Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jchuff.c
4389 views
1
/*
2
* jchuff.c
3
*
4
* Copyright (C) 1991-1997, Thomas G. Lane.
5
* Modified 2006-2023 by Guido Vollbeding.
6
* This file is part of the Independent JPEG Group's software.
7
* For conditions of distribution and use, see the accompanying README file.
8
*
9
* This file contains Huffman entropy encoding routines.
10
* Both sequential and progressive modes are supported in this single module.
11
*
12
* Much of the complexity here has to do with supporting output suspension.
13
* If the data destination module demands suspension, we want to be able to
14
* back up to the start of the current MCU. To do this, we copy state
15
* variables into local working storage, and update them back to the
16
* permanent JPEG objects only upon successful completion of an MCU.
17
*
18
* We do not support output suspension for the progressive JPEG mode, since
19
* the library currently does not allow multiple-scan files to be written
20
* with output suspension.
21
*/
22
23
#define JPEG_INTERNALS
24
#include "jinclude.h"
25
#include "jpeglib.h"
26
27
28
/* The legal range of a DCT coefficient is
29
* -1024 .. +1023 for 8-bit sample data precision;
30
* -16384 .. +16383 for 12-bit sample data precision.
31
* Hence the magnitude should always fit in sample data precision + 2 bits.
32
*/
33
34
/* Derived data constructed for each Huffman table */
35
36
typedef struct {
37
unsigned int ehufco[256]; /* code for each symbol */
38
char ehufsi[256]; /* length of code for each symbol */
39
/* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
40
} c_derived_tbl;
41
42
43
/* Expanded entropy encoder object for Huffman encoding.
44
*
45
* The savable_state subrecord contains fields that change within an MCU,
46
* but must not be updated permanently until we complete the MCU.
47
*/
48
49
typedef struct {
50
INT32 put_buffer; /* current bit-accumulation buffer */
51
int put_bits; /* # of bits now in it */
52
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
53
} savable_state;
54
55
/* This macro is to work around compilers with missing or broken
56
* structure assignment. You'll need to fix this code if you have
57
* such a compiler and you change MAX_COMPS_IN_SCAN.
58
*/
59
60
#ifndef NO_STRUCT_ASSIGN
61
#define ASSIGN_STATE(dest,src) ((dest) = (src))
62
#else
63
#if MAX_COMPS_IN_SCAN == 4
64
#define ASSIGN_STATE(dest,src) \
65
((dest).put_buffer = (src).put_buffer, \
66
(dest).put_bits = (src).put_bits, \
67
(dest).last_dc_val[0] = (src).last_dc_val[0], \
68
(dest).last_dc_val[1] = (src).last_dc_val[1], \
69
(dest).last_dc_val[2] = (src).last_dc_val[2], \
70
(dest).last_dc_val[3] = (src).last_dc_val[3])
71
#endif
72
#endif
73
74
75
typedef struct {
76
struct jpeg_entropy_encoder pub; /* public fields */
77
78
savable_state saved; /* Bit buffer & DC state at start of MCU */
79
80
/* These fields are NOT loaded into local working state. */
81
unsigned int restarts_to_go; /* MCUs left in this restart interval */
82
int next_restart_num; /* next restart number to write (0-7) */
83
84
/* Pointers to derived tables (these workspaces have image lifespan) */
85
c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
86
c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
87
88
/* Statistics tables for optimization */
89
long * dc_count_ptrs[NUM_HUFF_TBLS];
90
long * ac_count_ptrs[NUM_HUFF_TBLS];
91
92
/* Following fields used only in progressive mode */
93
94
/* Mode flag: TRUE for optimization, FALSE for actual data output */
95
boolean gather_statistics;
96
97
/* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
98
*/
99
JOCTET * next_output_byte; /* => next byte to write in buffer */
100
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
101
j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
102
103
/* Coding status for AC components */
104
int ac_tbl_no; /* the table number of the single component */
105
unsigned int EOBRUN; /* run length of EOBs */
106
unsigned int BE; /* # of buffered correction bits before MCU */
107
char * bit_buffer; /* buffer for correction bits (1 per char) */
108
/* packing correction bits tightly would save some space but cost time... */
109
} huff_entropy_encoder;
110
111
typedef huff_entropy_encoder * huff_entropy_ptr;
112
113
/* Working state while writing an MCU (sequential mode).
114
* This struct contains all the fields that are needed by subroutines.
115
*/
116
117
typedef struct {
118
JOCTET * next_output_byte; /* => next byte to write in buffer */
119
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
120
savable_state cur; /* Current bit buffer & DC state */
121
j_compress_ptr cinfo; /* dump_buffer needs access to this */
122
} working_state;
123
124
/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
125
* buffer can hold. Larger sizes may slightly improve compression, but
126
* 1000 is already well into the realm of overkill.
127
* The minimum safe size is 64 bits.
128
*/
129
130
#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
131
132
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
133
* We assume that int right shift is unsigned if INT32 right shift is,
134
* which should be safe.
