Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/gsm/src/short_term.c
4393 views
1
/*
2
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
4
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5
*/
6
7
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/short_term.c,v 1.2 1994/05/10 20:18:47 jutta Exp $ */
8
9
#include <stdio.h>
10
#include <assert.h>
11
12
#include "private.h"
13
14
#include "gsm.h"
15
#include "proto.h"
16
17
/*
18
* SHORT TERM ANALYSIS FILTERING SECTION
19
*/
20
21
/* 4.2.8 */
22
23
static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp),
24
word * LARc, /* coded log area ratio [0..7] IN */
25
word * LARpp) /* out: decoded .. */
26
{
27
register word temp1 /* , temp2 */;
28
register long ltmp; /* for GSM_ADD */
29
30
/* This procedure requires for efficient implementation
31
* two tables.
32
*
33
* INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
34
* MIC[1..8] = minimum value of the LARc[1..8]
35
*/
36
37
/* Compute the LARpp[1..8]
38
*/
39
40
/* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
41
*
42
* temp1 = GSM_ADD( *LARc, *MIC ) << 10;
43
* temp2 = *B << 1;
44
* temp1 = GSM_SUB( temp1, temp2 );
45
*
46
* assert(*INVA != MIN_WORD);
47
*
48
* temp1 = GSM_MULT_R( *INVA, temp1 );
49
* *LARpp = GSM_ADD( temp1, temp1 );
50
* }
51
*/
52
53
#undef STEP
54
#define STEP( B_TIMES_TWO, MIC, INVA ) \
55
temp1 = GSM_ADD( *LARc++, MIC ) << 10; \
56
temp1 = GSM_SUB( temp1, B_TIMES_TWO ); \
57
temp1 = GSM_MULT_R( INVA, temp1 ); \
58
*LARpp++ = GSM_ADD( temp1, temp1 );
59
60
STEP( 0, -32, 13107 );
61
STEP( 0, -32, 13107 );
62
STEP( 4096, -16, 13107 );
63
STEP( -5120, -16, 13107 );
64
65
STEP( 188, -8, 19223 );
66
STEP( -3584, -8, 17476 );
67
STEP( -682, -4, 31454 );
68
STEP( -2288, -4, 29708 );
69
70
/* NOTE: the addition of *MIC is used to restore
71
* the sign of *LARc.
72
*/
73
}
74
75
/* 4.2.9 */
76
/* Computation of the quantized reflection coefficients
77
*/
78
79
/* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8]
80
*/
81
82
/*
83
* Within each frame of 160 analyzed speech samples the short term
84
* analysis and synthesis filters operate with four different sets of
85
* coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
86
* and the actual set of decoded LARs (LARpp(j))
87
*
88
* (Initial value: LARpp(j-1)[1..8] = 0.)
89
*/
90
91
static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp),
92
register word * LARpp_j_1,
93
register word * LARpp_j,
94
register word * LARp)
95
{
96
register int i;
97
register longword ltmp;
98
99
for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
100
*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
101
*LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1));
102
}
103
}
104
105
static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp),
106
register word * LARpp_j_1,
107
register word * LARpp_j,
108
register word * LARp)
109
{
110
register int i;
111
register longword ltmp;
112
for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
113
*LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
114
}
115
}
116
117
static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp),
118
register word * LARpp_j_1,
119
register word * LARpp_j,
120
register word * LARp)
121
{
122
register int i;
123
register longword ltmp;
124
125
for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
126
*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
127
*LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
128
}
129
}
130
131
132
static void Coefficients_40_159 P2((LARpp_j, LARp),
133
register word * LARpp_j,
134
register word * LARp)
135
{
136
register int i;
137
138
for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
139
*LARp = *LARpp_j;
140
}
141
142
/* 4.2.9.2 */
143
144
static void LARp_to_rp P1((LARp),
145
register word * LARp) /* [0..7] IN/OUT */
146
/*
147
* The input of this procedure is the interpolated LARp[0..7] array.
148
* The reflection coefficients, rp[i], are used in the analysis
149
* filter and in the synthesis filter.
