Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/capstone/arch/ARM/ARMAddressingModes.h
4394 views
1
//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2
//
3
// The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file contains the ARM addressing mode implementation stuff.
11
//
12
//===----------------------------------------------------------------------===//
13
14
/* Capstone Disassembly Engine */
15
/* By Nguyen Anh Quynh <[email protected]>, 2013-2019 */
16
17
#ifndef CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
18
#define CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
19
20
#include "capstone/platform.h"
21
#include "../../MathExtras.h"
22
23
/// ARM_AM - ARM Addressing Mode Stuff
24
typedef enum ARM_AM_ShiftOpc {
25
ARM_AM_no_shift = 0,
26
ARM_AM_asr,
27
ARM_AM_lsl,
28
ARM_AM_lsr,
29
ARM_AM_ror,
30
ARM_AM_rrx
31
} ARM_AM_ShiftOpc;
32
33
typedef enum ARM_AM_AddrOpc {
34
ARM_AM_sub = 0,
35
ARM_AM_add
36
} ARM_AM_AddrOpc;
37
38
static inline const char *ARM_AM_getAddrOpcStr(ARM_AM_AddrOpc Op)
39
{
40
return Op == ARM_AM_sub ? "-" : "";
41
}
42
43
static inline const char *ARM_AM_getShiftOpcStr(ARM_AM_ShiftOpc Op)
44
{
45
switch (Op) {
46
default: return ""; //llvm_unreachable("Unknown shift opc!");
47
case ARM_AM_asr: return "asr";
48
case ARM_AM_lsl: return "lsl";
49
case ARM_AM_lsr: return "lsr";
50
case ARM_AM_ror: return "ror";
51
case ARM_AM_rrx: return "rrx";
52
}
53
}
54
55
static inline unsigned ARM_AM_getShiftOpcEncoding(ARM_AM_ShiftOpc Op)
56
{
57
switch (Op) {
58
default: return (unsigned int)-1; //llvm_unreachable("Unknown shift opc!");
59
case ARM_AM_asr: return 2;
60
case ARM_AM_lsl: return 0;
61
case ARM_AM_lsr: return 1;
62
case ARM_AM_ror: return 3;
63
}
64
}
65
66
typedef enum ARM_AM_AMSubMode {
67
ARM_AM_bad_am_submode = 0,
68
ARM_AM_ia,
69
ARM_AM_ib,
70
ARM_AM_da,
71
ARM_AM_db
72
} ARM_AM_AMSubMode;
73
74
static inline const char *ARM_AM_getAMSubModeStr(ARM_AM_AMSubMode Mode)
75
{
76
switch (Mode) {
77
default: return "";
78
case ARM_AM_ia: return "ia";
79
case ARM_AM_ib: return "ib";
80
case ARM_AM_da: return "da";
81
case ARM_AM_db: return "db";
82
}
83
}
84
85
/// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
86
///
87
static inline unsigned rotr32(unsigned Val, unsigned Amt)
88
{
89
//assert(Amt < 32 && "Invalid rotate amount");
90
return (Val >> Amt) | (Val << ((32-Amt)&31));
91
}
92
93
/// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
94
///
95
static inline unsigned rotl32(unsigned Val, unsigned Amt)
96
{
97
//assert(Amt < 32 && "Invalid rotate amount");
98
return (Val << Amt) | (Val >> ((32-Amt)&31));
99
}
100
101
//===--------------------------------------------------------------------===//
102
// Addressing Mode #1: shift_operand with registers
103
//===--------------------------------------------------------------------===//
104
//
105
// This 'addressing mode' is used for arithmetic instructions. It can
106
// represent things like:
107
// reg
108
// reg [asr|lsl|lsr|ror|rrx] reg
109
// reg [asr|lsl|lsr|ror|rrx] imm
110
//
111
// This is stored three operands [rega, regb, opc]. The first is the base
112
// reg, the second is the shift amount (or reg0 if not present or imm). The
113
// third operand encodes the shift opcode and the imm if a reg isn't present.
