Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/dlls/cabinet/cabinet.h
4393 views
1
/*
2
* cabinet.h
3
*
4
* Copyright 2002 Greg Turner
5
* Copyright 2005 Gerold Jens Wucherpfennig
6
*
7
* This library is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU Lesser General Public
9
* License as published by the Free Software Foundation; either
10
* version 2.1 of the License, or (at your option) any later version.
11
*
12
* This library is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
* Lesser General Public License for more details.
16
*
17
* You should have received a copy of the GNU Lesser General Public
18
* License along with this library; if not, write to the Free Software
19
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
20
*/
21
#ifndef __WINE_CABINET_H
22
#define __WINE_CABINET_H
23
24
#include <stdarg.h>
25
26
#include "windef.h"
27
#include "winbase.h"
28
#include "winnt.h"
29
#include "fdi.h"
30
#include "fci.h"
31
32
#define CAB_SPLITMAX (10)
33
34
#define CAB_SEARCH_SIZE (32*1024)
35
36
typedef unsigned char cab_UBYTE; /* 8 bits */
37
typedef UINT16 cab_UWORD; /* 16 bits */
38
typedef UINT32 cab_ULONG; /* 32 bits */
39
typedef INT32 cab_LONG; /* 32 bits */
40
41
typedef UINT32 cab_off_t;
42
43
/* number of bits in a ULONG */
44
#ifndef CHAR_BIT
45
# define CHAR_BIT (8)
46
#endif
47
#define CAB_ULONG_BITS (sizeof(cab_ULONG) * CHAR_BIT)
48
49
/* structure offsets */
50
#define cfhead_Signature (0x00)
51
#define cfhead_CabinetSize (0x08)
52
#define cfhead_FileOffset (0x10)
53
#define cfhead_MinorVersion (0x18)
54
#define cfhead_MajorVersion (0x19)
55
#define cfhead_NumFolders (0x1A)
56
#define cfhead_NumFiles (0x1C)
57
#define cfhead_Flags (0x1E)
58
#define cfhead_SetID (0x20)
59
#define cfhead_CabinetIndex (0x22)
60
#define cfhead_SIZEOF (0x24)
61
#define cfheadext_HeaderReserved (0x00)
62
#define cfheadext_FolderReserved (0x02)
63
#define cfheadext_DataReserved (0x03)
64
#define cfheadext_SIZEOF (0x04)
65
#define cffold_DataOffset (0x00)
66
#define cffold_NumBlocks (0x04)
67
#define cffold_CompType (0x06)
68
#define cffold_SIZEOF (0x08)
69
#define cffile_UncompressedSize (0x00)
70
#define cffile_FolderOffset (0x04)
71
#define cffile_FolderIndex (0x08)
72
#define cffile_Date (0x0A)
73
#define cffile_Time (0x0C)
74
#define cffile_Attribs (0x0E)
75
#define cffile_SIZEOF (0x10)
76
#define cfdata_CheckSum (0x00)
77
#define cfdata_CompressedSize (0x04)
78
#define cfdata_UncompressedSize (0x06)
79
#define cfdata_SIZEOF (0x08)
80
81
/* flags */
82
#define cffoldCOMPTYPE_MASK (0x000f)
83
#define cffoldCOMPTYPE_NONE (0x0000)
84
#define cffoldCOMPTYPE_MSZIP (0x0001)
85
#define cffoldCOMPTYPE_QUANTUM (0x0002)
86
#define cffoldCOMPTYPE_LZX (0x0003)
87
#define cfheadPREV_CABINET (0x0001)
88
#define cfheadNEXT_CABINET (0x0002)
89
#define cfheadRESERVE_PRESENT (0x0004)
90
#define cffileCONTINUED_FROM_PREV (0xFFFD)
91
#define cffileCONTINUED_TO_NEXT (0xFFFE)
92
#define cffileCONTINUED_PREV_AND_NEXT (0xFFFF)
93
#define cffile_A_RDONLY (0x01)
94
#define cffile_A_HIDDEN (0x02)
95
#define cffile_A_SYSTEM (0x04)
96
#define cffile_A_ARCH (0x20)
97
#define cffile_A_EXEC (0x40)
98
#define cffile_A_NAME_IS_UTF (0x80)
99
100
/****************************************************************************/
101
/* our archiver information / state */
102
103
/* MSZIP stuff */
104
#define ZIPWSIZE 0x8000 /* window size */
105
#define ZIPLBITS 9 /* bits in base literal/length lookup table */
106
#define ZIPDBITS 6 /* bits in base distance lookup table */
107
#define ZIPBMAX 16 /* maximum bit length of any code */
108
#define ZIPN_MAX 288 /* maximum number of codes in any set */
109
110
struct Ziphuft {
111
