Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jccolor.c
4393 views
1
/*
2
* jccolor.c
3
*
4
* Copyright (C) 1991-1996, Thomas G. Lane.
5
* Modified 2011-2023 by Guido Vollbeding.
6
* This file is part of the Independent JPEG Group's software.
7
* For conditions of distribution and use, see the accompanying README file.
8
*
9
* This file contains input colorspace conversion routines.
10
*/
11
12
#define JPEG_INTERNALS
13
#include "jinclude.h"
14
#include "jpeglib.h"
15
16
17
/* Private subobject */
18
19
typedef struct {
20
struct jpeg_color_converter pub; /* public fields */
21
22
/* Private state for RGB->YCC conversion */
23
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
24
} my_color_converter;
25
26
typedef my_color_converter * my_cconvert_ptr;
27
28
29
/**************** RGB -> YCbCr conversion: most common case **************/
30
31
/*
32
* YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011),
33
* previously known as Recommendation CCIR 601-1, except that Cb and Cr
34
* are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
35
* sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999.
36
* sYCC (standard luma-chroma-chroma color space with extended gamut)
37
* is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F.
38
* bg-sRGB and bg-sYCC (big gamut standard color spaces)
39
* are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G.
40
* Note that the derived conversion coefficients given in some of these
41
* documents are imprecise. The general conversion equations are
42
* Y = Kr * R + (1 - Kr - Kb) * G + Kb * B
43
* Cb = (B - Y) / (1 - Kb) / K
44
* Cr = (R - Y) / (1 - Kr) / K
45
* With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993
46
* from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC,
47
* the conversion equations to be implemented are therefore
48
* Y = 0.299 * R + 0.587 * G + 0.114 * B
49
* Cb = -0.168735892 * R - 0.331264108 * G + 0.5 * B + CENTERJSAMPLE
50
* Cr = 0.5 * R - 0.418687589 * G - 0.081312411 * B + CENTERJSAMPLE
51
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
52
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
53
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
54
* were not represented exactly. Now we sacrifice exact representation of
55
* maximum red and maximum blue in order to get exact grayscales.
56
*
57
* To avoid floating-point arithmetic, we represent the fractional constants
58
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
59
* the products by 2^16, with appropriate rounding, to get the correct answer.
60
*
61
* For even more speed, we avoid doing any multiplications in the inner loop
62
* by precalculating the constants times R,G,B for all possible values.
63
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
64
* for 9-bit to 12-bit samples it is still acceptable. It's not very
65
* reasonable for 16-bit samples, but if you want lossless storage
66
* you shouldn't be changing colorspace anyway.
67
* The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
68
* in the tables to save adding them separately in the inner loop.
69
*/
70
71
#define SCALEBITS 16 /* speediest right-shift on some machines */
72
#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
73
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
74
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
75
76
/* We allocate one big table and divide it up into eight parts, instead of
77
* doing eight alloc_small requests. This lets us use a single table base
78
* address, which can be held in a register in the inner loops on many
79
* machines (more than can hold all eight addresses, anyway).
80
*/
81
82
#define R_Y_OFF 0 /* offset to R => Y section */
83
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
84
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
85
#define R_CB_OFF (3*(MAXJSAMPLE+1))
86
#define G_CB_OFF (4*(MAXJSAMPLE+1))
87
#define B_CB_OFF (5*(MAXJSAMPLE+1))
88
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
89
#define G_CR_OFF (6*(MAXJSAMPLE+1))
90
#define B_CR_OFF (7*(MAXJSAMPLE+1))
91
#define TABLE_SIZE (8*(MAXJSAMPLE+1))
92
93
94
/*
95
* Initialize for RGB->YCC colorspace conversion.
96
*/
97
98
METHODDEF(void)
99
rgb_ycc_start (j_compress_ptr cinfo)
100
{
101
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
102
INT32 * rgb_ycc_tab;
103
INT32 i;
104
105
/* Allocate and fill in the conversion tables. */
106
cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
107
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
108
TABLE_SIZE * SIZEOF(INT32));
109
110
for (i = 0; i <= MAXJSAMPLE; i++) {
111
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.299) * i;
112
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.587) * i;
113
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.114) * i + ONE_HALF;
114
rgb_ycc_tab[i+R_CB_OFF] = (- FIX(0.168735892)) * i;
115
rgb_ycc_tab[i+G_CB_OFF] = (- FIX(0.331264108)) * i;
116
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
117
* This ensures that the maximum output will round to MAXJSAMPLE
118
* not MAXJSAMPLE+1, and thus that we don't have to range-limit.