135
*/
136
137
#ifdef RIGHT_SHIFT_IS_UNSIGNED
138
#define ISHIFT_TEMPS int ishift_temp;
139
#define IRIGHT_SHIFT(x,shft) \
140
((ishift_temp = (x)) < 0 ? \
141
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
142
(ishift_temp >> (shft)))
143
#else
144
#define ISHIFT_TEMPS
145
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
146
#endif
147
148
149
/*
150
* Compute the derived values for a Huffman table.
151
* This routine also performs some validation checks on the table.
152
*/
153
154
LOCAL(void)
155
jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
156
c_derived_tbl ** pdtbl)
157
{
158
JHUFF_TBL *htbl;
159
c_derived_tbl *dtbl;
160
int p, i, l, lastp, si, maxsymbol;
161
char huffsize[257];
162
unsigned int huffcode[257];
163
unsigned int code;
164
165
/* Note that huffsize[] and huffcode[] are filled in code-length order,
166
* paralleling the order of the symbols themselves in htbl->huffval[].
167
*/
168
169
/* Find the input Huffman table */
170
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
171
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
172
htbl =
173
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
174
if (htbl == NULL)
175
htbl = jpeg_std_huff_table((j_common_ptr) cinfo, isDC, tblno);
176
177
/* Allocate a workspace if we haven't already done so. */
178
if (*pdtbl == NULL)
179
*pdtbl = (c_derived_tbl *) (*cinfo->mem->alloc_small)
180
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(c_derived_tbl));
181
dtbl = *pdtbl;
182
183
/* Figure C.1: make table of Huffman code length for each symbol */
184
185
p = 0;
186
for (l = 1; l <= 16; l++) {
187
i = (int) htbl->bits[l];
188
if (i < 0 || p + i > 256) /* protect against table overrun */
189
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
190
while (i--)
191
huffsize[p++] = (char) l;
192
}
193
huffsize[p] = 0;
194
lastp = p;
195
196
/* Figure C.2: generate the codes themselves */
197
/* We also validate that the counts represent a legal Huffman code tree. */
198
199
code = 0;
200
si = huffsize[0];
201
p = 0;
202
while (huffsize[p]) {
203
while (((int) huffsize[p]) == si) {
204
huffcode[p++] = code;
205
code++;
206
}
207
/* code is now 1 more than the last code used for codelength si; but
208
* it must still fit in si bits, since no code is allowed to be all ones.
209
*/
210
if (((INT32) code) >= (((INT32) 1) << si))
211
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
212
code <<= 1;
213
si++;
214
}
215
216
/* Figure C.3: generate encoding tables */
217
/* These are code and size indexed by symbol value */
218
219
/* Set all codeless symbols to have code length 0;
220
* this lets us detect duplicate VAL entries here, and later
221
* allows emit_bits to detect any attempt to emit such symbols.
222
*/
223
MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
224
225
/* This is also a convenient place to check for out-of-range
226
* and duplicated VAL entries. We allow 0..255 for AC symbols
227
* but only 0..15 for DC. (We could constrain them further
228
* based on data depth and mode, but this seems enough.)
229
*/
230
maxsymbol = isDC ? 15 : 255;
231
232
for (p = 0; p < lastp; p++) {
233
i = htbl->huffval[p];
234
if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
235
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
236
dtbl->ehufco[i] = huffcode[p];
237
dtbl->ehufsi[i] = huffsize[p];
238
}
239
}
240
241
242
/* Outputting bytes to the file.
243
* NB: these must be called only when actually outputting,
244
* that is, entropy->gather_statistics == FALSE.
245
*/
246
247
/* Emit a byte, taking 'action' if must suspend. */
248
#define emit_byte_s(state,val,action) \
249
{ *(state)->next_output_byte++ = (JOCTET) (val); \
250
if (--(state)->free_in_buffer == 0) \
251
if (! dump_buffer_s(state)) \
252
{ action; } }
253
254
/* Emit a byte */
255
#define emit_byte_e(entropy,val) \
256
{ *(entropy)->next_output_byte++ = (JOCTET) (val); \
257
if (--(entropy)->free_in_buffer == 0) \
258
dump_buffer_e(entropy); }
259
260
261
LOCAL(boolean)
262
dump_buffer_s (working_state * state)
263
/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
264
{
265
struct jpeg_destination_mgr * dest = state->cinfo->dest;
266
267
if (! (*dest->empty_output_buffer) (state->cinfo))
268
return FALSE;
269
/* After a successful buffer dump, must reset buffer pointers */
270
state->next_output_byte = dest->next_output_byte;
271
state->free_in_buffer = dest->free_in_buffer;
272
return TRUE;
273
}
274
275
276
LOCAL(void)
277
dump_buffer_e (huff_entropy_ptr entropy)
278
/* Empty the output buffer; we do not support suspension in this case. */
279
{
280
struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
281
282
if (! (*dest->empty_output_buffer) (entropy->cinfo))
283
ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
284
/* After a successful buffer dump, must reset buffer pointers */
285
entropy->next_output_byte = dest->next_output_byte;
286
entropy->free_in_buffer = dest->free_in_buffer;
287
}
288
289
290
/* Outputting bits to the file */
291
292
/* Only the right 24 bits of put_buffer are used; the valid bits are
293
* left-justified in this part. At most 16 bits can be passed to emit_bits
294
* in one call, and we never retain more than 7 bits in put_buffer
295
* between calls, so 24 bits are sufficient.