114
//
115
static inline unsigned getSORegOpc(ARM_AM_ShiftOpc ShOp, unsigned Imm)
116
{
117
return ShOp | (Imm << 3);
118
}
119
120
static inline unsigned getSORegOffset(unsigned Op)
121
{
122
return Op >> 3;
123
}
124
125
static inline ARM_AM_ShiftOpc ARM_AM_getSORegShOp(unsigned Op)
126
{
127
return (ARM_AM_ShiftOpc)(Op & 7);
128
}
129
130
/// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
131
/// the 8-bit imm value.
132
static inline unsigned getSOImmValImm(unsigned Imm)
133
{
134
return Imm & 0xFF;
135
}
136
137
/// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
138
/// the rotate amount.
139
static inline unsigned getSOImmValRot(unsigned Imm)
140
{
141
return (Imm >> 8) * 2;
142
}
143
144
/// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
145
/// computing the rotate amount to use. If this immediate value cannot be
146
/// handled with a single shifter-op, determine a good rotate amount that will
147
/// take a maximal chunk of bits out of the immediate.
148
static inline unsigned getSOImmValRotate(unsigned Imm)
149
{
150
unsigned TZ, RotAmt;
151
// 8-bit (or less) immediates are trivially shifter_operands with a rotate
152
// of zero.
153
if ((Imm & ~255U) == 0) return 0;
154
155
// Use CTZ to compute the rotate amount.
156
TZ = CountTrailingZeros_32(Imm);
157
158
// Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
159
// not 9.
160
RotAmt = TZ & ~1;
161
162
// If we can handle this spread, return it.
163
if ((rotr32(Imm, RotAmt) & ~255U) == 0)
164
return (32-RotAmt)&31; // HW rotates right, not left.
165
166
// For values like 0xF000000F, we should ignore the low 6 bits, then
167
// retry the hunt.
168
if (Imm & 63U) {
169
unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U);
170
unsigned RotAmt2 = TZ2 & ~1;
171
if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
172
return (32-RotAmt2)&31; // HW rotates right, not left.
173
}
174
175
// Otherwise, we have no way to cover this span of bits with a single
176
// shifter_op immediate. Return a chunk of bits that will be useful to
177
// handle.
178
return (32-RotAmt)&31; // HW rotates right, not left.
179
}
180
181
/// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
182
/// into an shifter_operand immediate operand, return the 12-bit encoding for
183
/// it. If not, return -1.
184
static inline int getSOImmVal(unsigned Arg)
185
{
186
unsigned RotAmt;
187
// 8-bit (or less) immediates are trivially shifter_operands with a rotate
188
// of zero.
189
if ((Arg & ~255U) == 0) return Arg;
190
191
RotAmt = getSOImmValRotate(Arg);
192
193
// If this cannot be handled with a single shifter_op, bail out.
194
if (rotr32(~255U, RotAmt) & Arg)
195
return -1;
196
197
// Encode this correctly.
198
return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
199
}
200
201
/// isSOImmTwoPartVal - Return true if the specified value can be obtained by
202
/// or'ing together two SOImmVal's.
203
static inline bool isSOImmTwoPartVal(unsigned V)
204
{
205
// If this can be handled with a single shifter_op, bail out.
206
V = rotr32(~255U, getSOImmValRotate(V)) & V;
207
if (V == 0)
208
return false;
209
210
// If this can be handled with two shifter_op's, accept.
211
V = rotr32(~255U, getSOImmValRotate(V)) & V;
212
return V == 0;
213
}
214
215
/// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
216
/// return the first chunk of it.
217
static inline unsigned getSOImmTwoPartFirst(unsigned V)
218
{
219
return rotr32(255U, getSOImmValRotate(V)) & V;
220
}
221
222
/// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
223
/// return the second chunk of it.
224
static inline unsigned getSOImmTwoPartSecond(unsigned V)
225
{
226
// Mask out the first hunk.
227
V = rotr32(~255U, getSOImmValRotate(V)) & V;
228
229
// Take what's left.
230
//assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
231
return V;
232
}
233
234
/// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
235
/// by a left shift. Returns the shift amount to use.
236
static inline unsigned getThumbImmValShift(unsigned Imm)
237
{
238
// 8-bit (or less) immediates are trivially immediate operand with a shift
239
// of zero.
240
if ((Imm & ~255U) == 0) return 0;
241
242
// Use CTZ to compute the shift amount.
