Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tpruvot
GitHub Repository: tpruvot/cpuminer-multi
Path: blob/linux/algo/sha2.c
1201 views
1
/*
2
* Copyright 2011 ArtForz
3
* Copyright 2011-2013 pooler
4
*
5
* This program is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License as published by the Free
7
* Software Foundation; either version 2 of the License, or (at your option)
8
* any later version. See COPYING for more details.
9
*/
10
11
#include "miner.h"
12
13
#include <string.h>
14
#include <inttypes.h>
15
16
#if defined(USE_ASM) && defined(__arm__) && defined(__APCS_32__)
17
#define EXTERN_SHA256
18
#endif
19
20
static const uint32_t sha256_h[8] = {
21
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
22
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
23
};
24
25
static const uint32_t sha256_k[64] = {
26
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
27
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
28
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
29
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
30
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
31
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
32
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
33
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
34
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
35
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
36
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
37
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
38
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
39
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
40
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
41
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
42
};
43
44
void sha256_init(uint32_t *state)
45
{
46
memcpy(state, sha256_h, 32);
47
}
48
49
/* Elementary functions used by SHA256 */
50
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
51
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
52
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
53
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
54
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
55
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3))
56
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10))
57
58
/* SHA256 round function */
59
#define RND(a, b, c, d, e, f, g, h, k) \
60
do { \
61
t0 = h + S1(e) + Ch(e, f, g) + k; \
62
t1 = S0(a) + Maj(a, b, c); \
63
d += t0; \
64
h = t0 + t1; \
65
} while (0)
66
67
/* Adjusted round function for rotating state */
68
#define RNDr(S, W, i) \
69
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
70
S[(66 - i) % 8], S[(67 - i) % 8], \
71
S[(68 - i) % 8], S[(69 - i) % 8], \
72
S[(70 - i) % 8], S[(71 - i) % 8], \
73
W[i] + sha256_k[i])
74
75
#ifndef EXTERN_SHA256
76
77
/*
78
* SHA256 block compression function. The 256-bit state is transformed via
79