296
*/
297
298
INLINE
299
LOCAL(boolean)
300
emit_bits_s (working_state * state, unsigned int code, int size)
301
/* Emit some bits; return TRUE if successful, FALSE if must suspend */
302
{
303
/* This routine is heavily used, so it's worth coding tightly. */
304
register INT32 put_buffer;
305
register int put_bits;
306
307
/* if size is 0, caller used an invalid Huffman table entry */
308
if (size == 0)
309
ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
310
311
/* mask off any extra bits in code */
312
put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
313
314
/* new number of bits in buffer */
315
put_bits = size + state->cur.put_bits;
316
317
put_buffer <<= 24 - put_bits; /* align incoming bits */
318
319
/* and merge with old buffer contents */
320
put_buffer |= state->cur.put_buffer;
321
322
while (put_bits >= 8) {
323
int c = (int) ((put_buffer >> 16) & 0xFF);
324
325
emit_byte_s(state, c, return FALSE);
326
if (c == 0xFF) { /* need to stuff a zero byte? */
327
emit_byte_s(state, 0, return FALSE);
328
}
329
put_buffer <<= 8;
330
put_bits -= 8;
331
}
332
333
state->cur.put_buffer = put_buffer; /* update state variables */
334
state->cur.put_bits = put_bits;
335
336
return TRUE;
337
}
338
339
340
INLINE
341
LOCAL(void)
342
emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
343
/* Emit some bits, unless we are in gather mode */
344
{
345
/* This routine is heavily used, so it's worth coding tightly. */
346
register INT32 put_buffer;
347
register int put_bits;
348
349
/* if size is 0, caller used an invalid Huffman table entry */
350
if (size == 0)
351
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
352
353
if (entropy->gather_statistics)
354
return; /* do nothing if we're only getting stats */
355
356
/* mask off any extra bits in code */
357
put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
358
359
/* new number of bits in buffer */
360
put_bits = size + entropy->saved.put_bits;
361
362
put_buffer <<= 24 - put_bits; /* align incoming bits */
363
364
/* and merge with old buffer contents */
365
put_buffer |= entropy->saved.put_buffer;
366
367
while (put_bits >= 8) {
368
int c = (int) ((put_buffer >> 16) & 0xFF);
369
370
emit_byte_e(entropy, c);
371
if (c == 0xFF) { /* need to stuff a zero byte? */
372
emit_byte_e(entropy, 0);
373
}
374
put_buffer <<= 8;
375
put_bits -= 8;
376
}
377
378
entropy->saved.put_buffer = put_buffer; /* update variables */
379
entropy->saved.put_bits = put_bits;
380
}
381
382
383
LOCAL(boolean)
384
flush_bits_s (working_state * state)
385
{
386
if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
387
return FALSE;
388
state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
389
state->cur.put_bits = 0;
390
return TRUE;
391
}
392
393
394
LOCAL(void)
395
flush_bits_e (huff_entropy_ptr entropy)
396
{
397
emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
398
entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
399
entropy->saved.put_bits = 0;
400
}
401
402
403
/*
404
* Emit (or just count) a Huffman symbol.
405
*/
406
407
INLINE
408
LOCAL(void)
409
emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
410
{
411
if (entropy->gather_statistics)
412
entropy->dc_count_ptrs[tbl_no][symbol]++;
413
else {
414
c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
415
emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
416
}
417
}
418
419
420
INLINE
421
LOCAL(void)
422
emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
423
{
424
if (entropy->gather_statistics)
425
entropy->ac_count_ptrs[tbl_no][symbol]++;
426
else {
427
c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
428
emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
429
}
430
}
431
432
433
/*
434
* Emit bits from a correction bit buffer.
435
*/
436
437
LOCAL(void)
438
emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
439
unsigned int nbits)
440
{
441
if (entropy->gather_statistics)
442
return; /* no real work */
443
444
while (nbits > 0) {
445
emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
446
bufstart++;
447
nbits--;
448
}
449
}
450
451
452
/*
453
* Emit any pending EOBRUN symbol.
454
*/
455
456
LOCAL(void)
457
emit_eobrun (huff_entropy_ptr entropy)
458
{
459
register int temp, nbits;
460
461
if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
462
temp = entropy->EOBRUN;
463
nbits = 0;
464
while ((temp >>= 1))
465
nbits++;
466
/* safety check: shouldn't happen given limited correction-bit buffer */
467
if (nbits > 14)
468
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
469
470
emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
471
if (nbits)
472
emit_bits_e(entropy, entropy->EOBRUN, nbits);
473
474
entropy->EOBRUN = 0;
475
476
/* Emit any buffered correction bits */
477
emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
478
entropy->BE = 0;
479
}
480
}
481
482
483
/*
484
* Emit a restart marker & resynchronize predictions.
