Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/capstone/arch/X86/X86IntelInstPrinter.c
4389 views
1
//===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===//
2
//
3
// The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file includes code for rendering MCInst instances as Intel-style
11
// assembly.
12
//
13
//===----------------------------------------------------------------------===//
14
15
/* Capstone Disassembly Engine */
16
/* By Nguyen Anh Quynh <[email protected]>, 2013-2019 */
17
18
#ifdef CAPSTONE_HAS_X86
19
20
#if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64)
21
#pragma warning(disable:4996) // disable MSVC's warning on strncpy()
22
#pragma warning(disable:28719) // disable MSVC's warning on strncpy()
23
#endif
24
25
#if !defined(CAPSTONE_HAS_OSXKERNEL)
26
#include <ctype.h>
27
#endif
28
#include <capstone/platform.h>
29
30
#if defined(CAPSTONE_HAS_OSXKERNEL)
31
#include <Availability.h>
32
#include <libkern/libkern.h>
33
#else
34
#include <stdio.h>
35
#include <stdlib.h>
36
#endif
37
#include <string.h>
38
39
#include "../../utils.h"
40
#include "../../MCInst.h"
41
#include "../../SStream.h"
42
#include "../../MCRegisterInfo.h"
43
44
#include "X86InstPrinter.h"
45
#include "X86Mapping.h"
46
#include "X86InstPrinterCommon.h"
47
48
#define GET_INSTRINFO_ENUM
49
#ifdef CAPSTONE_X86_REDUCE
50
#include "X86GenInstrInfo_reduce.inc"
51
#else
52
#include "X86GenInstrInfo.inc"
53
#endif
54
55
#define GET_REGINFO_ENUM
56
#include "X86GenRegisterInfo.inc"
57
58
#include "X86BaseInfo.h"
59
60
static void printMemReference(MCInst *MI, unsigned Op, SStream *O);
61
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O);
62
63
64
static void set_mem_access(MCInst *MI, bool status)
65
{
66
if (MI->csh->detail != CS_OPT_ON)
67
return;
68
69
MI->csh->doing_mem = status;
70
if (!status)
71
// done, create the next operand slot
72
MI->flat_insn->detail->x86.op_count++;
73
74
}
75
76
static void printopaquemem(MCInst *MI, unsigned OpNo, SStream *O)
77
{
78
// FIXME: do this with autogen
79
// printf(">>> ID = %u\n", MI->flat_insn->id);
80
switch(MI->flat_insn->id) {
81
default:
82
SStream_concat0(O, "ptr ");
83
break;
84
case X86_INS_SGDT:
85
case X86_INS_SIDT:
86
case X86_INS_LGDT:
87
case X86_INS_LIDT:
88
case X86_INS_FXRSTOR:
89
case X86_INS_FXSAVE:
90
case X86_INS_LJMP:
91
case X86_INS_LCALL:
92
// do not print "ptr"
93
break;
94
}
95
96
switch(MI->csh->mode) {
97
case CS_MODE_16:
98
switch(MI->flat_insn->id) {
99
default:
100
MI->x86opsize = 2;
101
break;
102
case X86_INS_LJMP:
103
case X86_INS_LCALL:
104
MI->x86opsize = 4;
105
break;
106
case X86_INS_SGDT:
107
case X86_INS_SIDT:
108
case X86_INS_LGDT:
109
case X86_INS_LIDT:
110
MI->x86opsize = 6;
111
break;
112
}
113
break;
114
case CS_MODE_32:
115
switch(MI->flat_insn->id) {
116
default:
117
MI->x86opsize = 4;
118
break;
119
case X86_INS_LJMP:
120
case X86_INS_JMP:
121
case X86_INS_LCALL:
122
case X86_INS_SGDT:
123
case X86_INS_SIDT:
124
case X86_INS_LGDT:
125
case X86_INS_LIDT:
126
MI->x86opsize = 6;
127
break;
128
}
129
break;
130
case CS_MODE_64:
131
switch(MI->flat_insn->id) {
132
default:
133
MI->x86opsize = 8;
134
break;
135
case X86_INS_LJMP:
136
case X86_INS_LCALL:
137
case X86_INS_SGDT:
138
case X86_INS_SIDT:
139
case X86_INS_LGDT:
140
case X86_INS_LIDT:
141
MI->x86opsize = 10;
142
break;
143
}
144
break;
145
default: // never reach
146
break;
147
}
148
149
printMemReference(MI, OpNo, O);
150
}
151
152
static void printi8mem(MCInst *MI, unsigned OpNo, SStream *O)
153
{
154
SStream_concat0(O, "byte ptr ");
155
MI->x86opsize = 1;
156
printMemReference(MI, OpNo, O);
157
}
158
159