* the 512-bit input block to produce a new state.
80
*/
81
void sha256_transform(uint32_t *state, const uint32_t *block, int swap)
82
{
83
uint32_t W[64];
84
uint32_t S[8];
85
uint32_t t0, t1;
86
int i;
87
88
/* 1. Prepare message schedule W. */
89
if (swap) {
90
for (i = 0; i < 16; i++)
91
W[i] = swab32(block[i]);
92
} else
93
memcpy(W, block, 64);
94
for (i = 16; i < 64; i += 2) {
95
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
96
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
97
}
98
99
/* 2. Initialize working variables. */
100
memcpy(S, state, 32);
101
102
/* 3. Mix. */
103
RNDr(S, W, 0);
104
RNDr(S, W, 1);
105
RNDr(S, W, 2);
106
RNDr(S, W, 3);
107
RNDr(S, W, 4);
108
RNDr(S, W, 5);
109
RNDr(S, W, 6);
110
RNDr(S, W, 7);
111
RNDr(S, W, 8);
112
RNDr(S, W, 9);
113
RNDr(S, W, 10);
114
RNDr(S, W, 11);
115
RNDr(S, W, 12);
116
RNDr(S, W, 13);
117
RNDr(S, W, 14);
118
RNDr(S, W, 15);
119
RNDr(S, W, 16);
120
RNDr(S, W, 17);
121
RNDr(S, W, 18);
122
RNDr(S, W, 19);
123
RNDr(S, W, 20);
124
RNDr(S, W, 21);
125
RNDr(S, W, 22);
126
RNDr(S, W, 23);
127
RNDr(S, W, 24);
128
RNDr(S, W, 25);
129
RNDr(S, W, 26);
130
RNDr(S, W, 27);
131
RNDr(S, W, 28);
132
RNDr(S, W, 29);
133
RNDr(S, W, 30);
134
RNDr(S, W, 31);
135
RNDr(S, W, 32);
136
RNDr(S, W, 33);
137
RNDr(S, W, 34);
138
RNDr(S, W, 35);
139
RNDr(S, W, 36);
140
RNDr(S, W, 37);
141
RNDr(S, W, 38);
142
RNDr(S, W, 39);
143
RNDr(S, W, 40);
144
RNDr(S, W, 41);
145
RNDr(S, W, 42);
146
RNDr(S, W, 43);
147
RNDr(S, W, 44);
148
RNDr(S, W, 45);
149
RNDr(S, W, 46);
150
RNDr(S, W, 47);
151
RNDr(S, W, 48);
152
RNDr(S, W, 49);
153
RNDr(S, W, 50);
154
RNDr(S, W, 51);
155
RNDr(S, W, 52);
156
RNDr(S, W, 53);
157
RNDr(S, W, 54);
158
RNDr(S, W, 55);
159
RNDr(S, W, 56);
160
RNDr(S, W, 57);
161
RNDr(S, W, 58);
162
RNDr(S, W, 59);
163
RNDr(S, W, 60);
164
RNDr(S, W, 61);
165
RNDr(S, W, 62);
166
RNDr(S, W, 63);
167
168
/* 4. Mix local working variables into global state */
169
for (i = 0; i < 8; i++)
170
state[i] += S[i];
171
}
172
173
#endif /* EXTERN_SHA256 */
174
175
176
static const uint32_t sha256d_hash1[16] = {
177
0x00000000, 0x00000000, 0x00000000, 0x00000000,
178
0x00000000, 0x00000000, 0x00000000, 0x00000000,
179
0x80000000, 0x00000000, 0x00000000, 0x00000000,
180
0x00000000, 0x00000000, 0x00000000, 0x00000100
181
};
182
183
static void sha256d_80_swap(uint32_t *hash, const uint32_t *data)
184
{
185
uint32_t S[16];
186
int i;
187
188
sha256_init(S);
189
sha256_transform(S, data, 0);
190
sha256_transform(S, data + 16, 0);
191
memcpy(S + 8, sha256d_hash1 + 8, 32);
192
sha256_init(hash);
193
sha256_transform(hash, S, 0);
194
for (i = 0; i < 8; i++)
195
hash[i] = swab32(hash[i]);
196
}
197
198
extern void sha256d(unsigned char *hash, const unsigned char *data, int len)
199
{
200
uint32_t S[16], T[16];
201
int i, r;
202
203
sha256_init(S);
204
for (r = len; r > -9; r -= 64) {
205
if (r < 64)
206
memset(T, 0, 64);
207
memcpy(T, data + len - r, r > 64 ? 64 : (r < 0 ? 0 : r));
