Path: blob/master/libs/compiler-rt/lib/builtins/fp_lib.h
4395 views
//===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===//1//2// The LLVM Compiler Infrastructure3//4// This file is dual licensed under the MIT and the University of Illinois Open5// Source Licenses. See LICENSE.TXT for details.6//7//===----------------------------------------------------------------------===//8//9// This file is a configuration header for soft-float routines in compiler-rt.10// This file does not provide any part of the compiler-rt interface, but defines11// many useful constants and utility routines that are used in the12// implementation of the soft-float routines in compiler-rt.13//14// Assumes that float, double and long double correspond to the IEEE-75415// binary32, binary64 and binary 128 types, respectively, and that integer16// endianness matches floating point endianness on the target platform.17//18//===----------------------------------------------------------------------===//1920#ifndef FP_LIB_HEADER21#define FP_LIB_HEADER2223#include <stdint.h>24#include <stdbool.h>25#include <limits.h>26#include "int_lib.h"27#include "int_math.h"2829// x86_64 FreeBSD prior v9.3 define fixed-width types incorrectly in30// 32-bit mode.31#if defined(__FreeBSD__) && defined(__i386__)32# include <sys/param.h>33# if __FreeBSD_version < 903000 // v9.334# define uint64_t unsigned long long35# define int64_t long long36# undef UINT64_C37# define UINT64_C(c) (c ## ULL)38# endif39#endif4041#if defined SINGLE_PRECISION4243typedef uint32_t rep_t;44typedef int32_t srep_t;45typedef float fp_t;46#define REP_C UINT32_C47#define significandBits 234849static __inline int rep_clz(rep_t a) {50return __builtin_clz(a);51}5253// 32x32 --> 64 bit multiply54static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {55const uint64_t product = (uint64_t)a*b;56*hi = product >> 32;57*lo = product;58}59COMPILER_RT_ABI fp_t __addsf3(fp_t a, fp_t b);6061#elif defined DOUBLE_PRECISION6263typedef uint64_t rep_t;64typedef int64_t srep_t;65typedef double fp_t;66#define REP_C UINT64_C67#define significandBits 526869static __inline int rep_clz(rep_t a) {70#if defined __LP64__71return __builtin_clzl(a);72#else73if (a & REP_C(0xffffffff00000000))74return __builtin_clz(a >> 32);75else76return 32 + __builtin_clz(a & REP_C(0xffffffff));77#endif78}7980#define loWord(a) (a & 0xffffffffU)81#define hiWord(a) (a >> 32)8283// 64x64 -> 128 wide multiply for platforms that don't have such an operation;84// many 64-bit platforms have this operation, but they tend to have hardware85// floating-point, so we don't bother with a special case for them here.86static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {87// Each of the component 32x32 -> 64 products88const uint64_t plolo = loWord(a) * loWord(b);89const uint64_t plohi = loWord(a) * hiWord(b);90const uint64_t philo = hiWord(a) * loWord(b);91const uint64_t phihi = hiWord(a) * hiWord(b);92// Sum terms that contribute to lo in a way that allows us to get the carry93const uint64_t r0 = loWord(plolo);94const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);95*lo = r0 + (r1 << 32);96// Sum terms contributing to hi with the carry from lo97*hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;98}99#undef loWord100#undef hiWord101102COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b);103104#elif defined QUAD_PRECISION105#if __LDBL_MANT_DIG__ == 113106#define CRT_LDBL_128BIT107typedef __uint128_t rep_t;108typedef __int128_t srep_t;109typedef long double fp_t;110#define REP_C (__uint128_t)111// Note: Since there is no explicit way to tell compiler the constant is a112// 128-bit integer, we let the constant be casted to 128-bit integer113#define significandBits 112114115static __inline int rep_clz(rep_t a) {116const union117{118__uint128_t ll;119#if _YUGA_BIG_ENDIAN120struct { uint64_t high, low; } s;121#else122struct { uint64_t low, high; } s;123#endif124} uu = { .ll = a };125126uint64_t word;127uint64_t add;128129if (uu.s.high){130word = uu.s.high;131add = 0;132}133else{134word = uu.s.low;135add = 64;136}137return __builtin_clzll(word) + add;138}139140#define Word_LoMask UINT64_C(0x00000000ffffffff)141#define Word_HiMask UINT64_C(0xffffffff00000000)142#define Word_FullMask UINT64_C(0xffffffffffffffff)143#define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask)144#define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask)145#define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask)146#define Word_4(a) (uint64_t)(a & Word_LoMask)147148// 128x128 -> 256 wide multiply for platforms that don't have such an operation;149// many 64-bit platforms have this operation, but they tend to have hardware150// floating-point, so we don't bother with a special case for them here.151static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {152153const uint64_t product11 = Word_1(a) * Word_1(b);154const uint64_t product12 = Word_1(a) * Word_2(b);155const uint64_t product13 = Word_1(a) * Word_3(b);156const uint64_t product14 = Word_1(a) * Word_4(b);157const uint64_t product21 = Word_2(a) * Word_1(b);158const uint64_t product22 = Word_2(a) * Word_2(b);159const uint64_t product23 = Word_2(a) * Word_3(b);160const