Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/gsm/src/rpe.c
4394 views
1
/*
2
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
4
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5
*/
6
7
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/rpe.c,v 1.3 1994/05/10 20:18:46 jutta Exp $ */
8
9
#include <stdio.h>
10
#include <assert.h>
11
12
#include "private.h"
13
14
#include "gsm.h"
15
#include "proto.h"
16
17
/* 4.2.13 .. 4.2.17 RPE ENCODING SECTION
18
*/
19
20
/* 4.2.13 */
21
22
static void Weighting_filter P2((e, x),
23
register word * e, /* signal [-5..0.39.44] IN */
24
word * x /* signal [0..39] OUT */
25
)
26
/*
27
* The coefficients of the weighting filter are stored in a table
28
* (see table 4.4). The following scaling is used:
29
*
30
* H[0..10] = integer( real_H[ 0..10] * 8192 );
31
*/
32
{
33
/* word wt[ 50 ]; */
34
35
register longword L_result;
36
register int k /* , i */ ;
37
38
/* Initialization of a temporary working array wt[0...49]
39
*/
40
41
/* for (k = 0; k <= 4; k++) wt[k] = 0;
42
* for (k = 5; k <= 44; k++) wt[k] = *e++;
43
* for (k = 45; k <= 49; k++) wt[k] = 0;
44
*
45
* (e[-5..-1] and e[40..44] are allocated by the caller,
46
* are initially zero and are not written anywhere.)
47
*/
48
e -= 5;
49
50
/* Compute the signal x[0..39]
51
*/
52
for (k = 0; k <= 39; k++) {
53
54
L_result = 8192 >> 1;
55
56
/* for (i = 0; i <= 10; i++) {
57
* L_temp = GSM_L_MULT( wt[k+i], gsm_H[i] );
58
* L_result = GSM_L_ADD( L_result, L_temp );
59
* }
60
*/
61
62
#undef STEP
63
#define STEP( i, H ) (e[ k + i ] * (longword)H)
64
65
/* Every one of these multiplications is done twice --
66
* but I don't see an elegant way to optimize this.
67
* Do you?
68
*/
69
70
#ifdef STUPID_COMPILER
71
L_result += STEP( 0, -134 ) ;
72
L_result += STEP( 1, -374 ) ;
73
/* + STEP( 2, 0 ) */
74
L_result += STEP( 3, 2054 ) ;
75
L_result += STEP( 4, 5741 ) ;
76
L_result += STEP( 5, 8192 ) ;
77
L_result += STEP( 6, 5741 ) ;
78
L_result += STEP( 7, 2054 ) ;
79
/* + STEP( 8, 0 ) */
80
L_result += STEP( 9, -374 ) ;
81
L_result += STEP( 10, -134 ) ;
82
#else
83
L_result +=
84
STEP( 0, -134 )
85
+ STEP( 1, -374 )
86
/* + STEP( 2, 0 ) */
87
+ STEP( 3, 2054 )
88
+ STEP( 4, 5741 )
89
+ STEP( 5, 8192 )
90
+ STEP( 6, 5741 )
91
+ STEP( 7, 2054 )
92
/* + STEP( 8, 0 ) */
93
+ STEP( 9, -374 )
94
+ STEP(10, -134 )
95
;
96
#endif
97
98
/* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *)
99
* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *)
100
*
101
* x[k] = SASR( L_result, 16 );
102
*/
103
104
/* 2 adds vs. >>16 => 14, minus one shift to compensate for
105
* those we lost when replacing L_MULT by '*'.
106
*/
107
108
L_result = SASR( L_result, 13 );
109
x[k] = ( L_result < MIN_WORD ? MIN_WORD
110
: (L_result > MAX_WORD ? MAX_WORD : L_result ));
111
}
112
}
113
114
/* 4.2.14 */
115
116
static void RPE_grid_selection P3((x,xM,Mc_out),
117
word * x, /* [0..39] IN */
118
word * xM, /* [0..12] OUT */
119
word * Mc_out /* OUT */
120
)
121
/*
122
* The signal x[0..39] is used to select the RPE grid which is
123
* represented by Mc.