static void printi16mem(MCInst *MI, unsigned OpNo, SStream *O)
160
{
161
MI->x86opsize = 2;
162
SStream_concat0(O, "word ptr ");
163
printMemReference(MI, OpNo, O);
164
}
165
166
static void printi32mem(MCInst *MI, unsigned OpNo, SStream *O)
167
{
168
MI->x86opsize = 4;
169
SStream_concat0(O, "dword ptr ");
170
printMemReference(MI, OpNo, O);
171
}
172
173
static void printi64mem(MCInst *MI, unsigned OpNo, SStream *O)
174
{
175
SStream_concat0(O, "qword ptr ");
176
MI->x86opsize = 8;
177
printMemReference(MI, OpNo, O);
178
}
179
180
static void printi128mem(MCInst *MI, unsigned OpNo, SStream *O)
181
{
182
SStream_concat0(O, "xmmword ptr ");
183
MI->x86opsize = 16;
184
printMemReference(MI, OpNo, O);
185
}
186
187
static void printi512mem(MCInst *MI, unsigned OpNo, SStream *O)
188
{
189
SStream_concat0(O, "zmmword ptr ");
190
MI->x86opsize = 64;
191
printMemReference(MI, OpNo, O);
192
}
193
194
#ifndef CAPSTONE_X86_REDUCE
195
static void printi256mem(MCInst *MI, unsigned OpNo, SStream *O)
196
{
197
SStream_concat0(O, "ymmword ptr ");
198
MI->x86opsize = 32;
199
printMemReference(MI, OpNo, O);
200
}
201
202
static void printf32mem(MCInst *MI, unsigned OpNo, SStream *O)
203
{
204
switch(MCInst_getOpcode(MI)) {
205
default:
206
SStream_concat0(O, "dword ptr ");
207
MI->x86opsize = 4;
208
break;
209
case X86_FSTENVm:
210
case X86_FLDENVm:
211
// TODO: fix this in tablegen instead
212
switch(MI->csh->mode) {
213
default: // never reach
214
break;
215
case CS_MODE_16:
216
MI->x86opsize = 14;
217
break;
218
case CS_MODE_32:
219
case CS_MODE_64:
220
MI->x86opsize = 28;
221
break;
222
}
223
break;
224
}
225
226
printMemReference(MI, OpNo, O);
227
}
228
229
static void printf64mem(MCInst *MI, unsigned OpNo, SStream *O)
230
{
231
// TODO: fix COMISD in Tablegen instead (#1456)
232
if (MI->op1_size == 16) {
233
// printf("printf64mem id = %u\n", MCInst_getOpcode(MI));
234
switch(MCInst_getOpcode(MI)) {
235
default:
236
SStream_concat0(O, "qword ptr ");
237
MI->x86opsize = 8;
238
break;
239
case X86_MOVPQI2QImr:
240
case X86_COMISDrm:
241
SStream_concat0(O, "xmmword ptr ");
242
MI->x86opsize = 16;
243
break;
244
}
245
} else {
246
SStream_concat0(O, "qword ptr ");
247
MI->x86opsize = 8;
248
}
249
250
printMemReference(MI, OpNo, O);
251
}
252
253
static void printf80mem(MCInst *MI, unsigned OpNo, SStream *O)
254
{
255
switch(MCInst_getOpcode(MI)) {
256
default:
257
SStream_concat0(O, "xword ptr ");
258
break;
259
case X86_FBLDm:
260
case X86_FBSTPm:
261
break;
262
}
263
264
MI->x86opsize = 10;
265
printMemReference(MI, OpNo, O);
266
}
267
268
static void printf128mem(MCInst *MI, unsigned OpNo, SStream *O)
269
{
270
SStream_concat0(O, "xmmword ptr ");
271
MI->x86opsize = 16;
272
printMemReference(MI, OpNo, O);
273
}
274
275
static void printf256mem(MCInst *MI, unsigned OpNo, SStream *O)
276
{
277
SStream_concat0(O, "ymmword ptr ");
278
MI->x86opsize = 32;
279
printMemReference(MI, OpNo, O);
280
}
281
282
static void printf512mem(MCInst *MI, unsigned OpNo, SStream *O)
283
{
284
SStream_concat0(O, "zmmword ptr ");
285
MI->x86opsize = 64;
286
printMemReference(MI, OpNo, O);
287
}
288
#endif
289
290
static const char *getRegisterName(unsigned RegNo);
291
static void printRegName(SStream *OS, unsigned RegNo)
292
{
293
SStream_concat0(OS, getRegisterName(RegNo));
294
}
295
296
// for MASM syntax, 0x123 = 123h, 0xA123 = 0A123h
297
// this function tell us if we need to have prefix 0 in front of a number
298
static bool need_zero_prefix(uint64_t imm)
299
{
300
// find the first hex letter representing imm
301
while(imm >= 0x10)
302
imm >>= 4;
303
304
if (imm < 0xa)
305
return false;
306
else // this need 0 prefix
307
return true;