119
*/
120
rgb_ycc_tab[i+B_CB_OFF] = (i << (SCALEBITS-1)) + CBCR_OFFSET + ONE_HALF-1;
121
/* B=>Cb and R=>Cr tables are the same
122
rgb_ycc_tab[i+R_CR_OFF] = (i << (SCALEBITS-1)) + CBCR_OFFSET + ONE_HALF-1;
123
*/
124
rgb_ycc_tab[i+G_CR_OFF] = (- FIX(0.418687589)) * i;
125
rgb_ycc_tab[i+B_CR_OFF] = (- FIX(0.081312411)) * i;
126
}
127
}
128
129
130
/*
131
* Convert some rows of samples to the JPEG colorspace.
132
*
133
* Note that we change from the application's interleaved-pixel format
134
* to our internal noninterleaved, one-plane-per-component format. The
135
* input buffer is therefore three times as wide as the output buffer.
136
*
137
* A starting row offset is provided only for the output buffer. The
138
* caller can easily adjust the passed input_buf value to accommodate
139
* any row offset required on that side.
140
*/
141
142
METHODDEF(void)
143
rgb_ycc_convert (j_compress_ptr cinfo,
144
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
145
JDIMENSION output_row, int num_rows)
146
{
147
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
148
register int r, g, b;
149
register INT32 * ctab = cconvert->rgb_ycc_tab;
150
register JSAMPROW inptr;
151
register JSAMPROW outptr0, outptr1, outptr2;
152
register JDIMENSION col;
153
JDIMENSION num_cols = cinfo->image_width;
154
155
while (--num_rows >= 0) {
156
inptr = *input_buf++;
157
outptr0 = output_buf[0][output_row];
158
outptr1 = output_buf[1][output_row];
159
outptr2 = output_buf[2][output_row];
160
output_row++;
161
for (col = 0; col < num_cols; col++) {
162
r = GETJSAMPLE(inptr[RGB_RED]);
163
g = GETJSAMPLE(inptr[RGB_GREEN]);
164
b = GETJSAMPLE(inptr[RGB_BLUE]);
165
inptr += RGB_PIXELSIZE;
166
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
167
* must be too; we do not need an explicit range-limiting operation.
168
* Hence the value being shifted is never negative, and we don't
169
* need the general RIGHT_SHIFT macro.
170
*/
171
/* Y */
172
outptr0[col] = (JSAMPLE)
173
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
174
>> SCALEBITS);
175
/* Cb */
176
outptr1[col] = (JSAMPLE)
177
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
178
>> SCALEBITS);
179
/* Cr */
180
outptr2[col] = (JSAMPLE)
181
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
182
>> SCALEBITS);
183
}
184
}
185
}
186
187
188
/**************** Cases other than RGB -> YCbCr **************/
189
190
191
/*
192
* Convert some rows of samples to the JPEG colorspace.
193
* This version handles RGB->grayscale conversion,
194
* which is the same as the RGB->Y portion of RGB->YCbCr.
195
* We assume rgb_ycc_start has been called (we only use the Y tables).
196
*/
197
198
METHODDEF(void)
199
rgb_gray_convert (j_compress_ptr cinfo,
200
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
201
JDIMENSION output_row, int num_rows)
202
{
203
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
204
register INT32 y;
205
register INT32 * ctab = cconvert->rgb_ycc_tab;
206
register JSAMPROW inptr;
207
register JSAMPROW outptr;
208
register JDIMENSION col;
209
JDIMENSION num_cols = cinfo->image_width;
210
211
while (--num_rows >= 0) {
212
inptr = *input_buf++;
213
outptr = output_buf[0][output_row++];
214
for (col = 0; col < num_cols; col++) {
215
y = ctab[R_Y_OFF + GETJSAMPLE(inptr[RGB_RED])];
216
y += ctab[G_Y_OFF + GETJSAMPLE(inptr[RGB_GREEN])];
217
y += ctab[B_Y_OFF + GETJSAMPLE(inptr[RGB_BLUE])];
218
inptr += RGB_PIXELSIZE;
219
outptr[col] = (JSAMPLE) (y >> SCALEBITS);
220
}
221
}
222
}
223
224
225
/*
226
* Convert some rows of samples to the JPEG colorspace.