150
*/
151
{
152
register int i;
153
register word temp;
154
register longword ltmp;
155
156
for (i = 1; i <= 8; i++, LARp++) {
157
158
/* temp = GSM_ABS( *LARp );
159
*
160
* if (temp < 11059) temp <<= 1;
161
* else if (temp < 20070) temp += 11059;
162
* else temp = GSM_ADD( temp >> 2, 26112 );
163
*
164
* *LARp = *LARp < 0 ? -temp : temp;
165
*/
166
167
if (*LARp < 0) {
168
temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
169
*LARp = - ((temp < 11059) ? temp << 1
170
: ((temp < 20070) ? temp + 11059
171
: GSM_ADD( temp >> 2, 26112 )));
172
} else {
173
temp = *LARp;
174
*LARp = (temp < 11059) ? temp << 1
175
: ((temp < 20070) ? temp + 11059
176
: GSM_ADD( temp >> 2, 26112 ));
177
}
178
}
179
}
180
181
182
/* 4.2.10 */
183
static void Short_term_analysis_filtering P4((S,rp,k_n,s),
184
struct gsm_state * S,
185
register word * rp, /* [0..7] IN */
186
register int k_n, /* k_end - k_start */
187
register word * s /* [0..n-1] IN/OUT */
188
)
189
/*
190
* This procedure computes the short term residual signal d[..] to be fed
191
* to the RPE-LTP loop from the s[..] signal and from the local rp[..]
192
* array (quantized reflection coefficients). As the call of this
193
* procedure can be done in many ways (see the interpolation of the LAR
194
* coefficient), it is assumed that the computation begins with index
195
* k_start (for arrays d[..] and s[..]) and stops with index k_end
196
* (k_start and k_end are defined in 4.2.9.1). This procedure also
197
* needs to keep the array u[0..7] in memory for each call.
198
*/
199
{
200
register word * u = S->u;
201
register int i;
202
register word di, zzz, ui, sav, rpi;
203
register longword ltmp;
204
205
for (; k_n--; s++) {
206
207
di = sav = *s;
208
209
for (i = 0; i < 8; i++) { /* YYY */
210
211
ui = u[i];
212
rpi = rp[i];
213
u[i] = sav;
214
215
zzz = GSM_MULT_R(rpi, di);
216
sav = GSM_ADD( ui, zzz);
217
218
zzz = GSM_MULT_R(rpi, ui);
219
di = GSM_ADD( di, zzz );
220
}
221
222
*s = di;
223
}
224
}
225
226
#if defined(USE_FLOAT_MUL) && defined(FAST)
227
228
static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s),
229
struct gsm_state * S,
230
register word * rp, /* [0..7] IN */
231
register int k_n, /* k_end - k_start */
232
register word * s /* [0..n-1] IN/OUT */
233
)
234
{
235
register word * u = S->u;
236
register int i;
237
238
float uf[8],
239
rpf[8];
240
241
register float scalef = 3.0517578125e-5;
242
register float sav, di, temp;
243
244
for (i = 0; i < 8; ++i) {
245
uf[i] = u[i];
246
rpf[i] = rp[i] * scalef;
247
}
248
for (; k_n--; s++) {
249
sav = di = *s;
250
for (i = 0; i < 8; ++i) {
251
register float rpfi = rpf[i];
252
register float ufi = uf[i];
253
254
uf[i] = sav;
255
temp = rpfi * di + ufi;
256
di += rpfi * ufi;
257
sav = temp;
258
}
259
*s = di;
260
}
261
for (i = 0; i < 8; ++i) u[i] = uf[i];
262
}
263
#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
264
265
static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
266
struct gsm_state * S,
267
register word * rrp, /* [0..7] IN */
268
register int k, /* k_end - k_start */
269
register word * wt, /* [0..k-1] IN */
270
register word * sr /* [0..k-1] OUT */
271
)
272
{
273
register word * v = S->v;
274
register int i;
275
register word sri, tmp1, tmp2;
276
register longword ltmp; /* for GSM_ADD & GSM_SUB */
277
278
while (k--) {
279
sri = *wt++;
280
for (i = 8; i--;) {
281
282
/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
283
*/
284
tmp1 = rrp[i];
285
tmp2 = v[i];
286
tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
287
? MAX_WORD
288
: 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
289
+ 16384) >> 15)) ;
290
291
sri = GSM_SUB( sri, tmp2 );