208
if (r >= 0 && r < 64)
209
((unsigned char *)T)[r] = 0x80;
210
for (i = 0; i < 16; i++)
211
T[i] = be32dec(T + i);
212
if (r < 56)
213
T[15] = 8 * len;
214
sha256_transform(S, T, 0);
215
}
216
memcpy(S + 8, sha256d_hash1 + 8, 32);
217
sha256_init(T);
218
sha256_transform(T, S, 0);
219
for (i = 0; i < 8; i++)
220
be32enc((uint32_t *)hash + i, T[i]);
221
}
222
223
static inline void sha256d_preextend(uint32_t *W)
224
{
225
W[16] = s1(W[14]) + W[ 9] + s0(W[ 1]) + W[ 0];
226
W[17] = s1(W[15]) + W[10] + s0(W[ 2]) + W[ 1];
227
W[18] = s1(W[16]) + W[11] + W[ 2];
228
W[19] = s1(W[17]) + W[12] + s0(W[ 4]);
229
W[20] = W[13] + s0(W[ 5]) + W[ 4];
230
W[21] = W[14] + s0(W[ 6]) + W[ 5];
231
W[22] = W[15] + s0(W[ 7]) + W[ 6];
232
W[23] = W[16] + s0(W[ 8]) + W[ 7];
233
W[24] = W[17] + s0(W[ 9]) + W[ 8];
234
W[25] = s0(W[10]) + W[ 9];
235
W[26] = s0(W[11]) + W[10];
236
W[27] = s0(W[12]) + W[11];
237
W[28] = s0(W[13]) + W[12];
238
W[29] = s0(W[14]) + W[13];
239
W[30] = s0(W[15]) + W[14];
240
W[31] = s0(W[16]) + W[15];
241
}
242
243
static inline void sha256d_prehash(uint32_t *S, const uint32_t *W)
244
{
245
uint32_t t0, t1;
246
RNDr(S, W, 0);
247
RNDr(S, W, 1);
248
RNDr(S, W, 2);
249
}
250
251
#ifdef EXTERN_SHA256
252
253
void sha256d_ms(uint32_t *hash, uint32_t *W,
254
const uint32_t *midstate, const uint32_t *prehash);
255
256
#else
257
258
static inline void sha256d_ms(uint32_t *hash, uint32_t *W,
259
const uint32_t *midstate, const uint32_t *prehash)
260
{
261
uint32_t S[64];
262
uint32_t t0, t1;
263
int i;
264
265
S[18] = W[18];
266
S[19] = W[19];
267
S[20] = W[20];
268
S[22] = W[22];
269
S[23] = W[23];
270
S[24] = W[24];
271
S[30] = W[30];
272
S[31] = W[31];
273
274
W[18] += s0(W[3]);
275
W[19] += W[3];
276
W[20] += s1(W[18]);
277
W[21] = s1(W[19]);
278
W[22] += s1(W[20]);
279
W[23] += s1(W[21]);
280
W[24] += s1(W[22]);
281
W[25] = s1(W[23]) + W[18];
282
W[26] = s1(W[24]) + W[19];
283
W[27] = s1(W[25]) + W[20];
284
W[28] = s1(W[26]) + W[21];
285
W[29] = s1(W[27]) + W[22];
286
W[30] += s1(W[28]) + W[23];
287
W[31] += s1(W[29]) + W[24];
288
for (i = 32; i < 64; i += 2) {
289
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
290
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
291
}
292
293
memcpy(S, prehash, 32);
294
295
RNDr(S, W, 3);
296
RNDr(S, W, 4);
297
RNDr(S, W, 5);
298
RNDr(S, W, 6);
299
RNDr(S, W, 7);
300
RNDr(S, W, 8);
301
RNDr(S, W, 9);
302
RNDr(S, W, 10);
303
RNDr(S, W, 11);
304
RNDr(S, W, 12);
305
RNDr(S, W, 13);
306
RNDr(S, W, 14);
307
RNDr(S, W, 15);
308
RNDr(S, W, 16);
309
RNDr(S, W, 17);
310
RNDr(S, W, 18);
311
RNDr(S, W, 19);
312
RNDr(S, W, 20);
313
RNDr(S, W, 21);
314
RNDr(S, W, 22);
315
RNDr(S, W, 23);
316
RNDr(S, W, 24);
317
RNDr(S, W, 25);
318
RNDr(S, W, 26);
319
RNDr(S, W, 27);
320
RNDr(S, W, 28);
321
RNDr(S, W, 29);
322
RNDr(S, W, 30);
323
RNDr(S, W, 31);
324
RNDr(S, W, 32);
325
RNDr(S, W, 33);
326
RNDr(S, W, 34);
327