227
* This version handles Adobe-style CMYK->YCCK conversion,
228
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the
229
* same conversion as above, while passing K (black) unchanged.
230
* We assume rgb_ycc_start has been called.
231
*/
232
233
METHODDEF(void)
234
cmyk_ycck_convert (j_compress_ptr cinfo,
235
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
236
JDIMENSION output_row, int num_rows)
237
{
238
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
239
register int r, g, b;
240
register INT32 * ctab = cconvert->rgb_ycc_tab;
241
register JSAMPROW inptr;
242
register JSAMPROW outptr0, outptr1, outptr2, outptr3;
243
register JDIMENSION col;
244
JDIMENSION num_cols = cinfo->image_width;
245
246
while (--num_rows >= 0) {
247
inptr = *input_buf++;
248
outptr0 = output_buf[0][output_row];
249
outptr1 = output_buf[1][output_row];
250
outptr2 = output_buf[2][output_row];
251
outptr3 = output_buf[3][output_row];
252
output_row++;
253
for (col = 0; col < num_cols; col++) {
254
r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
255
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
256
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
257
/* K passes through as-is */
258
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
259
inptr += 4;
260
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
261
* must be too; we do not need an explicit range-limiting operation.
262
* Hence the value being shifted is never negative, and we don't
263
* need the general RIGHT_SHIFT macro.
264
*/
265
/* Y */
266
outptr0[col] = (JSAMPLE)
267
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
268
>> SCALEBITS);
269
/* Cb */
270
outptr1[col] = (JSAMPLE)
271
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
272
>> SCALEBITS);
273
/* Cr */
274
outptr2[col] = (JSAMPLE)
275
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
276
>> SCALEBITS);
277
}
278
}
279
}
280
281
282
/*
283
* Convert some rows of samples to the JPEG colorspace.
284
* [R,G,B] to [R-G,G,B-G] conversion with modulo calculation
285
* (forward reversible color transform).
286
* This can be seen as an adaption of the general RGB->YCbCr
287
* conversion equation with Kr = Kb = 0, while replacing the
288
* normalization by modulo calculation.
289
*/
290
291
METHODDEF(void)
292
rgb_rgb1_convert (j_compress_ptr cinfo,
293
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
294
JDIMENSION output_row, int num_rows)
295
{
296
register int r, g, b;
297
register JSAMPROW inptr;
298
register JSAMPROW outptr0, outptr1, outptr2;
299
register JDIMENSION col;
300
JDIMENSION num_cols = cinfo->image_width;
301
302
while (--num_rows >= 0) {
303
inptr = *input_buf++;
304
outptr0 = output_buf[0][output_row];
305
outptr1 = output_buf[1][output_row];
306
outptr2 = output_buf[2][output_row];
307
output_row++;
308
for (col = 0; col < num_cols; col++) {
309
r = GETJSAMPLE(inptr[RGB_RED]);
310
g = GETJSAMPLE(inptr[RGB_GREEN]);
311
b = GETJSAMPLE(inptr[RGB_BLUE]);
312
inptr += RGB_PIXELSIZE;
313
/* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
314
* (modulo) operator is equivalent to the bitmask operator AND.
315
*/
316
outptr0[col] = (JSAMPLE) ((r - g + CENTERJSAMPLE) & MAXJSAMPLE);
317
outptr1[col] = (JSAMPLE) g;
318
outptr2[col] = (JSAMPLE) ((b - g + CENTERJSAMPLE) & MAXJSAMPLE);
319
}
320
}
321
}
322
323
324
/*
325
* Convert some rows of samples to the JPEG colorspace.
326
* This version handles grayscale output with no conversion.
327
* The source can be either plain grayscale or YCC (since Y == gray).
