Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jcarith.c
4393 views
1
/*
2
* jcarith.c
3
*
4
* Developed 1997-2020 by Guido Vollbeding.
5
* This file is part of the Independent JPEG Group's software.
6
* For conditions of distribution and use, see the accompanying README file.
7
*
8
* This file contains portable arithmetic entropy encoding routines for JPEG
9
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10
*
11
* Both sequential and progressive modes are supported in this single module.
12
*
13
* Suspension is not currently supported in this module.
14
*/
15
16
#define JPEG_INTERNALS
17
#include "jinclude.h"
18
#include "jpeglib.h"
19
20
21
/* Expanded entropy encoder object for arithmetic encoding. */
22
23
typedef struct {
24
struct jpeg_entropy_encoder pub; /* public fields */
25
26
INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
27
INT32 a; /* A register, normalized size of coding interval */
28
INT32 sc; /* counter for stacked 0xFF values which might overflow */
29
INT32 zc; /* counter for pending 0x00 output values which might *
30
* be discarded at the end ("Pacman" termination) */
31
int ct; /* bit shift counter, determines when next byte will be written */
32
int buffer; /* buffer for most recent output byte != 0xFF */
33
34
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
35
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
36
37
unsigned int restarts_to_go; /* MCUs left in this restart interval */
38
int next_restart_num; /* next restart number to write (0-7) */
39
40
/* Pointers to statistics areas (these workspaces have image lifespan) */
41
unsigned char * dc_stats[NUM_ARITH_TBLS];
42
unsigned char * ac_stats[NUM_ARITH_TBLS];
43
44
/* Statistics bin for coding with fixed probability 0.5 */
45
unsigned char fixed_bin[4];
46
} arith_entropy_encoder;
47
48
typedef arith_entropy_encoder * arith_entropy_ptr;
49
50
/* The following two definitions specify the allocation chunk size
51
* for the statistics area.
52
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
53
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
54
*
55
* We use a compact representation with 1 byte per statistics bin,
56
* thus the numbers directly represent byte sizes.
57
* This 1 byte per statistics bin contains the meaning of the MPS
58
* (more probable symbol) in the highest bit (mask 0x80), and the
59
* index into the probability estimation state machine table
60
* in the lower bits (mask 0x7F).
61
*/
62
63
#define DC_STAT_BINS 64
64
#define AC_STAT_BINS 256
65
66
/* NOTE: Uncomment the following #define if you want to use the
67
* given formula for calculating the AC conditioning parameter Kx
68
* for spectral selection progressive coding in section G.1.3.2
69
* of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
70
* Although the spec and P&M authors claim that this "has proven
71
* to give good results for 8 bit precision samples", I'm not
72
* convinced yet that this is really beneficial.
73
* Early tests gave only very marginal compression enhancements
74
* (a few - around 5 or so - bytes even for very large files),
75
* which would turn out rather negative if we'd suppress the
76
* DAC (Define Arithmetic Conditioning) marker segments for
77
* the default parameters in the future.
78
* Note that currently the marker writing module emits 12-byte
79
* DAC segments for a full-component scan in a color image.
80
* This is not worth worrying about IMHO. However, since the
81
* spec defines the default values to be used if the tables
82
* are omitted (unlike Huffman tables, which are required
83
* anyway), one might optimize this behaviour in the future,
84
* and then it would be disadvantageous to use custom tables if
85
* they don't provide sufficient gain to exceed the DAC size.
86
*
87
* On the other hand, I'd consider it as a reasonable result
88
* that the conditioning has no significant influence on the
89
* compression performance. This means that the basic
90
* statistical model is already rather stable.
91
*
92
* Thus, at the moment, we use the default conditioning values
93
* anyway, and do not use the custom formula.
94
*
95
#define CALCULATE_SPECTRAL_CONDITIONING
96
*/
97
98
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
99
* We assume that int right shift is unsigned if INT32 right shift is,
100
* which should be safe.
