Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/compiler-rt/lib/builtins/fp_lib.h
4395 views
1
//===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===//
2
//
3
// The LLVM Compiler Infrastructure
4
//
5
// This file is dual licensed under the MIT and the University of Illinois Open
6
// Source Licenses. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file is a configuration header for soft-float routines in compiler-rt.
11
// This file does not provide any part of the compiler-rt interface, but defines
12
// many useful constants and utility routines that are used in the
13
// implementation of the soft-float routines in compiler-rt.
14
//
15
// Assumes that float, double and long double correspond to the IEEE-754
16
// binary32, binary64 and binary 128 types, respectively, and that integer
17
// endianness matches floating point endianness on the target platform.
18
//
19
//===----------------------------------------------------------------------===//
20
21
#ifndef FP_LIB_HEADER
22
#define FP_LIB_HEADER
23
24
#include <stdint.h>
25
#include <stdbool.h>
26
#include <limits.h>
27
#include "int_lib.h"
28
#include "int_math.h"
29
30
// x86_64 FreeBSD prior v9.3 define fixed-width types incorrectly in
31
// 32-bit mode.
32
#if defined(__FreeBSD__) && defined(__i386__)
33
# include <sys/param.h>
34
# if __FreeBSD_version < 903000 // v9.3
35
# define uint64_t unsigned long long
36
# define int64_t long long
37
# undef UINT64_C
38
# define UINT64_C(c) (c ## ULL)
39
# endif
40
#endif
41
42
#if defined SINGLE_PRECISION
43
44
typedef uint32_t rep_t;
45
typedef int32_t srep_t;
46
typedef float fp_t;
47
#define REP_C UINT32_C
48
#define significandBits 23
49
50
static __inline int rep_clz(rep_t a) {
51
return __builtin_clz(a);
52
}
53
54
// 32x32 --> 64 bit multiply
55
static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
56
const uint64_t product = (uint64_t)a*b;
57
*hi = product >> 32;
58
*lo = product;
59
}
60
COMPILER_RT_ABI fp_t __addsf3(fp_t a, fp_t b);
61
62
#elif defined DOUBLE_PRECISION
63
64
typedef uint64_t rep_t;
65
typedef int64_t srep_t;
66
typedef double fp_t;
67
#define REP_C UINT64_C
68
#define significandBits 52
69
70
static __inline int rep_clz(rep_t a) {
71
#if defined __LP64__
72
return __builtin_clzl(a);
73
#else
74
if (a & REP_C(0xffffffff00000000))
75
return __builtin_clz(a >> 32);
76
else
77
return 32 + __builtin_clz(a & REP_C(0xffffffff));
78
#endif
79
}
80
81
#define loWord(a) (a & 0xffffffffU)
82
#define hiWord(a) (a >> 32)
83
84
// 64x64 -> 128 wide multiply for platforms that don't have such an operation;
85
// many 64-bit platforms have this operation, but they tend to have hardware
86
// floating-point, so we don't bother with a special case for them here.
87
static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
88
// Each of the component 32x32 -> 64 products
89
const uint64_t plolo = loWord(a) * loWord(b);
90
const uint64_t plohi = loWord(a) * hiWord(b);
91
const uint64_t philo = hiWord(a) * loWord(b);
92
const uint64_t phihi = hiWord(a) * hiWord(b);
93
// Sum terms that contribute to lo in a way that allows us to get the carry
94
const uint64_t r0 = loWord(plolo);
95
const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
96
*lo = r0 + (r1 << 32);
97
// Sum terms contributing to hi with the carry from lo
98
*hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;
99
}
100
#undef loWord
101
#undef hiWord
102
103
COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b);
104
105
#elif defined QUAD_PRECISION
106
#if __LDBL_MANT_DIG__ == 113
107
#define CRT_LDBL_128BIT
108
typedef __uint128_t rep_t;
109
typedef __int128_t srep_t;
110
typedef long double fp_t;
111
#define REP_C (__uint128_t)
112
// Note: Since there is no explicit way to tell compiler the constant is a
113
// 128-bit integer, we let the constant be casted to 128-bit integer
114
#define significandBits 112
115
116
static __inline int rep_clz(rep_t a) {
117
const union
118
{
119
__uint128_t ll;
120
#if _YUGA_BIG_ENDIAN
121
struct { uint64_t high, low; } s;
122
#else
123
struct { uint64_t low, high; } s;
124
#endif
125
} uu = { .ll = a };
126
127
uint64_t word;
128
uint64_t add;
129
130
if (uu.s.high){
131
word = uu.s.high;
132
add = 0;
133
}
134
else{
135
word = uu.s.low;
136
add = 64;
137
}
138
return __builtin_clzll(word) + add;
139
}
140
141
#define Word_LoMask UINT64_C(0x00000000ffffffff)
142
#define Word_HiMask UINT64_C(0xffffffff00000000)
143
#define Word_FullMask UINT64_C(0xffffffffffffffff)
144
#define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask)
145
#define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask)
146
#define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask)
147
#define Word_4(a) (uint64_t)(a & Word_LoMask)
148
149
// 128x128 -> 256 wide multiply for platforms that don't have such an operation;
150
// many 64-bit platforms have this operation, but they tend to have hardware
151
// floating-point, so we don't bother with a special case for them here.