cab_UBYTE e; /* number of extra bits or operation */
112
cab_UBYTE b; /* number of bits in this code or subcode */
113
union {
114
cab_UWORD n; /* literal, length base, or distance base */
115
struct Ziphuft *t; /* pointer to next level of table */
116
} v;
117
};
118
119
struct ZIPstate {
120
cab_ULONG window_posn; /* current offset within the window */
121
cab_ULONG bb; /* bit buffer */
122
cab_ULONG bk; /* bits in bit buffer */
123
cab_ULONG ll[288+32]; /* literal/length and distance code lengths */
124
cab_ULONG c[ZIPBMAX+1]; /* bit length count table */
125
cab_LONG lx[ZIPBMAX+1]; /* memory for l[-1..ZIPBMAX-1] */
126
struct Ziphuft *u[ZIPBMAX]; /* table stack */
127
cab_ULONG v[ZIPN_MAX]; /* values in order of bit length */
128
cab_ULONG x[ZIPBMAX+1]; /* bit offsets, then code stack */
129
cab_UBYTE *inpos;
130
};
131
132
/* Quantum stuff */
133
134
struct QTMmodelsym {
135
cab_UWORD sym, cumfreq;
136
};
137
138
struct QTMmodel {
139
int shiftsleft, entries;
140
struct QTMmodelsym *syms;
141
cab_UWORD tabloc[256];
142
};
143
144
struct QTMstate {
145
cab_UBYTE *window; /* the actual decoding window */
146
cab_ULONG window_size; /* window size (1Kb through 2Mb) */
147
cab_ULONG actual_size; /* window size when it was first allocated */
148
cab_ULONG window_posn; /* current offset within the window */
149
150
struct QTMmodel model7;
151
struct QTMmodelsym m7sym[7+1];
152
153
struct QTMmodel model4, model5, model6pos, model6len;
154
struct QTMmodelsym m4sym[0x18 + 1];
155
struct QTMmodelsym m5sym[0x24 + 1];
156
struct QTMmodelsym m6psym[0x2a + 1], m6lsym[0x1b + 1];
157
158
struct QTMmodel model00, model40, model80, modelC0;
159
struct QTMmodelsym m00sym[0x40 + 1], m40sym[0x40 + 1];
160
struct QTMmodelsym m80sym[0x40 + 1], mC0sym[0x40 + 1];
161
};
162
163
/* LZX stuff */
164
165
/* some constants defined by the LZX specification */
166
#define LZX_MIN_MATCH (2)
167
#define LZX_MAX_MATCH (257)
168
#define LZX_NUM_CHARS (256)
169
#define LZX_BLOCKTYPE_INVALID (0) /* also blocktypes 4-7 invalid */
170
#define LZX_BLOCKTYPE_VERBATIM (1)
171
#define LZX_BLOCKTYPE_ALIGNED (2)
172
#define LZX_BLOCKTYPE_UNCOMPRESSED (3)
173
#define LZX_PRETREE_NUM_ELEMENTS (20)
174
#define LZX_ALIGNED_NUM_ELEMENTS (8) /* aligned offset tree #elements */
175
#define LZX_NUM_PRIMARY_LENGTHS (7) /* this one missing from spec! */
176
#define LZX_NUM_SECONDARY_LENGTHS (249) /* length tree #elements */
177
178
/* LZX huffman defines: tweak tablebits as desired */
179
#define LZX_PRETREE_MAXSYMBOLS (LZX_PRETREE_NUM_ELEMENTS)
180
#define LZX_PRETREE_TABLEBITS (6)
181
#define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8)
182
#define LZX_MAINTREE_TABLEBITS (12)
183
#define LZX_LENGTH_MAXSYMBOLS (LZX_NUM_SECONDARY_LENGTHS+1)
184
#define LZX_LENGTH_TABLEBITS (12)
185
#define LZX_ALIGNED_MAXSYMBOLS (LZX_ALIGNED_NUM_ELEMENTS)
186
#define LZX_ALIGNED_TABLEBITS (7)
187
188
#define LZX_LENTABLE_SAFETY (64) /* we allow length table decoding overruns */
189
190
#define LZX_DECLARE_TABLE(tbl) \
191
cab_UWORD tbl##_table[(1<<LZX_##tbl##_TABLEBITS) + (LZX_##tbl##_MAXSYMBOLS<<1)];\
192
cab_UBYTE tbl##_len [LZX_##tbl##_MAXSYMBOLS + LZX_LENTABLE_SAFETY]
193
194
struct LZXstate {
195
cab_UBYTE *window; /* the actual decoding window */
196
cab_ULONG window_size; /* window size (32Kb through 2Mb) */
197
cab_ULONG actual_size; /* window size when it was first allocated */
198
cab_ULONG window_posn; /* current offset within the window */
199
cab_ULONG R0, R1, R2; /* for the LRU offset system */
200
cab_UWORD main_elements; /* number of main tree elements */
201
int header_read; /* have we started decoding at all yet? */
202
cab_UWORD block_type; /* type of this block */