101
*/
102
103
#ifdef RIGHT_SHIFT_IS_UNSIGNED
104
#define ISHIFT_TEMPS int ishift_temp;
105
#define IRIGHT_SHIFT(x,shft) \
106
((ishift_temp = (x)) < 0 ? \
107
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
108
(ishift_temp >> (shft)))
109
#else
110
#define ISHIFT_TEMPS
111
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
112
#endif
113
114
115
LOCAL(void)
116
emit_byte (int val, j_compress_ptr cinfo)
117
/* Write next output byte; we do not support suspension in this module. */
118
{
119
struct jpeg_destination_mgr * dest = cinfo->dest;
120
121
*dest->next_output_byte++ = (JOCTET) val;
122
if (--dest->free_in_buffer == 0)
123
if (! (*dest->empty_output_buffer) (cinfo))
124
ERREXIT(cinfo, JERR_CANT_SUSPEND);
125
}
126
127
128
/*
129
* Finish up at the end of an arithmetic-compressed scan.
130
*/
131
132
METHODDEF(void)
133
finish_pass (j_compress_ptr cinfo)
134
{
135
arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
136
INT32 temp;
137
138
/* Section D.1.8: Termination of encoding */
139
140
/* Find the e->c in the coding interval with the largest
141
* number of trailing zero bits */
142
if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
143
e->c = temp + 0x8000L;
144
else
145
e->c = temp;
146
/* Send remaining bytes to output */
147
e->c <<= e->ct;
148
if (e->c & 0xF8000000L) {
149
/* One final overflow has to be handled */
150
if (e->buffer >= 0) {
151
if (e->zc)
152
do emit_byte(0x00, cinfo);
153
while (--e->zc);
154
emit_byte(e->buffer + 1, cinfo);
155
if (e->buffer + 1 == 0xFF)
156
emit_byte(0x00, cinfo);
157
}
158
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
159
e->sc = 0;
160
} else {
161
if (e->buffer == 0)
162
++e->zc;
163
else if (e->buffer >= 0) {
164
if (e->zc)
165
do emit_byte(0x00, cinfo);
166
while (--e->zc);
167
emit_byte(e->buffer, cinfo);
168
}
169
if (e->sc) {
170
if (e->zc)
171
do emit_byte(0x00, cinfo);
172
while (--e->zc);
173
do {
174
emit_byte(0xFF, cinfo);
175
emit_byte(0x00, cinfo);
176
} while (--e->sc);
177
}
178
}
179
/* Output final bytes only if they are not 0x00 */
180
if (e->c & 0x7FFF800L) {
181
if (e->zc) /* output final pending zero bytes */
182
do emit_byte(0x00, cinfo);
183
while (--e->zc);
184
emit_byte((int) ((e->c >> 19) & 0xFF), cinfo);
185
if (((e->c >> 19) & 0xFF) == 0xFF)
186
emit_byte(0x00, cinfo);
187
if (e->c & 0x7F800L) {
188
emit_byte((int) ((e->c >> 11) & 0xFF), cinfo);
189
if (((e->c >> 11) & 0xFF) == 0xFF)
190
emit_byte(0x00, cinfo);
191
}
192
}
193
}
194
195
196
/*
197
* The core arithmetic encoding routine (common in JPEG and JBIG).
198
* This needs to go as fast as possible.
199
* Machine-dependent optimization facilities
200
* are not utilized in this portable implementation.
201
* However, this code should be fairly efficient and
202
* may be a good base for further optimizations anyway.
203
*
204
* Parameter 'val' to be encoded may be 0 or 1 (binary decision).
205
*
206
* Note: I've added full "Pacman" termination support to the
207
* byte output routines, which is equivalent to the optional
208
* Discard_final_zeros procedure (Figure D.15) in the spec.
209
* Thus, we always produce the shortest possible output
210
* stream compliant to the spec (no trailing zero bytes,
211
* except for FF stuffing).
