354
*/
1355
void kvm_put_kvm_no_destroy(struct kvm *kvm)
1356
{
1357
WARN_ON(refcount_dec_and_test(&kvm->users_count));
1358
}
1359
EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1360
1361
static int kvm_vm_release(struct inode *inode, struct file *filp)
1362
{
1363
struct kvm *kvm = filp->private_data;
1364
1365
kvm_irqfd_release(kvm);
1366
1367
kvm_put_kvm(kvm);
1368
return 0;
1369
}
1370
1371
int kvm_trylock_all_vcpus(struct kvm *kvm)
1372
{
1373
struct kvm_vcpu *vcpu;
1374
unsigned long i, j;
1375
1376
lockdep_assert_held(&kvm->lock);
1377
1378
kvm_for_each_vcpu(i, vcpu, kvm)
1379
if (!mutex_trylock_nest_lock(&vcpu->mutex, &kvm->lock))
1380
goto out_unlock;
1381
return 0;
1382
1383
out_unlock:
1384
kvm_for_each_vcpu(j, vcpu, kvm) {
1385
if (i == j)
1386
break;
1387
mutex_unlock(&vcpu->mutex);
1388
}
1389
return -EINTR;
1390
}
1391
EXPORT_SYMBOL_GPL(kvm_trylock_all_vcpus);
1392
1393
int kvm_lock_all_vcpus(struct kvm *kvm)
1394
{
1395
struct kvm_vcpu *vcpu;
1396
unsigned long i, j;
1397
int r;
1398
1399
lockdep_assert_held(&kvm->lock);
1400
1401
kvm_for_each_vcpu(i, vcpu, kvm) {
1402
r = mutex_lock_killable_nest_lock(&vcpu->mutex, &kvm->lock);
1403
if (r)
1404
goto out_unlock;
1405
}
1406
return 0;
1407
1408
out_unlock:
1409
kvm_for_each_vcpu(j, vcpu, kvm) {
1410
if (i == j)
1411
break;
1412
mutex_unlock(&vcpu->mutex);
1413
}
1414
return r;
1415
}
1416
EXPORT_SYMBOL_GPL(kvm_lock_all_vcpus);
1417
1418
void kvm_unlock_all_vcpus(struct kvm *kvm)
1419
{
1420
struct kvm_vcpu *vcpu;
1421
unsigned long i;
1422
1423
lockdep_assert_held(&kvm->lock);
1424
1425
kvm_for_each_vcpu(i, vcpu, kvm)
1426
mutex_unlock(&vcpu->mutex);
1427
}
1428
EXPORT_SYMBOL_GPL(kvm_unlock_all_vcpus);
1429
1430
/*
1431
* Allocation size is twice as large as the actual dirty bitmap size.
1432
* See kvm_vm_ioctl_get_dirty_log() why this is needed.
1433
*/
1434
static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1435
{
1436
unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1437
1438
memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1439
if (!memslot->dirty_bitmap)
1440
return -ENOMEM;
1441
1442
return 0;
1443
}
1444
1445
static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1446
{
1447
struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1448
int node_idx_inactive = active->node_idx ^ 1;
1449
1450
return &kvm->__memslots[as_id][node_idx_inactive];
1451
}
1452
1453
/*
1454
* Helper to get the address space ID when one of memslot pointers may be NULL.
1455
* This also serves as a sanity that at least one of the pointers is non-NULL,
1456
* and that their address space IDs don't diverge.
1457
*/
1458
static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1459
struct kvm_memory_slot *b)
1460
{
1461
if (WARN_ON_ONCE(!a && !b))
1462
return 0;
1463
1464
if (!a)
1465
return b->as_id;
1466
if (!b)
1467
return a->as_id;
1468
1469
WARN_ON_ONCE(a->as_id != b->as_id);
1470
return a->as_id;
1471
}
1472
1473
static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1474
struct kvm_memory_slot *slot)
1475
{
1476
struct rb_root *gfn_tree = &slots->gfn_tree;
1477
struct rb_node **node, *parent;
1478
int idx = slots->node_idx;
1479
1480
parent = NULL;
1481
for (node = &gfn_tree->rb_node; *node; ) {
1482
struct kvm_memory_slot *tmp;
1483
1484
tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1485
parent = *node;
1486
if (slot->base_gfn < tmp->base_gfn)
1487
node = &(*node)->rb_left;
1488
else if (slot->base_gfn > tmp->base_gfn)
1489
node = &(*node)->rb_right;
1490
else
1491
BUG();
1492
}
1493
1494
rb_link_node(&slot->gfn_node[idx], parent, node);
1495
rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1496
}
1497
1498
static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1499
struct kvm_memory_slot *slot)
1500
{
1501
rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1502
}
1503
1504
static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1505
struct kvm_memory_slot *old,
1506
struct kvm_memory_slot *new)
1507
{
1508
int idx = slots->node_idx;
1509
1510
WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1511
1512
rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1513
&slots->gfn_tree);
1514
}
1515
1516
/*
1517
* Replace @old with @new in the inactive memslots.
1518
*
1519
* With NULL @old this simply adds @new.
1520
* With NULL @new this simply removes @old.
1521
*
1522
* If @new is non-NULL its hva_node[slots_idx] range has to be set
1523
* appropriately.
1524
*/
1525
static void kvm_replace_memslot(struct kvm *kvm,
1526
struct kvm_memory_slot *old,
1527
struct kvm_memory_slot *new)
1528
{
1529
int as_id = kvm_memslots_get_as_id(old, new);
1530
struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1531
int idx = slots->node_idx;
1532
1533
if (old) {
1534
hash_del(&old->id_node[idx]);
1535
interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1536
1537
if ((long)old == atomic_long_read(&slots->last_used_slot))
1538
atomic_long_set(&slots->last_used_slot, (long)new);
1539
1540
if (!new) {
1541
kvm_erase_gfn_node(slots, old);
1542
return;
1543
}
1544
}
1545
1546
/*
1547
* Initialize @new's hva range. Do this even when replacing an @old
1548
* slot, kvm_copy_memslot() deliberately does not touch node data.
1549
*/
1550
new->hva_node[idx].start = new->userspace_addr;
1551
new->hva_node[idx].last = new->userspace_addr +
1552
(new->npages << PAGE_SHIFT) - 1;
1553
1554
/*
1555
* (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1556
* hva_node needs to be swapped with remove+insert even though hva can't
1557
* change when replacing an existing slot.
1558
*/
1559
hash_add(slots->id_hash, &new->id_node[idx], new->id);
1560
interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1561
1562
/*
1563
* If the memslot gfn is unchanged, rb_replace_node() can be used to
1564
* switch the node in the gfn tree instead of removing the old and
1565
* inserting the new as two separate operations. Replacement is a
1566
* single O(1) operation versus two O(log(n)) operations for
1567
* remove+insert.
1568
*/
1569
if (old && old->base_gfn == new->base_gfn) {
1570
kvm_replace_gfn_node(slots, old, new);
1571
} else {
1572
if (old)
1573
kvm_erase_gfn_node(slots, old);
1574
kvm_insert_gfn_node(slots, new);
1575
}
1576
}
1577
1578
/*
1579
* Flags that do not access any of the extra space of struct
1580
* kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1581
* only allows these.
1582
*/
1583
#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1584
(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1585
1586
static int check_memory_region_flags(struct kvm *kvm,
1587
const struct kvm_userspace_memory_region2 *mem)
1588
{
1589
u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1590
1591
if (kvm_arch_has_private_mem(kvm))
1592
valid_flags |= KVM_MEM_GUEST_MEMFD;
1593
1594
/* Dirty logging private memory is not currently supported. */
1595
if (mem->flags & KVM_MEM_GUEST_MEMFD)
1596
valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1597
1598
/*
1599
* GUEST_MEMFD is incompatible with read-only memslots, as writes to
1600
* read-only memslots have emulated MMIO, not page fault, semantics,
1601
* and KVM doesn't allow emulated MMIO for private memory.
1602
*/
1603
if (kvm_arch_has_readonly_mem(kvm) &&
1604
!(mem->flags & KVM_MEM_GUEST_MEMFD))
1605
valid_flags |= KVM_MEM_READONLY;
1606
1607
if (mem->flags & ~valid_flags)
1608
return -EINVAL;
1609
1610
return 0;
1611
}
1612
1613
static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1614
{
1615
struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1616
1617
/* Grab the generation from the activate memslots. */
1618
u64 gen = __kvm_memslots(kvm, as_id)->generation;
1619
1620
WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1621
slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1622
1623
/*
1624
* Do not store the new memslots while there are invalidations in
1625
* progress, otherwise the locking in invalidate_range_start and
1626
* invalidate_range_end will be unbalanced.
1627
*/
1628
spin_lock(&kvm->mn_invalidate_lock);
1629
prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1630
while (kvm->mn_active_invalidate_count) {
1631
set_current_state(TASK_UNINTERRUPTIBLE);
1632
spin_unlock(&kvm->mn_invalidate_lock);
1633
schedule();
1634
spin_lock(&kvm->mn_invalidate_lock);
1635
}
1636
finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1637
rcu_assign_pointer(kvm->memslots[as_id], slots);
1638
spin_unlock(&kvm->mn_invalidate_lock);
1639
1640
/*
1641
* Acquired in kvm_set_memslot. Must be released before synchronize
1642
* SRCU below in order to avoid deadlock with another thread
1643
* acquiring the slots_arch_lock in an srcu critical section.
1644
*/
1645
mutex_unlock(&kvm->slots_arch_lock);
1646
1647
synchronize_srcu_expedited(&kvm->srcu);
1648
1649
/*
1650
* Increment the new memslot generation a second time, dropping the
1651
* update in-progress flag and incrementing the generation based on
1652
* the number of address spaces. This provides a unique and easily
1653
* identifiable generation number while the memslots are in flux.
1654
*/
1655
gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1656
1657
/*
1658
* Generations must be unique even across address spaces. We do not need
1659
* a global counter for that, instead the generation space is evenly split
1660
* across address spaces. For example, with two address spaces, address
1661
* space 0 will use generations 0, 2, 4, ... while address space 1 will
1662
* use generations 1, 3, 5, ...
1663
*/
1664
gen += kvm_arch_nr_memslot_as_ids(kvm);
1665
1666
kvm_arch_memslots_updated(kvm, gen);
1667
1668
slots->generation = gen;
1669
}
1670
1671
static int kvm_prepare_memory_region(struct kvm *kvm,
1672
const struct kvm_memory_slot *old,
1673
struct kvm_memory_slot *new,
1674
enum kvm_mr_change change)
1675
{
1676
int r;
1677
1678
/*
1679
* If dirty logging is disabled, nullify the bitmap; the old bitmap
1680
* will be freed on "commit". If logging is enabled in both old and
1681
* new, reuse the existing bitmap. If logging is enabled only in the
1682
* new and KVM isn't using a ring buffer, allocate and initialize a
1683
* new bitmap.
1684
*/
1685
if (change != KVM_MR_DELETE) {
1686
if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1687
new->dirty_bitmap = NULL;
1688
else if (old && old->dirty_bitmap)
1689
new->dirty_bitmap = old->dirty_bitmap;
1690
else if (kvm_use_dirty_bitmap(kvm)) {
1691
r = kvm_alloc_dirty_bitmap(new);
1692
if (r)
1693
return r;
1694
1695
if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1696
bitmap_set(new->dirty_bitmap, 0, new->npages);
1697
}
1698
}
1699
1700
r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1701
1702
/* Free the bitmap on failure if it was allocated above. */
1703
if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1704
kvm_destroy_dirty_bitmap(new);
1705
1706
return r;
1707
}
1708
1709
static void kvm_commit_memory_region(struct kvm *kvm,
1710
struct kvm_memory_slot *old,
1711
const struct kvm_memory_slot *new,
1712
enum kvm_mr_change change)
1713
{
1714
int old_flags = old ? old->flags : 0;
1715
int new_flags = new ? new->flags : 0;
1716
/*
1717
* Update the total number of memslot pages before calling the arch
1718
* hook so that architectures can consume the result directly.
1719
*/
1720
if (change == KVM_MR_DELETE)
1721
kvm->nr_memslot_pages -= old->npages;
1722
else if (change == KVM_MR_CREATE)
1723
kvm->nr_memslot_pages += new->npages;
1724
1725
if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1726
int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1727
atomic_set(&kvm->nr_memslots_dirty_logging,
1728
atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1729
}
1730
1731
kvm_arch_commit_memory_region(kvm, old, new, change);
1732
1733
switch (change) {
1734
case KVM_MR_CREATE:
1735
/* Nothing more to do. */
1736
break;
1737
case KVM_MR_DELETE:
1738
/* Free the old memslot and all its metadata. */
1739
kvm_free_memslot(kvm, old);
1740
break;
1741
case KVM_MR_MOVE:
1742
case KVM_MR_FLAGS_ONLY:
1743
/*
1744
* Free the dirty bitmap as needed; the below check encompasses
1745
* both the flags and whether a ring buffer is being used)
1746
*/
1747
if (old->dirty_bitmap && !new->dirty_bitmap)
1748
kvm_destroy_dirty_bitmap(old);
1749
1750
/*
1751
* The final quirk. Free the detached, old slot, but only its
1752
* memory, not any metadata. Metadata, including arch specific
1753
* data, may be reused by @new.
1754
*/
1755
kfree(old);
1756
break;
1757
default:
1758
BUG();
1759
}
1760
}
1761
1762
/*
1763
* Activate @new, which must be installed in the inactive slots by the caller,
1764
* by swapping the active slots and then propagating @new to @old once @old is
1765
* unreachable and can be safely modified.
1766
*
1767
* With NULL @old this simply adds @new to @active (while swapping the sets).
1768
* With NULL @new this simply removes @old from @active and frees it
1769
* (while also swapping the sets).
1770
*/
1771
static void kvm_activate_memslot(struct kvm *kvm,
1772
struct kvm_memory_slot *old,
1773
struct kvm_memory_slot *new)
1774
{
1775
int as_id = kvm_memslots_get_as_id(old, new);
1776
1777
kvm_swap_active_memslots(kvm, as_id);
1778
1779
/* Propagate the new memslot to the now inactive memslots. */
1780
kvm_replace_memslot(kvm, old, new);
1781
}
1782
1783
static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1784
const struct kvm_memory_slot *src)
1785
{
1786
dest->base_gfn = src->base_gfn;
1787
dest->npages = src->npages;
1788
dest->dirty_bitmap = src->dirty_bitmap;
1789
dest->arch = src->arch;
1790
dest->userspace_addr = src->userspace_addr;
1791
dest->flags = src->flags;
1792
dest->id = src->id;
1793
dest->as_id = src->as_id;
1794
}
1795
1796
static void kvm_invalidate_memslot(struct kvm *kvm,
1797
struct kvm_memory_slot *old,
1798
struct kvm_memory_slot *invalid_slot)
1799
{
1800
/*
1801
* Mark the current slot INVALID. As with all memslot modifications,
1802
* this must be done on an unreachable slot to avoid modifying the
1803
* current slot in the active tree.
1804
*/
1805
kvm_copy_memslot(invalid_slot, old);
1806
invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1807
kvm_replace_memslot(kvm, old, invalid_slot);
1808
1809
/*
1810
* Activate the slot that is now marked INVALID, but don't propagate
1811
* the slot to the now inactive slots. The slot is either going to be
1812
* deleted or recreated as a new slot.
1813
*/
1814
kvm_swap_active_memslots(kvm, old->as_id);
1815
1816
/*
1817
* From this point no new shadow pages pointing to a deleted, or moved,
1818
* memslot will be created. Validation of sp->gfn happens in:
1819
* - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1820
* - kvm_is_visible_gfn (mmu_check_root)
1821
*/
1822
kvm_arch_flush_shadow_memslot(kvm, old);
1823
kvm_arch_guest_memory_reclaimed(kvm);
1824
1825
/* Was released by kvm_swap_active_memslots(), reacquire. */
1826
mutex_lock(&kvm->slots_arch_lock);
1827
1828
/*
1829
* Copy the arch-specific field of the newly-installed slot back to the
1830
* old slot as the arch data could have changed between releasing
1831
* slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1832
* above. Writers are required to retrieve memslots *after* acquiring
1833
* slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1834
*/
1835
old->arch = invalid_slot->arch;
1836
}
1837
1838
static void kvm_create_memslot(struct kvm *kvm,
1839
struct kvm_memory_slot *new)
1840
{
1841
/* Add the new memslot to the inactive set and activate. */
1842
kvm_replace_memslot(kvm, NULL, new);
1843
kvm_activate_memslot(kvm, NULL, new);
1844
}
1845
1846
static void kvm_delete_memslot(struct kvm *kvm,
1847
struct kvm_memory_slot *old,
1848
struct kvm_memory_slot *invalid_slot)
1849
{
1850
/*
1851
* Remove the old memslot (in the inactive memslots) by passing NULL as
1852
* the "new" slot, and for the invalid version in the active slots.
1853
*/
1854
kvm_replace_memslot(kvm, old, NULL);
1855
kvm_activate_memslot(kvm, invalid_slot, NULL);
1856
}
1857
1858
static void kvm_move_memslot(struct kvm *kvm,
1859
struct kvm_memory_slot *old,
1860
struct kvm_memory_slot *new,
1861
struct kvm_memory_slot *invalid_slot)
1862
{
1863
/*
1864
* Replace the old memslot in the inactive slots, and then swap slots
1865
* and replace the current INVALID with the new as well.
1866
*/
1867
kvm_replace_memslot(kvm, old, new);
1868
kvm_activate_memslot(kvm, invalid_slot, new);
1869
}
1870
1871
static void kvm_update_flags_memslot(struct kvm *kvm,
1872
struct kvm_memory_slot *old,
1873
struct kvm_memory_slot *new)
1874
{
1875
/*
1876
* Similar to the MOVE case, but the slot doesn't need to be zapped as
1877
* an intermediate step. Instead, the old memslot is simply replaced
1878
* with a new, updated copy in both memslot sets.
1879
*/
1880
kvm_replace_memslot(kvm, old, new);
1881
kvm_activate_memslot(kvm, old, new);
1882
}
1883
1884
static int kvm_set_memslot(struct kvm *kvm,
1885
struct kvm_memory_slot *old,
1886
struct kvm_memory_slot *new,
1887
enum kvm_mr_change change)
1888
{
1889
struct kvm_memory_slot *invalid_slot;
1890
int r;
1891
1892
/*
1893
* Released in kvm_swap_active_memslots().
1894
*
1895
* Must be held from before the current memslots are copied until after
1896
* the new memslots are installed with rcu_assign_pointer, then
1897
* released before the synchronize srcu in kvm_swap_active_memslots().
1898
*
1899
* When modifying memslots outside of the slots_lock, must be held
1900
* before reading the pointer to the current memslots until after all
1901
* changes to those memslots are complete.
1902
*
1903
* These rules ensure that installing new memslots does not lose
1904
* changes made to the previous memslots.
1905
*/
1906
mutex_lock(&kvm->slots_arch_lock);
1907
1908
/*
1909
* Invalidate the old slot if it's being deleted or moved. This is
1910
* done prior to actually deleting/moving the memslot to allow vCPUs to
1911
* continue running by ensuring there are no mappings or shadow pages
1912
* for the memslot when it is deleted/moved. Without pre-invalidation
1913
* (and without a lock), a window would exist between effecting the
1914
* delete/move and committing the changes in arch code where KVM or a
1915
* guest could access a non-existent memslot.