RNDr(S, W, 35);
328
RNDr(S, W, 36);
329
RNDr(S, W, 37);
330
RNDr(S, W, 38);
331
RNDr(S, W, 39);
332
RNDr(S, W, 40);
333
RNDr(S, W, 41);
334
RNDr(S, W, 42);
335
RNDr(S, W, 43);
336
RNDr(S, W, 44);
337
RNDr(S, W, 45);
338
RNDr(S, W, 46);
339
RNDr(S, W, 47);
340
RNDr(S, W, 48);
341
RNDr(S, W, 49);
342
RNDr(S, W, 50);
343
RNDr(S, W, 51);
344
RNDr(S, W, 52);
345
RNDr(S, W, 53);
346
RNDr(S, W, 54);
347
RNDr(S, W, 55);
348
RNDr(S, W, 56);
349
RNDr(S, W, 57);
350
RNDr(S, W, 58);
351
RNDr(S, W, 59);
352
RNDr(S, W, 60);
353
RNDr(S, W, 61);
354
RNDr(S, W, 62);
355
RNDr(S, W, 63);
356
357
for (i = 0; i < 8; i++)
358
S[i] += midstate[i];
359
360
W[18] = S[18];
361
W[19] = S[19];
362
W[20] = S[20];
363
W[22] = S[22];
364
W[23] = S[23];
365
W[24] = S[24];
366
W[30] = S[30];
367
W[31] = S[31];
368
369
memcpy(S + 8, sha256d_hash1 + 8, 32);
370
S[16] = s1(sha256d_hash1[14]) + sha256d_hash1[ 9] + s0(S[ 1]) + S[ 0];
371
S[17] = s1(sha256d_hash1[15]) + sha256d_hash1[10] + s0(S[ 2]) + S[ 1];
372
S[18] = s1(S[16]) + sha256d_hash1[11] + s0(S[ 3]) + S[ 2];
373
S[19] = s1(S[17]) + sha256d_hash1[12] + s0(S[ 4]) + S[ 3];
374
S[20] = s1(S[18]) + sha256d_hash1[13] + s0(S[ 5]) + S[ 4];
375
S[21] = s1(S[19]) + sha256d_hash1[14] + s0(S[ 6]) + S[ 5];
376
S[22] = s1(S[20]) + sha256d_hash1[15] + s0(S[ 7]) + S[ 6];
377
S[23] = s1(S[21]) + S[16] + s0(sha256d_hash1[ 8]) + S[ 7];
378
S[24] = s1(S[22]) + S[17] + s0(sha256d_hash1[ 9]) + sha256d_hash1[ 8];
379
S[25] = s1(S[23]) + S[18] + s0(sha256d_hash1[10]) + sha256d_hash1[ 9];
380
S[26] = s1(S[24]) + S[19] + s0(sha256d_hash1[11]) + sha256d_hash1[10];
381
S[27] = s1(S[25]) + S[20] + s0(sha256d_hash1[12]) + sha256d_hash1[11];
382
S[28] = s1(S[26]) + S[21] + s0(sha256d_hash1[13]) + sha256d_hash1[12];
383
S[29] = s1(S[27]) + S[22] + s0(sha256d_hash1[14]) + sha256d_hash1[13];
384
S[30] = s1(S[28]) + S[23] + s0(sha256d_hash1[15]) + sha256d_hash1[14];
385
S[31] = s1(S[29]) + S[24] + s0(S[16]) + sha256d_hash1[15];
386
for (i = 32; i < 60; i += 2) {
387
S[i] = s1(S[i - 2]) + S[i - 7] + s0(S[i - 15]) + S[i - 16];
388
S[i+1] = s1(S[i - 1]) + S[i - 6] + s0(S[i - 14]) + S[i - 15];
389
}
390
S[60] = s1(S[58]) + S[53] + s0(S[45]) + S[44];
391
392
sha256_init(hash);
393
394
RNDr(hash, S, 0);
395
RNDr(hash, S, 1);
396
RNDr(hash, S, 2);
397
RNDr(hash, S, 3);
398
RNDr(hash, S, 4);
399
RNDr(hash, S, 5);
400
RNDr(hash, S, 6);
401
RNDr(hash, S, 7);
402
RNDr(hash, S, 8);
403
RNDr(hash, S, 9);
404
RNDr(hash, S, 10);
405
RNDr(hash, S, 11);
406
RNDr(hash, S, 12);
407
RNDr(hash, S, 13);
408
RNDr(hash, S, 14);
409
RNDr(hash, S, 15);
410
RNDr(hash, S, 16);
411
RNDr(hash, S, 17);
412
RNDr(hash, S, 18);
413
RNDr(hash, S, 19);
414
RNDr(hash, S, 20);
415
RNDr(hash, S, 21);
416
RNDr(hash, S, 22);
417
RNDr(hash, S, 23);
418
RNDr(hash, S, 24);
419
RNDr(hash, S, 25);
420
RNDr(hash, S, 26);
421
RNDr(hash, S, 27);
422
RNDr(hash, S, 28);
423
RNDr(hash, S, 29);
424
RNDr(hash, S, 30);
425