308
}
309
310
static void printImm(MCInst *MI, SStream *O, int64_t imm, bool positive)
311
{
312
if (positive) {
313
// always print this number in positive form
314
if (MI->csh->syntax == CS_OPT_SYNTAX_MASM) {
315
if (imm < 0) {
316
if (MI->op1_size) {
317
switch(MI->op1_size) {
318
default:
319
break;
320
case 1:
321
imm &= 0xff;
322
break;
323
case 2:
324
imm &= 0xffff;
325
break;
326
case 4:
327
imm &= 0xffffffff;
328
break;
329
}
330
}
331
332
if (imm == 0x8000000000000000LL) // imm == -imm
333
SStream_concat0(O, "8000000000000000h");
334
else if (need_zero_prefix(imm))
335
SStream_concat(O, "0%"PRIx64"h", imm);
336
else
337
SStream_concat(O, "%"PRIx64"h", imm);
338
} else {
339
if (imm > HEX_THRESHOLD) {
340
if (need_zero_prefix(imm))
341
SStream_concat(O, "0%"PRIx64"h", imm);
342
else
343
SStream_concat(O, "%"PRIx64"h", imm);
344
} else
345
SStream_concat(O, "%"PRIu64, imm);
346
}
347
} else { // Intel syntax
348
if (imm < 0) {
349
if (MI->op1_size) {
350
switch(MI->op1_size) {
351
default:
352
break;
353
case 1:
354
imm &= 0xff;
355
break;
356
case 2:
357
imm &= 0xffff;
358
break;
359
case 4:
360
imm &= 0xffffffff;
361
break;
362
}
363
}
364
365
SStream_concat(O, "0x%"PRIx64, imm);
366
} else {
367
if (imm > HEX_THRESHOLD)
368
SStream_concat(O, "0x%"PRIx64, imm);
369
else
370
SStream_concat(O, "%"PRIu64, imm);
371
}
372
}
373
} else {
374
if (MI->csh->syntax == CS_OPT_SYNTAX_MASM) {
375
if (imm < 0) {
376
if (imm == 0x8000000000000000LL) // imm == -imm
377
SStream_concat0(O, "8000000000000000h");
378
else if (imm < -HEX_THRESHOLD) {
379
if (need_zero_prefix(imm))
380
SStream_concat(O, "-0%"PRIx64"h", -imm);
381
else
382
SStream_concat(O, "-%"PRIx64"h", -imm);
383
} else
384
SStream_concat(O, "-%"PRIu64, -imm);
385
} else {
386
if (imm > HEX_THRESHOLD) {
387
if (need_zero_prefix(imm))
388
SStream_concat(O, "0%"PRIx64"h", imm);
389
else
390
SStream_concat(O, "%"PRIx64"h", imm);
391
} else
392
SStream_concat(O, "%"PRIu64, imm);
393
}
394
} else { // Intel syntax
395
if (imm < 0) {
396
if (imm == 0x8000000000000000LL) // imm == -imm
397
SStream_concat0(O, "0x8000000000000000");
398
else if (imm < -HEX_THRESHOLD)
399
SStream_concat(O, "-0x%"PRIx64, -imm);
400
else
401
SStream_concat(O, "-%"PRIu64, -imm);
402
403
} else {
404
if (imm > HEX_THRESHOLD)
405
SStream_concat(O, "0x%"PRIx64, imm);
406
else
407
SStream_concat(O, "%"PRIu64, imm);
408
}
409
}
410
}
411
}
412
413
// local printOperand, without updating public operands
414
static void _printOperand(MCInst *MI, unsigned OpNo, SStream *O)
415
{
416
MCOperand *Op = MCInst_getOperand(MI, OpNo);
417
if (MCOperand_isReg(Op)) {
418
printRegName(O, MCOperand_getReg(Op));
419
} else if (MCOperand_isImm(Op)) {
420
int64_t imm = MCOperand_getImm(Op);
421
printImm(MI, O, imm, MI->csh->imm_unsigned);
422
}
423
}
424
425
#ifndef CAPSTONE_DIET
426
// copy & normalize access info
427
static void get_op_access(cs_struct *h, unsigned int id, uint8_t *access, uint64_t *eflags)
428
{
429
#ifndef CAPSTONE_DIET
430
uint8_t i;
431
const uint8_t *arr = X86_get_op_access(h, id, eflags);
432
433
if (!arr) {
434
access[0] = 0;
435
return;
436
}
437
438
// copy to access but zero out CS_AC_IGNORE
439
for(i = 0; arr[i]; i++) {
440
if (arr[i] != CS_AC_IGNORE)
441
access[i] = arr[i];
442
else
443
access[i] = 0;
444
}
445
446
// mark the end of array
447
access[i] = 0;
448
#endif
449
}
450
#endif
451
452
static void printSrcIdx(MCInst *MI, unsigned Op, SStream *O)
453
{
454
MCOperand *SegReg;
455
int reg;
456
457
if (MI->csh->detail) {
458
#ifndef CAPSTONE_DIET
459
uint8_t access[6];
460
#endif
461
462
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