1916
*
1917
* Modifications are done on a temporary, unreachable slot. The old
1918
* slot needs to be preserved in case a later step fails and the
1919
* invalidation needs to be reverted.
1920
*/
1921
if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1922
invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1923
if (!invalid_slot) {
1924
mutex_unlock(&kvm->slots_arch_lock);
1925
return -ENOMEM;
1926
}
1927
kvm_invalidate_memslot(kvm, old, invalid_slot);
1928
}
1929
1930
r = kvm_prepare_memory_region(kvm, old, new, change);
1931
if (r) {
1932
/*
1933
* For DELETE/MOVE, revert the above INVALID change. No
1934
* modifications required since the original slot was preserved
1935
* in the inactive slots. Changing the active memslots also
1936
* release slots_arch_lock.
1937
*/
1938
if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1939
kvm_activate_memslot(kvm, invalid_slot, old);
1940
kfree(invalid_slot);
1941
} else {
1942
mutex_unlock(&kvm->slots_arch_lock);
1943
}
1944
return r;
1945
}
1946
1947
/*
1948
* For DELETE and MOVE, the working slot is now active as the INVALID
1949
* version of the old slot. MOVE is particularly special as it reuses
1950
* the old slot and returns a copy of the old slot (in working_slot).
1951
* For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1952
* old slot is detached but otherwise preserved.
1953
*/
1954
if (change == KVM_MR_CREATE)
1955
kvm_create_memslot(kvm, new);
1956
else if (change == KVM_MR_DELETE)
1957
kvm_delete_memslot(kvm, old, invalid_slot);
1958
else if (change == KVM_MR_MOVE)
1959
kvm_move_memslot(kvm, old, new, invalid_slot);
1960
else if (change == KVM_MR_FLAGS_ONLY)
1961
kvm_update_flags_memslot(kvm, old, new);
1962
else
1963
BUG();
1964
1965
/* Free the temporary INVALID slot used for DELETE and MOVE. */
1966
if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1967
kfree(invalid_slot);
1968
1969
/*
1970
* No need to refresh new->arch, changes after dropping slots_arch_lock
1971
* will directly hit the final, active memslot. Architectures are
1972
* responsible for knowing that new->arch may be stale.
1973
*/
1974
kvm_commit_memory_region(kvm, old, new, change);
1975
1976
return 0;
1977
}
1978
1979
static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1980
gfn_t start, gfn_t end)
1981
{
1982
struct kvm_memslot_iter iter;
1983
1984
kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1985
if (iter.slot->id != id)
1986
return true;
1987
}
1988
1989
return false;
1990
}
1991
1992
static int kvm_set_memory_region(struct kvm *kvm,
1993
const struct kvm_userspace_memory_region2 *mem)
1994
{
1995
struct kvm_memory_slot *old, *new;
1996
struct kvm_memslots *slots;
1997
enum kvm_mr_change change;
1998
unsigned long npages;
1999
gfn_t base_gfn;
2000
int as_id, id;
2001
int r;
2002
2003
lockdep_assert_held(&kvm->slots_lock);
2004
2005
r = check_memory_region_flags(kvm, mem);
2006
if (r)
2007
return r;
2008
2009
as_id = mem->slot >> 16;
2010
id = (u16)mem->slot;
2011
2012
/* General sanity checks */
2013
if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2014
(mem->memory_size != (unsigned long)mem->memory_size))
2015
return -EINVAL;
2016
if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2017
return -EINVAL;
2018
/* We can read the guest memory with __xxx_user() later on. */
2019
if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2020
(mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2021
!access_ok((void __user *)(unsigned long)mem->userspace_addr,
2022
mem->memory_size))
2023
return -EINVAL;
2024
if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2025
(mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2026
mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2027
return -EINVAL;
2028
if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2029
return -EINVAL;
2030
if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2031
return -EINVAL;
2032
2033
/*
2034
* The size of userspace-defined memory regions is restricted in order
2035
* to play nice with dirty bitmap operations, which are indexed with an
2036
* "unsigned int". KVM's internal memory regions don't support dirty
2037
* logging, and so are exempt.
2038
*/
2039
if (id < KVM_USER_MEM_SLOTS &&
2040
(mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2041
return -EINVAL;
2042
2043
slots = __kvm_memslots(kvm, as_id);
2044
2045
/*
2046
* Note, the old memslot (and the pointer itself!) may be invalidated
2047
* and/or destroyed by kvm_set_memslot().
2048
*/
2049
old = id_to_memslot(slots, id);
2050
2051
if (!mem->memory_size) {
2052
if (!old || !old->npages)
2053
return -EINVAL;
2054
2055
if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2056
return -EIO;
2057
2058
return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2059
}
2060
2061
base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2062
npages = (mem->memory_size >> PAGE_SHIFT);
2063
2064
if (!old || !old->npages) {
2065
change = KVM_MR_CREATE;
2066
2067
/*
2068
* To simplify KVM internals, the total number of pages across
2069
* all memslots must fit in an unsigned long.
2070
*/
2071
if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2072
return -EINVAL;
2073
} else { /* Modify an existing slot. */
2074
/* Private memslots are immutable, they can only be deleted. */
2075
if (mem->flags & KVM_MEM_GUEST_MEMFD)
2076
return -EINVAL;
2077
if ((mem->userspace_addr != old->userspace_addr) ||
2078
(npages != old->npages) ||
2079
((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2080
return -EINVAL;
2081
2082
if (base_gfn != old->base_gfn)
2083
change = KVM_MR_MOVE;
2084
else if (mem->flags != old->flags)
2085
change = KVM_MR_FLAGS_ONLY;
2086
else /* Nothing to change. */
2087
return 0;
2088
}
2089
2090
if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2091
kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2092
return -EEXIST;
2093
2094
/* Allocate a slot that will persist in the memslot. */
2095
new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2096
if (!new)
2097
return -ENOMEM;
2098
2099
new->as_id = as_id;
2100
new->id = id;
2101
new->base_gfn = base_gfn;
2102
new->npages = npages;
2103
new->flags = mem->flags;
2104
new->userspace_addr = mem->userspace_addr;
2105
if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2106
r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2107
if (r)
2108
goto out;
2109
}
2110
2111
r = kvm_set_memslot(kvm, old, new, change);
2112
if (r)
2113
goto out_unbind;
2114
2115
return 0;
2116
2117
out_unbind:
2118
if (mem->flags & KVM_MEM_GUEST_MEMFD)
2119
kvm_gmem_unbind(new);
2120
out:
2121
kfree(new);
2122
return r;
2123
}
2124
2125
int kvm_set_internal_memslot(struct kvm *kvm,
2126
const struct kvm_userspace_memory_region2 *mem)
2127
{
2128
if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS))
2129
return -EINVAL;
2130
2131
if (WARN_ON_ONCE(mem->flags))
2132
return -EINVAL;
2133
2134
return kvm_set_memory_region(kvm, mem);
2135
}
2136
EXPORT_SYMBOL_GPL(kvm_set_internal_memslot);
2137
2138
static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2139
struct kvm_userspace_memory_region2 *mem)
2140
{
2141
if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2142
return -EINVAL;
2143
2144
guard(mutex)(&kvm->slots_lock);
2145
return kvm_set_memory_region(kvm, mem);
2146
}
2147
2148
#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2149
/**
2150
* kvm_get_dirty_log - get a snapshot of dirty pages
2151
* @kvm: pointer to kvm instance
2152
* @log: slot id and address to which we copy the log
2153
* @is_dirty: set to '1' if any dirty pages were found
2154
* @memslot: set to the associated memslot, always valid on success
2155
*/
2156
int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2157
int *is_dirty, struct kvm_memory_slot **memslot)
2158
{
2159
struct kvm_memslots *slots;
2160
int i, as_id, id;
2161
unsigned long n;
2162
unsigned long any = 0;
2163
2164
/* Dirty ring tracking may be exclusive to dirty log tracking */
2165
if (!kvm_use_dirty_bitmap(kvm))
2166
return -ENXIO;
2167
2168
*memslot = NULL;
2169
*is_dirty = 0;
2170
2171
as_id = log->slot >> 16;
2172
id = (u16)log->slot;
2173
if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2174
return -EINVAL;
2175
2176
slots = __kvm_memslots(kvm, as_id);
2177
*memslot = id_to_memslot(slots, id);
2178
if (!(*memslot) || !(*memslot)->dirty_bitmap)
2179
return -ENOENT;
2180
2181
kvm_arch_sync_dirty_log(kvm, *memslot);
2182
2183
n = kvm_dirty_bitmap_bytes(*memslot);
2184
2185
for (i = 0; !any && i < n/sizeof(long); ++i)
2186
any = (*memslot)->dirty_bitmap[i];
2187
2188
if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2189
return -EFAULT;
2190
2191
if (any)
2192
*is_dirty = 1;
2193
return 0;
2194
}
2195
EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2196
2197
#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2198
/**
2199
* kvm_get_dirty_log_protect - get a snapshot of dirty pages
2200
* and reenable dirty page tracking for the corresponding pages.
2201
* @kvm: pointer to kvm instance
2202
* @log: slot id and address to which we copy the log
2203
*
2204
* We need to keep it in mind that VCPU threads can write to the bitmap
2205
* concurrently. So, to avoid losing track of dirty pages we keep the
2206
* following order:
2207
*
2208
* 1. Take a snapshot of the bit and clear it if needed.
2209
* 2. Write protect the corresponding page.
2210
* 3. Copy the snapshot to the userspace.
2211
* 4. Upon return caller flushes TLB's if needed.
2212
*
2213
* Between 2 and 4, the guest may write to the page using the remaining TLB
2214
* entry. This is not a problem because the page is reported dirty using
2215
* the snapshot taken before and step 4 ensures that writes done after
2216
* exiting to userspace will be logged for the next call.
2217
*
2218
*/
2219
static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2220
{
2221
struct kvm_memslots *slots;
2222
struct kvm_memory_slot *memslot;
2223
int i, as_id, id;
2224
unsigned long n;
2225
unsigned long *dirty_bitmap;
2226
unsigned long *dirty_bitmap_buffer;
2227
bool flush;
2228
2229
/* Dirty ring tracking may be exclusive to dirty log tracking */
2230
if (!kvm_use_dirty_bitmap(kvm))
2231
return -ENXIO;
2232
2233
as_id = log->slot >> 16;
2234
id = (u16)log->slot;
2235
if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2236
return -EINVAL;
2237
2238
slots = __kvm_memslots(kvm, as_id);
2239
memslot = id_to_memslot(slots, id);
2240
if (!memslot || !memslot->dirty_bitmap)
2241
return -ENOENT;
2242
2243
dirty_bitmap = memslot->dirty_bitmap;
2244
2245
kvm_arch_sync_dirty_log(kvm, memslot);
2246
2247
n = kvm_dirty_bitmap_bytes(memslot);
2248
flush = false;
2249
if (kvm->manual_dirty_log_protect) {
2250
/*
2251
* Unlike kvm_get_dirty_log, we always return false in *flush,
2252
* because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2253
* is some code duplication between this function and
2254
* kvm_get_dirty_log, but hopefully all architecture
2255
* transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2256
* can be eliminated.
2257
*/
2258
dirty_bitmap_buffer = dirty_bitmap;
2259
} else {
2260
dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2261
memset(dirty_bitmap_buffer, 0, n);
2262
2263
KVM_MMU_LOCK(kvm);
2264
for (i = 0; i < n / sizeof(long); i++) {
2265
unsigned long mask;
2266
gfn_t offset;
2267
2268
if (!dirty_bitmap[i])
2269
continue;
2270
2271
flush = true;
2272
mask = xchg(&dirty_bitmap[i], 0);
2273
dirty_bitmap_buffer[i] = mask;
2274
2275
offset = i * BITS_PER_LONG;
2276
kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2277
offset, mask);
2278
}
2279
KVM_MMU_UNLOCK(kvm);
2280
}
2281
2282
if (flush)
2283
kvm_flush_remote_tlbs_memslot(kvm, memslot);
2284
2285
if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2286
return -EFAULT;
2287
return 0;
2288
}
2289
2290
2291
/**
2292
* kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2293
* @kvm: kvm instance
2294
* @log: slot id and address to which we copy the log
2295
*
2296
* Steps 1-4 below provide general overview of dirty page logging. See
2297
* kvm_get_dirty_log_protect() function description for additional details.
2298
*
2299
* We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2300
* always flush the TLB (step 4) even if previous step failed and the dirty
2301
* bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2302
* does not preclude user space subsequent dirty log read. Flushing TLB ensures
2303
* writes will be marked dirty for next log read.
2304
*
2305
* 1. Take a snapshot of the bit and clear it if needed.
2306
* 2. Write protect the corresponding page.
2307
* 3. Copy the snapshot to the userspace.
2308
* 4. Flush TLB's if needed.
2309
*/
2310
static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2311
struct kvm_dirty_log *log)
2312
{
2313
int r;
2314
2315
mutex_lock(&kvm->slots_lock);
2316
2317
r = kvm_get_dirty_log_protect(kvm, log);
2318
2319
mutex_unlock(&kvm->slots_lock);
2320
return r;
2321
}
2322
2323
/**
2324
* kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2325
* and reenable dirty page tracking for the corresponding pages.
2326
* @kvm: pointer to kvm instance
2327
* @log: slot id and address from which to fetch the bitmap of dirty pages
2328
*/
2329
static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2330
struct kvm_clear_dirty_log *log)
2331
{
2332
struct kvm_memslots *slots;
2333
struct kvm_memory_slot *memslot;
2334
int as_id, id;
2335
gfn_t offset;
2336
unsigned long i, n;
2337
unsigned long *dirty_bitmap;
2338
unsigned long *dirty_bitmap_buffer;
2339
bool flush;
2340
2341
/* Dirty ring tracking may be exclusive to dirty log tracking */
2342
if (!kvm_use_dirty_bitmap(kvm))
2343
return -ENXIO;
2344
2345
as_id = log->slot >> 16;
2346
id = (u16)log->slot;
2347
if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2348
return -EINVAL;
2349
2350
if (log->first_page & 63)
2351
return -EINVAL;
2352
2353
slots = __kvm_memslots(kvm, as_id);
2354
memslot = id_to_memslot(slots, id);
2355
if (!memslot || !memslot->dirty_bitmap)
2356
return -ENOENT;
2357
2358
dirty_bitmap = memslot->dirty_bitmap;
2359
2360
n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2361
2362
if (log->first_page > memslot->npages ||
2363
log->num_pages > memslot->npages - log->first_page ||
2364
(log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2365
return -EINVAL;
2366
2367
kvm_arch_sync_dirty_log(kvm, memslot);
2368
2369
flush = false;
2370
dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2371
if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2372
return -EFAULT;
2373
2374
KVM_MMU_LOCK(kvm);
2375
for (offset = log->first_page, i = offset / BITS_PER_LONG,
2376
n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2377
i++, offset += BITS_PER_LONG) {
2378
unsigned long mask = *dirty_bitmap_buffer++;
2379
atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2380
if (!mask)
2381
continue;
2382
2383
mask &= atomic_long_fetch_andnot(mask, p);
2384
2385
/*
2386
* mask contains the bits that really have been cleared. This
2387
* never includes any bits beyond the length of the memslot (if
2388
* the length is not aligned to 64 pages), therefore it is not
2389
* a problem if userspace sets them in log->dirty_bitmap.
2390
*/
2391
if (mask) {
2392
flush = true;
2393
kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2394
offset, mask);
2395
}
2396
}
2397
KVM_MMU_UNLOCK(kvm);
2398
2399
if (flush)
2400
kvm_flush_remote_tlbs_memslot(kvm, memslot);
2401
2402
return 0;
2403
}
2404
2405
static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2406
struct kvm_clear_dirty_log *log)
2407
{
2408
int r;
2409
2410
mutex_lock(&kvm->slots_lock);
2411
2412
r = kvm_clear_dirty_log_protect(kvm, log);
2413
2414
mutex_unlock(&kvm->slots_lock);
2415
return r;
2416
}
2417
#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2418
2419
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2420
static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2421
{
2422
if (!kvm || kvm_arch_has_private_mem(kvm))
2423
return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2424
2425
return 0;
2426
}
2427
2428
/*
2429
* Returns true if _all_ gfns in the range [@start, @end) have attributes
2430
* such that the bits in @mask match @attrs.
2431
*/
2432
bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2433
unsigned long mask, unsigned long attrs)
2434
{
2435
XA_STATE(xas, &kvm->mem_attr_array, start);
2436
unsigned long index;
2437
void *entry;
2438
2439
mask &= kvm_supported_mem_attributes(kvm);
2440
if (attrs & ~mask)
2441
return false;
2442
2443
if (end == start + 1)
2444
return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2445
2446
guard(rcu)();
2447
if (!attrs)
2448
return !xas_find(&xas, end - 1);
2449
2450
for (index = start; index < end; index++) {
2451
do {
2452
entry = xas_next(&xas);
2453
} while (xas_retry(&xas, entry));
2454
2455
if (xas.xa_index != index ||
2456
(xa_to_value(entry) & mask) != attrs)
2457
return false;
2458
}
2459
2460
return true;
2461
}
2462
2463
static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2464
struct kvm_mmu_notifier_range *range)
2465
{
2466
struct kvm_gfn_range gfn_range;
2467
struct kvm_memory_slot *slot;
2468
struct kvm_memslots *slots;
2469
struct kvm_memslot_iter iter;
2470
bool found_memslot = false;
2471
bool ret = false;
2472
int i;
2473
2474
gfn_range.arg = range->arg;
2475
gfn_range.may_block = range->may_block;
2476
2477
/*
2478
* If/when KVM supports more attributes beyond private .vs shared, this
2479
* _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target
2480
* range already has the desired private vs. shared state (it's unclear
2481
* if that is a net win). For now, KVM reaches this point if and only
2482
* if the private flag is being toggled, i.e. all mappings are in play.
2483
*/
2484
2485
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2486
slots = __kvm_memslots(kvm, i);
2487
2488
kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2489
slot = iter.slot;
2490
gfn_range.slot = slot;
2491
2492
gfn_range.start = max(range->start, slot->base_gfn);
2493
gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2494
if (gfn_range.start >= gfn_range.end)
2495
continue;
2496
2497
if (!found_memslot) {
2498
found_memslot = true;
2499
KVM_MMU_LOCK(kvm);
2500
if (!IS_KVM_NULL_FN(range->on_lock))
2501
range->on_lock(kvm);
2502
}
2503
2504
ret |= range->handler(kvm, &gfn_range);
2505
}
2506
}
2507
2508
if (range->flush_on_ret && ret)
2509
kvm_flush_remote_tlbs(kvm);
2510
2511
if (found_memslot)
2512
KVM_MMU_UNLOCK(kvm);
2513
}
2514
2515
static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2516
struct kvm_gfn_range *range)
2517
{
2518
/*
2519
* Unconditionally add the range to the invalidation set, regardless of
2520
* whether or not the arch callback actually needs to zap SPTEs. E.g.
2521
* if KVM supports RWX attributes in the future and the attributes are
2522
* going from R=>RW, zapping isn't strictly necessary. Unconditionally
2523
* adding the range allows KVM to require that MMU invalidations add at
2524
* least one range between begin() and end(), e.g. allows KVM to detect
2525
* bugs where the add() is missed. Relaxing the rule *might* be safe,
2526
* but it's not obvious that allowing new mappings while the attributes
2527
* are in flux is desirable or worth the complexity.