485
*/
486
487
LOCAL(boolean)
488
emit_restart_s (working_state * state, int restart_num)
489
{
490
int ci;
491
492
if (! flush_bits_s(state))
493
return FALSE;
494
495
emit_byte_s(state, 0xFF, return FALSE);
496
emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
497
498
/* Re-initialize DC predictions to 0 */
499
for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
500
state->cur.last_dc_val[ci] = 0;
501
502
/* The restart counter is not updated until we successfully write the MCU. */
503
504
return TRUE;
505
}
506
507
508
LOCAL(void)
509
emit_restart_e (huff_entropy_ptr entropy, int restart_num)
510
{
511
int ci;
512
513
emit_eobrun(entropy);
514
515
if (! entropy->gather_statistics) {
516
flush_bits_e(entropy);
517
emit_byte_e(entropy, 0xFF);
518
emit_byte_e(entropy, JPEG_RST0 + restart_num);
519
}
520
521
if (entropy->cinfo->Ss == 0) {
522
/* Re-initialize DC predictions to 0 */
523
for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
524
entropy->saved.last_dc_val[ci] = 0;
525
} else {
526
/* Re-initialize all AC-related fields to 0 */
527
entropy->EOBRUN = 0;
528
entropy->BE = 0;
529
}
530
}
531
532
533
/*
534
* MCU encoding for DC initial scan (either spectral selection,
535
* or first pass of successive approximation).
536
*/
537
538
METHODDEF(boolean)
539
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
540
{
541
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
542
register int temp, temp2;
543
register int nbits;
544
int max_coef_bits;
545
int blkn, ci, tbl;
546
ISHIFT_TEMPS
547
548
entropy->next_output_byte = cinfo->dest->next_output_byte;
549
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
550
551
/* Emit restart marker if needed */
552
if (cinfo->restart_interval)
553
if (entropy->restarts_to_go == 0)
554
emit_restart_e(entropy, entropy->next_restart_num);
555
556
/* Since we're encoding a difference, the range limit is twice as much. */
557
max_coef_bits = cinfo->data_precision + 3;
558
559
/* Encode the MCU data blocks */
560
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
561
ci = cinfo->MCU_membership[blkn];
562
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
563
564
/* Compute the DC value after the required point transform by Al.
565
* This is simply an arithmetic right shift.
566
*/
567
temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
568
569
/* DC differences are figured on the point-transformed values. */
570
if ((temp2 = temp - entropy->saved.last_dc_val[ci]) == 0) {
571
/* Count/emit the Huffman-coded symbol for the number of bits */
572
emit_dc_symbol(entropy, tbl, 0);
573
574
continue;
575
}
576
577
entropy->saved.last_dc_val[ci] = temp;
578
579
/* Encode the DC coefficient difference per section G.1.2.1 */
580
if ((temp = temp2) < 0) {
581
temp = -temp; /* temp is abs value of input */
582
/* For a negative input, want temp2 = bitwise complement of abs(input) */
583
/* This code assumes we are on a two's complement machine */
584
temp2--;
585
}
586
587
/* Find the number of bits needed for the magnitude of the coefficient */
588
nbits = 0;
589
do nbits++; /* there must be at least one 1 bit */
590
while ((temp >>= 1));
591
/* Check for out-of-range coefficient values */
592
if (nbits > max_coef_bits)
593
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
594
595
/* Count/emit the Huffman-coded symbol for the number of bits */
596
emit_dc_symbol(entropy, tbl, nbits);
597
598
/* Emit that number of bits of the value, if positive, */
599
/* or the complement of its magnitude, if negative. */
600
emit_bits_e(entropy, (unsigned int) temp2, nbits);
601
}
602
603
cinfo->dest->next_output_byte = entropy->next_output_byte;
604
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
605
606
/* Update restart-interval state too */
607
if (cinfo->restart_interval) {
608
if (entropy->restarts_to_go == 0) {
609
entropy->restarts_to_go = cinfo->restart_interval;
610
entropy->next_restart_num++;
611
entropy->next_restart_num &= 7;
612
}
613
entropy->restarts_to_go--;
614
}
615
616
return TRUE;
617
}
618
619
620
/*
621
* MCU encoding for AC initial scan (either spectral selection,
622
* or first pass of successive approximation).