463
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
464
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
465
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID;
466
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID;
467
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
468
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;
469
470
#ifndef CAPSTONE_DIET
471
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
472
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
473
#endif
474
}
475
476
SegReg = MCInst_getOperand(MI, Op + 1);
477
reg = MCOperand_getReg(SegReg);
478
479
// If this has a segment register, print it.
480
if (reg) {
481
_printOperand(MI, Op + 1, O);
482
if (MI->csh->detail) {
483
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_register_map(reg);
484
}
485
SStream_concat0(O, ":");
486
}
487
488
SStream_concat0(O, "[");
489
set_mem_access(MI, true);
490
printOperand(MI, Op, O);
491
SStream_concat0(O, "]");
492
set_mem_access(MI, false);
493
}
494
495
static void printDstIdx(MCInst *MI, unsigned Op, SStream *O)
496
{
497
if (MI->csh->detail) {
498
#ifndef CAPSTONE_DIET
499
uint8_t access[6];
500
#endif
501
502
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
503
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
504
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
505
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID;
506
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID;
507
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
508
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;
509
510
#ifndef CAPSTONE_DIET
511
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
512
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
513
#endif
514
}
515
516
// DI accesses are always ES-based on non-64bit mode
517
if (MI->csh->mode != CS_MODE_64) {
518
SStream_concat0(O, "es:[");
519
if (MI->csh->detail) {
520
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_ES;
521
}
522
} else
523
SStream_concat0(O, "[");
524
525
set_mem_access(MI, true);
526
printOperand(MI, Op, O);
527
SStream_concat0(O, "]");
528
set_mem_access(MI, false);
529
}
530
531
static void printSrcIdx8(MCInst *MI, unsigned OpNo, SStream *O)
532
{
533
SStream_concat0(O, "byte ptr ");
534
MI->x86opsize = 1;
535
printSrcIdx(MI, OpNo, O);
536
}
537
538
static void printSrcIdx16(MCInst *MI, unsigned OpNo, SStream *O)
539
{
540
SStream_concat0(O, "word ptr ");
541
MI->x86opsize = 2;
542
printSrcIdx(MI, OpNo, O);
543
}
544
545
static void printSrcIdx32(MCInst *MI, unsigned OpNo, SStream *O)
546
{
547
SStream_concat0(O, "dword ptr ");
548
MI->x86opsize = 4;
549
printSrcIdx(MI, OpNo, O);
550
}
551
552
static void printSrcIdx64(MCInst *MI, unsigned OpNo, SStream *O)
553
{
554
SStream_concat0(O, "qword ptr ");
555
MI->x86opsize = 8;
556
printSrcIdx(MI, OpNo, O);
557
}
558
559
static void printDstIdx8(MCInst *MI, unsigned OpNo, SStream *O)
560
{
561
SStream_concat0(O, "byte ptr ");
562
MI->x86opsize = 1;
563
printDstIdx(MI, OpNo, O);
564
}
565
566
static void printDstIdx16(MCInst *MI, unsigned OpNo, SStream *O)
567
{
568
SStream_concat0(O, "word ptr ");
569
MI->x86opsize = 2;
570
printDstIdx(MI, OpNo, O);
571
}
572
573
static void printDstIdx32(MCInst *MI, unsigned OpNo, SStream *O)
574
{
575
SStream_concat0(O, "dword ptr ");
576
MI->x86opsize = 4;
577
printDstIdx(MI, OpNo, O);
578
}
579
580
static void printDstIdx64(MCInst *MI, unsigned OpNo, SStream *O)
581
{
582
SStream_concat0(O, "qword ptr ");
583
MI->x86opsize = 8;
584
printDstIdx(MI, OpNo, O);
585
}
586
587
static void printMemOffset(MCInst *MI, unsigned Op, SStream *O)
588
{
589