2528
*/
2529
kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2530
2531
return kvm_arch_pre_set_memory_attributes(kvm, range);
2532
}
2533
2534
/* Set @attributes for the gfn range [@start, @end). */
2535
static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2536
unsigned long attributes)
2537
{
2538
struct kvm_mmu_notifier_range pre_set_range = {
2539
.start = start,
2540
.end = end,
2541
.arg.attributes = attributes,
2542
.handler = kvm_pre_set_memory_attributes,
2543
.on_lock = kvm_mmu_invalidate_begin,
2544
.flush_on_ret = true,
2545
.may_block = true,
2546
};
2547
struct kvm_mmu_notifier_range post_set_range = {
2548
.start = start,
2549
.end = end,
2550
.arg.attributes = attributes,
2551
.handler = kvm_arch_post_set_memory_attributes,
2552
.on_lock = kvm_mmu_invalidate_end,
2553
.may_block = true,
2554
};
2555
unsigned long i;
2556
void *entry;
2557
int r = 0;
2558
2559
entry = attributes ? xa_mk_value(attributes) : NULL;
2560
2561
trace_kvm_vm_set_mem_attributes(start, end, attributes);
2562
2563
mutex_lock(&kvm->slots_lock);
2564
2565
/* Nothing to do if the entire range has the desired attributes. */
2566
if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2567
goto out_unlock;
2568
2569
/*
2570
* Reserve memory ahead of time to avoid having to deal with failures
2571
* partway through setting the new attributes.
2572
*/
2573
for (i = start; i < end; i++) {
2574
r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2575
if (r)
2576
goto out_unlock;
2577
2578
cond_resched();
2579
}
2580
2581
kvm_handle_gfn_range(kvm, &pre_set_range);
2582
2583
for (i = start; i < end; i++) {
2584
r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2585
GFP_KERNEL_ACCOUNT));
2586
KVM_BUG_ON(r, kvm);
2587
cond_resched();
2588
}
2589
2590
kvm_handle_gfn_range(kvm, &post_set_range);
2591
2592
out_unlock:
2593
mutex_unlock(&kvm->slots_lock);
2594
2595
return r;
2596
}
2597
static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2598
struct kvm_memory_attributes *attrs)
2599
{
2600
gfn_t start, end;
2601
2602
/* flags is currently not used. */
2603
if (attrs->flags)
2604
return -EINVAL;
2605
if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2606
return -EINVAL;
2607
if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2608
return -EINVAL;
2609
if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2610
return -EINVAL;
2611
2612
start = attrs->address >> PAGE_SHIFT;
2613
end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2614
2615
/*
2616
* xarray tracks data using "unsigned long", and as a result so does
2617
* KVM. For simplicity, supports generic attributes only on 64-bit
2618
* architectures.
2619
*/
2620
BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2621
2622
return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2623
}
2624
#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2625
2626
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2627
{
2628
return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2629
}
2630
EXPORT_SYMBOL_GPL(gfn_to_memslot);
2631
2632
struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2633
{
2634
struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2635
u64 gen = slots->generation;
2636
struct kvm_memory_slot *slot;
2637
2638
/*
2639
* This also protects against using a memslot from a different address space,
2640
* since different address spaces have different generation numbers.
2641
*/
2642
if (unlikely(gen != vcpu->last_used_slot_gen)) {
2643
vcpu->last_used_slot = NULL;
2644
vcpu->last_used_slot_gen = gen;
2645
}
2646
2647
slot = try_get_memslot(vcpu->last_used_slot, gfn);
2648
if (slot)
2649
return slot;
2650
2651
/*
2652
* Fall back to searching all memslots. We purposely use
2653
* search_memslots() instead of __gfn_to_memslot() to avoid
2654
* thrashing the VM-wide last_used_slot in kvm_memslots.
2655
*/
2656
slot = search_memslots(slots, gfn, false);
2657
if (slot) {
2658
vcpu->last_used_slot = slot;
2659
return slot;
2660
}
2661
2662
return NULL;
2663
}
2664
2665
bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2666
{
2667
struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2668
2669
return kvm_is_visible_memslot(memslot);
2670
}
2671
EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2672
2673
bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2674
{
2675
struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2676
2677
return kvm_is_visible_memslot(memslot);
2678
}
2679
EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2680
2681
unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2682
{
2683
struct vm_area_struct *vma;
2684
unsigned long addr, size;
2685
2686
size = PAGE_SIZE;
2687
2688
addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2689
if (kvm_is_error_hva(addr))
2690
return PAGE_SIZE;
2691
2692
mmap_read_lock(current->mm);
2693
vma = find_vma(current->mm, addr);
2694
if (!vma)
2695
goto out;
2696
2697
size = vma_kernel_pagesize(vma);
2698
2699
out:
2700
mmap_read_unlock(current->mm);
2701
2702
return size;
2703
}
2704
2705
static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2706
{
2707
return slot->flags & KVM_MEM_READONLY;
2708
}
2709
2710
static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2711
gfn_t *nr_pages, bool write)
2712
{
2713
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2714
return KVM_HVA_ERR_BAD;
2715
2716
if (memslot_is_readonly(slot) && write)
2717
return KVM_HVA_ERR_RO_BAD;
2718
2719
if (nr_pages)
2720
*nr_pages = slot->npages - (gfn - slot->base_gfn);
2721
2722
return __gfn_to_hva_memslot(slot, gfn);
2723
}
2724
2725
static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2726
gfn_t *nr_pages)
2727
{
2728
return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2729
}
2730
2731
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2732
gfn_t gfn)
2733
{
2734
return gfn_to_hva_many(slot, gfn, NULL);
2735
}
2736
EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2737
2738
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2739
{
2740
return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2741
}
2742
EXPORT_SYMBOL_GPL(gfn_to_hva);
2743
2744
unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2745
{
2746
return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2747
}
2748
EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2749
2750
/*
2751
* Return the hva of a @gfn and the R/W attribute if possible.
2752
*
2753
* @slot: the kvm_memory_slot which contains @gfn
2754
* @gfn: the gfn to be translated
2755
* @writable: used to return the read/write attribute of the @slot if the hva
2756
* is valid and @writable is not NULL
2757
*/
2758
unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2759
gfn_t gfn, bool *writable)
2760
{
2761
unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2762
2763
if (!kvm_is_error_hva(hva) && writable)
2764
*writable = !memslot_is_readonly(slot);
2765
2766
return hva;
2767
}
2768
2769
unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2770
{
2771
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2772
2773
return gfn_to_hva_memslot_prot(slot, gfn, writable);
2774
}
2775
2776
unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2777
{
2778
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2779
2780
return gfn_to_hva_memslot_prot(slot, gfn, writable);
2781
}
2782
2783
static bool kvm_is_ad_tracked_page(struct page *page)
2784
{
2785
/*
2786
* Per page-flags.h, pages tagged PG_reserved "should in general not be
2787
* touched (e.g. set dirty) except by its owner".
2788
*/
2789
return !PageReserved(page);
2790
}
2791
2792
static void kvm_set_page_dirty(struct page *page)
2793
{
2794
if (kvm_is_ad_tracked_page(page))
2795
SetPageDirty(page);
2796
}
2797
2798
static void kvm_set_page_accessed(struct page *page)
2799
{
2800
if (kvm_is_ad_tracked_page(page))
2801
mark_page_accessed(page);
2802
}
2803
2804
void kvm_release_page_clean(struct page *page)
2805
{
2806
if (!page)
2807
return;
2808
2809
kvm_set_page_accessed(page);
2810
put_page(page);
2811
}
2812
EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2813
2814
void kvm_release_page_dirty(struct page *page)
2815
{
2816
if (!page)
2817
return;
2818
2819
kvm_set_page_dirty(page);
2820
kvm_release_page_clean(page);
2821
}
2822
EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2823
2824
static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2825
struct follow_pfnmap_args *map, bool writable)
2826
{
2827
kvm_pfn_t pfn;
2828
2829
WARN_ON_ONCE(!!page == !!map);
2830
2831
if (kfp->map_writable)
2832
*kfp->map_writable = writable;
2833
2834
if (map)
2835
pfn = map->pfn;
2836
else
2837
pfn = page_to_pfn(page);
2838
2839
*kfp->refcounted_page = page;
2840
2841
return pfn;
2842
}
2843
2844
/*
2845
* The fast path to get the writable pfn which will be stored in @pfn,
2846
* true indicates success, otherwise false is returned.
2847
*/
2848
static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2849
{
2850
struct page *page;
2851
bool r;
2852
2853
/*
2854
* Try the fast-only path when the caller wants to pin/get the page for
2855
* writing. If the caller only wants to read the page, KVM must go
2856
* down the full, slow path in order to avoid racing an operation that
2857
* breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2858
* at the old, read-only page while mm/ points at a new, writable page.
2859
*/
2860
if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2861
return false;
2862
2863
if (kfp->pin)
2864
r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2865
else
2866
r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2867
2868
if (r) {
2869
*pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2870
return true;
2871
}
2872
2873
return false;
2874
}
2875
2876
/*
2877
* The slow path to get the pfn of the specified host virtual address,
2878
* 1 indicates success, -errno is returned if error is detected.
2879
*/
2880
static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2881
{
2882
/*
2883
* When a VCPU accesses a page that is not mapped into the secondary
2884
* MMU, we lookup the page using GUP to map it, so the guest VCPU can
2885
* make progress. We always want to honor NUMA hinting faults in that
2886
* case, because GUP usage corresponds to memory accesses from the VCPU.
2887
* Otherwise, we'd not trigger NUMA hinting faults once a page is
2888
* mapped into the secondary MMU and gets accessed by a VCPU.
2889
*
2890
* Note that get_user_page_fast_only() and FOLL_WRITE for now
2891
* implicitly honor NUMA hinting faults and don't need this flag.
2892
*/
2893
unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2894
struct page *page, *wpage;
2895
int npages;
2896
2897
if (kfp->pin)
2898
npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2899
else
2900
npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
2901
if (npages != 1)
2902
return npages;
2903
2904
/*
2905
* Pinning is mutually exclusive with opportunistically mapping a read
2906
* fault as writable, as KVM should never pin pages when mapping memory
2907
* into the guest (pinning is only for direct accesses from KVM).
2908
*/
2909
if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2910
goto out;
2911
2912
/* map read fault as writable if possible */
2913
if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2914
get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2915
put_page(page);
2916
page = wpage;
2917
flags |= FOLL_WRITE;
2918
}
2919
2920
out:
2921
*pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
2922
return npages;
2923
}
2924
2925
static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2926
{
2927
if (unlikely(!(vma->vm_flags & VM_READ)))
2928
return false;
2929
2930
if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2931
return false;
2932
2933
return true;
2934
}
2935
2936
static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2937
struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
2938
{
2939
struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2940
bool write_fault = kfp->flags & FOLL_WRITE;
2941
int r;
2942
2943
/*
2944
* Remapped memory cannot be pinned in any meaningful sense. Bail if
2945
* the caller wants to pin the page, i.e. access the page outside of
2946
* MMU notifier protection, and unsafe umappings are disallowed.
2947
*/
2948
if (kfp->pin && !allow_unsafe_mappings)
2949
return -EINVAL;
2950
2951
r = follow_pfnmap_start(&args);
2952
if (r) {
2953
/*
2954
* get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2955
* not call the fault handler, so do it here.
2956
*/
2957
bool unlocked = false;
2958
r = fixup_user_fault(current->mm, kfp->hva,
2959
(write_fault ? FAULT_FLAG_WRITE : 0),
2960
&unlocked);
2961
if (unlocked)
2962
return -EAGAIN;
2963
if (r)
2964
return r;
2965
2966
r = follow_pfnmap_start(&args);
2967
if (r)
2968
return r;
2969
}
2970
2971
if (write_fault && !args.writable) {
2972
*p_pfn = KVM_PFN_ERR_RO_FAULT;
2973
goto out;
2974
}
2975
2976
*p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
2977
out:
2978
follow_pfnmap_end(&args);
2979
return r;
2980
}
2981
2982
kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
2983
{
2984
struct vm_area_struct *vma;
2985
kvm_pfn_t pfn;
2986
int npages, r;
2987
2988
might_sleep();
2989
2990
if (WARN_ON_ONCE(!kfp->refcounted_page))
2991
return KVM_PFN_ERR_FAULT;
2992
2993
if (hva_to_pfn_fast(kfp, &pfn))
2994
return pfn;
2995
2996
npages = hva_to_pfn_slow(kfp, &pfn);
2997
if (npages == 1)
2998
return pfn;
2999
if (npages == -EINTR || npages == -EAGAIN)
3000
return KVM_PFN_ERR_SIGPENDING;
3001
if (npages == -EHWPOISON)
3002
return KVM_PFN_ERR_HWPOISON;
3003
3004
mmap_read_lock(current->mm);
3005
retry:
3006
vma = vma_lookup(current->mm, kfp->hva);
3007
3008
if (vma == NULL)
3009
pfn = KVM_PFN_ERR_FAULT;
3010
else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3011
r = hva_to_pfn_remapped(vma, kfp, &pfn);
3012
if (r == -EAGAIN)
3013
goto retry;
3014
if (r < 0)
3015
pfn = KVM_PFN_ERR_FAULT;
3016
} else {
3017
if ((kfp->flags & FOLL_NOWAIT) &&
3018
vma_is_valid(vma, kfp->flags & FOLL_WRITE))
3019
pfn = KVM_PFN_ERR_NEEDS_IO;
3020
else
3021
pfn = KVM_PFN_ERR_FAULT;
3022
}
3023
mmap_read_unlock(current->mm);
3024
return pfn;
3025
}
3026
3027
static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
3028
{
3029
kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
3030
kfp->flags & FOLL_WRITE);
3031
3032
if (kfp->hva == KVM_HVA_ERR_RO_BAD)
3033
return KVM_PFN_ERR_RO_FAULT;
3034
3035
if (kvm_is_error_hva(kfp->hva))
3036
return KVM_PFN_NOSLOT;
3037
3038
if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
3039
*kfp->map_writable = false;
3040
kfp->map_writable = NULL;
3041
}
3042
3043
return hva_to_pfn(kfp);
3044
}
3045
3046
kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
3047
unsigned int foll, bool *writable,
3048
struct page **refcounted_page)
3049
{
3050
struct kvm_follow_pfn kfp = {
3051
.slot = slot,
3052
.gfn = gfn,
3053
.flags = foll,
3054
.map_writable = writable,
3055
.refcounted_page = refcounted_page,
3056
};
3057
3058
if (WARN_ON_ONCE(!writable || !refcounted_page))
3059
return KVM_PFN_ERR_FAULT;
3060
3061
*writable = false;
3062
*refcounted_page = NULL;
3063
3064
return kvm_follow_pfn(&kfp);
3065
}
3066
EXPORT_SYMBOL_GPL(__kvm_faultin_pfn);
3067
3068
int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
3069
struct page **pages, int nr_pages)
3070
{
3071
unsigned long addr;
3072
gfn_t entry = 0;
3073
3074
addr = gfn_to_hva_many(slot, gfn, &entry);
3075
if (kvm_is_error_hva(addr))
3076
return -1;
3077
3078
if (entry < nr_pages)
3079
return 0;
3080
3081
return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3082
}
3083
EXPORT_SYMBOL_GPL(kvm_prefetch_pages);
3084
3085
/*
3086
* Don't use this API unless you are absolutely, positively certain that KVM
3087
* needs to get a struct page, e.g. to pin the page for firmware DMA.
3088
*
3089
* FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3090
* its refcount.