uint64_t product24 = Word_2(a) * Word_4(b);161const uint64_t product31 = Word_3(a) * Word_1(b);162const uint64_t product32 = Word_3(a) * Word_2(b);163const uint64_t product33 = Word_3(a) * Word_3(b);164const uint64_t product34 = Word_3(a) * Word_4(b);165const uint64_t product41 = Word_4(a) * Word_1(b);166const uint64_t product42 = Word_4(a) * Word_2(b);167const uint64_t product43 = Word_4(a) * Word_3(b);168const uint64_t product44 = Word_4(a) * Word_4(b);169170const __uint128_t sum0 = (__uint128_t)product44;171const __uint128_t sum1 = (__uint128_t)product34 +172(__uint128_t)product43;173const __uint128_t sum2 = (__uint128_t)product24 +174(__uint128_t)product33 +175(__uint128_t)product42;176const __uint128_t sum3 = (__uint128_t)product14 +177(__uint128_t)product23 +178(__uint128_t)product32 +179(__uint128_t)product41;180const __uint128_t sum4 = (__uint128_t)product13 +181(__uint128_t)product22 +182(__uint128_t)product31;183const __uint128_t sum5 = (__uint128_t)product12 +184(__uint128_t)product21;185const __uint128_t sum6 = (__uint128_t)product11;186187const __uint128_t r0 = (sum0 & Word_FullMask) +188((sum1 & Word_LoMask) << 32);189const __uint128_t r1 = (sum0 >> 64) +190((sum1 >> 32) & Word_FullMask) +191(sum2 & Word_FullMask) +192((sum3 << 32) & Word_HiMask);193194*lo = r0 + (r1 << 64);195*hi = (r1 >> 64) +196(sum1 >> 96) +197(sum2 >> 64) +198(sum3 >> 32) +199sum4 +200(sum5 << 32) +201(sum6 << 64);202}203#undef Word_1204#undef Word_2205#undef Word_3206#undef Word_4207#undef Word_HiMask208#undef Word_LoMask209#undef Word_FullMask210#endif // __LDBL_MANT_DIG__ == 113211#else212#error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined.213#endif214215#if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || defined(CRT_LDBL_128BIT)216#define typeWidth (sizeof(rep_t)*CHAR_BIT)217#define exponentBits (typeWidth - significandBits - 1)218#define maxExponent ((1 << exponentBits) - 1)219#define exponentBias (maxExponent >> 1)220221#define implicitBit (REP_C(1) << significandBits)222#define significandMask (implicitBit - 1U)223#define signBit (REP_C(1) << (significandBits + exponentBits))224#define absMask (signBit - 1U)225#define exponentMask (absMask ^ significandMask)226#define oneRep ((rep_t)exponentBias << significandBits)227#define infRep exponentMask228#define quietBit (implicitBit >> 1)229#define qnanRep (exponentMask | quietBit)230231static __inline rep_t toRep(fp_t x) {232const union { fp_t f; rep_t i; } rep = {.f = x};233return rep.i;234}235236static __inline fp_t fromRep(rep_t x) {237const union { fp_t f; rep_t i; } rep = {.i = x};238return rep.f;239}240241static __inline int normalize(rep_t *significand) {242const int shift = rep_clz(*significand) - rep_clz(implicitBit);243*significand <<= shift;244return 1 - shift;245}246247static __inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) {248*hi = *hi << count | *lo >> (typeWidth - count);249*lo = *lo << count;250}251252static __inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, unsigned int count) {253if (count < typeWidth) {254const bool sticky = *lo << (typeWidth - count);255*lo = *hi << (typeWidth - count) | *lo >> count | sticky;256*hi = *hi >> count;257}258else if (count < 2*typeWidth) {259const bool sticky = *hi << (2*typeWidth - count) | *lo;260*lo = *hi >> (count - typeWidth) | sticky;261*hi = 0;262} else {263const bool sticky = *hi | *lo;264*lo = sticky;265*hi = 0;266}267}268269// Implements logb methods (logb, logbf, logbl) for IEEE-754. This avoids270// pulling in a libm dependency from compiler-rt, but is not meant to replace271// it (i.e. code calling logb() should get the one from libm, not this), hence272// the __compiler_rt prefix.273static __inline fp_t __compiler_rt_logbX(fp_t x) {274rep_t rep = toRep(x);275int exp = (rep & exponentMask) >> significandBits;276277// Abnormal cases:278// 1) +/- inf returns +inf; NaN returns NaN279// 2) 0.0 returns -inf280if (exp == maxExponent) {281if (((rep & signBit) == 0) || (x != x)) {282return x; // NaN or +inf: return x283} else {284return -x; // -inf: return -x285}286} else if (x == 0.0) {287// 0.0: return -inf288return fromRep(infRep | signBit);289}290291if (exp != 0) {292// Normal number293return exp - exponentBias; // Unbias exponent294} else {295// Subnormal number; normalize and repeat296rep &= absMask;297const int shift = 1 - normalize(&rep);298exp = (rep & exponentMask) >> significandBits;299return exp - exponentBias - shift; // Unbias exponent300}301}302#endif303304#if defined(SINGLE_PRECISION)305static __inline fp_t __compiler_rt_logbf(fp_t x) {306return __compiler_rt_logbX(x);307}308#elif defined(DOUBLE_PRECISION)309static __inline fp_t __compiler_rt_logb(fp_t x) {310return __compiler_rt_logbX(x);311}312#elif defined(QUAD_PRECISION)313#if defined(CRT_LDBL_128BIT)314static __inline fp_t __compiler_rt_logbl(fp_t x) {315return __compiler_rt_logbX(x);316}317#else318// The generic implementation only works for ieee754 floating point. For other319// floating point types, continue to rely on the libm implementation for now.320static __inline long double __compiler_rt_logbl(long double x) {321return crt_logbl(x);322}323#endif324#endif325326#endif // FP_LIB_HEADER327328329