MCOperand *DispSpec = MCInst_getOperand(MI, Op);
590
MCOperand *SegReg = MCInst_getOperand(MI, Op + 1);
591
int reg;
592
593
if (MI->csh->detail) {
594
#ifndef CAPSTONE_DIET
595
uint8_t access[6];
596
#endif
597
598
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
599
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
600
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
601
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID;
602
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID;
603
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
604
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;
605
606
#ifndef CAPSTONE_DIET
607
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
608
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
609
#endif
610
}
611
612
// If this has a segment register, print it.
613
reg = MCOperand_getReg(SegReg);
614
if (reg) {
615
_printOperand(MI, Op + 1, O);
616
SStream_concat0(O, ":");
617
if (MI->csh->detail) {
618
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_register_map(reg);
619
}
620
}
621
622
SStream_concat0(O, "[");
623
624
if (MCOperand_isImm(DispSpec)) {
625
int64_t imm = MCOperand_getImm(DispSpec);
626
if (MI->csh->detail)
627
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm;
628
629
if (imm < 0)
630
printImm(MI, O, arch_masks[MI->csh->mode] & imm, true);
631
else
632
printImm(MI, O, imm, true);
633
}
634
635
SStream_concat0(O, "]");
636
637
if (MI->csh->detail)
638
MI->flat_insn->detail->x86.op_count++;
639
640
if (MI->op1_size == 0)
641
MI->op1_size = MI->x86opsize;
642
}
643
644
static void printU8Imm(MCInst *MI, unsigned Op, SStream *O)
645
{
646
uint8_t val = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0xff;
647
648
printImm(MI, O, val, true);
649
650
if (MI->csh->detail) {
651
#ifndef CAPSTONE_DIET
652
uint8_t access[6];
653
#endif
654
655
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
656
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = val;
657
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = 1;
658
659
#ifndef CAPSTONE_DIET
660
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
661
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
662
#endif
663
664
MI->flat_insn->detail->x86.op_count++;
665
}
666
}
667
668
static void printMemOffs8(MCInst *MI, unsigned OpNo, SStream *O)
669
{
670
SStream_concat0(O, "byte ptr ");
671
MI->x86opsize = 1;
672
printMemOffset(MI, OpNo, O);
673
}
674
675
static void printMemOffs16(MCInst *MI, unsigned OpNo, SStream *O)
676
{
677
SStream_concat0(O, "word ptr ");
678
MI->x86opsize = 2;
679
printMemOffset(MI, OpNo, O);
680
}
681
682
static void printMemOffs32(MCInst *MI, unsigned OpNo, SStream *O)
683
{
684
SStream_concat0(O, "dword ptr ");
685
MI->x86opsize = 4;
686
printMemOffset(MI, OpNo, O);
687
}
688
689
static void printMemOffs64(MCInst *MI, unsigned OpNo, SStream *O)
690
{
691
SStream_concat0(O, "qword ptr ");
692
MI->x86opsize = 8;
693
printMemOffset(MI, OpNo, O);
694
}
695
696
static void printInstruction(MCInst *MI, SStream *O);
697
698
void X86_Intel_printInst(MCInst *MI, SStream *O, void *Info)
699
{
700
x86_reg reg, reg2;
701
enum cs_ac_type access1, access2;
702
703
// printf("opcode = %u\n", MCInst_getOpcode(MI));
704
705
// perhaps this instruction does not need printer
706
if (MI->assembly[0]) {
707
strncpy(O->buffer, MI->assembly, sizeof(O->buffer));
708
return;
709
}
710
711
X86_lockrep(MI, O);
712
printInstruction(MI, O);
713
714
reg = X86_insn_reg_intel(MCInst_getOpcode(MI), &access1);
715
if (MI->csh->detail) {
716
#ifndef CAPSTONE_DIET
717
uint8_t access[6] = {0};
718
#endif
719
720
// first op can be embedded in the asm by llvm.