124
*/
125
{
126
/* register word temp1; */
127
register int /* m, */ i;
128
register longword L_result, L_temp;
129
longword EM; /* xxx should be L_EM? */
130
word Mc;
131
132
longword L_common_0_3;
133
134
EM = 0;
135
Mc = 0;
136
137
/* for (m = 0; m <= 3; m++) {
138
* L_result = 0;
139
*
140
*
141
* for (i = 0; i <= 12; i++) {
142
*
143
* temp1 = SASR( x[m + 3*i], 2 );
144
*
145
* assert(temp1 != MIN_WORD);
146
*
147
* L_temp = GSM_L_MULT( temp1, temp1 );
148
* L_result = GSM_L_ADD( L_temp, L_result );
149
* }
150
*
151
* if (L_result > EM) {
152
* Mc = m;
153
* EM = L_result;
154
* }
155
* }
156
*/
157
158
#undef STEP
159
#define STEP( m, i ) L_temp = SASR( x[m + 3 * i], 2 ); \
160
L_result += L_temp * L_temp;
161
162
/* common part of 0 and 3 */
163
164
L_result = 0;
165
STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 );
166
STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 );
167
STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12);
168
L_common_0_3 = L_result;
169
170
/* i = 0 */
171
172
STEP( 0, 0 );
173
L_result <<= 1; /* implicit in L_MULT */
174
EM = L_result;
175
176
/* i = 1 */
177
178
L_result = 0;
179
STEP( 1, 0 );
180
STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 );
181
STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 );
182
STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12);
183
L_result <<= 1;
184
if (L_result > EM) {
185
Mc = 1;
186
EM = L_result;
187
}
188
189
/* i = 2 */
190
191
L_result = 0;
192
STEP( 2, 0 );
193
STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 );
194
STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 );
195
STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12);
196
L_result <<= 1;
197
if (L_result > EM) {
198
Mc = 2;
199
EM = L_result;
200
}
201
202
/* i = 3 */
203
204
L_result = L_common_0_3;
205
STEP( 3, 12 );
206
L_result <<= 1;
207
if (L_result > EM) {
208
Mc = 3;
209
EM = L_result;
210
}
211
212
/**/
213
214
/* Down-sampling by a factor 3 to get the selected xM[0..12]
215
* RPE sequence.
216
*/
217
for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i];
218
*Mc_out = Mc;
219
}
220
221
/* 4.12.15 */
222
223
static void APCM_quantization_xmaxc_to_exp_mant P3((xmaxc,exp_out,mant_out),
224
word xmaxc, /* IN */
225
word * exp_out, /* OUT */
226
word * mant_out ) /* OUT */
227
{
228
word exp, mant;
229
230
/* Compute exponent and mantissa of the decoded version of xmaxc
231
*/
232
233
exp = 0;
234
if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1;
235
mant = xmaxc - (exp << 3);
236
237
if (mant == 0) {
238
exp = -4;
239
mant = 7;
240
}
241
else {
242
while (mant <= 7) {
243
mant = mant << 1 | 1;
244
exp--;
245
}
246
mant -= 8;
247
}
248
249
assert( exp >= -4 && exp <= 6 );
250
assert( mant >= 0 && mant <= 7 );
251
252
*exp_out = exp;
253
*mant_out = mant;
254
}
255
256
static void APCM_quantization P5((xM,xMc,mant_out,exp_out,xmaxc_out),
257
word * xM, /* [0..12] IN */
258
259
word * xMc, /* [0..12] OUT */
260
word * mant_out, /* OUT */
261
word * exp_out, /* OUT */
262
word * xmaxc_out /* OUT */
263
)
264
{
265
int i, itest;
266
267
word xmax, xmaxc, temp, temp1, temp2;
268
word exp, mant;
269
270
271
/* Find the maximum absolute value xmax of xM[0..12].
272
*/
273
274
xmax = 0;
275
for (i = 0; i <= 12; i++) {
276
temp = xM[i];
277
temp = GSM_ABS(temp);
278
if (temp > xmax) xmax = temp;
279
}
280
281
/* Qantizing and coding of xmax to get xmaxc.
282
*/
283
284
exp = 0;
285
temp = SASR( xmax, 9 );
286
itest = 0;
287
288
for (i = 0; i <= 5; i++) {
289
290
itest |= (temp <= 0);
291
temp = SASR( temp, 1 );
292
293
assert(exp <= 5);
294
if (itest == 0) exp++; /* exp = add (exp, 1) */
295
}
296
297
assert(exp <= 6 && exp >= 0);
298
temp = exp + 5;
299
300
assert(temp <= 11 && temp >= 0);
301
xmaxc = gsm_add( SASR(xmax, temp), exp << 3 );
302
303
/* Quantizing and coding of the xM[0..12] RPE sequence
304
* to get the xMc[0..12]
305
*/
306
307
APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant );
308
309
/* This computation uses the fact that the decoded version of xmaxc
310
* can be calculated by using the exponent and the mantissa part of
311
* xmaxc (logarithmic table).
312
* So, this method avoids any division and uses only a scaling
313
* of the RPE samples by a function of the exponent. A direct
314
* multiplication by the inverse of the mantissa (NRFAC[0..7]
315
* found in table 4.5) gives the 3 bit coded version xMc[0..12]
316
* of the RPE samples.
317
*/
318
319
320
/* Direct computation of xMc[0..12] using table 4.5
321
*/
322
323
assert( exp <= 4096 && exp >= -4096);
324
assert( mant >= 0 && mant <= 7 );
325
326
temp1 = 6 - exp; /* normalization by the exponent */
327
temp2 = gsm_NRFAC[ mant ]; /* inverse mantissa */
328
329
for (i = 0; i <= 12; i++) {
330
331
assert(temp1 >= 0 && temp1 < 16);
332
333
temp = xM[i] << temp1;
334
temp = GSM_MULT( temp, temp2 );
335
temp = SASR(temp, 12);
336
xMc[i] = temp + 4; /* see note below */
337
}
338
339
/* NOTE: This equation is used to make all the xMc[i] positive.