3091
*/
3092
struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3093
{
3094
struct page *refcounted_page = NULL;
3095
struct kvm_follow_pfn kfp = {
3096
.slot = gfn_to_memslot(kvm, gfn),
3097
.gfn = gfn,
3098
.flags = write ? FOLL_WRITE : 0,
3099
.refcounted_page = &refcounted_page,
3100
};
3101
3102
(void)kvm_follow_pfn(&kfp);
3103
return refcounted_page;
3104
}
3105
EXPORT_SYMBOL_GPL(__gfn_to_page);
3106
3107
int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3108
bool writable)
3109
{
3110
struct kvm_follow_pfn kfp = {
3111
.slot = gfn_to_memslot(vcpu->kvm, gfn),
3112
.gfn = gfn,
3113
.flags = writable ? FOLL_WRITE : 0,
3114
.refcounted_page = &map->pinned_page,
3115
.pin = true,
3116
};
3117
3118
map->pinned_page = NULL;
3119
map->page = NULL;
3120
map->hva = NULL;
3121
map->gfn = gfn;
3122
map->writable = writable;
3123
3124
map->pfn = kvm_follow_pfn(&kfp);
3125
if (is_error_noslot_pfn(map->pfn))
3126
return -EINVAL;
3127
3128
if (pfn_valid(map->pfn)) {
3129
map->page = pfn_to_page(map->pfn);
3130
map->hva = kmap(map->page);
3131
#ifdef CONFIG_HAS_IOMEM
3132
} else {
3133
map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3134
#endif
3135
}
3136
3137
return map->hva ? 0 : -EFAULT;
3138
}
3139
EXPORT_SYMBOL_GPL(__kvm_vcpu_map);
3140
3141
void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
3142
{
3143
if (!map->hva)
3144
return;
3145
3146
if (map->page)
3147
kunmap(map->page);
3148
#ifdef CONFIG_HAS_IOMEM
3149
else
3150
memunmap(map->hva);
3151
#endif
3152
3153
if (map->writable)
3154
kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3155
3156
if (map->pinned_page) {
3157
if (map->writable)
3158
kvm_set_page_dirty(map->pinned_page);
3159
kvm_set_page_accessed(map->pinned_page);
3160
unpin_user_page(map->pinned_page);
3161
}
3162
3163
map->hva = NULL;
3164
map->page = NULL;
3165
map->pinned_page = NULL;
3166
}
3167
EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3168
3169
static int next_segment(unsigned long len, int offset)
3170
{
3171
if (len > PAGE_SIZE - offset)
3172
return PAGE_SIZE - offset;
3173
else
3174
return len;
3175
}
3176
3177
/* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3178
static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3179
void *data, int offset, int len)
3180
{
3181
int r;
3182
unsigned long addr;
3183
3184
if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3185
return -EFAULT;
3186
3187
addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3188
if (kvm_is_error_hva(addr))
3189
return -EFAULT;
3190
r = __copy_from_user(data, (void __user *)addr + offset, len);
3191
if (r)
3192
return -EFAULT;
3193
return 0;
3194
}
3195
3196
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3197
int len)
3198
{
3199
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3200
3201
return __kvm_read_guest_page(slot, gfn, data, offset, len);
3202
}
3203
EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3204
3205
int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3206
int offset, int len)
3207
{
3208
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3209
3210
return __kvm_read_guest_page(slot, gfn, data, offset, len);
3211
}
3212
EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3213
3214
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3215
{
3216
gfn_t gfn = gpa >> PAGE_SHIFT;
3217
int seg;
3218
int offset = offset_in_page(gpa);
3219
int ret;
3220
3221
while ((seg = next_segment(len, offset)) != 0) {
3222
ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3223
if (ret < 0)
3224
return ret;
3225
offset = 0;
3226
len -= seg;
3227
data += seg;
3228
++gfn;
3229
}
3230
return 0;
3231
}
3232
EXPORT_SYMBOL_GPL(kvm_read_guest);
3233
3234
int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3235
{
3236
gfn_t gfn = gpa >> PAGE_SHIFT;
3237
int seg;
3238
int offset = offset_in_page(gpa);
3239
int ret;
3240
3241
while ((seg = next_segment(len, offset)) != 0) {
3242
ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3243
if (ret < 0)
3244
return ret;
3245
offset = 0;
3246
len -= seg;
3247
data += seg;
3248
++gfn;
3249
}
3250
return 0;
3251
}
3252
EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3253
3254
static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3255
void *data, int offset, unsigned long len)
3256
{
3257
int r;
3258
unsigned long addr;
3259
3260
if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3261
return -EFAULT;
3262
3263
addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3264
if (kvm_is_error_hva(addr))
3265
return -EFAULT;
3266
pagefault_disable();
3267
r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3268
pagefault_enable();
3269
if (r)
3270
return -EFAULT;
3271
return 0;
3272
}
3273
3274
int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3275
void *data, unsigned long len)
3276
{
3277
gfn_t gfn = gpa >> PAGE_SHIFT;
3278
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3279
int offset = offset_in_page(gpa);
3280
3281
return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3282
}
3283
EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3284
3285
/* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3286
static int __kvm_write_guest_page(struct kvm *kvm,
3287
struct kvm_memory_slot *memslot, gfn_t gfn,
3288
const void *data, int offset, int len)
3289
{
3290
int r;
3291
unsigned long addr;
3292
3293
if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3294
return -EFAULT;
3295
3296
addr = gfn_to_hva_memslot(memslot, gfn);
3297
if (kvm_is_error_hva(addr))
3298
return -EFAULT;
3299
r = __copy_to_user((void __user *)addr + offset, data, len);
3300
if (r)
3301
return -EFAULT;
3302
mark_page_dirty_in_slot(kvm, memslot, gfn);
3303
return 0;
3304
}
3305
3306
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3307
const void *data, int offset, int len)
3308
{
3309
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3310
3311
return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3312
}
3313
EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3314
3315
int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3316
const void *data, int offset, int len)
3317
{
3318
struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3319
3320
return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3321
}
3322
EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3323
3324
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3325
unsigned long len)
3326
{
3327
gfn_t gfn = gpa >> PAGE_SHIFT;
3328
int seg;
3329
int offset = offset_in_page(gpa);
3330
int ret;
3331
3332
while ((seg = next_segment(len, offset)) != 0) {
3333
ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3334
if (ret < 0)
3335
return ret;
3336
offset = 0;
3337
len -= seg;
3338
data += seg;
3339
++gfn;
3340
}
3341
return 0;
3342
}
3343
EXPORT_SYMBOL_GPL(kvm_write_guest);
3344
3345
int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3346
unsigned long len)
3347
{
3348
gfn_t gfn = gpa >> PAGE_SHIFT;
3349
int seg;
3350
int offset = offset_in_page(gpa);
3351
int ret;
3352
3353
while ((seg = next_segment(len, offset)) != 0) {
3354
ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3355
if (ret < 0)
3356
return ret;
3357
offset = 0;
3358
len -= seg;
3359
data += seg;
3360
++gfn;
3361
}
3362
return 0;
3363
}
3364
EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3365
3366
static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3367
struct gfn_to_hva_cache *ghc,
3368
gpa_t gpa, unsigned long len)
3369
{
3370
int offset = offset_in_page(gpa);
3371
gfn_t start_gfn = gpa >> PAGE_SHIFT;
3372
gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3373
gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3374
gfn_t nr_pages_avail;
3375
3376
/* Update ghc->generation before performing any error checks. */
3377
ghc->generation = slots->generation;
3378
3379
if (start_gfn > end_gfn) {
3380
ghc->hva = KVM_HVA_ERR_BAD;
3381
return -EINVAL;
3382
}
3383
3384
/*
3385
* If the requested region crosses two memslots, we still
3386
* verify that the entire region is valid here.
3387
*/
3388
for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3389
ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3390
ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3391
&nr_pages_avail);
3392
if (kvm_is_error_hva(ghc->hva))
3393
return -EFAULT;
3394
}
3395
3396
/* Use the slow path for cross page reads and writes. */
3397
if (nr_pages_needed == 1)
3398
ghc->hva += offset;
3399
else
3400
ghc->memslot = NULL;
3401
3402
ghc->gpa = gpa;
3403
ghc->len = len;
3404
return 0;
3405
}
3406
3407
int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3408
gpa_t gpa, unsigned long len)
3409
{
3410
struct kvm_memslots *slots = kvm_memslots(kvm);
3411
return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3412
}
3413
EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3414
3415
int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3416
void *data, unsigned int offset,
3417
unsigned long len)
3418
{
3419
struct kvm_memslots *slots = kvm_memslots(kvm);
3420
int r;
3421
gpa_t gpa = ghc->gpa + offset;
3422
3423
if (WARN_ON_ONCE(len + offset > ghc->len))
3424
return -EINVAL;
3425
3426
if (slots->generation != ghc->generation) {
3427
if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3428
return -EFAULT;
3429
}
3430
3431
if (kvm_is_error_hva(ghc->hva))
3432
return -EFAULT;
3433
3434
if (unlikely(!ghc->memslot))
3435
return kvm_write_guest(kvm, gpa, data, len);
3436
3437
r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3438
if (r)
3439
return -EFAULT;
3440
mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3441
3442
return 0;
3443
}
3444
EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3445
3446
int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3447
void *data, unsigned long len)
3448
{
3449
return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3450
}
3451
EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3452
3453
int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3454
void *data, unsigned int offset,
3455
unsigned long len)
3456
{
3457
struct kvm_memslots *slots = kvm_memslots(kvm);
3458
int r;
3459
gpa_t gpa = ghc->gpa + offset;
3460
3461
if (WARN_ON_ONCE(len + offset > ghc->len))
3462
return -EINVAL;
3463
3464
if (slots->generation != ghc->generation) {
3465
if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3466
return -EFAULT;
3467
}
3468
3469
if (kvm_is_error_hva(ghc->hva))
3470
return -EFAULT;
3471
3472
if (unlikely(!ghc->memslot))
3473
return kvm_read_guest(kvm, gpa, data, len);
3474
3475
r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3476
if (r)
3477
return -EFAULT;
3478
3479
return 0;
3480
}
3481
EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3482
3483
int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3484
void *data, unsigned long len)
3485
{
3486
return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3487
}
3488
EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3489
3490
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3491
{
3492
const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3493
gfn_t gfn = gpa >> PAGE_SHIFT;
3494
int seg;
3495
int offset = offset_in_page(gpa);
3496
int ret;
3497
3498
while ((seg = next_segment(len, offset)) != 0) {
3499
ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3500
if (ret < 0)
3501
return ret;
3502
offset = 0;
3503
len -= seg;
3504
++gfn;
3505
}
3506
return 0;
3507
}
3508
EXPORT_SYMBOL_GPL(kvm_clear_guest);
3509
3510
void mark_page_dirty_in_slot(struct kvm *kvm,
3511
const struct kvm_memory_slot *memslot,
3512
gfn_t gfn)
3513
{
3514
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3515
3516
#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3517
if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3518
return;
3519
3520
WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3521
#endif
3522
3523
if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3524
unsigned long rel_gfn = gfn - memslot->base_gfn;
3525
u32 slot = (memslot->as_id << 16) | memslot->id;
3526
3527
if (kvm->dirty_ring_size && vcpu)
3528
kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3529
else if (memslot->dirty_bitmap)
3530
set_bit_le(rel_gfn, memslot->dirty_bitmap);
3531
}
3532
}
3533
EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3534
3535
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3536
{
3537
struct kvm_memory_slot *memslot;
3538
3539
memslot = gfn_to_memslot(kvm, gfn);
3540
mark_page_dirty_in_slot(kvm, memslot, gfn);
3541
}
3542
EXPORT_SYMBOL_GPL(mark_page_dirty);
3543
3544
void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3545
{
3546
struct kvm_memory_slot *memslot;
3547
3548
memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3549
mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3550
}
3551
EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3552
3553
void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3554
{
3555
if (!vcpu->sigset_active)
3556
return;
3557
3558
/*
3559
* This does a lockless modification of ->real_blocked, which is fine
3560
* because, only current can change ->real_blocked and all readers of
3561
* ->real_blocked don't care as long ->real_blocked is always a subset
3562
* of ->blocked.
3563
*/
3564
sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3565
}
3566
3567
void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3568
{
3569
if (!vcpu->sigset_active)
3570
return;
3571
3572
sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3573
sigemptyset(&current->real_blocked);
3574
}
3575
3576
static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3577
{
3578
unsigned int old, val, grow, grow_start;
3579
3580
old = val = vcpu->halt_poll_ns;
3581
grow_start = READ_ONCE(halt_poll_ns_grow_start);
3582
grow = READ_ONCE(halt_poll_ns_grow);
3583
if (!grow)
3584
goto out;
3585
3586
val *= grow;
3587
if (val < grow_start)
3588
val = grow_start;
3589
3590
vcpu->halt_poll_ns = val;
3591
out:
3592
trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3593
}
3594
3595
static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3596
{
3597
unsigned int old, val, shrink, grow_start;
3598
3599
old = val = vcpu->halt_poll_ns;
3600
shrink = READ_ONCE(halt_poll_ns_shrink);
3601
grow_start = READ_ONCE(halt_poll_ns_grow_start);
3602
if (shrink == 0)
3603
val = 0;
3604
else
3605
val /= shrink;
3606
3607
if (val < grow_start)
3608
val = 0;
3609
3610
vcpu->halt_poll_ns = val;
3611
trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3612
}
3613
3614
static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3615
{
3616
int ret = -EINTR;
3617
int idx = srcu_read_lock(&vcpu->kvm->srcu);
3618
3619
if (kvm_arch_vcpu_runnable(vcpu))
3620
goto out;
3621
if (kvm_cpu_has_pending_timer(vcpu))
3622
goto out;
3623
if (signal_pending(current))
3624
goto out;
3625
if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3626
goto out;
3627
3628
ret = 0;
3629
out:
3630
srcu_read_unlock(&vcpu->kvm->srcu, idx);
3631
return ret;
3632
}
3633
3634
/*
3635
* Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3636
* pending. This is mostly used when halting a vCPU, but may also be used
3637
* directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3638
*/
3639
bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3640
{
3641
struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3642
bool waited = false;
3643
3644
vcpu->stat.generic.blocking = 1;
3645
3646
preempt_disable();
3647
kvm_arch_vcpu_blocking(vcpu);
3648
prepare_to_rcuwait(wait);
3649
preempt_enable();
3650
3651
for (;;) {
3652
set_current_state(TASK_INTERRUPTIBLE);
3653
3654
if (kvm_vcpu_check_block(vcpu) < 0)
3655
break;
3656
3657
waited = true;
3658
schedule();
3659
}
3660
3661
preempt_disable();
3662
finish_rcuwait(wait);
3663
kvm_arch_vcpu_unblocking(vcpu);
3664
preempt_enable();
3665
3666
vcpu->stat.generic.blocking = 0;
3667
3668
return waited;
3669
}
3670
3671
static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3672
ktime_t end, bool success)
3673
{
3674
struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3675
u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3676
3677
++vcpu->stat.generic.halt_attempted_poll;
3678
3679
if (success) {
3680
++vcpu->stat.generic.halt_successful_poll;
3681
3682
if (!vcpu_valid_wakeup(vcpu))
3683
++vcpu->stat.generic.halt_poll_invalid;
3684
3685
stats->halt_poll_success_ns += poll_ns;
3686
KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3687
} else {
3688
stats->halt_poll_fail_ns += poll_ns;
3689
KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3690
}
3691
}
3692
3693
static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3694
{
3695
struct kvm *kvm = vcpu->kvm;
3696
3697
if (kvm->override_halt_poll_ns) {
3698
/*
3699
* Ensure kvm->max_halt_poll_ns is not read before
3700
* kvm->override_halt_poll_ns.
3701
*
3702
* Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3703
*/
3704
smp_rmb();
3705
return READ_ONCE(kvm->max_halt_poll_ns);
3706
}
3707
3708
return READ_ONCE(halt_poll_ns);
3709
}
3710
3711
/*
3712
* Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3713
* polling is enabled, busy wait for a short time before blocking to avoid the
3714
* expensive block+unblock sequence if a wake event arrives soon after the vCPU
3715
* is halted.
3716
*/
3717
void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3718
{
3719
unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3720
bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3721
ktime_t start, cur, poll_end;
3722
bool waited = false;
3723
bool do_halt_poll;
3724
u64 halt_ns;
3725
3726
if (vcpu->halt_poll_ns > max_halt_poll_ns)
3727
vcpu->halt_poll_ns = max_halt_poll_ns;
3728
3729
do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3730
3731
start = cur = poll_end = ktime_get();
3732
if (do_halt_poll) {
3733
ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3734
3735
do {
3736
if (kvm_vcpu_check_block(vcpu) < 0)
3737
goto out;
3738
cpu_relax();
3739
poll_end = cur = ktime_get();
3740
} while (kvm_vcpu_can_poll(cur, stop));
3741
}
3742
3743
waited = kvm_vcpu_block(vcpu);
3744
3745
cur = ktime_get();
3746
if (waited) {
3747
vcpu->stat.generic.halt_wait_ns +=
3748
ktime_to_ns(cur) - ktime_to_ns(poll_end);
3749
KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3750
ktime_to_ns(cur) - ktime_to_ns(poll_end));
3751
}
3752
out:
3753
/* The total time the vCPU was "halted", including polling time. */
3754
halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3755
3756
/*
3757
* Note, halt-polling is considered successful so long as the vCPU was
3758
* never actually scheduled out, i.e. even if the wake event arrived
3759
* after of the halt-polling loop itself, but before the full wait.
3760
*/
3761
if (do_halt_poll)
3762
update_halt_poll_stats(vcpu, start, poll_end, !waited);
3763
3764
if (halt_poll_allowed) {
3765
/* Recompute the max halt poll time in case it changed. */
3766
max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3767
3768
if (!vcpu_valid_wakeup(vcpu)) {
3769
shrink_halt_poll_ns(vcpu);
3770
} else if (max_halt_poll_ns) {
3771
if (halt_ns <= vcpu->halt_poll_ns)
3772
;
3773
/* we had a long block, shrink polling */
3774
else if (vcpu->halt_poll_ns &&
3775
halt_ns > max_halt_poll_ns)
3776
shrink_halt_poll_ns(vcpu);
3777
/* we had a short halt and our poll time is too small */
3778
else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3779
halt_ns < max_halt_poll_ns)
3780
grow_halt_poll_ns(vcpu);
3781
} else {
3782
vcpu->halt_poll_ns = 0;
3783
}
3784
}
3785
3786
trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3787
}
3788
EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3789
3790
bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3791
{
3792
if (__kvm_vcpu_wake_up(vcpu)) {
3793
WRITE_ONCE(vcpu->ready, true);
3794
++vcpu->stat.generic.halt_wakeup;
3795
return true;
3796
}
3797
3798
return false;
3799
}
3800
EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3801
3802
#ifndef CONFIG_S390
3803
/*
3804
* Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3805
*/
3806
void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait)
3807
{
3808
int me, cpu;
3809
3810
if (kvm_vcpu_wake_up(vcpu))
3811
return;
3812
3813
me = get_cpu();
3814
/*
3815
* The only state change done outside the vcpu mutex is IN_GUEST_MODE
3816
* to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3817
* kick" check does not need atomic operations if kvm_vcpu_kick is used
3818
* within the vCPU thread itself.
3819
*/
3820
if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3821
if (vcpu->mode == IN_GUEST_MODE)
3822
WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3823
goto out;
3824
}
3825
3826
/*
3827
* Note, the vCPU could get migrated to a different pCPU at any point
3828
* after kvm_arch_vcpu_should_kick(), which could result in sending an
3829
* IPI to the previous pCPU. But, that's ok because the purpose of the
3830
* IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3831
* vCPU also requires it to leave IN_GUEST_MODE.
3832
*/
3833
if (kvm_arch_vcpu_should_kick(vcpu)) {
3834
cpu = READ_ONCE(vcpu->cpu);
3835
if (cpu != me && (unsigned int)cpu < nr_cpu_ids && cpu_online(cpu)) {
3836
/*
3837
* Use a reschedule IPI to kick the vCPU if the caller
3838
* doesn't need to wait for a response, as KVM allows
3839
* kicking vCPUs while IRQs are disabled, but using the
3840
* SMP function call framework with IRQs disabled can
3841
* deadlock due to taking cross-CPU locks.
3842
*/
3843
if (wait)
3844
smp_call_function_single(cpu, ack_kick, NULL, wait);
3845
else
3846
smp_send_reschedule(cpu);
3847
}
3848
}
3849
out:
3850
put_cpu();
3851
}
3852
EXPORT_SYMBOL_GPL(__kvm_vcpu_kick);
3853
#endif /* !CONFIG_S390 */
3854
3855
int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3856
{
3857
struct task_struct *task = NULL;
3858
int ret;
3859
3860
if (!read_trylock(&target->pid_lock))
3861
return 0;
3862
3863
if (target->pid)
3864
task = get_pid_task(target->pid, PIDTYPE_PID);
3865
3866
read_unlock(&target->pid_lock);
3867
3868
if (!task)
3869
return 0;
3870
ret = yield_to(task, 1);
3871
put_task_struct(task);
3872
3873
return ret;
3874
}
3875
EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3876
3877
/*
3878
* Helper that checks whether a VCPU is eligible for directed yield.
3879
* Most eligible candidate to yield is decided by following heuristics:
3880
*
3881
* (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3882
* (preempted lock holder), indicated by @in_spin_loop.
3883
* Set at the beginning and cleared at the end of interception/PLE handler.
3884
*
3885
* (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3886
* chance last time (mostly it has become eligible now since we have probably
3887
* yielded to lockholder in last iteration. This is done by toggling
3888
* @dy_eligible each time a VCPU checked for eligibility.)
3889
*
3890
* Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3891
* to preempted lock-holder could result in wrong VCPU selection and CPU
3892
* burning. Giving priority for a potential lock-holder increases lock
3893
* progress.
3894
*
3895
* Since algorithm is based on heuristics, accessing another VCPU data without
3896
* locking does not harm. It may result in trying to yield to same VCPU, fail
3897
* and continue with next VCPU and so on.
3898
*/
3899
static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3900
{
3901
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3902
bool eligible;
3903
3904
eligible = !vcpu->spin_loop.in_spin_loop ||
3905
vcpu->spin_loop.dy_eligible;
3906
3907
if (vcpu->spin_loop.in_spin_loop)
3908
kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3909
3910
return eligible;
3911
#else
3912
return true;
3913
#endif
3914
}
3915
3916
/*
3917
* Unlike kvm_arch_vcpu_runnable, this function is called outside
3918
* a vcpu_load/vcpu_put pair. However, for most architectures
3919
* kvm_arch_vcpu_runnable does not require vcpu_load.