721
// so we have to add the missing register as the first operand
722
if (reg) {
723
// shift all the ops right to leave 1st slot for this new register op
724
memmove(&(MI->flat_insn->detail->x86.operands[1]), &(MI->flat_insn->detail->x86.operands[0]),
725
sizeof(MI->flat_insn->detail->x86.operands[0]) * (ARR_SIZE(MI->flat_insn->detail->x86.operands) - 1));
726
MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG;
727
MI->flat_insn->detail->x86.operands[0].reg = reg;
728
MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg];
729
MI->flat_insn->detail->x86.operands[0].access = access1;
730
MI->flat_insn->detail->x86.op_count++;
731
} else {
732
if (X86_insn_reg_intel2(MCInst_getOpcode(MI), &reg, &access1, &reg2, &access2)) {
733
MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG;
734
MI->flat_insn->detail->x86.operands[0].reg = reg;
735
MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg];
736
MI->flat_insn->detail->x86.operands[0].access = access1;
737
MI->flat_insn->detail->x86.operands[1].type = X86_OP_REG;
738
MI->flat_insn->detail->x86.operands[1].reg = reg2;
739
MI->flat_insn->detail->x86.operands[1].size = MI->csh->regsize_map[reg2];
740
MI->flat_insn->detail->x86.operands[1].access = access2;
741
MI->flat_insn->detail->x86.op_count = 2;
742
}
743
}
744
745
#ifndef CAPSTONE_DIET
746
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
747
MI->flat_insn->detail->x86.operands[0].access = access[0];
748
MI->flat_insn->detail->x86.operands[1].access = access[1];
749
#endif
750
}
751
752
if (MI->op1_size == 0 && reg)
753
MI->op1_size = MI->csh->regsize_map[reg];
754
}
755
756
/// printPCRelImm - This is used to print an immediate value that ends up
757
/// being encoded as a pc-relative value.
758
static void printPCRelImm(MCInst *MI, unsigned OpNo, SStream *O)
759
{
760
MCOperand *Op = MCInst_getOperand(MI, OpNo);
761
if (MCOperand_isImm(Op)) {
762
int64_t imm = MCOperand_getImm(Op) + MI->flat_insn->size + MI->address;
763
uint8_t opsize = X86_immediate_size(MI->Opcode, NULL);
764
765
// truncat imm for non-64bit
766
if (MI->csh->mode != CS_MODE_64) {
767
imm = imm & 0xffffffff;
768
}
769
770
printImm(MI, O, imm, true);
771
772
if (MI->csh->detail) {
773
#ifndef CAPSTONE_DIET
774
uint8_t access[6];
775
#endif
776
777
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
778
// if op_count > 0, then this operand's size is taken from the destination op
779
if (MI->flat_insn->detail->x86.op_count > 0)
780
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->flat_insn->detail->x86.operands[0].size;
781
else if (opsize > 0)
782
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = opsize;
783
else
784
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size;
785
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm;
786
787
#ifndef CAPSTONE_DIET
788
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
789
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
790
#endif
791
792
MI->flat_insn->detail->x86.op_count++;
793
}
794
795
if (MI->op1_size == 0)
796
MI->op1_size = MI->imm_size;
797
}
798
}
799
800
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O)
801
{
802
MCOperand *Op = MCInst_getOperand(MI, OpNo);
803
804
if (MCOperand_isReg(Op)) {
805
unsigned int reg = MCOperand_getReg(Op);
806
807
printRegName(O, reg);
808
if (MI->csh->detail) {
809
if (MI->csh->doing_mem) {
810
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_register_map(reg);
811
} else {
812
#ifndef CAPSTONE_DIET
813
uint8_t access[6];
814
#endif
815
816
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_REG;
817
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].reg = X86_register_map(reg);
818
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->csh->regsize_map[X86_register_map(reg)];
819
820
#ifndef CAPSTONE_DIET
821
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
822
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
823
#endif
824
825
MI->flat_insn->detail->x86.op_count++;
826
}
827
}
828
829
if (MI->op1_size == 0)
830