203
cab_ULONG block_length; /* uncompressed length of this block */
204
cab_ULONG block_remaining; /* uncompressed bytes still left to decode */
205
cab_ULONG frames_read; /* the number of CFDATA blocks processed */
206
cab_LONG intel_filesize; /* magic header value used for transform */
207
cab_LONG intel_curpos; /* current offset in transform space */
208
int intel_started; /* have we seen any translatable data yet? */
209
210
LZX_DECLARE_TABLE(PRETREE);
211
LZX_DECLARE_TABLE(MAINTREE);
212
LZX_DECLARE_TABLE(LENGTH);
213
LZX_DECLARE_TABLE(ALIGNED);
214
};
215
216
struct lzx_bits {
217
cab_ULONG bb;
218
int bl;
219
cab_UBYTE *ip;
220
};
221
222
/* CAB data blocks are <= 32768 bytes in uncompressed form. Uncompressed
223
* blocks have zero growth. MSZIP guarantees that it won't grow above
224
* uncompressed size by more than 12 bytes. LZX guarantees it won't grow
225
* more than 6144 bytes.
226
*/
227
#define CAB_BLOCKMAX (32768)
228
#define CAB_INPUTMAX (CAB_BLOCKMAX+6144)
229
230
struct cab_file {
231
struct cab_file *next; /* next file in sequence */
232
struct cab_folder *folder; /* folder that contains this file */
233
LPCSTR filename; /* output name of file */
234
HANDLE fh; /* open file handle or NULL */
235
cab_ULONG length; /* uncompressed length of file */
236
cab_ULONG offset; /* uncompressed offset in folder */
237
cab_UWORD index; /* magic index number of folder */
238
cab_UWORD time, date, attribs; /* MS-DOS time/date/attributes */
239
};
240
241
242
struct cab_folder {
243
struct cab_folder *next;
244
struct cabinet *cab[CAB_SPLITMAX]; /* cabinet(s) this folder spans */
245
cab_off_t offset[CAB_SPLITMAX]; /* offset to data blocks */
246
cab_UWORD comp_type; /* compression format/window size */
247
cab_ULONG comp_size; /* compressed size of folder */
248
cab_UBYTE num_splits; /* number of split blocks + 1 */
249
cab_UWORD num_blocks; /* total number of blocks */
250
struct cab_file *contfile; /* the first split file */
251
};
252
253
struct cabinet {
254
struct cabinet *next; /* for making a list of cabinets */
255
LPCSTR filename; /* input name of cabinet */
256
HANDLE *fh; /* open file handle or NULL */
257
cab_off_t filelen; /* length of cabinet file */
258
cab_off_t blocks_off; /* offset to data blocks in file */
259
struct cabinet *prevcab, *nextcab; /* multipart cabinet chains */
260
char *prevname, *nextname; /* and their filenames */
261
char *previnfo, *nextinfo; /* and their visible names */
262
struct cab_folder *folders; /* first folder in this cabinet */
263
struct cab_file *files; /* first file in this cabinet */
264
cab_UBYTE block_resv; /* reserved space in datablocks */
265
cab_UBYTE flags; /* header flags */
266
};
267
268
typedef struct cds_forward {
269
struct cab_folder *current; /* current folder we're extracting from */
270
cab_ULONG offset; /* uncompressed offset within folder */
271
cab_UBYTE *outpos; /* (high level) start of data to use up */
272
cab_UWORD outlen; /* (high level) amount of data to use up */
273
cab_UWORD split; /* at which split in current folder? */
274
int (*decompress)(int, int, struct cds_forward *); /* chosen compress fn */
275
cab_UBYTE inbuf[CAB_INPUTMAX+2]; /* +2 for lzx bitbuffer overflows! */
276
cab_UBYTE outbuf[CAB_BLOCKMAX];
277
cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42];
278
cab_ULONG q_position_base[42];
279
cab_ULONG lzx_position_base[51];
280
cab_UBYTE extra_bits[51];
281
union {
282
struct ZIPstate zip;
283
struct QTMstate qtm;
284
struct LZXstate lzx;
285
} methods;
286
} cab_decomp_state;
287
288
/*
289
* the rest of these are somewhat kludgy macros which are shared between fdi.c
290
* and cabextract.c.