340
*/
341
342
*mant_out = mant;
343
*exp_out = exp;
344
*xmaxc_out = xmaxc;
345
}
346
347
/* 4.2.16 */
348
349
static void APCM_inverse_quantization P4((xMc,mant,exp,xMp),
350
register word * xMc, /* [0..12] IN */
351
word mant,
352
word exp,
353
register word * xMp) /* [0..12] OUT */
354
/*
355
* This part is for decoding the RPE sequence of coded xMc[0..12]
356
* samples to obtain the xMp[0..12] array. Table 4.6 is used to get
357
* the mantissa of xmaxc (FAC[0..7]).
358
*/
359
{
360
int i;
361
word temp, temp1, temp2, temp3;
362
longword ltmp;
363
364
assert( mant >= 0 && mant <= 7 );
365
366
temp1 = gsm_FAC[ mant ]; /* see 4.2-15 for mant */
367
temp2 = gsm_sub( 6, exp ); /* see 4.2-15 for exp */
368
temp3 = gsm_asl( 1, gsm_sub( temp2, 1 ));
369
370
for (i = 13; i--;) {
371
372
assert( *xMc <= 7 && *xMc >= 0 ); /* 3 bit unsigned */
373
374
/* temp = gsm_sub( *xMc++ << 1, 7 ); */
375
temp = (*xMc++ << 1) - 7; /* restore sign */
376
assert( temp <= 7 && temp >= -7 ); /* 4 bit signed */
377
378
temp <<= 12; /* 16 bit signed */
379
temp = GSM_MULT_R( temp1, temp );
380
temp = GSM_ADD( temp, temp3 );
381
*xMp++ = gsm_asr( temp, temp2 );
382
}
383
}
384
385
/* 4.2.17 */
386
387
static void RPE_grid_positioning P3((Mc,xMp,ep),
388
word Mc, /* grid position IN */
389
register word * xMp, /* [0..12] IN */
390
register word * ep /* [0..39] OUT */
391
)
392
/*
393
* This procedure computes the reconstructed long term residual signal
394
* ep[0..39] for the LTP analysis filter. The inputs are the Mc
395
* which is the grid position selection and the xMp[0..12] decoded
396
* RPE samples which are upsampled by a factor of 3 by inserting zero
397
* values.
398
*/
399
{
400
int i = 13;
401
402
assert(0 <= Mc && Mc <= 3);
403
404
switch (Mc) {
405
case 3: *ep++ = 0;
406
case 2: do {
407
*ep++ = 0;
408
case 1: *ep++ = 0;
409
case 0: *ep++ = *xMp++;
410
} while (--i);
411
}
412
while (++Mc < 4) *ep++ = 0;
413
414
/*
415
416
int i, k;
417
for (k = 0; k <= 39; k++) ep[k] = 0;
418
for (i = 0; i <= 12; i++) {
419
ep[ Mc + (3*i) ] = xMp[i];
420
}
421
*/
422
}
423
424
/* 4.2.18 */
425
426
/* This procedure adds the reconstructed long term residual signal
427
* ep[0..39] to the estimated signal dpp[0..39] from the long term
428
* analysis filter to compute the reconstructed short term residual
429
* signal dp[-40..-1]; also the reconstructed short term residual
430
* array dp[-120..-41] is updated.
431
*/
432
433
#if 0 /* Has been inlined in code.c */
434
void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp),
435
word * dpp, /* [0...39] IN */
436
word * ep, /* [0...39] IN */
437
word * dp) /* [-120...-1] IN/OUT */
438
{
439
int k;
440
441
for (k = 0; k <= 79; k++)
442
dp[ -120 + k ] = dp[ -80 + k ];
443
444
for (k = 0; k <= 39; k++)
445
dp[ -40 + k ] = gsm_add( ep[k], dpp[k] );
446
}
447
#endif /* Has been inlined in code.c */
448
449
void Gsm_RPE_Encoding P5((S,e,xmaxc,Mc,xMc),
450
451
struct gsm_state * S,
452
453
word * e, /* -5..-1][0..39][40..44 IN/OUT */
454
word * xmaxc, /* OUT */
455
word * Mc, /* OUT */
456
word * xMc) /* [0..12] OUT */
457
{
458
word x[40];
459
word xM[13], xMp[13];
460
word mant, exp;
461
462
Weighting_filter(e, x);
463
RPE_grid_selection(x, xM, Mc);
464
465
APCM_quantization( xM, xMc, &mant, &exp, xmaxc);
466
APCM_inverse_quantization( xMc, mant, exp, xMp);
467
468
RPE_grid_positioning( *Mc, xMp, e );
469
470
}
471
472
void Gsm_RPE_Decoding P5((S, xmaxcr, Mcr, xMcr, erp),
473
struct gsm_state * S,
474
475
word xmaxcr,
476
word Mcr,
477
word * xMcr, /* [0..12], 3 bits IN */
478
word * erp /* [0..39] OUT */
479
)
480
{
481
word exp, mant;
482
word xMp[ 13 ];
483
484
APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant );
485
APCM_inverse_quantization( xMcr, mant, exp, xMp );
486
RPE_grid_positioning( Mcr, xMp, erp );
487
488
}
489
490