152
static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
153
154
const uint64_t product11 = Word_1(a) * Word_1(b);
155
const uint64_t product12 = Word_1(a) * Word_2(b);
156
const uint64_t product13 = Word_1(a) * Word_3(b);
157
const uint64_t product14 = Word_1(a) * Word_4(b);
158
const uint64_t product21 = Word_2(a) * Word_1(b);
159
const uint64_t product22 = Word_2(a) * Word_2(b);
160
const uint64_t product23 = Word_2(a) * Word_3(b);
161
const uint64_t product24 = Word_2(a) * Word_4(b);
162
const uint64_t product31 = Word_3(a) * Word_1(b);
163
const uint64_t product32 = Word_3(a) * Word_2(b);
164
const uint64_t product33 = Word_3(a) * Word_3(b);
165
const uint64_t product34 = Word_3(a) * Word_4(b);
166
const uint64_t product41 = Word_4(a) * Word_1(b);
167
const uint64_t product42 = Word_4(a) * Word_2(b);
168
const uint64_t product43 = Word_4(a) * Word_3(b);
169
const uint64_t product44 = Word_4(a) * Word_4(b);
170
171
const __uint128_t sum0 = (__uint128_t)product44;
172
const __uint128_t sum1 = (__uint128_t)product34 +
173
(__uint128_t)product43;
174
const __uint128_t sum2 = (__uint128_t)product24 +
175
(__uint128_t)product33 +
176
(__uint128_t)product42;
177
const __uint128_t sum3 = (__uint128_t)product14 +
178
(__uint128_t)product23 +
179
(__uint128_t)product32 +
180
(__uint128_t)product41;
181
const __uint128_t sum4 = (__uint128_t)product13 +
182
(__uint128_t)product22 +
183
(__uint128_t)product31;
184
const __uint128_t sum5 = (__uint128_t)product12 +
185
(__uint128_t)product21;
186
const __uint128_t sum6 = (__uint128_t)product11;
187
188
const __uint128_t r0 = (sum0 & Word_FullMask) +
189
((sum1 & Word_LoMask) << 32);
190
const __uint128_t r1 = (sum0 >> 64) +
191
((sum1 >> 32) & Word_FullMask) +
192
(sum2 & Word_FullMask) +
193
((sum3 << 32) & Word_HiMask);
194
195
*lo = r0 + (r1 << 64);
196
*hi = (r1 >> 64) +
197
(sum1 >> 96) +
198
(sum2 >> 64) +
199
(sum3 >> 32) +
200
sum4 +
201
(sum5 << 32) +
202
(sum6 << 64);
203
}
204
#undef Word_1
205
#undef Word_2
206
#undef Word_3
207
#undef Word_4
208
#undef Word_HiMask
209
#undef Word_LoMask
210
#undef Word_FullMask
211
#endif // __LDBL_MANT_DIG__ == 113
212
#else
213
#error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined.