623
*/
624
625
METHODDEF(boolean)
626
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
627
{
628
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
629
const int * natural_order;
630
JBLOCKROW block;
631
register int temp, temp2;
632
register int nbits;
633
register int r, k;
634
int Se, Al, max_coef_bits;
635
636
entropy->next_output_byte = cinfo->dest->next_output_byte;
637
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
638
639
/* Emit restart marker if needed */
640
if (cinfo->restart_interval)
641
if (entropy->restarts_to_go == 0)
642
emit_restart_e(entropy, entropy->next_restart_num);
643
644
Se = cinfo->Se;
645
Al = cinfo->Al;
646
natural_order = cinfo->natural_order;
647
max_coef_bits = cinfo->data_precision + 2;
648
649
/* Encode the MCU data block */
650
block = MCU_data[0];
651
652
/* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
653
654
r = 0; /* r = run length of zeros */
655
656
for (k = cinfo->Ss; k <= Se; k++) {
657
if ((temp = (*block)[natural_order[k]]) == 0) {
658
r++;
659
continue;
660
}
661
/* We must apply the point transform by Al. For AC coefficients this
662
* is an integer division with rounding towards 0. To do this portably
663
* in C, we shift after obtaining the absolute value; so the code is
664
* interwoven with finding the abs value (temp) and output bits (temp2).
665
*/
666
if (temp < 0) {
667
temp = -temp; /* temp is abs value of input */
668
/* Apply the point transform, and watch out for case */
669
/* that nonzero coef is zero after point transform. */
670
if ((temp >>= Al) == 0) {
671
r++;
672
continue;
673
}
674
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */
675
temp2 = ~temp;
676
} else {
677
/* Apply the point transform, and watch out for case */
678
/* that nonzero coef is zero after point transform. */
679
if ((temp >>= Al) == 0) {
680
r++;
681
continue;
682
}
683
temp2 = temp;
684
}
685
686
/* Emit any pending EOBRUN */
687
if (entropy->EOBRUN > 0)
688
emit_eobrun(entropy);
689
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
690
while (r > 15) {
691
emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
692
r -= 16;
693
}
694
695
/* Find the number of bits needed for the magnitude of the coefficient */
696
nbits = 0;
697
do nbits++; /* there must be at least one 1 bit */
698
while ((temp >>= 1));
699
/* Check for out-of-range coefficient values */
700
if (nbits > max_coef_bits)
701
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
702
703
/* Count/emit Huffman symbol for run length / number of bits */
704
emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
705
706
/* Emit that number of bits of the value, if positive, */
707
/* or the complement of its magnitude, if negative. */
708
emit_bits_e(entropy, (unsigned int) temp2, nbits);
709
710
r = 0; /* reset zero run length */
711
}
712
713
if (r > 0) { /* If there are trailing zeroes, */
714
entropy->EOBRUN++; /* count an EOB */
715
if (entropy->EOBRUN == 0x7FFF)
716
emit_eobrun(entropy); /* force it out to avoid overflow */
717
}
718
719
cinfo->dest->next_output_byte = entropy->next_output_byte;
720
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
721
722
/* Update restart-interval state too */
723
if (cinfo->restart_interval) {
724
if (entropy->restarts_to_go == 0) {
725
entropy->restarts_to_go = cinfo->restart_interval;
726
entropy->next_restart_num++;
727
entropy->next_restart_num &= 7;
728
}
729
entropy->restarts_to_go--;
730
}
731
732
return TRUE;
733
}
734
735
736
/*
737
* MCU encoding for DC successive approximation refinement scan.
738
* Note: we assume such scans can be multi-component,
739
* although the spec is not very clear on the point.
740
*/
741
742
METHODDEF(boolean)
743
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
744
{
745
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
746
int Al, blkn;
747
748
entropy->next_output_byte = cinfo->dest->next_output_byte;
749
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
750
751
/* Emit restart marker if needed */
752
if (cinfo->restart_interval)
753
if (entropy->restarts_to_go == 0)
754
emit_restart_e(entropy, entropy->next_restart_num);
755
756
Al = cinfo->Al;
757
758
/* Encode the MCU data blocks */
759
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
760
/* We simply emit the Al'th bit of the DC coefficient value. */
761
emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1);
762
}
763
764
cinfo->dest->next_output_byte = entropy->next_output_byte;
765
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
766
767
/* Update restart-interval state too */
768
if (cinfo->restart_interval) {
769
if (entropy->restarts_to_go == 0) {
770
entropy->restarts_to_go = cinfo->restart_interval;
771
entropy->next_restart_num++;
772
entropy->next_restart_num &= 7;
773
}
774
entropy->restarts_to_go--;
775
}
776
777
return TRUE;
778
}
779
780
781
/*
782
* MCU encoding for AC successive approximation refinement scan.
783
*/
784
785
METHODDEF(boolean)
786
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
787
{
788
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
789
const int * natural_order;
790
JBLOCKROW block;
791
register int temp;
792
register int r, k;
793
int Se, Al;
794
int EOB;
795
char *BR_buffer;
796
unsigned int BR;
797
int absvalues[DCTSIZE2];
798
799
entropy->next_output_byte = cinfo->dest->next_output_byte;
800
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
801
802
/* Emit restart marker if needed */
803
if (cinfo->restart_interval)
804
if (entropy->restarts_to_go == 0)
805
emit_restart_e(entropy, entropy->next_restart_num);
806
807
Se = cinfo->Se;
808
Al = cinfo->Al;
809
natural_order = cinfo->natural_order;
810
811
/* Encode the MCU data block */
812
block = MCU_data[0];
813
814
/* It is convenient to make a pre-pass to determine the transformed
815
* coefficients' absolute values and the EOB position.