MI->op1_size = MI->csh->regsize_map[X86_register_map(reg)];
831
} else if (MCOperand_isImm(Op)) {
832
uint8_t encsize;
833
int64_t imm = MCOperand_getImm(Op);
834
uint8_t opsize = X86_immediate_size(MCInst_getOpcode(MI), &encsize);
835
836
if (opsize == 1) // print 1 byte immediate in positive form
837
imm = imm & 0xff;
838
839
// printf(">>> id = %u\n", MI->flat_insn->id);
840
switch(MI->flat_insn->id) {
841
default:
842
printImm(MI, O, imm, MI->csh->imm_unsigned);
843
break;
844
845
case X86_INS_MOVABS:
846
case X86_INS_MOV:
847
// do not print number in negative form
848
printImm(MI, O, imm, true);
849
break;
850
851
case X86_INS_IN:
852
case X86_INS_OUT:
853
case X86_INS_INT:
854
// do not print number in negative form
855
imm = imm & 0xff;
856
printImm(MI, O, imm, true);
857
break;
858
859
case X86_INS_LCALL:
860
case X86_INS_LJMP:
861
case X86_INS_JMP:
862
// always print address in positive form
863
if (OpNo == 1) { // ptr16 part
864
imm = imm & 0xffff;
865
opsize = 2;
866
} else
867
opsize = 4;
868
printImm(MI, O, imm, true);
869
break;
870
871
case X86_INS_AND:
872
case X86_INS_OR:
873
case X86_INS_XOR:
874
// do not print number in negative form
875
if (imm >= 0 && imm <= HEX_THRESHOLD)
876
printImm(MI, O, imm, true);
877
else {
878
imm = arch_masks[opsize? opsize : MI->imm_size] & imm;
879
printImm(MI, O, imm, true);
880
}
881
break;
882
883
case X86_INS_RET:
884
case X86_INS_RETF:
885
// RET imm16
886
if (imm >= 0 && imm <= HEX_THRESHOLD)
887
printImm(MI, O, imm, true);
888
else {
889
imm = 0xffff & imm;
890
printImm(MI, O, imm, true);
891
}
892
break;
893
}
894
895
if (MI->csh->detail) {
896
if (MI->csh->doing_mem) {
897
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm;
898
} else {
899
#ifndef CAPSTONE_DIET
900
uint8_t access[6];
901
#endif
902
903
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
904
if (opsize > 0) {
905
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = opsize;
906
MI->flat_insn->detail->x86.encoding.imm_size = encsize;
907
} else if (MI->flat_insn->detail->x86.op_count > 0) {
908
if (MI->flat_insn->id != X86_INS_LCALL && MI->flat_insn->id != X86_INS_LJMP) {
909
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size =
910
MI->flat_insn->detail->x86.operands[0].size;
911
} else
912
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size;
913
} else
914
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size;
915
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm;
916
917
#ifndef CAPSTONE_DIET
918
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
919
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
920
#endif
921
922
MI->flat_insn->detail->x86.op_count++;
923
}
924
}
925
}
926
}
927
928
static void printMemReference(MCInst *MI, unsigned Op, SStream *O)
929
{
930
bool NeedPlus = false;
931
MCOperand *BaseReg = MCInst_getOperand(MI, Op + X86_AddrBaseReg);
932
uint64_t ScaleVal = MCOperand_getImm(MCInst_getOperand(MI, Op + X86_AddrScaleAmt));
933
MCOperand *IndexReg = MCInst_getOperand(MI, Op + X86_AddrIndexReg);
934
MCOperand *DispSpec = MCInst_getOperand(MI, Op + X86_AddrDisp);
935
MCOperand *SegReg = MCInst_getOperand(MI, Op + X86_AddrSegmentReg);
936
int reg;
937
938
if (MI->csh->detail) {
939
#ifndef CAPSTONE_DIET
940
uint8_t access[6];
941
#endif
942
943
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
944
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
945
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
946
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_register_map(MCOperand_getReg(BaseReg));
947
if (MCOperand_getReg(IndexReg) != X86_EIZ) {
948
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_register_map(MCOperand_getReg(IndexReg));
949
}
950
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = (int)ScaleVal;
951
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;
952
953
#ifndef CAPSTONE_DIET
954
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
955
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
956
#endif
957
}
958
959
// If this has a segment register, print it.