328
*/
329
330
METHODDEF(void)
331
grayscale_convert (j_compress_ptr cinfo,
332
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
333
JDIMENSION output_row, int num_rows)
334
{
335
register JSAMPROW inptr;
336
register JSAMPROW outptr;
337
register JDIMENSION count;
338
register int instride = cinfo->input_components;
339
JDIMENSION num_cols = cinfo->image_width;
340
341
while (--num_rows >= 0) {
342
inptr = *input_buf++;
343
outptr = output_buf[0][output_row++];
344
for (count = num_cols; count > 0; count--) {
345
*outptr++ = *inptr; /* don't need GETJSAMPLE() here */
346
inptr += instride;
347
}
348
}
349
}
350
351
352
/*
353
* Convert some rows of samples to the JPEG colorspace.
354
* No colorspace conversion, but change from interleaved
355
* to separate-planes representation.
356
*/
357
358
METHODDEF(void)
359
rgb_convert (j_compress_ptr cinfo,
360
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
361
JDIMENSION output_row, int num_rows)
362
{
363
register JSAMPROW inptr;
364
register JSAMPROW outptr0, outptr1, outptr2;
365
register JDIMENSION col;
366
JDIMENSION num_cols = cinfo->image_width;
367
368
while (--num_rows >= 0) {
369
inptr = *input_buf++;
370
outptr0 = output_buf[0][output_row];
371
outptr1 = output_buf[1][output_row];
372
outptr2 = output_buf[2][output_row];
373
output_row++;
374
for (col = 0; col < num_cols; col++) {
375
/* We can dispense with GETJSAMPLE() here */
376
outptr0[col] = inptr[RGB_RED];
377
outptr1[col] = inptr[RGB_GREEN];
378
outptr2[col] = inptr[RGB_BLUE];
379
inptr += RGB_PIXELSIZE;
380
}
381
}
382
}
383
384
385
/*
386
* Convert some rows of samples to the JPEG colorspace.
387
* This version handles multi-component colorspaces without conversion.
388
* We assume input_components == num_components.
389
*/
390
391
METHODDEF(void)
392
null_convert (j_compress_ptr cinfo,
393
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
394
JDIMENSION output_row, int num_rows)
395
{
396
register JSAMPROW inptr;
397
register JSAMPROW outptr;
398
register JDIMENSION count;
399
register int num_comps = cinfo->num_components;
400
JDIMENSION num_cols = cinfo->image_width;
401
int ci;
402
403
while (--num_rows >= 0) {
404
/* It seems fastest to make a separate pass for each component. */
405
for (ci = 0; ci < num_comps; ci++) {
406
inptr = input_buf[0] + ci;
407
outptr = output_buf[ci][output_row];
408
for (count = num_cols; count > 0; count--) {
409
*outptr++ = *inptr; /* don't need GETJSAMPLE() here */
410
inptr += num_comps;
411
}
412
}
413
input_buf++;
414
output_row++;
415
}
416
}
417
418
419
/*
420
* Empty method for start_pass.
421
*/
422
423
METHODDEF(void)
424
null_method (j_compress_ptr cinfo)
425
{
426
/* no work needed */
427
}
428
429
430
/*
431
* Module initialization routine for input colorspace conversion.