212
*
213
* I've also introduced a new scheme for accessing
214
* the probability estimation state machine table,
215
* derived from Markus Kuhn's JBIG implementation.
216
*/
217
218
LOCAL(void)
219
arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
220
{
221
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
222
register unsigned char nl, nm;
223
register INT32 qe, temp;
224
register int sv;
225
226
/* Fetch values from our compact representation of Table D.3(D.2):
227
* Qe values and probability estimation state machine
228
*/
229
sv = *st;
230
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
231
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
232
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
233
234
/* Encode & estimation procedures per sections D.1.4 & D.1.5 */
235
e->a -= qe;
236
if (val != (sv >> 7)) {
237
/* Encode the less probable symbol */
238
if (e->a >= qe) {
239
/* If the interval size (qe) for the less probable symbol (LPS)
240
* is larger than the interval size for the MPS, then exchange
241
* the two symbols for coding efficiency, otherwise code the LPS
242
* as usual: */
243
e->c += e->a;
244
e->a = qe;
245
}
246
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
247
} else {
248
/* Encode the more probable symbol */
249
if (e->a >= 0x8000L)
250
return; /* A >= 0x8000 -> ready, no renormalization required */
251
if (e->a < qe) {
252
/* If the interval size (qe) for the less probable symbol (LPS)
253
* is larger than the interval size for the MPS, then exchange
254
* the two symbols for coding efficiency: */
255
e->c += e->a;
256
e->a = qe;
257
}
258
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
259
}
260
261
/* Renormalization & data output per section D.1.6 */
262
do {
263
e->a <<= 1;
264
e->c <<= 1;
265
if (--e->ct == 0) {
266
/* Another byte is ready for output */
267
temp = e->c >> 19;
268
if (temp > 0xFF) {
269
/* Handle overflow over all stacked 0xFF bytes */
270
if (e->buffer >= 0) {
271
if (e->zc)
272
do emit_byte(0x00, cinfo);
273
while (--e->zc);
274
emit_byte(e->buffer + 1, cinfo);
275
if (e->buffer + 1 == 0xFF)
276
emit_byte(0x00, cinfo);
277
}
278
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
279
e->sc = 0;
280
/* Note: The 3 spacer bits in the C register guarantee
281
* that the new buffer byte can't be 0xFF here
282
* (see page 160 in the P&M JPEG book). */
283
/* New output byte, might overflow later */
284
e->buffer = (int) (temp & 0xFF);
285
} else if (temp == 0xFF) {
286
++e->sc; /* stack 0xFF byte (which might overflow later) */
287
} else {
288
/* Output all stacked 0xFF bytes, they will not overflow any more */
289
if (e->buffer == 0)
290
++e->zc;
291
else if (e->buffer >= 0) {
292
if (e->zc)
293
do emit_byte(0x00, cinfo);
294
while (--e->zc);
295
emit_byte(e->buffer, cinfo);
296
}
297
if (e->sc) {
298
if (e->zc)
299
do emit_byte(0x00, cinfo);
300
while (--e->zc);
301
do {
302
emit_byte(0xFF, cinfo);
303
emit_byte(0x00, cinfo);
304
} while (--e->sc);
305
}
306
/* New output byte (can still overflow) */
307
e->buffer = (int) (temp & 0xFF);
308
}
309
e->c &= 0x7FFFFL;
310
e->ct += 8;
311
}
312
} while (e->a < 0x8000L);
313
}
314
315
316
/*
317
* Emit a restart marker & resynchronize predictions.