816
*/
817
EOB = 0;
818
for (k = cinfo->Ss; k <= Se; k++) {
819
temp = (*block)[natural_order[k]];
820
/* We must apply the point transform by Al. For AC coefficients this
821
* is an integer division with rounding towards 0. To do this portably
822
* in C, we shift after obtaining the absolute value.
823
*/
824
if (temp < 0)
825
temp = -temp; /* temp is abs value of input */
826
temp >>= Al; /* apply the point transform */
827
absvalues[k] = temp; /* save abs value for main pass */
828
if (temp == 1)
829
EOB = k; /* EOB = index of last newly-nonzero coef */
830
}
831
832
/* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
833
834
r = 0; /* r = run length of zeros */
835
BR = 0; /* BR = count of buffered bits added now */
836
BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
837
838
for (k = cinfo->Ss; k <= Se; k++) {
839
if ((temp = absvalues[k]) == 0) {
840
r++;
841
continue;
842
}
843
844
/* Emit any required ZRLs, but not if they can be folded into EOB */
845
while (r > 15 && k <= EOB) {
846
/* emit any pending EOBRUN and the BE correction bits */
847
emit_eobrun(entropy);
848
/* Emit ZRL */
849
emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
850
r -= 16;
851
/* Emit buffered correction bits that must be associated with ZRL */
852
emit_buffered_bits(entropy, BR_buffer, BR);
853
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
854
BR = 0;
855
}
856
857
/* If the coef was previously nonzero, it only needs a correction bit.
858
* NOTE: a straight translation of the spec's figure G.7 would suggest
859
* that we also need to test r > 15. But if r > 15, we can only get here
860
* if k > EOB, which implies that this coefficient is not 1.
861
*/
862
if (temp > 1) {
863
/* The correction bit is the next bit of the absolute value. */
864
BR_buffer[BR++] = (char) (temp & 1);
865
continue;
866
}
867
868
/* Emit any pending EOBRUN and the BE correction bits */
869
emit_eobrun(entropy);
870
871
/* Count/emit Huffman symbol for run length / number of bits */
872
emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
873
874
/* Emit output bit for newly-nonzero coef */
875
temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
876
emit_bits_e(entropy, (unsigned int) temp, 1);
877
878
/* Emit buffered correction bits that must be associated with this code */
879
emit_buffered_bits(entropy, BR_buffer, BR);
880
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
881
BR = 0;
882
r = 0; /* reset zero run length */
883
}
884
885
if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
886
entropy->EOBRUN++; /* count an EOB */
887
entropy->BE += BR; /* concat my correction bits to older ones */
888
/* We force out the EOB if we risk either:
889
* 1. overflow of the EOB counter;
890
* 2. overflow of the correction bit buffer during the next MCU.
891
*/
892
if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
893
emit_eobrun(entropy);
894
}
895
896
cinfo->dest->next_output_byte = entropy->next_output_byte;
897
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
898
899
/* Update restart-interval state too */
900
if (cinfo->restart_interval) {
901
if (entropy->restarts_to_go == 0) {
902
entropy->restarts_to_go = cinfo->restart_interval;
903
entropy->next_restart_num++;
904
entropy->next_restart_num &= 7;
905
}
906
entropy->restarts_to_go--;
907
}
908
909
return TRUE;
910
}
911
912
913
/* Encode a single block's worth of coefficients */
914
915
LOCAL(boolean)
916
encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
917
c_derived_tbl *dctbl, c_derived_tbl *actbl)
918
{
919
register int temp, temp2;
920
register int nbits;
921
register int r, k;
922
int Se = state->cinfo->lim_Se;
923
int max_coef_bits = state->cinfo->data_precision + 3;
924
const int * natural_order = state->cinfo->natural_order;
925
926
/* Encode the DC coefficient difference per section F.1.2.1 */
927
928
if ((temp = block[0] - last_dc_val) == 0) {
929
/* Emit the Huffman-coded symbol for the number of bits */
930
if (! emit_bits_s(state, dctbl->ehufco[0], dctbl->ehufsi[0]))
931
return FALSE;
932
} else {
933
if ((temp2 = temp) < 0) {
934
temp = -temp; /* temp is abs value of input */
935
/* For a negative input, want temp2 = bitwise complement of abs(input) */
936
/* This code assumes we are on a two's complement machine */
937
temp2--;
938
}
939
940
/* Find the number of bits needed for the magnitude of the coefficient */
941
nbits = 0;
942
do nbits++; /* there must be at least one 1 bit */
943
while ((temp >>= 1));
944
/* Check for out-of-range coefficient values.
945
* Since we're encoding a difference, the range limit is twice as much.