RNDr(hash, S, 31);
426
RNDr(hash, S, 32);
427
RNDr(hash, S, 33);
428
RNDr(hash, S, 34);
429
RNDr(hash, S, 35);
430
RNDr(hash, S, 36);
431
RNDr(hash, S, 37);
432
RNDr(hash, S, 38);
433
RNDr(hash, S, 39);
434
RNDr(hash, S, 40);
435
RNDr(hash, S, 41);
436
RNDr(hash, S, 42);
437
RNDr(hash, S, 43);
438
RNDr(hash, S, 44);
439
RNDr(hash, S, 45);
440
RNDr(hash, S, 46);
441
RNDr(hash, S, 47);
442
RNDr(hash, S, 48);
443
RNDr(hash, S, 49);
444
RNDr(hash, S, 50);
445
RNDr(hash, S, 51);
446
RNDr(hash, S, 52);
447
RNDr(hash, S, 53);
448
RNDr(hash, S, 54);
449
RNDr(hash, S, 55);
450
RNDr(hash, S, 56);
451
452
hash[2] += hash[6] + S1(hash[3]) + Ch(hash[3], hash[4], hash[5])
453
+ S[57] + sha256_k[57];
454
hash[1] += hash[5] + S1(hash[2]) + Ch(hash[2], hash[3], hash[4])
455
+ S[58] + sha256_k[58];
456
hash[0] += hash[4] + S1(hash[1]) + Ch(hash[1], hash[2], hash[3])
457
+ S[59] + sha256_k[59];
458
hash[7] += hash[3] + S1(hash[0]) + Ch(hash[0], hash[1], hash[2])
459
+ S[60] + sha256_k[60]
460
+ sha256_h[7];
461
}
462
463
#endif /* EXTERN_SHA256 */
464
465
#ifdef HAVE_SHA256_4WAY
466
467
void sha256d_ms_4way(uint32_t *hash, uint32_t *data,
468
const uint32_t *midstate, const uint32_t *prehash);
469
470
static inline int scanhash_sha256d_4way(int thr_id, struct work *work,
471
uint32_t max_nonce, uint64_t *hashes_done)
472
{
473
uint32_t _ALIGN(128) data[4 * 64];
474
uint32_t _ALIGN(32) hash[4 * 8];
475
uint32_t _ALIGN(32) midstate[4 * 8];
476
uint32_t _ALIGN(32) prehash[4 * 8];
477
uint32_t *pdata = work->data;
478
uint32_t *ptarget = work->target;
479
uint32_t n = pdata[19] - 1;
480
const uint32_t first_nonce = pdata[19];
481
const uint32_t Htarg = ptarget[7];
482
int i, j;
483
484
memcpy(data, pdata + 16, 64);
485
sha256d_preextend(data);
486
for (i = 31; i >= 0; i--)
487
for (j = 0; j < 4; j++)
488
data[i * 4 + j] = data[i];
489
490
sha256_init(midstate);
491
sha256_transform(midstate, pdata, 0);
492
memcpy(prehash, midstate, 32);
493
sha256d_prehash(prehash, pdata + 16);
494
for (i = 7; i >= 0; i--) {
495
for (j = 0; j < 4; j++) {
496
midstate[i * 4 + j] = midstate[i];
497
prehash[i * 4 + j] = prehash[i];
498
}
499
}
500
501
do {
502
for (i = 0; i < 4; i++)
503
data[4 * 3 + i] = ++n;
504
505
sha256d_ms_4way(hash, data, midstate, prehash);
506
507
for (i = 0; i < 4; i++) {
508
if (swab32(hash[4 * 7 + i]) <= Htarg) {
509
pdata[19] = data[4 * 3 + i];
510
sha256d_80_swap(hash, pdata);
511
if (fulltest(hash, ptarget)) {
512
work_set_target_ratio(work, hash);
513
*hashes_done = n - first_nonce + 1;
514
return 1;
515
}
516
}
517
}
518
} while (n < max_nonce && !work_restart[thr_id].restart);
519
520
*hashes_done = n - first_nonce + 1;
521
pdata[19] = n;
522
return 0;
523
}
524
525
#endif /* HAVE_SHA256_4WAY */
526
527
#ifdef HAVE_SHA256_8WAY
528
529
void sha256d_ms_8way(uint32_t *hash, uint32_t *data,
530
const uint32_t *midstate, const uint32_t *prehash);
531
532