292
293
/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
294
*/
295
tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD
296
? MAX_WORD
297
: 0x0FFFF & (( (longword)tmp1 * (longword)sri
298
+ 16384) >> 15)) ;
299
300
v[i+1] = GSM_ADD( v[i], tmp1);
301
}
302
*sr++ = v[0] = sri;
303
}
304
}
305
306
307
#if defined(FAST) && defined(USE_FLOAT_MUL)
308
309
static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
310
struct gsm_state * S,
311
register word * rrp, /* [0..7] IN */
312
register int k, /* k_end - k_start */
313
register word * wt, /* [0..k-1] IN */
314
register word * sr /* [0..k-1] OUT */
315
)
316
{
317
register word * v = S->v;
318
register int i;
319
320
float va[9], rrpa[8];
321
register float scalef = 3.0517578125e-5, temp;
322
323
for (i = 0; i < 8; ++i) {
324
va[i] = v[i];
325
rrpa[i] = (float)rrp[i] * scalef;
326
}
327
while (k--) {
328
register float sri = *wt++;
329
for (i = 8; i--;) {
330
sri -= rrpa[i] * va[i];
331
if (sri < -32768.) sri = -32768.;
332
else if (sri > 32767.) sri = 32767.;
333
334
temp = va[i] + rrpa[i] * sri;
335
if (temp < -32768.) temp = -32768.;
336
else if (temp > 32767.) temp = 32767.;
337
va[i+1] = temp;
338
}
339
*sr++ = va[0] = sri;
340
}
341
for (i = 0; i < 9; ++i) v[i] = va[i];
342
}
343
344
#endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
345
346
void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),
347
348
struct gsm_state * S,
349
350
word * LARc, /* coded log area ratio [0..7] IN */
351
word * s /* signal [0..159] IN/OUT */
352
)
353
{
354
word * LARpp_j = S->LARpp[ S->j ];
355
word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ];
356
357
word LARp[8];
358
359
#undef FILTER
360
#if defined(FAST) && defined(USE_FLOAT_MUL)
361
# define FILTER (* (S->fast \
362
? Fast_Short_term_analysis_filtering \
363
: Short_term_analysis_filtering ))
364
365
#else
366
# define FILTER Short_term_analysis_filtering
367
#endif
368
369
Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
370
371
Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
372
LARp_to_rp( LARp );
373
FILTER( S, LARp, 13, s);
374
375
Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
376
LARp_to_rp( LARp );
377
FILTER( S, LARp, 14, s + 13);
378
379
Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
380
LARp_to_rp( LARp );
381
FILTER( S, LARp, 13, s + 27);
382
383
Coefficients_40_159( LARpp_j, LARp);
384
LARp_to_rp( LARp );
385
FILTER( S, LARp, 120, s + 40);
386
}
387
388
void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),
389
struct gsm_state * S,
390
391
word * LARcr, /* received log area ratios [0..7] IN */
392
word * wt, /* received d [0..159] IN */
393
394
word * s /* signal s [0..159] OUT */
395
)
396
{
397
word * LARpp_j = S->LARpp[ S->j ];
398
word * LARpp_j_1 = S->LARpp[ S->j ^=1 ];
399
400
word LARp[8];
401
402
#undef FILTER
403
#if defined(FAST) && defined(USE_FLOAT_MUL)
404
405
# define FILTER (* (S->fast \
406
? Fast_Short_term_synthesis_filtering \
407
: Short_term_synthesis_filtering ))
408
#else
409
# define FILTER Short_term_synthesis_filtering
410
#endif
411
412
Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
413
414
Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
415
LARp_to_rp( LARp );
416
FILTER( S, LARp, 13, wt, s );
417
418
Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
419
LARp_to_rp( LARp );
420
FILTER( S, LARp, 14, wt + 13, s + 13 );
421
422
Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
423
LARp_to_rp( LARp );
424
FILTER( S, LARp, 13, wt + 27, s + 27 );
425
426
Coefficients_40_159( LARpp_j, LARp );
427
LARp_to_rp( LARp );
428
FILTER(S, LARp, 120, wt + 40, s + 40);
429
}
430
431