3920
*/
3921
bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3922
{
3923
return kvm_arch_vcpu_runnable(vcpu);
3924
}
3925
3926
static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3927
{
3928
if (kvm_arch_dy_runnable(vcpu))
3929
return true;
3930
3931
#ifdef CONFIG_KVM_ASYNC_PF
3932
if (!list_empty_careful(&vcpu->async_pf.done))
3933
return true;
3934
#endif
3935
3936
return false;
3937
}
3938
3939
/*
3940
* By default, simply query the target vCPU's current mode when checking if a
3941
* vCPU was preempted in kernel mode. All architectures except x86 (or more
3942
* specifical, except VMX) allow querying whether or not a vCPU is in kernel
3943
* mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3944
* directly for cross-vCPU checks is functionally correct and accurate.
3945
*/
3946
bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3947
{
3948
return kvm_arch_vcpu_in_kernel(vcpu);
3949
}
3950
3951
bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3952
{
3953
return false;
3954
}
3955
3956
void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3957
{
3958
int nr_vcpus, start, i, idx, yielded;
3959
struct kvm *kvm = me->kvm;
3960
struct kvm_vcpu *vcpu;
3961
int try = 3;
3962
3963
nr_vcpus = atomic_read(&kvm->online_vcpus);
3964
if (nr_vcpus < 2)
3965
return;
3966
3967
/* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3968
smp_rmb();
3969
3970
kvm_vcpu_set_in_spin_loop(me, true);
3971
3972
/*
3973
* The current vCPU ("me") is spinning in kernel mode, i.e. is likely
3974
* waiting for a resource to become available. Attempt to yield to a
3975
* vCPU that is runnable, but not currently running, e.g. because the
3976
* vCPU was preempted by a higher priority task. With luck, the vCPU
3977
* that was preempted is holding a lock or some other resource that the
3978
* current vCPU is waiting to acquire, and yielding to the other vCPU
3979
* will allow it to make forward progress and release the lock (or kick
3980
* the spinning vCPU, etc).
3981
*
3982
* Since KVM has no insight into what exactly the guest is doing,
3983
* approximate a round-robin selection by iterating over all vCPUs,
3984
* starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu,
3985
* iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
3986
*
3987
* Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
3988
* they may all try to yield to the same vCPU(s). But as above, this
3989
* is all best effort due to KVM's lack of visibility into the guest.
3990
*/
3991
start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
3992
for (i = 0; i < nr_vcpus; i++) {
3993
idx = (start + i) % nr_vcpus;
3994
if (idx == me->vcpu_idx)
3995
continue;
3996
3997
vcpu = xa_load(&kvm->vcpu_array, idx);
3998
if (!READ_ONCE(vcpu->ready))
3999
continue;
4000
if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4001
continue;
4002
4003
/*
4004
* Treat the target vCPU as being in-kernel if it has a pending
4005
* interrupt, as the vCPU trying to yield may be spinning
4006
* waiting on IPI delivery, i.e. the target vCPU is in-kernel
4007
* for the purposes of directed yield.
4008
*/
4009
if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4010
!kvm_arch_dy_has_pending_interrupt(vcpu) &&
4011
!kvm_arch_vcpu_preempted_in_kernel(vcpu))
4012
continue;
4013
4014
if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4015
continue;
4016
4017
yielded = kvm_vcpu_yield_to(vcpu);
4018
if (yielded > 0) {
4019
WRITE_ONCE(kvm->last_boosted_vcpu, i);
4020
break;
4021
} else if (yielded < 0 && !--try) {
4022
break;
4023
}
4024
}
4025
kvm_vcpu_set_in_spin_loop(me, false);
4026
4027
/* Ensure vcpu is not eligible during next spinloop */
4028
kvm_vcpu_set_dy_eligible(me, false);
4029
}
4030
EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4031
4032
static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4033
{
4034
#ifdef CONFIG_HAVE_KVM_DIRTY_RING
4035
return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4036
(pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4037
kvm->dirty_ring_size / PAGE_SIZE);
4038
#else
4039
return false;
4040
#endif
4041
}
4042
4043
static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4044
{
4045
struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4046
struct page *page;
4047
4048
if (vmf->pgoff == 0)
4049
page = virt_to_page(vcpu->run);
4050
#ifdef CONFIG_X86
4051
else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4052
page = virt_to_page(vcpu->arch.pio_data);
4053
#endif
4054
#ifdef CONFIG_KVM_MMIO
4055
else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4056
page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4057
#endif
4058
else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4059
page = kvm_dirty_ring_get_page(
4060
&vcpu->dirty_ring,
4061
vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4062
else
4063
return kvm_arch_vcpu_fault(vcpu, vmf);
4064
get_page(page);
4065
vmf->page = page;
4066
return 0;
4067
}
4068
4069
static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4070
.fault = kvm_vcpu_fault,
4071
};
4072
4073
static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4074
{
4075
struct kvm_vcpu *vcpu = file->private_data;
4076
unsigned long pages = vma_pages(vma);
4077
4078
if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4079
kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4080
((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4081
return -EINVAL;
4082
4083
vma->vm_ops = &kvm_vcpu_vm_ops;
4084
return 0;
4085
}
4086
4087
static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4088
{
4089
struct kvm_vcpu *vcpu = filp->private_data;
4090
4091
kvm_put_kvm(vcpu->kvm);
4092
return 0;
4093
}
4094
4095
static struct file_operations kvm_vcpu_fops = {
4096
.release = kvm_vcpu_release,
4097
.unlocked_ioctl = kvm_vcpu_ioctl,
4098
.mmap = kvm_vcpu_mmap,
4099
.llseek = noop_llseek,
4100
KVM_COMPAT(kvm_vcpu_compat_ioctl),
4101
};
4102
4103
/*
4104
* Allocates an inode for the vcpu.
4105
*/
4106
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4107
{
4108
char name[8 + 1 + ITOA_MAX_LEN + 1];
4109
4110
snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4111
return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4112
}
4113
4114
#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4115
static int vcpu_get_pid(void *data, u64 *val)
4116
{
4117
struct kvm_vcpu *vcpu = data;
4118
4119
read_lock(&vcpu->pid_lock);
4120
*val = pid_nr(vcpu->pid);
4121
read_unlock(&vcpu->pid_lock);
4122
return 0;
4123
}
4124
4125
DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4126
4127
static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4128
{
4129
struct dentry *debugfs_dentry;
4130
char dir_name[ITOA_MAX_LEN * 2];
4131
4132
if (!debugfs_initialized())
4133
return;
4134
4135
snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4136
debugfs_dentry = debugfs_create_dir(dir_name,
4137
vcpu->kvm->debugfs_dentry);
4138
debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4139
&vcpu_get_pid_fops);
4140
4141
kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4142
}
4143
#endif
4144
4145
/*
4146
* Creates some virtual cpus. Good luck creating more than one.
4147
*/
4148
static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4149
{
4150
int r;
4151
struct kvm_vcpu *vcpu;
4152
struct page *page;
4153
4154
/*
4155
* KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4156
* too-large values instead of silently truncating.
4157
*
4158
* Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4159
* changing the storage type (at the very least, IDs should be tracked
4160
* as unsigned ints).
4161
*/
4162
BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4163
if (id >= KVM_MAX_VCPU_IDS)
4164
return -EINVAL;
4165
4166
mutex_lock(&kvm->lock);
4167
if (kvm->created_vcpus >= kvm->max_vcpus) {
4168
mutex_unlock(&kvm->lock);
4169
return -EINVAL;
4170
}
4171
4172
r = kvm_arch_vcpu_precreate(kvm, id);
4173
if (r) {
4174
mutex_unlock(&kvm->lock);
4175
return r;
4176
}
4177
4178
kvm->created_vcpus++;
4179
mutex_unlock(&kvm->lock);
4180
4181
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4182
if (!vcpu) {
4183
r = -ENOMEM;
4184
goto vcpu_decrement;
4185
}
4186
4187
BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4188
page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4189
if (!page) {
4190
r = -ENOMEM;
4191
goto vcpu_free;
4192
}
4193
vcpu->run = page_address(page);
4194
4195
kvm_vcpu_init(vcpu, kvm, id);
4196
4197
r = kvm_arch_vcpu_create(vcpu);
4198
if (r)
4199
goto vcpu_free_run_page;
4200
4201
if (kvm->dirty_ring_size) {
4202
r = kvm_dirty_ring_alloc(kvm, &vcpu->dirty_ring,
4203
id, kvm->dirty_ring_size);
4204
if (r)
4205
goto arch_vcpu_destroy;
4206
}
4207
4208
mutex_lock(&kvm->lock);
4209
4210
if (kvm_get_vcpu_by_id(kvm, id)) {
4211
r = -EEXIST;
4212
goto unlock_vcpu_destroy;
4213
}
4214
4215
vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4216
r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
4217
WARN_ON_ONCE(r == -EBUSY);
4218
if (r)
4219
goto unlock_vcpu_destroy;
4220
4221
/*
4222
* Now it's all set up, let userspace reach it. Grab the vCPU's mutex
4223
* so that userspace can't invoke vCPU ioctl()s until the vCPU is fully
4224
* visible (per online_vcpus), e.g. so that KVM doesn't get tricked
4225
* into a NULL-pointer dereference because KVM thinks the _current_
4226
* vCPU doesn't exist. As a bonus, taking vcpu->mutex ensures lockdep
4227
* knows it's taken *inside* kvm->lock.
4228
*/
4229
mutex_lock(&vcpu->mutex);
4230
kvm_get_kvm(kvm);
4231
r = create_vcpu_fd(vcpu);
4232
if (r < 0)
4233
goto kvm_put_xa_erase;
4234
4235
/*
4236
* Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4237
* pointer before kvm->online_vcpu's incremented value.
4238
*/
4239
smp_wmb();
4240
atomic_inc(&kvm->online_vcpus);
4241
mutex_unlock(&vcpu->mutex);
4242
4243
mutex_unlock(&kvm->lock);
4244
kvm_arch_vcpu_postcreate(vcpu);
4245
kvm_create_vcpu_debugfs(vcpu);
4246
return r;
4247
4248
kvm_put_xa_erase:
4249
mutex_unlock(&vcpu->mutex);
4250
kvm_put_kvm_no_destroy(kvm);
4251
xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
4252
unlock_vcpu_destroy:
4253
mutex_unlock(&kvm->lock);
4254
kvm_dirty_ring_free(&vcpu->dirty_ring);
4255
arch_vcpu_destroy:
4256
kvm_arch_vcpu_destroy(vcpu);
4257
vcpu_free_run_page:
4258
free_page((unsigned long)vcpu->run);
4259
vcpu_free:
4260
kmem_cache_free(kvm_vcpu_cache, vcpu);
4261
vcpu_decrement:
4262
mutex_lock(&kvm->lock);
4263
kvm->created_vcpus--;
4264
mutex_unlock(&kvm->lock);
4265
return r;
4266
}
4267
4268
static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4269
{
4270
if (sigset) {
4271
sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4272
vcpu->sigset_active = 1;
4273
vcpu->sigset = *sigset;
4274
} else
4275
vcpu->sigset_active = 0;
4276
return 0;
4277
}
4278
4279
static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4280
size_t size, loff_t *offset)
4281
{
4282
struct kvm_vcpu *vcpu = file->private_data;
4283
4284
return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4285
&kvm_vcpu_stats_desc[0], &vcpu->stat,
4286
sizeof(vcpu->stat), user_buffer, size, offset);
4287
}
4288
4289
static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4290
{
4291
struct kvm_vcpu *vcpu = file->private_data;
4292
4293
kvm_put_kvm(vcpu->kvm);
4294
return 0;
4295
}
4296
4297
static const struct file_operations kvm_vcpu_stats_fops = {
4298
.owner = THIS_MODULE,
4299
.read = kvm_vcpu_stats_read,
4300
.release = kvm_vcpu_stats_release,
4301
.llseek = noop_llseek,
4302
};
4303
4304
static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4305
{
4306
int fd;
4307
struct file *file;
4308
char name[15 + ITOA_MAX_LEN + 1];
4309
4310
snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4311
4312
fd = get_unused_fd_flags(O_CLOEXEC);
4313
if (fd < 0)
4314
return fd;
4315
4316
file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu,
4317
O_RDONLY, FMODE_PREAD);
4318
if (IS_ERR(file)) {
4319
put_unused_fd(fd);
4320
return PTR_ERR(file);
4321
}
4322
4323
kvm_get_kvm(vcpu->kvm);
4324
fd_install(fd, file);
4325
4326
return fd;
4327
}
4328
4329
#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4330
static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4331
struct kvm_pre_fault_memory *range)
4332
{
4333
int idx;
4334
long r;
4335
u64 full_size;
4336
4337
if (range->flags)
4338
return -EINVAL;
4339
4340
if (!PAGE_ALIGNED(range->gpa) ||
4341
!PAGE_ALIGNED(range->size) ||
4342
range->gpa + range->size <= range->gpa)
4343
return -EINVAL;
4344
4345
vcpu_load(vcpu);
4346
idx = srcu_read_lock(&vcpu->kvm->srcu);
4347
4348
full_size = range->size;
4349
do {
4350
if (signal_pending(current)) {
4351
r = -EINTR;
4352
break;
4353
}
4354
4355
r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4356
if (WARN_ON_ONCE(r == 0 || r == -EIO))
4357
break;
4358
4359
if (r < 0)
4360
break;
4361
4362
range->size -= r;
4363
range->gpa += r;
4364
cond_resched();
4365
} while (range->size);
4366
4367
srcu_read_unlock(&vcpu->kvm->srcu, idx);
4368
vcpu_put(vcpu);
4369
4370
/* Return success if at least one page was mapped successfully. */
4371
return full_size == range->size ? r : 0;
4372
}
4373
#endif
4374
4375
static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu)
4376
{
4377
struct kvm *kvm = vcpu->kvm;
4378
4379
/*
4380
* In practice, this happy path will always be taken, as a well-behaved
4381
* VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns.
4382
*/
4383
if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus)))
4384
return 0;
4385
4386
/*
4387
* Acquire and release the vCPU's mutex to wait for vCPU creation to
4388
* complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU
4389
* is fully online).
4390
*/
4391
if (mutex_lock_killable(&vcpu->mutex))
4392
return -EINTR;
4393
4394
mutex_unlock(&vcpu->mutex);
4395
4396
if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx)))
4397
return -EIO;
4398
4399
return 0;
4400
}
4401
4402
static long kvm_vcpu_ioctl(struct file *filp,
4403
unsigned int ioctl, unsigned long arg)
4404
{
4405
struct kvm_vcpu *vcpu = filp->private_data;
4406
void __user *argp = (void __user *)arg;
4407
int r;
4408
struct kvm_fpu *fpu = NULL;
4409
struct kvm_sregs *kvm_sregs = NULL;
4410
4411
if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4412
return -EIO;
4413
4414
if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4415
return -EINVAL;
4416
4417
/*
4418
* Wait for the vCPU to be online before handling the ioctl(), as KVM
4419
* assumes the vCPU is reachable via vcpu_array, i.e. may dereference
4420
* a NULL pointer if userspace invokes an ioctl() before KVM is ready.
4421
*/
4422
r = kvm_wait_for_vcpu_online(vcpu);
4423
if (r)
4424
return r;
4425
4426
/*
4427
* Some architectures have vcpu ioctls that are asynchronous to vcpu
4428
* execution; mutex_lock() would break them.