static inline int scanhash_sha256d_8way(int thr_id, struct work *work,
533
uint32_t max_nonce, uint64_t *hashes_done)
534
{
535
uint32_t _ALIGN(128) data[8 * 64];
536
uint32_t _ALIGN(32) hash[8 * 8];
537
uint32_t _ALIGN(32) midstate[8 * 8];
538
uint32_t _ALIGN(32) prehash[8 * 8];
539
uint32_t *pdata = work->data;
540
uint32_t *ptarget = work->target;
541
uint32_t n = pdata[19] - 1;
542
const uint32_t first_nonce = pdata[19];
543
const uint32_t Htarg = ptarget[7];
544
int i, j;
545
546
memcpy(data, pdata + 16, 64);
547
sha256d_preextend(data);
548
for (i = 31; i >= 0; i--)
549
for (j = 0; j < 8; j++)
550
data[i * 8 + j] = data[i];
551
552
sha256_init(midstate);
553
sha256_transform(midstate, pdata, 0);
554
memcpy(prehash, midstate, 32);
555
sha256d_prehash(prehash, pdata + 16);
556
for (i = 7; i >= 0; i--) {
557
for (j = 0; j < 8; j++) {
558
midstate[i * 8 + j] = midstate[i];
559
prehash[i * 8 + j] = prehash[i];
560
}
561
}
562
563
do {
564
for (i = 0; i < 8; i++)
565
data[8 * 3 + i] = ++n;
566
567
sha256d_ms_8way(hash, data, midstate, prehash);
568
569
for (i = 0; i < 8; i++) {
570
if (swab32(hash[8 * 7 + i]) <= Htarg) {
571
pdata[19] = data[8 * 3 + i];
572
sha256d_80_swap(hash, pdata);
573
if (fulltest(hash, ptarget)) {
574
work_set_target_ratio(work, hash);
575
*hashes_done = n - first_nonce + 1;
576
return 1;
577
}
578
}
579
}
580
} while (n < max_nonce && !work_restart[thr_id].restart);
581
582
*hashes_done = n - first_nonce + 1;
583
pdata[19] = n;
584
return 0;
585
}
586
587
#endif /* HAVE_SHA256_8WAY */
588
589
int scanhash_sha256d(int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done)
590
{
591
uint32_t _ALIGN(128) data[64];
592
uint32_t _ALIGN(32) hash[8];
593
uint32_t _ALIGN(32) midstate[8];
594
uint32_t _ALIGN(32) prehash[8];
595
uint32_t *pdata = work->data;
596
uint32_t *ptarget = work->target;
597
const uint32_t first_nonce = pdata[19];
598
const uint32_t Htarg = ptarget[7];
599
uint32_t n = pdata[19] - 1;
600
601
#ifdef HAVE_SHA256_8WAY
602
if (sha256_use_8way())
603
return scanhash_sha256d_8way(thr_id, work, max_nonce, hashes_done);
604
#endif
605
#ifdef HAVE_SHA256_4WAY
606
if (sha256_use_4way())
607
return scanhash_sha256d_4way(thr_id, work, max_nonce, hashes_done);
608
#endif
609
610
memcpy(data, pdata + 16, 64);
611
sha256d_preextend(data);
612
613
sha256_init(midstate);
614
sha256_transform(midstate, pdata, 0);
615
memcpy(prehash, midstate, 32);
616
sha256d_prehash(prehash, pdata + 16);
617
618
do {
619
data[3] = ++n;
620
sha256d_ms(hash, data, midstate, prehash);
621
if (unlikely(swab32(hash[7]) <= Htarg)) {
622
pdata[19] = data[3];
623
sha256d_80_swap(hash, pdata);
624
if (fulltest(hash, ptarget)) {
625
work_set_target_ratio(work, hash);
626
*hashes_done = n - first_nonce + 1;
627
return 1;
628
}
629
}
630
} while (likely(n < max_nonce && !work_restart[thr_id].restart));
631
632
*hashes_done = n - first_nonce + 1;
633
pdata[19] = n;
634
return 0;
635
}
636
637