318
*/
319
320
LOCAL(void)
321
emit_restart (j_compress_ptr cinfo, int restart_num)
322
{
323
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
324
int ci;
325
jpeg_component_info * compptr;
326
327
finish_pass(cinfo);
328
329
emit_byte(0xFF, cinfo);
330
emit_byte(JPEG_RST0 + restart_num, cinfo);
331
332
/* Re-initialize statistics areas */
333
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
334
compptr = cinfo->cur_comp_info[ci];
335
/* DC needs no table for refinement scan */
336
if (cinfo->Ss == 0 && cinfo->Ah == 0) {
337
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
338
/* Reset DC predictions to 0 */
339
entropy->last_dc_val[ci] = 0;
340
entropy->dc_context[ci] = 0;
341
}
342
/* AC needs no table when not present */
343
if (cinfo->Se) {
344
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
345
}
346
}
347
348
/* Reset arithmetic encoding variables */
349
entropy->c = 0;
350
entropy->a = 0x10000L;
351
entropy->sc = 0;
352
entropy->zc = 0;
353
entropy->ct = 11;
354
entropy->buffer = -1; /* empty */
355
}
356
357
358
/*
359
* MCU encoding for DC initial scan (either spectral selection,
360
* or first pass of successive approximation).
361
*/
362
363
METHODDEF(boolean)
364
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
365
{
366
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
367
unsigned char *st;
368
int blkn, ci, tbl;
369
int v, v2, m;
370
ISHIFT_TEMPS
371
372
/* Emit restart marker if needed */
373
if (cinfo->restart_interval) {
374
if (entropy->restarts_to_go == 0) {
375
emit_restart(cinfo, entropy->next_restart_num);
376
entropy->restarts_to_go = cinfo->restart_interval;
377
entropy->next_restart_num++;
378
entropy->next_restart_num &= 7;
379
}
380
entropy->restarts_to_go--;
381
}
382
383
/* Encode the MCU data blocks */
384
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
385
ci = cinfo->MCU_membership[blkn];
386
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
387
388
/* Compute the DC value after the required point transform by Al.
389
* This is simply an arithmetic right shift.
390
*/
391
m = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
392
393
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
394
395
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
396
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
397
398
/* Figure F.4: Encode_DC_DIFF */
399
if ((v = m - entropy->last_dc_val[ci]) == 0) {
400
arith_encode(cinfo, st, 0);
401
entropy->dc_context[ci] = 0; /* zero diff category */
402
} else {
403
entropy->last_dc_val[ci] = m;
404
arith_encode(cinfo, st, 1);
405
/* Figure F.6: Encoding nonzero value v */
406
/* Figure F.7: Encoding the sign of v */
407
if (v > 0) {
408
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
409
st += 2; /* Table F.4: SP = S0 + 2 */
410
entropy->dc_context[ci] = 4; /* small positive diff category */
411
} else {
412
v = -v;
413
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
414
st += 3; /* Table F.4: SN = S0 + 3 */
415
entropy->dc_context[ci] = 8; /* small negative diff category */
416
}
417
/* Figure F.8: Encoding the magnitude category of v */
418
m = 0;
419
if (v -= 1) {
420
arith_encode(cinfo, st, 1);
421
m = 1;
422
v2 = v;
423
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
424
while (v2 >>= 1) {
425
arith_encode(cinfo, st, 1);
426
m <<= 1;
427
st += 1;
428
}
429
}
430
arith_encode(cinfo, st, 0);
431
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
432
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
433
entropy->dc_context[ci] = 0; /* zero diff category */
434
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
435
entropy->dc_context[ci] += 8; /* large diff category */
436
/* Figure F.9: Encoding the magnitude bit pattern of v */
437
st += 14;
438
while (m >>= 1)
439
arith_encode(cinfo, st, (m & v) ? 1 : 0);
440
}
441
}
442
443
return TRUE;
444
}
445
446
447
/*
448
* MCU encoding for AC initial scan (either spectral selection,
449
* or first pass of successive approximation).