4429
*/
4430
r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4431
if (r != -ENOIOCTLCMD)
4432
return r;
4433
4434
if (mutex_lock_killable(&vcpu->mutex))
4435
return -EINTR;
4436
switch (ioctl) {
4437
case KVM_RUN: {
4438
struct pid *oldpid;
4439
r = -EINVAL;
4440
if (arg)
4441
goto out;
4442
4443
/*
4444
* Note, vcpu->pid is primarily protected by vcpu->mutex. The
4445
* dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4446
* read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4447
* directly to this vCPU
4448
*/
4449
oldpid = vcpu->pid;
4450
if (unlikely(oldpid != task_pid(current))) {
4451
/* The thread running this VCPU changed. */
4452
struct pid *newpid;
4453
4454
r = kvm_arch_vcpu_run_pid_change(vcpu);
4455
if (r)
4456
break;
4457
4458
newpid = get_task_pid(current, PIDTYPE_PID);
4459
write_lock(&vcpu->pid_lock);
4460
vcpu->pid = newpid;
4461
write_unlock(&vcpu->pid_lock);
4462
4463
put_pid(oldpid);
4464
}
4465
vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4466
r = kvm_arch_vcpu_ioctl_run(vcpu);
4467
vcpu->wants_to_run = false;
4468
4469
trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4470
break;
4471
}
4472
case KVM_GET_REGS: {
4473
struct kvm_regs *kvm_regs;
4474
4475
r = -ENOMEM;
4476
kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4477
if (!kvm_regs)
4478
goto out;
4479
r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4480
if (r)
4481
goto out_free1;
4482
r = -EFAULT;
4483
if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4484
goto out_free1;
4485
r = 0;
4486
out_free1:
4487
kfree(kvm_regs);
4488
break;
4489
}
4490
case KVM_SET_REGS: {
4491
struct kvm_regs *kvm_regs;
4492
4493
kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4494
if (IS_ERR(kvm_regs)) {
4495
r = PTR_ERR(kvm_regs);
4496
goto out;
4497
}
4498
r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4499
kfree(kvm_regs);
4500
break;
4501
}
4502
case KVM_GET_SREGS: {
4503
kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4504
r = -ENOMEM;
4505
if (!kvm_sregs)
4506
goto out;
4507
r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4508
if (r)
4509
goto out;
4510
r = -EFAULT;
4511
if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4512
goto out;
4513
r = 0;
4514
break;
4515
}
4516
case KVM_SET_SREGS: {
4517
kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4518
if (IS_ERR(kvm_sregs)) {
4519
r = PTR_ERR(kvm_sregs);
4520
kvm_sregs = NULL;
4521
goto out;
4522
}
4523
r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4524
break;
4525
}
4526
case KVM_GET_MP_STATE: {
4527
struct kvm_mp_state mp_state;
4528
4529
r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4530
if (r)
4531
goto out;
4532
r = -EFAULT;
4533
if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4534
goto out;
4535
r = 0;
4536
break;
4537
}
4538
case KVM_SET_MP_STATE: {
4539
struct kvm_mp_state mp_state;
4540
4541
r = -EFAULT;
4542
if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4543
goto out;
4544
r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4545
break;
4546
}
4547
case KVM_TRANSLATE: {
4548
struct kvm_translation tr;
4549
4550
r = -EFAULT;
4551
if (copy_from_user(&tr, argp, sizeof(tr)))
4552
goto out;
4553
r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4554
if (r)
4555
goto out;
4556
r = -EFAULT;
4557
if (copy_to_user(argp, &tr, sizeof(tr)))
4558
goto out;
4559
r = 0;
4560
break;
4561
}
4562
case KVM_SET_GUEST_DEBUG: {
4563
struct kvm_guest_debug dbg;
4564
4565
r = -EFAULT;
4566
if (copy_from_user(&dbg, argp, sizeof(dbg)))
4567
goto out;
4568
r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4569
break;
4570
}
4571
case KVM_SET_SIGNAL_MASK: {
4572
struct kvm_signal_mask __user *sigmask_arg = argp;
4573
struct kvm_signal_mask kvm_sigmask;
4574
sigset_t sigset, *p;
4575
4576
p = NULL;
4577
if (argp) {
4578
r = -EFAULT;
4579
if (copy_from_user(&kvm_sigmask, argp,
4580
sizeof(kvm_sigmask)))
4581
goto out;
4582
r = -EINVAL;
4583
if (kvm_sigmask.len != sizeof(sigset))
4584
goto out;
4585
r = -EFAULT;
4586
if (copy_from_user(&sigset, sigmask_arg->sigset,
4587
sizeof(sigset)))
4588
goto out;
4589
p = &sigset;
4590
}
4591
r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4592
break;
4593
}
4594
case KVM_GET_FPU: {
4595
fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4596
r = -ENOMEM;
4597
if (!fpu)
4598
goto out;
4599
r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4600
if (r)
4601
goto out;
4602
r = -EFAULT;
4603
if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4604
goto out;
4605
r = 0;
4606
break;
4607
}
4608
case KVM_SET_FPU: {
4609
fpu = memdup_user(argp, sizeof(*fpu));
4610
if (IS_ERR(fpu)) {
4611
r = PTR_ERR(fpu);
4612
fpu = NULL;
4613
goto out;
4614
}
4615
r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4616
break;
4617
}
4618
case KVM_GET_STATS_FD: {
4619
r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4620
break;
4621
}
4622
#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4623
case KVM_PRE_FAULT_MEMORY: {
4624
struct kvm_pre_fault_memory range;
4625
4626
r = -EFAULT;
4627
if (copy_from_user(&range, argp, sizeof(range)))
4628
break;
4629
r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4630
/* Pass back leftover range. */
4631
if (copy_to_user(argp, &range, sizeof(range)))
4632
r = -EFAULT;
4633
break;
4634
}
4635
#endif
4636
default:
4637
r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4638
}
4639
out:
4640
mutex_unlock(&vcpu->mutex);
4641
kfree(fpu);
4642
kfree(kvm_sregs);
4643
return r;
4644
}
4645
4646
#ifdef CONFIG_KVM_COMPAT
4647
static long kvm_vcpu_compat_ioctl(struct file *filp,
4648
unsigned int ioctl, unsigned long arg)
4649
{
4650
struct kvm_vcpu *vcpu = filp->private_data;
4651
void __user *argp = compat_ptr(arg);
4652
int r;
4653
4654
if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4655
return -EIO;
4656
4657
switch (ioctl) {
4658
case KVM_SET_SIGNAL_MASK: {
4659
struct kvm_signal_mask __user *sigmask_arg = argp;
4660
struct kvm_signal_mask kvm_sigmask;
4661
sigset_t sigset;
4662
4663
if (argp) {
4664
r = -EFAULT;
4665
if (copy_from_user(&kvm_sigmask, argp,
4666
sizeof(kvm_sigmask)))
4667
goto out;
4668
r = -EINVAL;
4669
if (kvm_sigmask.len != sizeof(compat_sigset_t))
4670
goto out;
4671
r = -EFAULT;
4672
if (get_compat_sigset(&sigset,
4673
(compat_sigset_t __user *)sigmask_arg->sigset))
4674
goto out;
4675
r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4676
} else
4677
r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4678
break;
4679
}
4680
default:
4681
r = kvm_vcpu_ioctl(filp, ioctl, arg);
4682
}
4683
4684
out:
4685
return r;
4686
}
4687
#endif
4688
4689
static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4690
{
4691
struct kvm_device *dev = filp->private_data;
4692
4693
if (dev->ops->mmap)
4694
return dev->ops->mmap(dev, vma);
4695
4696
return -ENODEV;
4697
}
4698
4699
static int kvm_device_ioctl_attr(struct kvm_device *dev,
4700
int (*accessor)(struct kvm_device *dev,
4701
struct kvm_device_attr *attr),
4702
unsigned long arg)
4703
{
4704
struct kvm_device_attr attr;
4705
4706
if (!accessor)
4707
return -EPERM;
4708
4709
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4710
return -EFAULT;
4711
4712
return accessor(dev, &attr);
4713
}
4714
4715
static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4716
unsigned long arg)
4717
{
4718
struct kvm_device *dev = filp->private_data;
4719
4720
if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4721
return -EIO;
4722
4723
switch (ioctl) {
4724
case KVM_SET_DEVICE_ATTR:
4725
return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4726
case KVM_GET_DEVICE_ATTR:
4727
return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4728
case KVM_HAS_DEVICE_ATTR:
4729
return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4730
default:
4731
if (dev->ops->ioctl)
4732
return dev->ops->ioctl(dev, ioctl, arg);
4733
4734
return -ENOTTY;
4735
}
4736
}
4737
4738
static int kvm_device_release(struct inode *inode, struct file *filp)
4739
{
4740
struct kvm_device *dev = filp->private_data;
4741
struct kvm *kvm = dev->kvm;
4742
4743
if (dev->ops->release) {
4744
mutex_lock(&kvm->lock);
4745
list_del_rcu(&dev->vm_node);
4746
synchronize_rcu();
4747
dev->ops->release(dev);
4748
mutex_unlock(&kvm->lock);
4749
}
4750
4751
kvm_put_kvm(kvm);
4752
return 0;
4753
}
4754
4755
static struct file_operations kvm_device_fops = {
4756
.unlocked_ioctl = kvm_device_ioctl,
4757
.release = kvm_device_release,
4758
KVM_COMPAT(kvm_device_ioctl),
4759
.mmap = kvm_device_mmap,
4760
};
4761
4762
struct kvm_device *kvm_device_from_filp(struct file *filp)
4763
{
4764
if (filp->f_op != &kvm_device_fops)
4765
return NULL;
4766
4767
return filp->private_data;
4768
}
4769
4770
static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4771
#ifdef CONFIG_KVM_MPIC
4772
[KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4773
[KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4774
#endif
4775
};
4776
4777
int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4778
{
4779
if (type >= ARRAY_SIZE(kvm_device_ops_table))
4780
return -ENOSPC;
4781
4782
if (kvm_device_ops_table[type] != NULL)
4783
return -EEXIST;
4784
4785
kvm_device_ops_table[type] = ops;
4786
return 0;
4787
}
4788
4789
void kvm_unregister_device_ops(u32 type)
4790
{
4791
if (kvm_device_ops_table[type] != NULL)
4792
kvm_device_ops_table[type] = NULL;
4793
}
4794
4795
static int kvm_ioctl_create_device(struct kvm *kvm,
4796
struct kvm_create_device *cd)
4797
{
4798
const struct kvm_device_ops *ops;
4799
struct kvm_device *dev;
4800
bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4801
int type;
4802
int ret;
4803
4804
if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4805
return -ENODEV;
4806
4807
type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4808
ops = kvm_device_ops_table[type];
4809
if (ops == NULL)
4810
return -ENODEV;
4811
4812
if (test)
4813
return 0;
4814
4815
dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4816
if (!dev)
4817
return -ENOMEM;
4818
4819
dev->ops = ops;
4820
dev->kvm = kvm;
4821
4822
mutex_lock(&kvm->lock);
4823
ret = ops->create(dev, type);
4824
if (ret < 0) {
4825
mutex_unlock(&kvm->lock);
4826
kfree(dev);
4827
return ret;
4828
}
4829
list_add_rcu(&dev->vm_node, &kvm->devices);
4830
mutex_unlock(&kvm->lock);
4831
4832
if (ops->init)
4833
ops->init(dev);
4834
4835
kvm_get_kvm(kvm);
4836
ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4837
if (ret < 0) {
4838
kvm_put_kvm_no_destroy(kvm);
4839
mutex_lock(&kvm->lock);
4840
list_del_rcu(&dev->vm_node);
4841
synchronize_rcu();
4842
if (ops->release)
4843
ops->release(dev);
4844
mutex_unlock(&kvm->lock);
4845
if (ops->destroy)
4846
ops->destroy(dev);
4847
return ret;
4848
}
4849
4850
cd->fd = ret;
4851
return 0;
4852
}
4853
4854
static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4855
{
4856
switch (arg) {
4857
case KVM_CAP_USER_MEMORY:
4858
case KVM_CAP_USER_MEMORY2:
4859
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4860
case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4861
case KVM_CAP_INTERNAL_ERROR_DATA:
4862
#ifdef CONFIG_HAVE_KVM_MSI
4863
case KVM_CAP_SIGNAL_MSI:
4864
#endif
4865
#ifdef CONFIG_HAVE_KVM_IRQCHIP
4866
case KVM_CAP_IRQFD:
4867
#endif
4868
case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4869
case KVM_CAP_CHECK_EXTENSION_VM:
4870
case KVM_CAP_ENABLE_CAP_VM:
4871
case KVM_CAP_HALT_POLL:
4872
return 1;
4873
#ifdef CONFIG_KVM_MMIO
4874
case KVM_CAP_COALESCED_MMIO:
4875
return KVM_COALESCED_MMIO_PAGE_OFFSET;
4876
case KVM_CAP_COALESCED_PIO:
4877
return 1;
4878
#endif
4879
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4880
case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4881
return KVM_DIRTY_LOG_MANUAL_CAPS;
4882
#endif
4883
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4884
case KVM_CAP_IRQ_ROUTING:
4885
return KVM_MAX_IRQ_ROUTES;
4886
#endif
4887
#if KVM_MAX_NR_ADDRESS_SPACES > 1
4888
case KVM_CAP_MULTI_ADDRESS_SPACE:
4889
if (kvm)
4890
return kvm_arch_nr_memslot_as_ids(kvm);
4891
return KVM_MAX_NR_ADDRESS_SPACES;
4892
#endif
4893
case KVM_CAP_NR_MEMSLOTS:
4894
return KVM_USER_MEM_SLOTS;
4895
case KVM_CAP_DIRTY_LOG_RING:
4896
#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4897
return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4898
#else
4899
return 0;
4900
#endif
4901
case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4902
#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4903
return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4904
#else
4905
return 0;
4906
#endif
4907
#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4908
case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4909
#endif
4910
case KVM_CAP_BINARY_STATS_FD:
4911
case KVM_CAP_SYSTEM_EVENT_DATA:
4912
case KVM_CAP_DEVICE_CTRL:
4913
return 1;
4914
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4915
case KVM_CAP_MEMORY_ATTRIBUTES:
4916
return kvm_supported_mem_attributes(kvm);
4917
#endif
4918
#ifdef CONFIG_KVM_PRIVATE_MEM
4919
case KVM_CAP_GUEST_MEMFD:
4920
return !kvm || kvm_arch_has_private_mem(kvm);
4921
#endif
4922
default:
4923
break;
4924
}
4925
return kvm_vm_ioctl_check_extension(kvm, arg);
4926
}
4927
4928
static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4929
{
4930
int r;
4931
4932
if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4933
return -EINVAL;
4934
4935
/* the size should be power of 2 */
4936
if (!size || (size & (size - 1)))
4937
return -EINVAL;
4938
4939
/* Should be bigger to keep the reserved entries, or a page */
4940
if (size < kvm_dirty_ring_get_rsvd_entries(kvm) *
4941
sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4942
return -EINVAL;
4943
4944
if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4945
sizeof(struct kvm_dirty_gfn))
4946
return -E2BIG;
4947
4948
/* We only allow it to set once */
4949
if (kvm->dirty_ring_size)
4950
return -EINVAL;
4951
4952
mutex_lock(&kvm->lock);
4953
4954
if (kvm->created_vcpus) {
4955
/* We don't allow to change this value after vcpu created */
4956
r = -EINVAL;
4957
} else {
4958
kvm->dirty_ring_size = size;
4959
r = 0;
4960
}
4961
4962
mutex_unlock(&kvm->lock);
4963
return r;
4964
}
4965
4966
static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4967
{
4968
unsigned long i;
4969
struct kvm_vcpu *vcpu;
4970
int cleared = 0, r;
4971
4972
if (!kvm->dirty_ring_size)
4973
return -EINVAL;
4974
4975
mutex_lock(&kvm->slots_lock);
4976
4977
kvm_for_each_vcpu(i, vcpu, kvm) {
4978
r = kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring, &cleared);
4979
if (r)
4980
break;
4981
}
4982
4983
mutex_unlock(&kvm->slots_lock);
4984
4985
if (cleared)
4986
kvm_flush_remote_tlbs(kvm);
4987
4988
return cleared;
4989
}
4990
4991
int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4992
struct kvm_enable_cap *cap)
4993
{
4994
return -EINVAL;
4995
}
4996
4997
bool kvm_are_all_memslots_empty(struct kvm *kvm)
4998
{
4999
int i;
5000
5001
lockdep_assert_held(&kvm->slots_lock);
5002
5003
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
5004
if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
5005
return false;
5006
}
5007
5008
return true;
5009
}
5010
EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
5011
5012
static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
5013
struct kvm_enable_cap *cap)
5014
{
5015
switch (cap->cap) {
5016
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5017
case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
5018
u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
5019
5020
if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
5021
allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5022
5023
if (cap->flags || (cap->args[0] & ~allowed_options))
5024
return -EINVAL;
5025
kvm->manual_dirty_log_protect = cap->args[0];
5026
return 0;
5027
}
5028
#endif
5029
case KVM_CAP_HALT_POLL: {
5030
if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5031
return -EINVAL;
5032
5033
kvm->max_halt_poll_ns = cap->args[0];
5034
5035
/*
5036
* Ensure kvm->override_halt_poll_ns does not become visible
5037
* before kvm->max_halt_poll_ns.
5038
*
5039
* Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5040
*/
5041
smp_wmb();
5042
kvm->override_halt_poll_ns = true;
5043
5044
return 0;
5045
}
5046
case KVM_CAP_DIRTY_LOG_RING:
5047
case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5048
if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5049
return -EINVAL;
5050
5051
return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5052
case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5053
int r = -EINVAL;
5054
5055
if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5056
!kvm->dirty_ring_size || cap->flags)
5057
return r;
5058
5059
mutex_lock(&kvm->slots_lock);
5060
5061
/*
5062
* For simplicity, allow enabling ring+bitmap if and only if
5063
* there are no memslots, e.g. to ensure all memslots allocate
5064
* a bitmap after the capability is enabled.
5065
*/
5066
if (kvm_are_all_memslots_empty(kvm)) {
5067
kvm->dirty_ring_with_bitmap = true;
5068
r = 0;
5069
}
5070
5071
mutex_unlock(&kvm->slots_lock);
5072
5073
return r;
5074
}
5075
default:
5076
return kvm_vm_ioctl_enable_cap(kvm, cap);
5077
}
5078
}
5079
5080
static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5081
size_t size, loff_t *offset)
5082
{
5083
struct kvm *kvm = file->private_data;
5084
5085
return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5086
&kvm_vm_stats_desc[0], &kvm->stat,
5087
sizeof(kvm->stat), user_buffer, size, offset);
5088
}
5089
5090
static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5091
{
5092
struct kvm *kvm = file->private_data;
5093
5094
kvm_put_kvm(kvm);
5095
return 0;
5096
}
5097
5098
static const struct file_operations kvm_vm_stats_fops = {
5099
.owner = THIS_MODULE,
5100
.read = kvm_vm_stats_read,
5101
.release = kvm_vm_stats_release,
5102
.llseek = noop_llseek,
5103
};
5104
5105
static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5106
{
5107
int fd;
5108
struct file *file;
5109
5110
fd = get_unused_fd_flags(O_CLOEXEC);
5111
if (fd < 0)
5112
return fd;
5113
5114
file = anon_inode_getfile_fmode("kvm-vm-stats",
5115
&kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD);
5116
if (IS_ERR(file)) {
5117
put_unused_fd(fd);
5118
return PTR_ERR(file);
5119
}
5120
5121
kvm_get_kvm(kvm);
5122
fd_install(fd, file);
5123
5124
return fd;
5125
}
5126
5127
#define SANITY_CHECK_MEM_REGION_FIELD(field) \
5128
do { \
5129
BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5130
offsetof(struct kvm_userspace_memory_region2, field)); \
5131
BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5132
sizeof_field(struct kvm_userspace_memory_region2, field)); \
5133
} while (0)
5134
5135
static long kvm_vm_ioctl(struct file *filp,
5136
unsigned int ioctl, unsigned long arg)
5137
{
5138
struct kvm *kvm = filp->private_data;
5139
void __user *argp = (void __user *)arg;
5140
int r;
5141
5142
if (kvm->mm != current->mm || kvm->vm_dead)
5143
return -EIO;
5144
switch (ioctl) {
5145
case KVM_CREATE_VCPU:
5146
r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5147
break;
5148
case KVM_ENABLE_CAP: {
5149
struct kvm_enable_cap cap;
5150
5151
r = -EFAULT;
5152
if (copy_from_user(&cap, argp, sizeof(cap)))
5153
goto out;
5154
r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5155
break;
5156
}
5157
case KVM_SET_USER_MEMORY_REGION2:
5158
case KVM_SET_USER_MEMORY_REGION: {
5159
struct kvm_userspace_memory_region2 mem;
5160
unsigned long size;
5161
5162
if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5163
/*
5164
* Fields beyond struct kvm_userspace_memory_region shouldn't be
5165
* accessed, but avoid leaking kernel memory in case of a bug.