432
*/
433
434
GLOBAL(void)
435
jinit_color_converter (j_compress_ptr cinfo)
436
{
437
my_cconvert_ptr cconvert;
438
439
cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small)
440
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_converter));
441
cinfo->cconvert = &cconvert->pub;
442
/* set start_pass to null method until we find out differently */
443
cconvert->pub.start_pass = null_method;
444
445
/* Make sure input_components agrees with in_color_space */
446
switch (cinfo->in_color_space) {
447
case JCS_GRAYSCALE:
448
if (cinfo->input_components != 1)
449
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
450
break;
451
452
case JCS_RGB:
453
case JCS_BG_RGB:
454
#if RGB_PIXELSIZE != 3
455
if (cinfo->input_components != RGB_PIXELSIZE)
456
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
457
break;
458
#endif /* else share code with YCbCr */
459
460
case JCS_YCbCr:
461
case JCS_BG_YCC:
462
if (cinfo->input_components != 3)
463
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
464
break;
465
466
case JCS_CMYK:
467
case JCS_YCCK:
468
if (cinfo->input_components != 4)
469
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
470
break;
471
472
default: /* JCS_UNKNOWN can be anything */
473
if (cinfo->input_components < 1)
474
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
475
}
476
477
/* Support color transform only for RGB colorspaces */
478
if (cinfo->color_transform &&
479
cinfo->jpeg_color_space != JCS_RGB &&
480
cinfo->jpeg_color_space != JCS_BG_RGB)
481
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
482
483
/* Check num_components, set conversion method based on requested space */
484
switch (cinfo->jpeg_color_space) {
485
case JCS_GRAYSCALE:
486
if (cinfo->num_components != 1)
487
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
488
switch (cinfo->in_color_space) {
489
case JCS_GRAYSCALE:
490
case JCS_YCbCr:
491
case JCS_BG_YCC:
492
cconvert->pub.color_convert = grayscale_convert;
493
break;
494
case JCS_RGB:
495
cconvert->pub.start_pass = rgb_ycc_start;
496
cconvert->pub.color_convert = rgb_gray_convert;
497
break;
498
default:
499
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
500
}
501
break;
502
503
case JCS_RGB:
504
case JCS_BG_RGB:
505
if (cinfo->num_components != 3)
506
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
507
if (cinfo->in_color_space != cinfo->jpeg_color_space)
508
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
509
switch (cinfo->color_transform) {
510
case JCT_NONE:
511
cconvert->pub.color_convert = rgb_convert;
512
break;
513
case JCT_SUBTRACT_GREEN:
514
cconvert->pub.color_convert = rgb_rgb1_convert;
515
break;
516
default:
517
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
518
}
519
break;
520
521
case JCS_YCbCr:
522
if (cinfo->num_components != 3)
523
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
524
switch (cinfo->in_color_space) {
525
case JCS_RGB:
526
cconvert->pub.start_pass = rgb_ycc_start;
527
cconvert->pub.color_convert = rgb_ycc_convert;
528
break;
529
case JCS_YCbCr:
530
cconvert->pub.color_convert = null_convert;
531
break;
532
default:
533
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
534
}
535
break;
536
537
case JCS_BG_YCC:
538
if (cinfo->num_components != 3)
539
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
540
switch (cinfo->in_color_space) {
541
case JCS_RGB:
542
/* For conversion from normal RGB input to BG_YCC representation,
543
* the Cb/Cr values are first computed as usual, and then
544
* quantized further after DCT processing by a factor of
545
* 2 in reference to the nominal quantization factor.
546
*/
547
/* need quantization scale by factor of 2 after DCT */
548
cinfo->comp_info[1].component_needed = TRUE;
549
cinfo->comp_info[2].component_needed = TRUE;
550
/* compute normal YCC first */
551
cconvert->pub.start_pass = rgb_ycc_start;
552
cconvert->pub.color_convert = rgb_ycc_convert;
553
break;
554
case JCS_YCbCr:
555
/* need quantization scale by factor of 2 after DCT */
556
cinfo->comp_info[1].component_needed = TRUE;
557
cinfo->comp_info[2].component_needed = TRUE;
558
/*FALLTHROUGH*/
559
case JCS_BG_YCC:
560
/* Pass through for BG_YCC input */
561
cconvert->pub.color_convert = null_convert;
562
break;
563
default:
564
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
565
}
566
break;
567
568
case JCS_CMYK:
569
if (cinfo->num_components != 4)
570
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
571
if (cinfo->in_color_space != JCS_CMYK)
572
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
573
cconvert->pub.color_convert = null_convert;
574
break;
575
576
case JCS_YCCK:
577
if (cinfo->num_components != 4)
578
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
579
switch (cinfo->in_color_space) {
580
case JCS_CMYK:
581
cconvert->pub.start_pass = rgb_ycc_start;
582
cconvert->pub.color_convert = cmyk_ycck_convert;
583
break;
584
case JCS_YCCK:
585
cconvert->pub.color_convert = null_convert;
586
break;
587
default:
588
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
589
}
590
break;
591
592
default: /* allow null conversion of JCS_UNKNOWN */
593
if (cinfo->jpeg_color_space != cinfo->in_color_space ||
594
cinfo->num_components != cinfo->input_components)
595
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
596
cconvert->pub.color_convert = null_convert;
597
}
598
}
599
600