243
return CountTrailingZeros_32(Imm);
244
}
245
246
/// isThumbImmShiftedVal - Return true if the specified value can be obtained
247
/// by left shifting a 8-bit immediate.
248
static inline bool isThumbImmShiftedVal(unsigned V)
249
{
250
// If this can be handled with
251
V = (~255U << getThumbImmValShift(V)) & V;
252
return V == 0;
253
}
254
255
/// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
256
/// by a left shift. Returns the shift amount to use.
257
static inline unsigned getThumbImm16ValShift(unsigned Imm)
258
{
259
// 16-bit (or less) immediates are trivially immediate operand with a shift
260
// of zero.
261
if ((Imm & ~65535U) == 0) return 0;
262
263
// Use CTZ to compute the shift amount.
264
return CountTrailingZeros_32(Imm);
265
}
266
267
/// isThumbImm16ShiftedVal - Return true if the specified value can be
268
/// obtained by left shifting a 16-bit immediate.
269
static inline bool isThumbImm16ShiftedVal(unsigned V)
270
{
271
// If this can be handled with
272
V = (~65535U << getThumbImm16ValShift(V)) & V;
273
return V == 0;
274
}
275
276
/// getThumbImmNonShiftedVal - If V is a value that satisfies
277
/// isThumbImmShiftedVal, return the non-shiftd value.
278
static inline unsigned getThumbImmNonShiftedVal(unsigned V)
279
{
280
return V >> getThumbImmValShift(V);
281
}
282
283
284
/// getT2SOImmValSplat - Return the 12-bit encoded representation
285
/// if the specified value can be obtained by splatting the low 8 bits
286
/// into every other byte or every byte of a 32-bit value. i.e.,
287
/// 00000000 00000000 00000000 abcdefgh control = 0
288
/// 00000000 abcdefgh 00000000 abcdefgh control = 1
289
/// abcdefgh 00000000 abcdefgh 00000000 control = 2
290
/// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
291
/// Return -1 if none of the above apply.
292
/// See ARM Reference Manual A6.3.2.
293
static inline int getT2SOImmValSplatVal(unsigned V)
294
{
295
unsigned u, Vs, Imm;
296
// control = 0
297
if ((V & 0xffffff00) == 0)
298
return V;
299
300
// If the value is zeroes in the first byte, just shift those off
301
Vs = ((V & 0xff) == 0) ? V >> 8 : V;
302
// Any passing value only has 8 bits of payload, splatted across the word
303
Imm = Vs & 0xff;
304
// Likewise, any passing values have the payload splatted into the 3rd byte
305
u = Imm | (Imm << 16);
306
307
// control = 1 or 2
308
if (Vs == u)
309
return (((Vs == V) ? 1 : 2) << 8) | Imm;
310
311
// control = 3
312
if (Vs == (u | (u << 8)))
313
return (3 << 8) | Imm;
314
315
return -1;
316
}
317
318
/// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
319
/// specified value is a rotated 8-bit value. Return -1 if no rotation
320
/// encoding is possible.
321
/// See ARM Reference Manual A6.3.2.
322
static inline int getT2SOImmValRotateVal(unsigned V)
323
{
324
unsigned RotAmt = CountLeadingZeros_32(V);
325
if (RotAmt >= 24)
326
return -1;
327
328
// If 'Arg' can be handled with a single shifter_op return the value.
329
if ((rotr32(0xff000000U, RotAmt) & V) == V)
330
return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
331
332
return -1;
333
}
334
335
/// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
336
/// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
337
/// encoding for it. If not, return -1.
338
/// See ARM Reference Manual A6.3.2.
339
static inline int getT2SOImmVal(unsigned Arg)
340
{
341
int Rot;
342
// If 'Arg' is an 8-bit splat, then get the encoded value.
343
int Splat = getT2SOImmValSplatVal(Arg);
344
if (Splat != -1)
345
return Splat;
346
347
// If 'Arg' can be handled with a single shifter_op return the value.
348
Rot = getT2SOImmValRotateVal(Arg);
349
if (Rot != -1)
350
return Rot;
351
352
return -1;
353
}
354
355
static inline unsigned getT2SOImmValRotate(unsigned V)
356
{
357
unsigned RotAmt;
358
359
if ((V & ~255U) == 0)
360
return 0;
361
362
// Use CTZ to compute the rotate amount.