291
*/
292
293
/* Bitstream reading macros (Quantum / normal byte order)
294
*
295
* Q_INIT_BITSTREAM should be used first to set up the system
296
* Q_READ_BITS(var,n) takes N bits from the buffer and puts them in var.
297
* unlike LZX, this can loop several times to get the
298
* requisite number of bits.
299
* Q_FILL_BUFFER adds more data to the bit buffer, if there is room
300
* for another 16 bits.
301
* Q_PEEK_BITS(n) extracts (without removing) N bits from the bit
302
* buffer
303
* Q_REMOVE_BITS(n) removes N bits from the bit buffer
304
*
305
* These bit access routines work by using the area beyond the MSB and the
306
* LSB as a free source of zeroes. This avoids having to mask any bits.
307
* So we have to know the bit width of the bitbuffer variable. This is
308
* defined as ULONG_BITS.
309
*
310
* ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding,
311
* Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't
312
* need an assured number. Retrieving larger bitstrings can be done with
313
* multiple reads and fills of the bitbuffer. The code should work fine
314
* for machines where ULONG >= 32 bits.
315
*
316
* Also note that Quantum reads bytes in normal order; LZX is in
317
* little-endian order.
318
*/
319
320
#define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
321
322
#define Q_FILL_BUFFER do { \
323
if (bitsleft <= (CAB_ULONG_BITS - 16)) { \
324
bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft); \
325
bitsleft += 16; inpos += 2; \
326
} \
327
} while (0)
328
329
#define Q_PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
330
#define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
331
332
#define Q_READ_BITS(v,n) do { \
333
(v) = 0; \
334
for (bitsneed = (n); bitsneed; bitsneed -= bitrun) { \
335
Q_FILL_BUFFER; \
336
bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed; \
337
(v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun); \
338
Q_REMOVE_BITS(bitrun); \
339
} \
340
} while (0)
341
342
#define Q_MENTRIES(model) (QTM(model).entries)
343
#define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym)
344
#define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq)
345
346
/* GET_SYMBOL(model, var) fetches the next symbol from the stated model
347
* and puts it in var. it may need to read the bitstream to do this.
348
*/
349
#define GET_SYMBOL(m, var) do { \
350
range = ((H - L) & 0xFFFF) + 1; \
351
symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF; \
352
\
353
for (i=1; i < Q_MENTRIES(m); i++) { \
354
if (Q_MSYMFREQ(m,i) <= symf) break; \
355
} \
356
(var) = Q_MSYM(m,i-1); \
357
\
358
range = (H - L) + 1; \
359
H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1; \
360
L = L + ((Q_MSYMFREQ(m,i) * range) / Q_MSYMFREQ(m,0)); \
361
while (1) { \
362
if ((L & 0x8000) != (H & 0x8000)) { \
363
if ((L & 0x4000) && !(H & 0x4000)) { \
364
/* underflow case */ \
365
C ^= 0x4000; L &= 0x3FFF; H |= 0x4000; \
366
} \
367
else break; \
368
} \
369
L <<= 1; H = (H << 1) | 1; \
370
Q_FILL_BUFFER; \
371
C = (C << 1) | Q_PEEK_BITS(1); \
372
Q_REMOVE_BITS(1); \
373
} \
374
\
375
QTMupdatemodel(&(QTM(m)), i); \
376
} while (0)
377
378
/* Bitstream reading macros (LZX / intel little-endian byte order)
379
*
380
* INIT_BITSTREAM should be used first to set up the system
381
* READ_BITS(var,n) takes N bits from the buffer and puts them in var
382
*
383
* ENSURE_BITS(n) ensures there are at least N bits in the bit buffer.