214
#endif
215
216
#if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || defined(CRT_LDBL_128BIT)
217
#define typeWidth (sizeof(rep_t)*CHAR_BIT)
218
#define exponentBits (typeWidth - significandBits - 1)
219
#define maxExponent ((1 << exponentBits) - 1)
220
#define exponentBias (maxExponent >> 1)
221
222
#define implicitBit (REP_C(1) << significandBits)
223
#define significandMask (implicitBit - 1U)
224
#define signBit (REP_C(1) << (significandBits + exponentBits))
225
#define absMask (signBit - 1U)
226
#define exponentMask (absMask ^ significandMask)
227
#define oneRep ((rep_t)exponentBias << significandBits)
228
#define infRep exponentMask
229
#define quietBit (implicitBit >> 1)
230
#define qnanRep (exponentMask | quietBit)
231
232
static __inline rep_t toRep(fp_t x) {
233
const union { fp_t f; rep_t i; } rep = {.f = x};
234
return rep.i;
235
}
236
237
static __inline fp_t fromRep(rep_t x) {
238
const union { fp_t f; rep_t i; } rep = {.i = x};
239
return rep.f;
240
}
241
242
static __inline int normalize(rep_t *significand) {
243
const int shift = rep_clz(*significand) - rep_clz(implicitBit);
244
*significand <<= shift;
245
return 1 - shift;
246
}
247
248
static __inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) {
249
*hi = *hi << count | *lo >> (typeWidth - count);
250
*lo = *lo << count;
251
}
252
253
static __inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, unsigned int count) {
254
if (count < typeWidth) {
255
const bool sticky = *lo << (typeWidth - count);
256
*lo = *hi << (typeWidth - count) | *lo >> count | sticky;
257
*hi = *hi >> count;
258
}
259
else if (count < 2*typeWidth) {
260
const bool sticky = *hi << (2*typeWidth - count) | *lo;
261
*lo = *hi >> (count - typeWidth) | sticky;
262
*hi = 0;
263
} else {
264
const bool sticky = *hi | *lo;
265
*lo = sticky;
266
*hi = 0;
267
}
268
}
269
270
// Implements logb methods (logb, logbf, logbl) for IEEE-754. This avoids
271
// pulling in a libm dependency from compiler-rt, but is not meant to replace
272
// it (i.e. code calling logb() should get the one from libm, not this), hence
273
// the __compiler_rt prefix.
274
static __inline fp_t __compiler_rt_logbX(fp_t x) {
275
rep_t rep = toRep(x);
276
int exp = (rep & exponentMask) >> significandBits;
277
278
// Abnormal cases:
279
// 1) +/- inf returns +inf; NaN returns NaN
280
// 2) 0.0 returns -inf
281
if (exp == maxExponent) {
282
if (((rep & signBit) == 0) || (x != x)) {
283
return x; // NaN or +inf: return x
284
} else {
285
return -x; // -inf: return -x
286
}
287
} else if (x == 0.0) {
288
// 0.0: return -inf
289
return fromRep(infRep | signBit);
290
}
291
292
if (exp != 0) {
293
// Normal number
294
return exp - exponentBias; // Unbias exponent
295
} else {
296
// Subnormal number; normalize and repeat
297
rep &= absMask;
298
const int shift = 1 - normalize(&rep);
299
exp = (rep & exponentMask) >> significandBits;
300
return exp - exponentBias - shift; // Unbias exponent
301
}
302
}
303
#endif
304
305
#if defined(SINGLE_PRECISION)
306
static __inline fp_t __compiler_rt_logbf(fp_t x) {
307
return __compiler_rt_logbX(x);
308
}
309
#elif defined(DOUBLE_PRECISION)
310
static __inline fp_t __compiler_rt_logb(fp_t x) {
311
return __compiler_rt_logbX(x);
312
}
313
#elif defined(QUAD_PRECISION)
314
#if defined(CRT_LDBL_128BIT)
315
static __inline fp_t __compiler_rt_logbl(fp_t x) {
316
return __compiler_rt_logbX(x);
317
}
318
#else
319
// The generic implementation only works for ieee754 floating point. For other
320
// floating point types, continue to rely on the libm implementation for now.
321
static __inline long double __compiler_rt_logbl(long double x) {
322
return crt_logbl(x);
323
}
324
#endif
325
#endif
326
327
#endif // FP_LIB_HEADER
328
329