960
reg = MCOperand_getReg(SegReg);
961
if (reg) {
962
_printOperand(MI, Op + X86_AddrSegmentReg, O);
963
if (MI->csh->detail) {
964
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_register_map(reg);
965
}
966
SStream_concat0(O, ":");
967
}
968
969
SStream_concat0(O, "[");
970
971
if (MCOperand_getReg(BaseReg)) {
972
_printOperand(MI, Op + X86_AddrBaseReg, O);
973
NeedPlus = true;
974
}
975
976
if (MCOperand_getReg(IndexReg) && MCOperand_getReg(IndexReg) != X86_EIZ) {
977
if (NeedPlus) SStream_concat0(O, " + ");
978
_printOperand(MI, Op + X86_AddrIndexReg, O);
979
if (ScaleVal != 1)
980
SStream_concat(O, "*%u", ScaleVal);
981
NeedPlus = true;
982
}
983
984
if (MCOperand_isImm(DispSpec)) {
985
int64_t DispVal = MCOperand_getImm(DispSpec);
986
if (MI->csh->detail)
987
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = DispVal;
988
if (DispVal) {
989
if (NeedPlus) {
990
if (DispVal < 0) {
991
SStream_concat0(O, " - ");
992
printImm(MI, O, -DispVal, true);
993
} else {
994
SStream_concat0(O, " + ");
995
printImm(MI, O, DispVal, true);
996
}
997
} else {
998
// memory reference to an immediate address
999
if (MI->csh->mode == CS_MODE_64)
1000
MI->op1_size = 8;
1001
if (DispVal < 0) {
1002
printImm(MI, O, arch_masks[MI->csh->mode] & DispVal, true);
1003
} else {
1004
printImm(MI, O, DispVal, true);
1005
}
1006
}
1007
1008
} else {
1009
// DispVal = 0
1010
if (!NeedPlus) // [0]
1011
SStream_concat0(O, "0");
1012
}
1013
}
1014
1015
SStream_concat0(O, "]");
1016
1017
if (MI->csh->detail)
1018
MI->flat_insn->detail->x86.op_count++;
1019
1020
if (MI->op1_size == 0)
1021
MI->op1_size = MI->x86opsize;
1022
}
1023
1024
static void printanymem(MCInst *MI, unsigned OpNo, SStream *O)
1025
{
1026
switch(MI->Opcode) {
1027
default: break;
1028
case X86_LEA16r:
1029
MI->x86opsize = 2;
1030
break;
1031
case X86_LEA32r:
1032
case X86_LEA64_32r:
1033
MI->x86opsize = 4;
1034
break;
1035
case X86_LEA64r:
1036
MI->x86opsize = 8;
1037
break;
1038
case X86_BNDCL32rm:
1039
case X86_BNDCN32rm:
1040
case X86_BNDCU32rm:
1041
case X86_BNDSTXmr:
1042
case X86_BNDLDXrm:
1043
case X86_BNDCL64rm:
1044
case X86_BNDCN64rm:
1045
case X86_BNDCU64rm:
1046
MI->x86opsize = 16;
1047
break;
1048
}
1049
1050
printMemReference(MI, OpNo, O);
1051
}
1052
1053
#ifdef CAPSTONE_X86_REDUCE
1054
#include "X86GenAsmWriter1_reduce.inc"
1055
#else
1056
#include "X86GenAsmWriter1.inc"
1057
#endif
1058
1059
#include "X86GenRegisterName1.inc"
1060
1061
#endif
1062
1063