Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/gsm/src/add.c
4393 views
1
/*
2
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
4
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5
*/
6
7
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/add.c,v 1.6 1996/07/02 09:57:33 jutta Exp $ */
8
9
/*
10
* See private.h for the more commonly used macro versions.
11
*/
12
13
#include <stdio.h>
14
#include <assert.h>
15
16
#include "private.h"
17
#include "gsm.h"
18
#include "proto.h"
19
20
#define saturate(x) \
21
((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
22
23
word gsm_add P2((a,b), word a, word b)
24
{
25
longword sum = (longword)a + (longword)b;
26
return saturate(sum);
27
}
28
29
word gsm_sub P2((a,b), word a, word b)
30
{
31
longword diff = (longword)a - (longword)b;
32
return saturate(diff);
33
}
34
35
word gsm_mult P2((a,b), word a, word b)
36
{
37
if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD;
38
else return SASR( (longword)a * (longword)b, 15 );
39
}
40
41
word gsm_mult_r P2((a,b), word a, word b)
42
{
43
if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD;
44
else {
45
longword prod = (longword)a * (longword)b + 16384;
46
prod >>= 15;
47
return prod & 0xFFFF;
48
}
49
}
50
51
word gsm_abs P1((a), word a)
52
{
53
return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
54
}
55
56
longword gsm_L_mult P2((a,b),word a, word b)
57
{
58
assert( a != MIN_WORD || b != MIN_WORD );
59
return ((longword)a * (longword)b) << 1;
60
}
61
62
longword gsm_L_add P2((a,b), longword a, longword b)
63
{
64
if (a < 0) {
65
if (b >= 0) return a + b;
66
else {
67
ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
68
return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
69
}
70
}
71
else if (b <= 0) return a + b;
72
else {
73
ulongword A = (ulongword)a + (ulongword)b;
74
return A > MAX_LONGWORD ? MAX_LONGWORD : A;
75
}
76
}
77
78
longword gsm_L_sub P2((a,b), longword a, longword b)
79
{
80
if (a >= 0) {
81
if (b >= 0) return a - b;
82
else {
83
/* a>=0, b<0 */
84
85
ulongword A = (ulongword)a + -(b + 1);
86
return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
87
}
88
}
89
else if (b <= 0) return a - b;
90
else {
91
/* a<0, b>0 */
92
93
ulongword A = (ulongword)-(a + 1) + b;
94
return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1;
95
}
96
}
97
98
static unsigned char const bitoff[ 256 ] = {
99
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
100
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
101
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
102
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
103
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
104
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
105
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
106
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
107
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
108
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
109
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
110
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
111
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
112
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
113
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
114
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
115
};
116
117
word gsm_norm P1((a), longword a )
118
/*
119
* the number of left shifts needed to normalize the 32 bit
120
* variable L_var1 for positive values on the interval
121
*
122
* with minimum of
123
* minimum of 1073741824 (01000000000000000000000000000000) and
124
* maximum of 2147483647 (01111111111111111111111111111111)
125
*
126
*
127
* and for negative values on the interval with
128
* minimum of -2147483648 (-10000000000000000000000000000000) and
129
* maximum of -1073741824 ( -1000000000000000000000000000000).
130
*
131
* in order to normalize the result, the following
132
* operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
133
*
134
* (That's 'ffs', only from the left, not the right..)
135
*/
136
{
137
assert(a != 0);
138
139
if (a < 0) {
140
if (a <= -1073741824) return 0;
141
a = ~a;
142
}
143
144
return a & 0xffff0000
145
? ( a & 0xff000000
146
? -1 + bitoff[ 0xFF & (a >> 24) ]
147
: 7 + bitoff[ 0xFF & (a >> 16) ] )
148
: ( a & 0xff00
149
? 15 + bitoff[ 0xFF & (a >> 8) ]
150
: 23 + bitoff[ 0xFF & a ] );
151
}
152
153
longword gsm_L_asl P2((a,n), longword a, int n)
154
{
155
if (n >= 32) return 0;
156
if (n <= -32) return -(a < 0);
157
if (n < 0) return gsm_L_asr(a, -n);
158
return a << n;
159
}
160
161
word gsm_asl P2((a,n), word a, int n)
162
{
163
if (n >= 16) return 0;
164
if (n <= -16) return -(a < 0);
165
if (n < 0) return gsm_asr(a, -n);
166
return a << n;
167
}
168
169
longword gsm_L_asr P2((a,n), longword a, int n)
170
{
171
if (n >= 32) return -(a < 0);
172
if (n <= -32) return 0;
173
if (n < 0) return a << -n;
174
175
# ifdef SASR
176
return a >> n;
177
# else
178
if (a >= 0) return a >> n;
179
else return -(longword)( -(ulongword)a >> n );
180
# endif
181
}
182
183
word gsm_asr P2((a,n), word a, int n)
184
{
185
if (n >= 16) return -(a < 0);
186
if (n <= -16) return 0;
187
if (n < 0) return a << -n;
188
189
# ifdef SASR
190
return a >> n;
191
# else
192
if (a >= 0) return a >> n;
193
else return -(word)( -(uword)a >> n );
194
# endif
195
}
196
197
/*
198
* (From p. 46, end of section 4.2.5)
199
*
200
* NOTE: The following lines gives [sic] one correct implementation
201
* of the div(num, denum) arithmetic operation. Compute div
202
* which is the integer division of num by denum: with denum
203
* >= num > 0
204
*/
205
206
word gsm_div P2((num,denum), word num, word denum)
207
{
208
longword L_num = num;
209
longword L_denum = denum;
210
word div = 0;
211
int k = 15;
212
213
/* The parameter num sometimes becomes zero.
214
* Although this is explicitly guarded against in 4.2.5,
215
* we assume that the result should then be zero as well.
216
*/
217
218
/* assert(num != 0); */
219
220
assert(num >= 0 && denum >= num);
221
if (num == 0)
222
return 0;
223
224
while (k--) {
225
div <<= 1;
226
L_num <<= 1;
227
228
if (L_num >= L_denum) {
229
L_num -= L_denum;
230
div++;
231
}
232
}
233
234
return div;
235
}
236
237