450
*/
451
452
METHODDEF(boolean)
453
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
454
{
455
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
456
const int * natural_order;
457
JBLOCKROW block;
458
unsigned char *st;
459
int tbl, k, ke;
460
int v, v2, m;
461
462
/* Emit restart marker if needed */
463
if (cinfo->restart_interval) {
464
if (entropy->restarts_to_go == 0) {
465
emit_restart(cinfo, entropy->next_restart_num);
466
entropy->restarts_to_go = cinfo->restart_interval;
467
entropy->next_restart_num++;
468
entropy->next_restart_num &= 7;
469
}
470
entropy->restarts_to_go--;
471
}
472
473
natural_order = cinfo->natural_order;
474
475
/* Encode the MCU data block */
476
block = MCU_data[0];
477
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
478
479
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
480
481
/* Establish EOB (end-of-block) index */
482
ke = cinfo->Se;
483
do {
484
/* We must apply the point transform by Al. For AC coefficients this
485
* is an integer division with rounding towards 0. To do this portably
486
* in C, we shift after obtaining the absolute value.
487
*/
488
if ((v = (*block)[natural_order[ke]]) >= 0) {
489
if (v >>= cinfo->Al) break;
490
} else {
491
v = -v;
492
if (v >>= cinfo->Al) break;
493
}
494
} while (--ke);
495
496
/* Figure F.5: Encode_AC_Coefficients */
497
for (k = cinfo->Ss - 1; k < ke;) {
498
st = entropy->ac_stats[tbl] + 3 * k;
499
arith_encode(cinfo, st, 0); /* EOB decision */
500
for (;;) {
501
if ((v = (*block)[natural_order[++k]]) >= 0) {
502
if (v >>= cinfo->Al) {
503
arith_encode(cinfo, st + 1, 1);
504
arith_encode(cinfo, entropy->fixed_bin, 0);
505
break;
506
}
507
} else {
508
v = -v;
509
if (v >>= cinfo->Al) {
510
arith_encode(cinfo, st + 1, 1);
511
arith_encode(cinfo, entropy->fixed_bin, 1);
512
break;
513
}
514
}
515
arith_encode(cinfo, st + 1, 0);
516
st += 3;
517
}
518
st += 2;
519
/* Figure F.8: Encoding the magnitude category of v */
520
m = 0;
521
if (v -= 1) {
522
arith_encode(cinfo, st, 1);
523
m = 1;
524
v2 = v;
525
if (v2 >>= 1) {
526
arith_encode(cinfo, st, 1);
527
m <<= 1;
528
st = entropy->ac_stats[tbl] +
529
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
530
while (v2 >>= 1) {
531
arith_encode(cinfo, st, 1);
532
m <<= 1;
533
st += 1;
534
}
535
}
536
}
537
arith_encode(cinfo, st, 0);
538
/* Figure F.9: Encoding the magnitude bit pattern of v */
539
st += 14;
540
while (m >>= 1)
541
arith_encode(cinfo, st, (m & v) ? 1 : 0);
542
}
543
/* Encode EOB decision only if k < cinfo->Se */
544
if (k < cinfo->Se) {
545
st = entropy->ac_stats[tbl] + 3 * k;
546
arith_encode(cinfo, st, 1);
547
}
548
549
return TRUE;
550
}
551
552
553
/*
554
* MCU encoding for DC successive approximation refinement scan.
555
* Note: we assume such scans can be multi-component,
556
* although the spec is not very clear on the point.
557
*/
558
559
METHODDEF(boolean)
560
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
561
{
562
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
563
unsigned char *st;
564
int Al, blkn;
565
566
/* Emit restart marker if needed */
567
if (cinfo->restart_interval) {
568
if (entropy->restarts_to_go == 0) {
569
emit_restart(cinfo, entropy->next_restart_num);
570
entropy->restarts_to_go = cinfo->restart_interval;
571
entropy->next_restart_num++;
572
entropy->next_restart_num &= 7;
573
}
574
entropy->restarts_to_go--;
575
}
576
577
st = entropy->fixed_bin; /* use fixed probability estimation */
578
Al = cinfo->Al;
579
580
/* Encode the MCU data blocks */
581
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
582
/* We simply emit the Al'th bit of the DC coefficient value. */
583
arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
584
}
585
586
return TRUE;
587
}
588
589
590
/*
591
* MCU encoding for AC successive approximation refinement scan.