363
RotAmt = CountTrailingZeros_32(V);
364
return (32 - RotAmt) & 31;
365
}
366
367
static inline bool isT2SOImmTwoPartVal (unsigned Imm)
368
{
369
unsigned V = Imm;
370
// Passing values can be any combination of splat values and shifter
371
// values. If this can be handled with a single shifter or splat, bail
372
// out. Those should be handled directly, not with a two-part val.
373
if (getT2SOImmValSplatVal(V) != -1)
374
return false;
375
V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
376
if (V == 0)
377
return false;
378
379
// If this can be handled as an immediate, accept.
380
if (getT2SOImmVal(V) != -1) return true;
381
382
// Likewise, try masking out a splat value first.
383
V = Imm;
384
if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
385
V &= ~0xff00ff00U;
386
else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
387
V &= ~0x00ff00ffU;
388
// If what's left can be handled as an immediate, accept.
389
if (getT2SOImmVal(V) != -1) return true;
390
391
// Otherwise, do not accept.
392
return false;
393
}
394
395
static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm)
396
{
397
//assert (isT2SOImmTwoPartVal(Imm) &&
398
// "Immedate cannot be encoded as two part immediate!");
399
// Try a shifter operand as one part
400
unsigned V = rotr32 (~(unsigned int)255, getT2SOImmValRotate(Imm)) & Imm;
401
// If the rest is encodable as an immediate, then return it.
402
if (getT2SOImmVal(V) != -1) return V;
403
404
// Try masking out a splat value first.
405
if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
406
return Imm & 0xff00ff00U;
407
408
// The other splat is all that's left as an option.
409
//assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
410
return Imm & 0x00ff00ffU;
411
}
412
413
static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm)
414
{
415
// Mask out the first hunk
416
Imm ^= getT2SOImmTwoPartFirst(Imm);
417
// Return what's left
418
//assert (getT2SOImmVal(Imm) != -1 &&
419
// "Unable to encode second part of T2 two part SO immediate");
420
return Imm;
421
}
422
423
424
//===--------------------------------------------------------------------===//
425
// Addressing Mode #2
426
//===--------------------------------------------------------------------===//
427
//
428
// This is used for most simple load/store instructions.
429
//
430
// addrmode2 := reg +/- reg shop imm
431
// addrmode2 := reg +/- imm12
432
//
433
// The first operand is always a Reg. The second operand is a reg if in
434
// reg/reg form, otherwise it's reg#0. The third field encodes the operation
435
// in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
436
// fourth operand 16-17 encodes the index mode.
437
//
438
// If this addressing mode is a frame index (before prolog/epilog insertion
439
// and code rewriting), this operand will have the form: FI#, reg0, <offs>
440
// with no shift amount for the frame offset.
441
//
442
static inline unsigned ARM_AM_getAM2Opc(ARM_AM_AddrOpc Opc, unsigned Imm12, ARM_AM_ShiftOpc SO,
443
unsigned IdxMode)
444
{
445
//assert(Imm12 < (1 << 12) && "Imm too large!");
446
bool isSub = Opc == ARM_AM_sub;
447
return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
448
}
449
450
static inline unsigned getAM2Offset(unsigned AM2Opc)
451
{
452
return AM2Opc & ((1 << 12)-1);
453
}
454
455
static inline ARM_AM_AddrOpc getAM2Op(unsigned AM2Opc)
456
{
457
return ((AM2Opc >> 12) & 1) ? ARM_AM_sub : ARM_AM_add;
458
}
459
460
static inline ARM_AM_ShiftOpc getAM2ShiftOpc(unsigned AM2Opc)
461
{
462
return (ARM_AM_ShiftOpc)((AM2Opc >> 13) & 7);
463
}
464
465
static inline unsigned getAM2IdxMode(unsigned AM2Opc)
466
{
467
return (AM2Opc >> 16);
468
}
469
470
//===--------------------------------------------------------------------===//
471
// Addressing Mode #3
472
//===--------------------------------------------------------------------===//
473
//
474
// This is used for sign-extending loads, and load/store-pair instructions.