5166
*/
5167
memset(&mem, 0, sizeof(mem));
5168
size = sizeof(struct kvm_userspace_memory_region);
5169
} else {
5170
size = sizeof(struct kvm_userspace_memory_region2);
5171
}
5172
5173
/* Ensure the common parts of the two structs are identical. */
5174
SANITY_CHECK_MEM_REGION_FIELD(slot);
5175
SANITY_CHECK_MEM_REGION_FIELD(flags);
5176
SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5177
SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5178
SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5179
5180
r = -EFAULT;
5181
if (copy_from_user(&mem, argp, size))
5182
goto out;
5183
5184
r = -EINVAL;
5185
if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5186
(mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5187
goto out;
5188
5189
r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5190
break;
5191
}
5192
case KVM_GET_DIRTY_LOG: {
5193
struct kvm_dirty_log log;
5194
5195
r = -EFAULT;
5196
if (copy_from_user(&log, argp, sizeof(log)))
5197
goto out;
5198
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5199
break;
5200
}
5201
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5202
case KVM_CLEAR_DIRTY_LOG: {
5203
struct kvm_clear_dirty_log log;
5204
5205
r = -EFAULT;
5206
if (copy_from_user(&log, argp, sizeof(log)))
5207
goto out;
5208
r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5209
break;
5210
}
5211
#endif
5212
#ifdef CONFIG_KVM_MMIO
5213
case KVM_REGISTER_COALESCED_MMIO: {
5214
struct kvm_coalesced_mmio_zone zone;
5215
5216
r = -EFAULT;
5217
if (copy_from_user(&zone, argp, sizeof(zone)))
5218
goto out;
5219
r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5220
break;
5221
}
5222
case KVM_UNREGISTER_COALESCED_MMIO: {
5223
struct kvm_coalesced_mmio_zone zone;
5224
5225
r = -EFAULT;
5226
if (copy_from_user(&zone, argp, sizeof(zone)))
5227
goto out;
5228
r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5229
break;
5230
}
5231
#endif
5232
case KVM_IRQFD: {
5233
struct kvm_irqfd data;
5234
5235
r = -EFAULT;
5236
if (copy_from_user(&data, argp, sizeof(data)))
5237
goto out;
5238
r = kvm_irqfd(kvm, &data);
5239
break;
5240
}
5241
case KVM_IOEVENTFD: {
5242
struct kvm_ioeventfd data;
5243
5244
r = -EFAULT;
5245
if (copy_from_user(&data, argp, sizeof(data)))
5246
goto out;
5247
r = kvm_ioeventfd(kvm, &data);
5248
break;
5249
}
5250
#ifdef CONFIG_HAVE_KVM_MSI
5251
case KVM_SIGNAL_MSI: {
5252
struct kvm_msi msi;
5253
5254
r = -EFAULT;
5255
if (copy_from_user(&msi, argp, sizeof(msi)))
5256
goto out;
5257
r = kvm_send_userspace_msi(kvm, &msi);
5258
break;
5259
}
5260
#endif
5261
#ifdef __KVM_HAVE_IRQ_LINE
5262
case KVM_IRQ_LINE_STATUS:
5263
case KVM_IRQ_LINE: {
5264
struct kvm_irq_level irq_event;
5265
5266
r = -EFAULT;
5267
if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5268
goto out;
5269
5270
r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5271
ioctl == KVM_IRQ_LINE_STATUS);
5272
if (r)
5273
goto out;
5274
5275
r = -EFAULT;
5276
if (ioctl == KVM_IRQ_LINE_STATUS) {
5277
if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5278
goto out;
5279
}
5280
5281
r = 0;
5282
break;
5283
}
5284
#endif
5285
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5286
case KVM_SET_GSI_ROUTING: {
5287
struct kvm_irq_routing routing;
5288
struct kvm_irq_routing __user *urouting;
5289
struct kvm_irq_routing_entry *entries = NULL;
5290
5291
r = -EFAULT;
5292
if (copy_from_user(&routing, argp, sizeof(routing)))
5293
goto out;
5294
r = -EINVAL;
5295
if (!kvm_arch_can_set_irq_routing(kvm))
5296
goto out;
5297
if (routing.nr > KVM_MAX_IRQ_ROUTES)
5298
goto out;
5299
if (routing.flags)
5300
goto out;
5301
if (routing.nr) {
5302
urouting = argp;
5303
entries = vmemdup_array_user(urouting->entries,
5304
routing.nr, sizeof(*entries));
5305
if (IS_ERR(entries)) {
5306
r = PTR_ERR(entries);
5307
goto out;
5308
}
5309
}
5310
r = kvm_set_irq_routing(kvm, entries, routing.nr,
5311
routing.flags);
5312
kvfree(entries);
5313
break;
5314
}
5315
#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5316
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5317
case KVM_SET_MEMORY_ATTRIBUTES: {
5318
struct kvm_memory_attributes attrs;
5319
5320
r = -EFAULT;
5321
if (copy_from_user(&attrs, argp, sizeof(attrs)))
5322
goto out;
5323
5324
r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5325
break;
5326
}
5327
#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5328
case KVM_CREATE_DEVICE: {
5329
struct kvm_create_device cd;
5330
5331
r = -EFAULT;
5332
if (copy_from_user(&cd, argp, sizeof(cd)))
5333
goto out;
5334
5335
r = kvm_ioctl_create_device(kvm, &cd);
5336
if (r)
5337
goto out;
5338
5339
r = -EFAULT;
5340
if (copy_to_user(argp, &cd, sizeof(cd)))
5341
goto out;
5342
5343
r = 0;
5344
break;
5345
}
5346
case KVM_CHECK_EXTENSION:
5347
r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5348
break;
5349
case KVM_RESET_DIRTY_RINGS:
5350
r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5351
break;
5352
case KVM_GET_STATS_FD:
5353
r = kvm_vm_ioctl_get_stats_fd(kvm);
5354
break;
5355
#ifdef CONFIG_KVM_PRIVATE_MEM
5356
case KVM_CREATE_GUEST_MEMFD: {
5357
struct kvm_create_guest_memfd guest_memfd;
5358
5359
r = -EFAULT;
5360
if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5361
goto out;
5362
5363
r = kvm_gmem_create(kvm, &guest_memfd);
5364
break;
5365
}
5366
#endif
5367
default:
5368
r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5369
}
5370
out:
5371
return r;
5372
}
5373
5374
#ifdef CONFIG_KVM_COMPAT
5375
struct compat_kvm_dirty_log {
5376
__u32 slot;
5377
__u32 padding1;
5378
union {
5379
compat_uptr_t dirty_bitmap; /* one bit per page */
5380
__u64 padding2;
5381
};
5382
};
5383
5384
struct compat_kvm_clear_dirty_log {
5385
__u32 slot;
5386
__u32 num_pages;
5387
__u64 first_page;
5388
union {
5389
compat_uptr_t dirty_bitmap; /* one bit per page */
5390
__u64 padding2;
5391
};
5392
};
5393
5394
long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5395
unsigned long arg)
5396
{
5397
return -ENOTTY;
5398
}
5399
5400
static long kvm_vm_compat_ioctl(struct file *filp,
5401
unsigned int ioctl, unsigned long arg)
5402
{
5403
struct kvm *kvm = filp->private_data;
5404
int r;
5405
5406
if (kvm->mm != current->mm || kvm->vm_dead)
5407
return -EIO;
5408
5409
r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5410
if (r != -ENOTTY)
5411
return r;
5412
5413
switch (ioctl) {
5414
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5415
case KVM_CLEAR_DIRTY_LOG: {
5416
struct compat_kvm_clear_dirty_log compat_log;
5417
struct kvm_clear_dirty_log log;
5418
5419
if (copy_from_user(&compat_log, (void __user *)arg,
5420
sizeof(compat_log)))
5421
return -EFAULT;
5422
log.slot = compat_log.slot;
5423
log.num_pages = compat_log.num_pages;
5424
log.first_page = compat_log.first_page;
5425
log.padding2 = compat_log.padding2;
5426
log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5427
5428
r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5429
break;
5430
}
5431
#endif
5432
case KVM_GET_DIRTY_LOG: {
5433
struct compat_kvm_dirty_log compat_log;
5434
struct kvm_dirty_log log;
5435
5436
if (copy_from_user(&compat_log, (void __user *)arg,
5437
sizeof(compat_log)))
5438
return -EFAULT;
5439
log.slot = compat_log.slot;
5440
log.padding1 = compat_log.padding1;
5441
log.padding2 = compat_log.padding2;
5442
log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5443
5444
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5445
break;
5446
}
5447
default:
5448
r = kvm_vm_ioctl(filp, ioctl, arg);
5449
}
5450
return r;
5451
}
5452
#endif
5453
5454
static struct file_operations kvm_vm_fops = {
5455
.release = kvm_vm_release,
5456
.unlocked_ioctl = kvm_vm_ioctl,
5457
.llseek = noop_llseek,
5458
KVM_COMPAT(kvm_vm_compat_ioctl),
5459
};
5460
5461
bool file_is_kvm(struct file *file)
5462
{
5463
return file && file->f_op == &kvm_vm_fops;
5464
}
5465
EXPORT_SYMBOL_GPL(file_is_kvm);
5466
5467
static int kvm_dev_ioctl_create_vm(unsigned long type)
5468
{
5469
char fdname[ITOA_MAX_LEN + 1];
5470
int r, fd;
5471
struct kvm *kvm;
5472
struct file *file;
5473
5474
fd = get_unused_fd_flags(O_CLOEXEC);
5475
if (fd < 0)
5476
return fd;
5477
5478
snprintf(fdname, sizeof(fdname), "%d", fd);
5479
5480
kvm = kvm_create_vm(type, fdname);
5481
if (IS_ERR(kvm)) {
5482
r = PTR_ERR(kvm);
5483
goto put_fd;
5484
}
5485
5486
file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5487
if (IS_ERR(file)) {
5488
r = PTR_ERR(file);
5489
goto put_kvm;
5490
}
5491
5492
/*
5493
* Don't call kvm_put_kvm anymore at this point; file->f_op is
5494
* already set, with ->release() being kvm_vm_release(). In error
5495
* cases it will be called by the final fput(file) and will take
5496
* care of doing kvm_put_kvm(kvm).
5497
*/
5498
kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5499
5500
fd_install(fd, file);
5501
return fd;
5502
5503
put_kvm:
5504
kvm_put_kvm(kvm);
5505
put_fd:
5506
put_unused_fd(fd);
5507
return r;
5508
}
5509
5510
static long kvm_dev_ioctl(struct file *filp,
5511
unsigned int ioctl, unsigned long arg)
5512
{
5513
int r = -EINVAL;
5514
5515
switch (ioctl) {
5516
case KVM_GET_API_VERSION:
5517
if (arg)
5518
goto out;
5519
r = KVM_API_VERSION;
5520
break;
5521
case KVM_CREATE_VM:
5522
r = kvm_dev_ioctl_create_vm(arg);
5523
break;
5524
case KVM_CHECK_EXTENSION:
5525
r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5526
break;
5527
case KVM_GET_VCPU_MMAP_SIZE:
5528
if (arg)
5529
goto out;
5530
r = PAGE_SIZE; /* struct kvm_run */
5531
#ifdef CONFIG_X86
5532
r += PAGE_SIZE; /* pio data page */
5533
#endif
5534
#ifdef CONFIG_KVM_MMIO
5535
r += PAGE_SIZE; /* coalesced mmio ring page */
5536
#endif
5537
break;
5538
default:
5539
return kvm_arch_dev_ioctl(filp, ioctl, arg);
5540
}
5541
out:
5542
return r;
5543
}
5544
5545
static struct file_operations kvm_chardev_ops = {
5546
.unlocked_ioctl = kvm_dev_ioctl,
5547
.llseek = noop_llseek,
5548
KVM_COMPAT(kvm_dev_ioctl),
5549
};
5550
5551
static struct miscdevice kvm_dev = {
5552
KVM_MINOR,
5553
"kvm",
5554
&kvm_chardev_ops,
5555
};
5556
5557
#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5558
bool enable_virt_at_load = true;
5559
module_param(enable_virt_at_load, bool, 0444);
5560
EXPORT_SYMBOL_GPL(enable_virt_at_load);
5561
5562
__visible bool kvm_rebooting;
5563
EXPORT_SYMBOL_GPL(kvm_rebooting);
5564
5565
static DEFINE_PER_CPU(bool, virtualization_enabled);
5566
static DEFINE_MUTEX(kvm_usage_lock);
5567
static int kvm_usage_count;
5568
5569
__weak void kvm_arch_enable_virtualization(void)
5570
{
5571
5572
}
5573
5574
__weak void kvm_arch_disable_virtualization(void)
5575
{
5576
5577
}
5578
5579
static int kvm_enable_virtualization_cpu(void)
5580
{
5581
if (__this_cpu_read(virtualization_enabled))
5582
return 0;
5583
5584
if (kvm_arch_enable_virtualization_cpu()) {
5585
pr_info("kvm: enabling virtualization on CPU%d failed\n",
5586
raw_smp_processor_id());
5587
return -EIO;
5588
}
5589
5590
__this_cpu_write(virtualization_enabled, true);
5591
return 0;
5592
}
5593
5594
static int kvm_online_cpu(unsigned int cpu)
5595
{
5596
/*
5597
* Abort the CPU online process if hardware virtualization cannot
5598
* be enabled. Otherwise running VMs would encounter unrecoverable
5599
* errors when scheduled to this CPU.
5600
*/
5601
return kvm_enable_virtualization_cpu();
5602
}
5603
5604
static void kvm_disable_virtualization_cpu(void *ign)
5605
{
5606
if (!__this_cpu_read(virtualization_enabled))
5607
return;
5608
5609
kvm_arch_disable_virtualization_cpu();
5610
5611
__this_cpu_write(virtualization_enabled, false);
5612
}
5613
5614
static int kvm_offline_cpu(unsigned int cpu)
5615
{
5616
kvm_disable_virtualization_cpu(NULL);
5617
return 0;
5618
}
5619
5620
static void kvm_shutdown(void)
5621
{
5622
/*
5623
* Disable hardware virtualization and set kvm_rebooting to indicate
5624
* that KVM has asynchronously disabled hardware virtualization, i.e.
5625
* that relevant errors and exceptions aren't entirely unexpected.
5626
* Some flavors of hardware virtualization need to be disabled before
5627
* transferring control to firmware (to perform shutdown/reboot), e.g.
5628
* on x86, virtualization can block INIT interrupts, which are used by
5629
* firmware to pull APs back under firmware control. Note, this path
5630
* is used for both shutdown and reboot scenarios, i.e. neither name is
5631
* 100% comprehensive.
5632
*/
5633
pr_info("kvm: exiting hardware virtualization\n");
5634
kvm_rebooting = true;
5635
on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5636
}
5637
5638
static int kvm_suspend(void)
5639
{
5640
/*
5641
* Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5642
* callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5643
* count is stable. Assert that kvm_usage_lock is not held to ensure
5644
* the system isn't suspended while KVM is enabling hardware. Hardware
5645
* enabling can be preempted, but the task cannot be frozen until it has
5646
* dropped all locks (userspace tasks are frozen via a fake signal).
5647
*/
5648
lockdep_assert_not_held(&kvm_usage_lock);
5649
lockdep_assert_irqs_disabled();
5650
5651
kvm_disable_virtualization_cpu(NULL);
5652
return 0;
5653
}
5654
5655
static void kvm_resume(void)
5656
{
5657
lockdep_assert_not_held(&kvm_usage_lock);
5658
lockdep_assert_irqs_disabled();
5659
5660
WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5661
}
5662
5663
static struct syscore_ops kvm_syscore_ops = {
5664
.suspend = kvm_suspend,
5665
.resume = kvm_resume,
5666
.shutdown = kvm_shutdown,
5667
};
5668
5669
int kvm_enable_virtualization(void)
5670
{
5671
int r;
5672
5673
guard(mutex)(&kvm_usage_lock);
5674
5675
if (kvm_usage_count++)
5676
return 0;
5677
5678
kvm_arch_enable_virtualization();
5679
5680
r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5681
kvm_online_cpu, kvm_offline_cpu);
5682
if (r)
5683
goto err_cpuhp;
5684
5685
register_syscore_ops(&kvm_syscore_ops);
5686
5687
/*
5688
* Undo virtualization enabling and bail if the system is going down.
5689
* If userspace initiated a forced reboot, e.g. reboot -f, then it's
5690
* possible for an in-flight operation to enable virtualization after
5691
* syscore_shutdown() is called, i.e. without kvm_shutdown() being
5692
* invoked. Note, this relies on system_state being set _before_
5693
* kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5694
* or this CPU observes the impending shutdown. Which is why KVM uses
5695
* a syscore ops hook instead of registering a dedicated reboot
5696
* notifier (the latter runs before system_state is updated).
5697
*/
5698
if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5699
system_state == SYSTEM_RESTART) {
5700
r = -EBUSY;
5701
goto err_rebooting;
5702
}
5703
5704
return 0;
5705
5706
err_rebooting:
5707
unregister_syscore_ops(&kvm_syscore_ops);
5708
cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5709
err_cpuhp:
5710
kvm_arch_disable_virtualization();
5711
--kvm_usage_count;
5712
return r;
5713
}
5714
EXPORT_SYMBOL_GPL(kvm_enable_virtualization);
5715
5716
void kvm_disable_virtualization(void)
5717
{
5718
guard(mutex)(&kvm_usage_lock);
5719
5720
if (--kvm_usage_count)
5721
return;
5722
5723
unregister_syscore_ops(&kvm_syscore_ops);
5724
cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5725
kvm_arch_disable_virtualization();
5726
}
5727
EXPORT_SYMBOL_GPL(kvm_disable_virtualization);
5728
5729
static int kvm_init_virtualization(void)
5730
{
5731
if (enable_virt_at_load)
5732
return kvm_enable_virtualization();
5733
5734
return 0;
5735
}
5736
5737
static void kvm_uninit_virtualization(void)
5738
{
5739
if (enable_virt_at_load)
5740
kvm_disable_virtualization();
5741
}
5742
#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5743
static int kvm_init_virtualization(void)
5744
{
5745
return 0;
5746
}
5747
5748
static void kvm_uninit_virtualization(void)
5749
{
5750
5751
}
5752
#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5753
5754
static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5755
{
5756
if (dev->ops->destructor)
5757
dev->ops->destructor(dev);
5758
}
5759
5760
static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5761
{
5762
int i;
5763
5764
for (i = 0; i < bus->dev_count; i++) {
5765
struct kvm_io_device *pos = bus->range[i].dev;
5766
5767
kvm_iodevice_destructor(pos);
5768
}
5769
kfree(bus);
5770
}
5771
5772
static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5773
const struct kvm_io_range *r2)
5774
{
5775
gpa_t addr1 = r1->addr;
5776
gpa_t addr2 = r2->addr;
5777
5778
if (addr1 < addr2)
5779
return -1;
5780
5781
/* If r2->len == 0, match the exact address. If r2->len != 0,
5782
* accept any overlapping write. Any order is acceptable for
5783
* overlapping ranges, because kvm_io_bus_get_first_dev ensures
5784
* we process all of them.
5785
*/
5786
if (r2->len) {
5787
addr1 += r1->len;
5788
addr2 += r2->len;
5789
}
5790
5791
if (addr1 > addr2)
5792
return 1;
5793
5794
return 0;
5795
}
5796
5797
static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5798
{
5799
return kvm_io_bus_cmp(p1, p2);
5800
}
5801
5802
static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5803
gpa_t addr, int len)
5804
{
5805
struct kvm_io_range *range, key;
5806
int off;
5807
5808
key = (struct kvm_io_range) {
5809
.addr = addr,
5810
.len = len,
5811
};
5812
5813
range = bsearch(&key, bus->range, bus->dev_count,
5814
sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5815
if (range == NULL)
5816
return -ENOENT;
5817
5818
off = range - bus->range;
5819
5820
while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5821
off--;
5822
5823
return off;
5824
}
5825
5826
static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5827
struct kvm_io_range *range, const void *val)
5828
{
5829
int idx;
5830
5831
idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5832
if (idx < 0)
5833
return -EOPNOTSUPP;
5834
5835
while (idx < bus->dev_count &&
5836
kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5837
if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5838
range->len, val))
5839
return idx;
5840
idx++;
5841
}
5842
5843
return -EOPNOTSUPP;
5844
}
5845
5846
int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5847
int len, const void *val)
5848
{
5849
struct kvm_io_bus *bus;
5850
struct kvm_io_range range;
5851
int r;
5852
5853
range = (struct kvm_io_range) {
5854
.addr = addr,
5855
.len = len,
5856
};
5857
5858
bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5859
if (!bus)
5860
return -ENOMEM;
5861
r = __kvm_io_bus_write(vcpu, bus, &range, val);
5862
return r < 0 ? r : 0;
5863
}
5864
EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5865
5866
int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5867
gpa_t addr, int len, const void *val, long cookie)
5868
{
5869
struct kvm_io_bus *bus;
5870
struct kvm_io_range range;
5871
5872
range = (struct kvm_io_range) {
5873
.addr = addr,
5874
.len = len,
5875
};
5876
5877
bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5878
if (!bus)
5879
return -ENOMEM;
5880
5881
/* First try the device referenced by cookie. */
5882
if ((cookie >= 0) && (cookie < bus->dev_count) &&
5883
(kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5884
if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5885
val))
5886
return cookie;
5887
5888
/*
5889
* cookie contained garbage; fall back to search and return the
5890
* correct cookie value.