592
*/
593
594
METHODDEF(boolean)
595
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
596
{
597
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
598
const int * natural_order;
599
JBLOCKROW block;
600
unsigned char *st;
601
int tbl, k, ke, kex;
602
int v;
603
604
/* Emit restart marker if needed */
605
if (cinfo->restart_interval) {
606
if (entropy->restarts_to_go == 0) {
607
emit_restart(cinfo, entropy->next_restart_num);
608
entropy->restarts_to_go = cinfo->restart_interval;
609
entropy->next_restart_num++;
610
entropy->next_restart_num &= 7;
611
}
612
entropy->restarts_to_go--;
613
}
614
615
natural_order = cinfo->natural_order;
616
617
/* Encode the MCU data block */
618
block = MCU_data[0];
619
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
620
621
/* Section G.1.3.3: Encoding of AC coefficients */
622
623
/* Establish EOB (end-of-block) index */
624
ke = cinfo->Se;
625
do {
626
/* We must apply the point transform by Al. For AC coefficients this
627
* is an integer division with rounding towards 0. To do this portably
628
* in C, we shift after obtaining the absolute value.
629
*/
630
if ((v = (*block)[natural_order[ke]]) >= 0) {
631
if (v >>= cinfo->Al) break;
632
} else {
633
v = -v;
634
if (v >>= cinfo->Al) break;
635
}
636
} while (--ke);
637
638
/* Establish EOBx (previous stage end-of-block) index */
639
for (kex = ke; kex > 0; kex--)
640
if ((v = (*block)[natural_order[kex]]) >= 0) {
641
if (v >>= cinfo->Ah) break;
642
} else {
643
v = -v;
644
if (v >>= cinfo->Ah) break;
645
}
646
647
/* Figure G.10: Encode_AC_Coefficients_SA */
648
for (k = cinfo->Ss - 1; k < ke;) {
649
st = entropy->ac_stats[tbl] + 3 * k;
650
if (k >= kex)
651
arith_encode(cinfo, st, 0); /* EOB decision */
652
for (;;) {
653
if ((v = (*block)[natural_order[++k]]) >= 0) {
654
if (v >>= cinfo->Al) {
655
if (v >> 1) /* previously nonzero coef */
656
arith_encode(cinfo, st + 2, (v & 1));
657
else { /* newly nonzero coef */
658
arith_encode(cinfo, st + 1, 1);
659
arith_encode(cinfo, entropy->fixed_bin, 0);
660
}
661
break;
662
}
663
} else {
664
v = -v;
665
if (v >>= cinfo->Al) {
666
if (v >> 1) /* previously nonzero coef */
667
arith_encode(cinfo, st + 2, (v & 1));
668
else { /* newly nonzero coef */
669
arith_encode(cinfo, st + 1, 1);
670
arith_encode(cinfo, entropy->fixed_bin, 1);
671
}
672
break;
673
}
674
}
675
arith_encode(cinfo, st + 1, 0);
676
st += 3;
677
}
678
}
679
/* Encode EOB decision only if k < cinfo->Se */
680
if (k < cinfo->Se) {
681
st = entropy->ac_stats[tbl] + 3 * k;
682
arith_encode(cinfo, st, 1);
683
}
684
685
return TRUE;
686
}
687
688
689
/*
690
* Encode and output one MCU's worth of arithmetic-compressed coefficients.