475
//
476
// addrmode3 := reg +/- reg
477
// addrmode3 := reg +/- imm8
478
//
479
// The first operand is always a Reg. The second operand is a reg if in
480
// reg/reg form, otherwise it's reg#0. The third field encodes the operation
481
// in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
482
// index mode.
483
484
/// getAM3Opc - This function encodes the addrmode3 opc field.
485
static inline unsigned getAM3Opc(ARM_AM_AddrOpc Opc, unsigned char Offset,
486
unsigned IdxMode)
487
{
488
bool isSub = Opc == ARM_AM_sub;
489
return ((int)isSub << 8) | Offset | (IdxMode << 9);
490
}
491
492
static inline unsigned char getAM3Offset(unsigned AM3Opc)
493
{
494
return AM3Opc & 0xFF;
495
}
496
497
static inline ARM_AM_AddrOpc getAM3Op(unsigned AM3Opc)
498
{
499
return ((AM3Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
500
}
501
502
static inline unsigned getAM3IdxMode(unsigned AM3Opc)
503
{
504
return (AM3Opc >> 9);
505
}
506
507
//===--------------------------------------------------------------------===//
508
// Addressing Mode #4
509
//===--------------------------------------------------------------------===//
510
//
511
// This is used for load / store multiple instructions.
512
//
513
// addrmode4 := reg, <mode>
514
//
515
// The four modes are:
516
// IA - Increment after
517
// IB - Increment before
518
// DA - Decrement after
519
// DB - Decrement before
520
// For VFP instructions, only the IA and DB modes are valid.
521
522
static inline ARM_AM_AMSubMode getAM4SubMode(unsigned Mode)
523
{
524
return (ARM_AM_AMSubMode)(Mode & 0x7);
525
}
526
527
static inline unsigned getAM4ModeImm(ARM_AM_AMSubMode SubMode)
528
{
529
return (int)SubMode;
530
}
531
532
//===--------------------------------------------------------------------===//
533
// Addressing Mode #5
534
//===--------------------------------------------------------------------===//
535
//
536
// This is used for coprocessor instructions, such as FP load/stores.
537
//
538
// addrmode5 := reg +/- imm8*4
539
//
540
// The first operand is always a Reg. The second operand encodes the
541
// operation in bit 8 and the immediate in bits 0-7.
542
543
/// getAM5Opc - This function encodes the addrmode5 opc field.
544
static inline unsigned ARM_AM_getAM5Opc(ARM_AM_AddrOpc Opc, unsigned char Offset)
545
{
546
bool isSub = Opc == ARM_AM_sub;
547
return ((int)isSub << 8) | Offset;
548
}
549
static inline unsigned char ARM_AM_getAM5Offset(unsigned AM5Opc)
550
{
551
return AM5Opc & 0xFF;
552
}
553
static inline ARM_AM_AddrOpc ARM_AM_getAM5Op(unsigned AM5Opc)
554
{
555
return ((AM5Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
556
}
557
558
//===--------------------------------------------------------------------===//
559
// Addressing Mode #5 FP16
560
//===--------------------------------------------------------------------===//
561
//
562
// This is used for coprocessor instructions, such as 16-bit FP load/stores.
563
//
564
// addrmode5fp16 := reg +/- imm8*2
565
//
566
// The first operand is always a Reg. The second operand encodes the
567
// operation (add or subtract) in bit 8 and the immediate in bits 0-7.
568
569
/// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
570
static inline unsigned getAM5FP16Opc(ARM_AM_AddrOpc Opc, unsigned char Offset)
571
{
572
bool isSub = Opc == ARM_AM_sub;
573
return ((int)isSub << 8) | Offset;
574
}
575
576
static inline unsigned char getAM5FP16Offset(unsigned AM5Opc)
577
{
578
return AM5Opc & 0xFF;
579
}
580
581
static inline ARM_AM_AddrOpc getAM5FP16Op(unsigned AM5Opc)
582
{
583
return ((AM5Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
584
}
585
586
//===--------------------------------------------------------------------===//
587
// Addressing Mode #6
588
//===--------------------------------------------------------------------===//
589
//
590
// This is used for NEON load / store instructions.