5891
*/
5892
return __kvm_io_bus_write(vcpu, bus, &range, val);
5893
}
5894
5895
static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5896
struct kvm_io_range *range, void *val)
5897
{
5898
int idx;
5899
5900
idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5901
if (idx < 0)
5902
return -EOPNOTSUPP;
5903
5904
while (idx < bus->dev_count &&
5905
kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5906
if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5907
range->len, val))
5908
return idx;
5909
idx++;
5910
}
5911
5912
return -EOPNOTSUPP;
5913
}
5914
5915
int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5916
int len, void *val)
5917
{
5918
struct kvm_io_bus *bus;
5919
struct kvm_io_range range;
5920
int r;
5921
5922
range = (struct kvm_io_range) {
5923
.addr = addr,
5924
.len = len,
5925
};
5926
5927
bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5928
if (!bus)
5929
return -ENOMEM;
5930
r = __kvm_io_bus_read(vcpu, bus, &range, val);
5931
return r < 0 ? r : 0;
5932
}
5933
EXPORT_SYMBOL_GPL(kvm_io_bus_read);
5934
5935
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5936
int len, struct kvm_io_device *dev)
5937
{
5938
int i;
5939
struct kvm_io_bus *new_bus, *bus;
5940
struct kvm_io_range range;
5941
5942
lockdep_assert_held(&kvm->slots_lock);
5943
5944
bus = kvm_get_bus(kvm, bus_idx);
5945
if (!bus)
5946
return -ENOMEM;
5947
5948
/* exclude ioeventfd which is limited by maximum fd */
5949
if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5950
return -ENOSPC;
5951
5952
new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5953
GFP_KERNEL_ACCOUNT);
5954
if (!new_bus)
5955
return -ENOMEM;
5956
5957
range = (struct kvm_io_range) {
5958
.addr = addr,
5959
.len = len,
5960
.dev = dev,
5961
};
5962
5963
for (i = 0; i < bus->dev_count; i++)
5964
if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5965
break;
5966
5967
memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5968
new_bus->dev_count++;
5969
new_bus->range[i] = range;
5970
memcpy(new_bus->range + i + 1, bus->range + i,
5971
(bus->dev_count - i) * sizeof(struct kvm_io_range));
5972
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5973
synchronize_srcu_expedited(&kvm->srcu);
5974
kfree(bus);
5975
5976
return 0;
5977
}
5978
5979
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5980
struct kvm_io_device *dev)
5981
{
5982
int i;
5983
struct kvm_io_bus *new_bus, *bus;
5984
5985
lockdep_assert_held(&kvm->slots_lock);
5986
5987
bus = kvm_get_bus(kvm, bus_idx);
5988
if (!bus)
5989
return 0;
5990
5991
for (i = 0; i < bus->dev_count; i++) {
5992
if (bus->range[i].dev == dev) {
5993
break;
5994
}
5995
}
5996
5997
if (i == bus->dev_count)
5998
return 0;
5999
6000
new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
6001
GFP_KERNEL_ACCOUNT);
6002
if (new_bus) {
6003
memcpy(new_bus, bus, struct_size(bus, range, i));
6004
new_bus->dev_count--;
6005
memcpy(new_bus->range + i, bus->range + i + 1,
6006
flex_array_size(new_bus, range, new_bus->dev_count - i));
6007
}
6008
6009
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
6010
synchronize_srcu_expedited(&kvm->srcu);
6011
6012
/*
6013
* If NULL bus is installed, destroy the old bus, including all the
6014
* attached devices. Otherwise, destroy the caller's device only.
6015
*/
6016
if (!new_bus) {
6017
pr_err("kvm: failed to shrink bus, removing it completely\n");
6018
kvm_io_bus_destroy(bus);
6019
return -ENOMEM;
6020
}
6021
6022
kvm_iodevice_destructor(dev);
6023
kfree(bus);
6024
return 0;
6025
}
6026
6027
struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6028
gpa_t addr)
6029
{
6030
struct kvm_io_bus *bus;
6031
int dev_idx, srcu_idx;
6032
struct kvm_io_device *iodev = NULL;
6033
6034
srcu_idx = srcu_read_lock(&kvm->srcu);
6035
6036
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6037
if (!bus)
6038
goto out_unlock;
6039
6040
dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6041
if (dev_idx < 0)
6042
goto out_unlock;
6043
6044
iodev = bus->range[dev_idx].dev;
6045
6046
out_unlock:
6047
srcu_read_unlock(&kvm->srcu, srcu_idx);
6048
6049
return iodev;
6050
}
6051
EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6052
6053
static int kvm_debugfs_open(struct inode *inode, struct file *file,
6054
int (*get)(void *, u64 *), int (*set)(void *, u64),
6055
const char *fmt)
6056
{
6057
int ret;
6058
struct kvm_stat_data *stat_data = inode->i_private;
6059
6060
/*
6061
* The debugfs files are a reference to the kvm struct which
6062
* is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
6063
* avoids the race between open and the removal of the debugfs directory.
6064
*/
6065
if (!kvm_get_kvm_safe(stat_data->kvm))
6066
return -ENOENT;
6067
6068
ret = simple_attr_open(inode, file, get,
6069
kvm_stats_debugfs_mode(stat_data->desc) & 0222
6070
? set : NULL, fmt);
6071
if (ret)
6072
kvm_put_kvm(stat_data->kvm);
6073
6074
return ret;
6075
}
6076
6077
static int kvm_debugfs_release(struct inode *inode, struct file *file)
6078
{
6079
struct kvm_stat_data *stat_data = inode->i_private;
6080
6081
simple_attr_release(inode, file);
6082
kvm_put_kvm(stat_data->kvm);
6083
6084
return 0;
6085
}
6086
6087
static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6088
{
6089
*val = *(u64 *)((void *)(&kvm->stat) + offset);
6090
6091
return 0;
6092
}
6093
6094
static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6095
{
6096
*(u64 *)((void *)(&kvm->stat) + offset) = 0;
6097
6098
return 0;
6099
}
6100
6101
static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6102
{
6103
unsigned long i;
6104
struct kvm_vcpu *vcpu;
6105
6106
*val = 0;
6107
6108
kvm_for_each_vcpu(i, vcpu, kvm)
6109
*val += *(u64 *)((void *)(&vcpu->stat) + offset);
6110
6111
return 0;
6112
}
6113
6114
static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6115
{
6116
unsigned long i;
6117
struct kvm_vcpu *vcpu;
6118
6119
kvm_for_each_vcpu(i, vcpu, kvm)
6120
*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6121
6122
return 0;
6123
}
6124
6125
static int kvm_stat_data_get(void *data, u64 *val)
6126
{
6127
int r = -EFAULT;
6128
struct kvm_stat_data *stat_data = data;
6129
6130
switch (stat_data->kind) {
6131
case KVM_STAT_VM:
6132
r = kvm_get_stat_per_vm(stat_data->kvm,
6133
stat_data->desc->desc.offset, val);
6134
break;
6135
case KVM_STAT_VCPU:
6136
r = kvm_get_stat_per_vcpu(stat_data->kvm,
6137
stat_data->desc->desc.offset, val);
6138
break;
6139
}
6140
6141
return r;
6142
}
6143
6144
static int kvm_stat_data_clear(void *data, u64 val)
6145
{
6146
int r = -EFAULT;
6147
struct kvm_stat_data *stat_data = data;
6148
6149
if (val)
6150
return -EINVAL;
6151
6152
switch (stat_data->kind) {
6153
case KVM_STAT_VM:
6154
r = kvm_clear_stat_per_vm(stat_data->kvm,
6155
stat_data->desc->desc.offset);
6156
break;
6157
case KVM_STAT_VCPU:
6158
r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6159
stat_data->desc->desc.offset);
6160
break;
6161
}
6162
6163
return r;
6164
}
6165
6166
static int kvm_stat_data_open(struct inode *inode, struct file *file)
6167
{
6168
__simple_attr_check_format("%llu\n", 0ull);
6169
return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6170
kvm_stat_data_clear, "%llu\n");
6171
}
6172
6173
static const struct file_operations stat_fops_per_vm = {
6174
.owner = THIS_MODULE,
6175
.open = kvm_stat_data_open,
6176
.release = kvm_debugfs_release,
6177
.read = simple_attr_read,
6178
.write = simple_attr_write,
6179
};
6180
6181
static int vm_stat_get(void *_offset, u64 *val)
6182
{
6183
unsigned offset = (long)_offset;
6184
struct kvm *kvm;
6185
u64 tmp_val;
6186
6187
*val = 0;
6188
mutex_lock(&kvm_lock);
6189
list_for_each_entry(kvm, &vm_list, vm_list) {
6190
kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6191
*val += tmp_val;
6192
}
6193
mutex_unlock(&kvm_lock);
6194
return 0;
6195
}
6196
6197
static int vm_stat_clear(void *_offset, u64 val)
6198
{
6199
unsigned offset = (long)_offset;
6200
struct kvm *kvm;
6201
6202
if (val)
6203
return -EINVAL;
6204
6205
mutex_lock(&kvm_lock);
6206
list_for_each_entry(kvm, &vm_list, vm_list) {
6207
kvm_clear_stat_per_vm(kvm, offset);
6208
}
6209
mutex_unlock(&kvm_lock);
6210
6211
return 0;
6212
}
6213
6214
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6215
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6216
6217
static int vcpu_stat_get(void *_offset, u64 *val)
6218
{
6219
unsigned offset = (long)_offset;
6220
struct kvm *kvm;
6221
u64 tmp_val;
6222
6223
*val = 0;
6224
mutex_lock(&kvm_lock);
6225
list_for_each_entry(kvm, &vm_list, vm_list) {
6226
kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6227
*val += tmp_val;
6228
}
6229
mutex_unlock(&kvm_lock);
6230
return 0;
6231
}
6232
6233
static int vcpu_stat_clear(void *_offset, u64 val)
6234
{
6235
unsigned offset = (long)_offset;
6236
struct kvm *kvm;
6237
6238
if (val)
6239
return -EINVAL;
6240
6241
mutex_lock(&kvm_lock);
6242
list_for_each_entry(kvm, &vm_list, vm_list) {
6243
kvm_clear_stat_per_vcpu(kvm, offset);
6244
}
6245
mutex_unlock(&kvm_lock);
6246
6247
return 0;
6248
}
6249
6250
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6251
"%llu\n");
6252
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6253
6254
static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6255
{
6256
struct kobj_uevent_env *env;
6257
unsigned long long created, active;
6258
6259
if (!kvm_dev.this_device || !kvm)
6260
return;
6261
6262
mutex_lock(&kvm_lock);
6263
if (type == KVM_EVENT_CREATE_VM) {
6264
kvm_createvm_count++;
6265
kvm_active_vms++;
6266
} else if (type == KVM_EVENT_DESTROY_VM) {
6267
kvm_active_vms--;
6268
}
6269
created = kvm_createvm_count;
6270
active = kvm_active_vms;
6271
mutex_unlock(&kvm_lock);
6272
6273
env = kzalloc(sizeof(*env), GFP_KERNEL);
6274
if (!env)
6275
return;
6276
6277
add_uevent_var(env, "CREATED=%llu", created);
6278
add_uevent_var(env, "COUNT=%llu", active);
6279
6280
if (type == KVM_EVENT_CREATE_VM) {
6281
add_uevent_var(env, "EVENT=create");
6282
kvm->userspace_pid = task_pid_nr(current);
6283
} else if (type == KVM_EVENT_DESTROY_VM) {
6284
add_uevent_var(env, "EVENT=destroy");
6285
}
6286
add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6287
6288
if (!IS_ERR(kvm->debugfs_dentry)) {
6289
char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6290
6291
if (p) {
6292
tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6293
if (!IS_ERR(tmp))
6294
add_uevent_var(env, "STATS_PATH=%s", tmp);
6295
kfree(p);
6296
}
6297
}
6298
/* no need for checks, since we are adding at most only 5 keys */
6299
env->envp[env->envp_idx++] = NULL;
6300
kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6301
kfree(env);
6302
}
6303
6304
static void kvm_init_debug(void)
6305
{
6306
const struct file_operations *fops;
6307
const struct _kvm_stats_desc *pdesc;
6308
int i;
6309
6310
kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6311
6312
for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6313
pdesc = &kvm_vm_stats_desc[i];
6314
if (kvm_stats_debugfs_mode(pdesc) & 0222)
6315
fops = &vm_stat_fops;
6316
else
6317
fops = &vm_stat_readonly_fops;
6318
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6319
kvm_debugfs_dir,
6320
(void *)(long)pdesc->desc.offset, fops);
6321
}
6322
6323
for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6324
pdesc = &kvm_vcpu_stats_desc[i];
6325
if (kvm_stats_debugfs_mode(pdesc) & 0222)
6326
fops = &vcpu_stat_fops;
6327
else
6328
fops = &vcpu_stat_readonly_fops;
6329
debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6330
kvm_debugfs_dir,
6331
(void *)(long)pdesc->desc.offset, fops);
6332
}
6333
}
6334
6335
static inline
6336
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6337
{
6338
return container_of(pn, struct kvm_vcpu, preempt_notifier);
6339
}
6340
6341
static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6342
{
6343
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6344
6345
WRITE_ONCE(vcpu->preempted, false);
6346
WRITE_ONCE(vcpu->ready, false);
6347
6348
__this_cpu_write(kvm_running_vcpu, vcpu);
6349
kvm_arch_vcpu_load(vcpu, cpu);
6350
6351
WRITE_ONCE(vcpu->scheduled_out, false);
6352
}
6353
6354
static void kvm_sched_out(struct preempt_notifier *pn,
6355
struct task_struct *next)
6356
{
6357
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6358
6359
WRITE_ONCE(vcpu->scheduled_out, true);
6360
6361
if (task_is_runnable(current) && vcpu->wants_to_run) {
6362
WRITE_ONCE(vcpu->preempted, true);
6363
WRITE_ONCE(vcpu->ready, true);
6364
}
6365
kvm_arch_vcpu_put(vcpu);
6366
__this_cpu_write(kvm_running_vcpu, NULL);
6367
}
6368
6369
/**
6370
* kvm_get_running_vcpu - get the vcpu running on the current CPU.
6371
*
6372
* We can disable preemption locally around accessing the per-CPU variable,
6373
* and use the resolved vcpu pointer after enabling preemption again,
6374
* because even if the current thread is migrated to another CPU, reading
6375
* the per-CPU value later will give us the same value as we update the
6376
* per-CPU variable in the preempt notifier handlers.
6377
*/
6378
struct kvm_vcpu *kvm_get_running_vcpu(void)
6379
{
6380
struct kvm_vcpu *vcpu;
6381
6382
preempt_disable();
6383
vcpu = __this_cpu_read(kvm_running_vcpu);
6384
preempt_enable();
6385
6386
return vcpu;
6387
}
6388
EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6389
6390
/**
6391
* kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6392
*/
6393
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6394
{
6395
return &kvm_running_vcpu;
6396
}
6397
6398
#ifdef CONFIG_GUEST_PERF_EVENTS
6399
static unsigned int kvm_guest_state(void)
6400
{
6401
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6402
unsigned int state;
6403
6404
if (!kvm_arch_pmi_in_guest(vcpu))
6405
return 0;
6406
6407
state = PERF_GUEST_ACTIVE;
6408
if (!kvm_arch_vcpu_in_kernel(vcpu))
6409
state |= PERF_GUEST_USER;
6410
6411
return state;
6412
}
6413
6414
static unsigned long kvm_guest_get_ip(void)
6415
{
6416
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6417
6418
/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6419
if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6420
return 0;
6421
6422
return kvm_arch_vcpu_get_ip(vcpu);
6423
}
6424
6425
static struct perf_guest_info_callbacks kvm_guest_cbs = {
6426
.state = kvm_guest_state,
6427
.get_ip = kvm_guest_get_ip,
6428
.handle_intel_pt_intr = NULL,
6429
};
6430
6431
void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6432
{
6433
kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6434
perf_register_guest_info_callbacks(&kvm_guest_cbs);
6435
}
6436
void kvm_unregister_perf_callbacks(void)
6437
{
6438
perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6439
}
6440
#endif
6441
6442
int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6443
{
6444
int r;
6445
int cpu;
6446
6447
/* A kmem cache lets us meet the alignment requirements of fx_save. */
6448
if (!vcpu_align)
6449
vcpu_align = __alignof__(struct kvm_vcpu);
6450
kvm_vcpu_cache =
6451
kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6452
SLAB_ACCOUNT,
6453
offsetof(struct kvm_vcpu, arch),
6454
offsetofend(struct kvm_vcpu, stats_id)
6455
- offsetof(struct kvm_vcpu, arch),
6456
NULL);
6457
if (!kvm_vcpu_cache)
6458
return -ENOMEM;
6459
6460
for_each_possible_cpu(cpu) {
6461
if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6462
GFP_KERNEL, cpu_to_node(cpu))) {
6463
r = -ENOMEM;
6464
goto err_cpu_kick_mask;
6465
}
6466
}
6467
6468
r = kvm_irqfd_init();
6469
if (r)
6470
goto err_irqfd;
6471
6472
r = kvm_async_pf_init();
6473
if (r)
6474
goto err_async_pf;
6475
6476
kvm_chardev_ops.owner = module;
6477
kvm_vm_fops.owner = module;
6478
kvm_vcpu_fops.owner = module;
6479
kvm_device_fops.owner = module;
6480
6481
kvm_preempt_ops.sched_in = kvm_sched_in;
6482
kvm_preempt_ops.sched_out = kvm_sched_out;
6483
6484
kvm_init_debug();
6485
6486
r = kvm_vfio_ops_init();
6487
if (WARN_ON_ONCE(r))
6488
goto err_vfio;
6489
6490
kvm_gmem_init(module);
6491
6492
r = kvm_init_virtualization();
6493
if (r)
6494
goto err_virt;
6495
6496
/*
6497
* Registration _must_ be the very last thing done, as this exposes
6498
* /dev/kvm to userspace, i.e. all infrastructure must be setup!
6499
*/
6500
r = misc_register(&kvm_dev);
6501
if (r) {
6502
pr_err("kvm: misc device register failed\n");
6503
goto err_register;
6504
}
6505
6506
return 0;
6507
6508
err_register:
6509
kvm_uninit_virtualization();
6510
err_virt:
6511
kvm_vfio_ops_exit();
6512
err_vfio:
6513
kvm_async_pf_deinit();
6514
err_async_pf:
6515
kvm_irqfd_exit();
6516
err_irqfd:
6517
err_cpu_kick_mask:
6518
for_each_possible_cpu(cpu)
6519
free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6520
kmem_cache_destroy(kvm_vcpu_cache);
6521
return r;
6522
}
6523
EXPORT_SYMBOL_GPL(kvm_init);
6524
6525
void kvm_exit(void)
6526
{
6527
int cpu;
6528
6529
/*
6530
* Note, unregistering /dev/kvm doesn't strictly need to come first,
6531
* fops_get(), a.k.a. try_module_get(), prevents acquiring references
6532
* to KVM while the module is being stopped.
6533
*/
6534
misc_deregister(&kvm_dev);
6535
6536
kvm_uninit_virtualization();
6537
6538
debugfs_remove_recursive(kvm_debugfs_dir);
6539
for_each_possible_cpu(cpu)
6540
free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6541
kmem_cache_destroy(kvm_vcpu_cache);
6542
kvm_vfio_ops_exit();
6543
kvm_async_pf_deinit();
6544
kvm_irqfd_exit();
6545
}
6546
EXPORT_SYMBOL_GPL(kvm_exit);
6547
6548