691
*/
692
693
METHODDEF(boolean)
694
encode_mcu (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
695
{
696
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
697
const int * natural_order;
698
JBLOCKROW block;
699
unsigned char *st;
700
int tbl, k, ke;
701
int v, v2, m;
702
int blkn, ci;
703
jpeg_component_info * compptr;
704
705
/* Emit restart marker if needed */
706
if (cinfo->restart_interval) {
707
if (entropy->restarts_to_go == 0) {
708
emit_restart(cinfo, entropy->next_restart_num);
709
entropy->restarts_to_go = cinfo->restart_interval;
710
entropy->next_restart_num++;
711
entropy->next_restart_num &= 7;
712
}
713
entropy->restarts_to_go--;
714
}
715
716
natural_order = cinfo->natural_order;
717
718
/* Encode the MCU data blocks */
719
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
720
block = MCU_data[blkn];
721
ci = cinfo->MCU_membership[blkn];
722
compptr = cinfo->cur_comp_info[ci];
723
724
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
725
726
tbl = compptr->dc_tbl_no;
727
728
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
729
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
730
731
/* Figure F.4: Encode_DC_DIFF */
732
if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
733
arith_encode(cinfo, st, 0);
734
entropy->dc_context[ci] = 0; /* zero diff category */
735
} else {
736
entropy->last_dc_val[ci] = (*block)[0];
737
arith_encode(cinfo, st, 1);
738
/* Figure F.6: Encoding nonzero value v */
739
/* Figure F.7: Encoding the sign of v */
740
if (v > 0) {
741
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
742
st += 2; /* Table F.4: SP = S0 + 2 */
743
entropy->dc_context[ci] = 4; /* small positive diff category */
744
} else {
745
v = -v;
746
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
747
st += 3; /* Table F.4: SN = S0 + 3 */
748
entropy->dc_context[ci] = 8; /* small negative diff category */
749
}
750
/* Figure F.8: Encoding the magnitude category of v */
751
m = 0;
752
if (v -= 1) {
753
arith_encode(cinfo, st, 1);
754
m = 1;
755
v2 = v;
756
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
757
while (v2 >>= 1) {
758
arith_encode(cinfo, st, 1);
759
m <<= 1;
760
st += 1;
761
}
762
}
763
arith_encode(cinfo, st, 0);
764
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
765
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
766
entropy->dc_context[ci] = 0; /* zero diff category */
767
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
768
entropy->dc_context[ci] += 8; /* large diff category */
769
/* Figure F.9: Encoding the magnitude bit pattern of v */
770
st += 14;
771
while (m >>= 1)
772
arith_encode(cinfo, st, (m & v) ? 1 : 0);
773
}
774
775
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
776
777
if ((ke = cinfo->lim_Se) == 0) continue;
778
tbl = compptr->ac_tbl_no;
779
780
/* Establish EOB (end-of-block) index */
781
do {
782
if ((*block)[natural_order[ke]]) break;
783
} while (--ke);
784
785
/* Figure F.5: Encode_AC_Coefficients */
786
for (k = 0; k < ke;) {
787
st = entropy->ac_stats[tbl] + 3 * k;
788
arith_encode(cinfo, st, 0); /* EOB decision */
789
while ((v = (*block)[natural_order[++k]]) == 0) {
790
arith_encode(cinfo, st + 1, 0);
791
st += 3;
792
}
793
arith_encode(cinfo, st + 1, 1);
794
/* Figure F.6: Encoding nonzero value v */
795
/* Figure F.7: Encoding the sign of v */
796
if (v > 0) {
797
arith_encode(cinfo, entropy->fixed_bin, 0);
798
} else {
799
v = -v;
800
arith_encode(cinfo, entropy->fixed_bin, 1);
801
}
802
st += 2;
803
/* Figure F.8: Encoding the magnitude category of v */
804
m = 0;
805
if (v -= 1) {
806
arith_encode(cinfo, st, 1);
807
m = 1;
808
v2 = v;
809
if (v2 >>= 1) {
810
arith_encode(cinfo, st, 1);
811
m <<= 1;
812
st = entropy->ac_stats[tbl] +
813
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
814
while (v2 >>= 1) {
815
arith_encode(cinfo, st, 1);
816
m <<= 1;
817
st += 1;
818
}
819
}
820
}
821
arith_encode(cinfo, st, 0);
822
/* Figure F.9: Encoding the magnitude bit pattern of v */
823
st += 14;
824
while (m >>= 1)
825
arith_encode(cinfo, st, (m & v) ? 1 : 0);
826
}
827
/* Encode EOB decision only if k < cinfo->lim_Se */
828
if (k < cinfo->lim_Se) {
829
st = entropy->ac_stats[tbl] + 3 * k;
830
arith_encode(cinfo, st, 1);
831
}
832
}
833
834
return TRUE;
835
}
836
837
838
/*
839
* Initialize for an arithmetic-compressed scan.