591
//
592
// addrmode6 := reg with optional alignment
593
//
594
// This is stored in two operands [regaddr, align]. The first is the
595
// address register. The second operand is the value of the alignment
596
// specifier in bytes or zero if no explicit alignment.
597
// Valid alignments depend on the specific instruction.
598
599
//===--------------------------------------------------------------------===//
600
// NEON Modified Immediates
601
//===--------------------------------------------------------------------===//
602
//
603
// Several NEON instructions (e.g., VMOV) take a "modified immediate"
604
// vector operand, where a small immediate encoded in the instruction
605
// specifies a full NEON vector value. These modified immediates are
606
// represented here as encoded integers. The low 8 bits hold the immediate
607
// value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
608
// the "Cmode" field of the instruction. The interfaces below treat the
609
// Op and Cmode values as a single 5-bit value.
610
611
static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val)
612
{
613
return (OpCmode << 8) | Val;
614
}
615
static inline unsigned getNEONModImmOpCmode(unsigned ModImm)
616
{
617
return (ModImm >> 8) & 0x1f;
618
}
619
static inline unsigned getNEONModImmVal(unsigned ModImm)
620
{
621
return ModImm & 0xff;
622
}
623
624
/// decodeNEONModImm - Decode a NEON modified immediate value into the
625
/// element value and the element size in bits. (If the element size is
626
/// smaller than the vector, it is splatted into all the elements.)
627
static inline uint64_t ARM_AM_decodeNEONModImm(unsigned ModImm, unsigned *EltBits)
628
{
629
unsigned OpCmode = getNEONModImmOpCmode(ModImm);
630
unsigned Imm8 = getNEONModImmVal(ModImm);
631
uint64_t Val = 0;
632
unsigned ByteNum;
633
634
if (OpCmode == 0xe) {
635
// 8-bit vector elements
636
Val = Imm8;
637
*EltBits = 8;
638
} else if ((OpCmode & 0xc) == 0x8) {
639
// 16-bit vector elements
640
ByteNum = (OpCmode & 0x6) >> 1;
641
Val = (uint64_t)Imm8 << (8 * ByteNum);
642
*EltBits = 16;
643
} else if ((OpCmode & 0x8) == 0) {
644
// 32-bit vector elements, zero with one byte set
645
ByteNum = (OpCmode & 0x6) >> 1;
646
Val = (uint64_t)Imm8 << (8 * ByteNum);
647
*EltBits = 32;
648
} else if ((OpCmode & 0xe) == 0xc) {
649
// 32-bit vector elements, one byte with low bits set
650
ByteNum = 1 + (OpCmode & 0x1);
651
Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
652
*EltBits = 32;
653
} else if (OpCmode == 0x1e) {
654
// 64-bit vector elements
655
for (ByteNum = 0; ByteNum < 8; ++ByteNum) {
656
if ((ModImm >> ByteNum) & 1)
657
Val |= (uint64_t)0xff << (8 * ByteNum);
658
}
659
*EltBits = 64;
660
} else {
661
//llvm_unreachable("Unsupported NEON immediate");
662
}
663
return Val;
664
}
665
666
ARM_AM_AMSubMode getLoadStoreMultipleSubMode(int Opcode);
667
668
//===--------------------------------------------------------------------===//
669
// Floating-point Immediates
670
//
671
static inline float getFPImmFloat(unsigned Imm)
672
{
673
// We expect an 8-bit binary encoding of a floating-point number here.
674
union {
675
uint32_t I;
676
float F;
677
} FPUnion;
678
679
uint8_t Sign = (Imm >> 7) & 0x1;
680
uint8_t Exp = (Imm >> 4) & 0x7;
681
uint8_t Mantissa = Imm & 0xf;
682
683
// 8-bit FP iEEEE Float Encoding
684
// abcd efgh aBbbbbbc defgh000 00000000 00000000
685
//
686
// where B = NOT(b);
687
688
FPUnion.I = 0;
689
FPUnion.I |= ((uint32_t) Sign) << 31;
690
FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
691
FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
692
FPUnion.I |= (Exp & 0x3) << 23;
693
FPUnion.I |= Mantissa << 19;
694
return FPUnion.F;
695
}
696
697
#endif
698
699