946
*/
947
if (nbits > max_coef_bits)
948
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
949
950
/* Emit the Huffman-coded symbol for the number of bits */
951
if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
952
return FALSE;
953
954
/* Emit that number of bits of the value, if positive, */
955
/* or the complement of its magnitude, if negative. */
956
if (! emit_bits_s(state, (unsigned int) temp2, nbits))
957
return FALSE;
958
}
959
960
/* Encode the AC coefficients per section F.1.2.2 */
961
962
r = 0; /* r = run length of zeros */
963
964
for (k = 1; k <= Se; k++) {
965
if ((temp = block[natural_order[k]]) == 0) {
966
r++;
967
continue;
968
}
969
970
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
971
while (r > 15) {
972
if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
973
return FALSE;
974
r -= 16;
975
}
976
977
if ((temp2 = temp) < 0) {
978
temp = -temp; /* temp is abs value of input */
979
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */
980
/* This code assumes we are on a two's complement machine */
981
temp2--;
982
}
983
984
/* Find the number of bits needed for the magnitude of the coefficient */
985
nbits = 0;
986
do nbits++; /* there must be at least one 1 bit */
987
while ((temp >>= 1));
988
/* Check for out-of-range coefficient values.
989
* Use ">=" instead of ">" so can use the
990
* same one larger limit from DC check here.
991
*/
992
if (nbits >= max_coef_bits)
993
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
994
995
/* Emit Huffman symbol for run length / number of bits */
996
temp = (r << 4) + nbits;
997
if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp]))
998
return FALSE;
999
1000
/* Emit that number of bits of the value, if positive, */
1001
/* or the complement of its magnitude, if negative. */
1002
if (! emit_bits_s(state, (unsigned int) temp2, nbits))
1003
return FALSE;
1004
1005
r = 0; /* reset zero run length */
1006
}
1007
1008
/* If the last coef(s) were zero, emit an end-of-block code */
1009
if (r > 0)
1010
if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
1011
return FALSE;
1012
1013
return TRUE;
1014
}
1015
1016
1017
/*
1018
* Encode and output one MCU's worth of Huffman-compressed coefficients.
1019
*/
1020
1021
METHODDEF(boolean)
1022
encode_mcu_huff (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
1023
{
1024
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1025
working_state state;
1026
int blkn, ci;
1027
jpeg_component_info * compptr;
1028
1029
/* Load up working state */
1030
state.next_output_byte = cinfo->dest->next_output_byte;
1031
state.free_in_buffer = cinfo->dest->free_in_buffer;
1032
ASSIGN_STATE(state.cur, entropy->saved);
1033
state.cinfo = cinfo;
1034
1035
/* Emit restart marker if needed */
1036
if (cinfo->restart_interval) {
1037
if (entropy->restarts_to_go == 0)
1038
if (! emit_restart_s(&state, entropy->next_restart_num))
1039
return FALSE;
1040
}
1041
1042
/* Encode the MCU data blocks */
1043
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1044
ci = cinfo->MCU_membership[blkn];
1045
compptr = cinfo->cur_comp_info[ci];
1046
if (! encode_one_block(&state,
1047
MCU_data[blkn][0], state.cur.last_dc_val[ci],
1048
entropy->dc_derived_tbls[compptr->dc_tbl_no],
1049
entropy->ac_derived_tbls[compptr->ac_tbl_no]))
1050
return FALSE;
1051
/* Update last_dc_val */
1052
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
1053
}
1054
1055
/* Completed MCU, so update state */
1056
cinfo->dest->next_output_byte = state.next_output_byte;
1057
cinfo->dest->free_in_buffer = state.free_in_buffer;
1058
ASSIGN_STATE(entropy->saved, state.cur);
1059
1060
/* Update restart-interval state too */
1061
if (cinfo->restart_interval) {
1062
if (entropy->restarts_to_go == 0) {
1063
entropy->restarts_to_go = cinfo->restart_interval;
1064
entropy->next_restart_num++;
1065
entropy->next_restart_num &= 7;
1066
}
1067
entropy->restarts_to_go--;
1068
}
1069
1070
return TRUE;
1071
}
1072
1073
1074
/*
1075
* Finish up at the end of a Huffman-compressed scan.
1076
*/
1077
1078
METHODDEF(void)
1079
finish_pass_huff (j_compress_ptr cinfo)
1080
{
1081
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1082
working_state state;
1083
1084
if (cinfo->progressive_mode) {
1085
entropy->next_output_byte = cinfo->dest->next_output_byte;
1086
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
1087
1088
/* Flush out any buffered data */
1089
emit_eobrun(entropy);
1090
flush_bits_e(entropy);
1091
1092
cinfo->dest->next_output_byte = entropy->next_output_byte;
1093
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
1094
} else {
1095
/* Load up working state ... flush_bits needs it */
1096
state.next_output_byte = cinfo->dest->next_output_byte;
1097
state.free_in_buffer = cinfo->dest->free_in_buffer;
1098
ASSIGN_STATE(state.cur, entropy->saved);
1099
state.cinfo = cinfo;
1100
1101
/* Flush out the last data */
1102
if (! flush_bits_s(&state))
1103
ERREXIT(cinfo, JERR_CANT_SUSPEND);
1104
1105
/* Update state */
1106
cinfo->dest->next_output_byte = state.next_output_byte;
1107
cinfo->dest->free_in_buffer = state.free_in_buffer;
1108
ASSIGN_STATE(entropy->saved, state.cur);
1109
}
1110
}
1111
1112
1113
/*
1114
* Huffman coding optimization.