384
* it can guarantee up to 17 bits (i.e. it can read in
385
* 16 new bits when there is down to 1 bit in the buffer,
386
* and it can read 32 bits when there are 0 bits in the
387
* buffer).
388
* PEEK_BITS(n) extracts (without removing) N bits from the bit buffer
389
* REMOVE_BITS(n) removes N bits from the bit buffer
390
*
391
* These bit access routines work by using the area beyond the MSB and the
392
* LSB as a free source of zeroes. This avoids having to mask any bits.
393
* So we have to know the bit width of the bitbuffer variable.
394
*/
395
396
#define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
397
398
/* Quantum reads bytes in normal order; LZX is little-endian order */
399
#define ENSURE_BITS(n) \
400
while (bitsleft < (n)) { \
401
bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \
402
bitsleft += 16; inpos+=2; \
403
}
404
405
#define PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
406
#define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
407
408
#define READ_BITS(v,n) do { \
409
if (n) { \
410
ENSURE_BITS(n); \
411
(v) = PEEK_BITS(n); \
412
REMOVE_BITS(n); \
413
} \
414
else { \
415
(v) = 0; \
416
} \
417
} while (0)
418
419
/* Huffman macros */
420
421
#define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS)
422
#define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS)
423
#define SYMTABLE(tbl) (LZX(tbl##_table))
424
#define LENTABLE(tbl) (LZX(tbl##_len))
425
426
/* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths.
427
* In reality, it just calls make_decode_table() with the appropriate
428
* values - they're all fixed by some #defines anyway, so there's no point
429
* writing each call out in full by hand.
430
*/
431
#define BUILD_TABLE(tbl) \
432
if (make_decode_table( \
433
MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \
434
)) { return DECR_ILLEGALDATA; }
435
436
/* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
437
* bitstream using the stated table and puts it in var.
438
*/
439
#define READ_HUFFSYM(tbl,var) do { \
440
ENSURE_BITS(16); \
441
hufftbl = SYMTABLE(tbl); \
442
if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \
443
j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl)); \
444
do { \
445
j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \
446
if (!j) { return DECR_ILLEGALDATA; } \
447
} while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \
448
} \
449
j = LENTABLE(tbl)[(var) = i]; \
450
REMOVE_BITS(j); \
451
} while (0)
452
453
/* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
454
* first to last in the given table. The code lengths are stored in their
455
* own special LZX way.
456
*/
457
#define READ_LENGTHS(tbl,first,last,fn) do { \
458
lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \
459
if (fn(LENTABLE(tbl),(first),(last),&lb,decomp_state)) { \
460
return DECR_ILLEGALDATA; \
461
} \
462
bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \
463
} while (0)
464
465
/* Tables for deflate from PKZIP's appnote.txt. */
466
467
#define THOSE_ZIP_CONSTS \
468
static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */ \
469
{ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; \
470
static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */ \
471
{ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, \
472
59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; \
473
static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */ \
474
{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, \
475
4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ \
476
static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */ \
477
{ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, \
478
513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; \
479
static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */ \
480
{ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, \
481
10, 11, 11, 12, 12, 13, 13}; \
482
/* And'ing with Zipmask[n] masks the lower n bits */ \
483
static const cab_UWORD Zipmask[17] = { \
484
0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, \
485
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff \
486
}
487
488
/* SESSION Operation */
489
#define EXTRACT_FILLFILELIST 0x00000001
490
#define EXTRACT_EXTRACTFILES 0x00000002
491
492
struct FILELIST{
493
LPSTR FileName;
494
struct FILELIST *next;
495
BOOL DoExtract;
496
};
497
498
typedef struct {
499
INT FileSize;
500
ERF Error;
501
struct FILELIST *FileList;
502
INT FileCount;
503
INT Operation;
504
CHAR Destination[MAX_PATH];
505
CHAR CurrentFile[MAX_PATH];
506
CHAR Reserved[MAX_PATH];
507
struct FILELIST *FilterList;
508
} SESSION;
509
510
#endif /* __WINE_CABINET_H */
511
512