840
*/
841
842
METHODDEF(void)
843
start_pass (j_compress_ptr cinfo, boolean gather_statistics)
844
{
845
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
846
int ci, tbl;
847
jpeg_component_info * compptr;
848
849
if (gather_statistics)
850
/* Make sure to avoid that in the master control logic!
851
* We are fully adaptive here and need no extra
852
* statistics gathering pass!
853
*/
854
ERREXIT(cinfo, JERR_NOT_COMPILED);
855
856
/* We assume jcmaster.c already validated the progressive scan parameters. */
857
858
/* Select execution routines */
859
if (cinfo->progressive_mode) {
860
if (cinfo->Ah == 0) {
861
if (cinfo->Ss == 0)
862
entropy->pub.encode_mcu = encode_mcu_DC_first;
863
else
864
entropy->pub.encode_mcu = encode_mcu_AC_first;
865
} else {
866
if (cinfo->Ss == 0)
867
entropy->pub.encode_mcu = encode_mcu_DC_refine;
868
else
869
entropy->pub.encode_mcu = encode_mcu_AC_refine;
870
}
871
} else
872
entropy->pub.encode_mcu = encode_mcu;
873
874
/* Allocate & initialize requested statistics areas */
875
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
876
compptr = cinfo->cur_comp_info[ci];
877
/* DC needs no table for refinement scan */
878
if (cinfo->Ss == 0 && cinfo->Ah == 0) {
879
tbl = compptr->dc_tbl_no;
880
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
881
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
882
if (entropy->dc_stats[tbl] == NULL)
883
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
884
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
885
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
886
/* Initialize DC predictions to 0 */
887
entropy->last_dc_val[ci] = 0;
888
entropy->dc_context[ci] = 0;
889
}
890
/* AC needs no table when not present */
891
if (cinfo->Se) {
892
tbl = compptr->ac_tbl_no;
893
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
894
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
895
if (entropy->ac_stats[tbl] == NULL)
896
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
897
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
898
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
899
#ifdef CALCULATE_SPECTRAL_CONDITIONING
900
if (cinfo->progressive_mode)
901
/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
902
cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
903
#endif
904
}
905
}
906
907
/* Initialize arithmetic encoding variables */
908
entropy->c = 0;
909
entropy->a = 0x10000L;
910
entropy->sc = 0;
911
entropy->zc = 0;
912
entropy->ct = 11;
913
entropy->buffer = -1; /* empty */
914
915
/* Initialize restart stuff */
916
entropy->restarts_to_go = cinfo->restart_interval;
917
entropy->next_restart_num = 0;
918
}
919
920
921
/*
922
* Module initialization routine for arithmetic entropy encoding.
923
*/
924
925
GLOBAL(void)
926
jinit_arith_encoder (j_compress_ptr cinfo)
927
{
928
arith_entropy_ptr entropy;
929
int i;
930
931
entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small)
932
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_encoder));
933
cinfo->entropy = &entropy->pub;
934
entropy->pub.start_pass = start_pass;
935
entropy->pub.finish_pass = finish_pass;
936
937
/* Mark tables unallocated */
938
for (i = 0; i < NUM_ARITH_TBLS; i++) {
939
entropy->dc_stats[i] = NULL;
940
entropy->ac_stats[i] = NULL;
941
}
942
943
/* Initialize index for fixed probability estimation */
944
entropy->fixed_bin[0] = 113;
945
}
946
947