1115
*
1116
* We first scan the supplied data and count the number of uses of each symbol
1117
* that is to be Huffman-coded. (This process MUST agree with the code above.)
1118
* Then we build a Huffman coding tree for the observed counts.
1119
* Symbols which are not needed at all for the particular image are not
1120
* assigned any code, which saves space in the DHT marker as well as in
1121
* the compressed data.
1122
*/
1123
1124
1125
/* Process a single block's worth of coefficients */
1126
1127
LOCAL(void)
1128
htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
1129
long dc_counts[], long ac_counts[])
1130
{
1131
register int temp;
1132
register int nbits;
1133
register int r, k;
1134
int Se = cinfo->lim_Se;
1135
int max_coef_bits = cinfo->data_precision + 3;
1136
const int * natural_order = cinfo->natural_order;
1137
1138
/* Encode the DC coefficient difference per section F.1.2.1 */
1139
1140
if ((temp = block[0] - last_dc_val) == 0) {
1141
/* Count the Huffman symbol for the number of bits */
1142
dc_counts[0]++;
1143
} else {
1144
if (temp < 0)
1145
temp = -temp; /* temp is abs value of input */
1146
1147
/* Find the number of bits needed for the magnitude of the coefficient */
1148
nbits = 0;
1149
do nbits++; /* there must be at least one 1 bit */
1150
while ((temp >>= 1));
1151
/* Check for out-of-range coefficient values.
1152
* Since we're encoding a difference, the range limit is twice as much.
1153
*/
1154
if (nbits > max_coef_bits)
1155
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
1156
1157
/* Count the Huffman symbol for the number of bits */
1158
dc_counts[nbits]++;
1159
}
1160
1161
/* Encode the AC coefficients per section F.1.2.2 */
1162
1163
r = 0; /* r = run length of zeros */
1164
1165
for (k = 1; k <= Se; k++) {
1166
if ((temp = block[natural_order[k]]) == 0) {
1167
r++;
1168
continue;
1169
}
1170
1171
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
1172
while (r > 15) {
1173
ac_counts[0xF0]++;
1174
r -= 16;
1175
}
1176
1177
if (temp < 0)
1178
temp = -temp; /* temp is abs value of input */
1179
1180
/* Find the number of bits needed for the magnitude of the coefficient */
1181
nbits = 0;
1182
do nbits++; /* there must be at least one 1 bit */
1183
while ((temp >>= 1));
1184
/* Check for out-of-range coefficient values.
1185
* Use ">=" instead of ">" so can use the
1186
* same one larger limit from DC check here.
1187
*/
1188
if (nbits >= max_coef_bits)
1189
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
1190
1191
/* Count Huffman symbol for run length / number of bits */
1192
ac_counts[(r << 4) + nbits]++;
1193
1194
r = 0; /* reset zero run length */
1195
}
1196
1197
/* If the last coef(s) were zero, emit an end-of-block code */
1198
if (r > 0)
1199
ac_counts[0]++;
1200
}
1201
1202
1203
/*
1204
* Trial-encode one MCU's worth of Huffman-compressed coefficients.
1205
* No data is actually output, so no suspension return is possible.
1206
*/
1207
1208
METHODDEF(boolean)
1209
encode_mcu_gather (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
1210
{
1211
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1212
int blkn, ci;
1213
jpeg_component_info * compptr;
1214
1215
/* Take care of restart intervals if needed */
1216
if (cinfo->restart_interval) {
1217
if (entropy->restarts_to_go == 0) {
1218
/* Re-initialize DC predictions to 0 */
1219
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
1220
entropy->saved.last_dc_val[ci] = 0;
1221
/* Update restart state */
1222
entropy->restarts_to_go = cinfo->restart_interval;
1223
}
1224
entropy->restarts_to_go--;
1225
}
1226
1227
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1228
ci = cinfo->MCU_membership[blkn];
1229
compptr = cinfo->cur_comp_info[ci];
1230
htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
1231
entropy->dc_count_ptrs[compptr->dc_tbl_no],
1232
entropy->ac_count_ptrs[compptr->ac_tbl_no]);
1233
entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
1234
}
1235
1236
return TRUE;
1237
}
1238
1239
1240
/*
1241
* Generate the best Huffman code table for the given counts, fill htbl.
1242
*
1243
* The JPEG standard requires that no symbol be assigned a codeword of all
1244
* one bits (so that padding bits added at the end of a compressed segment
1245
* can't look like a valid code). Because of the canonical ordering of
1246
* codewords, this just means that there must be an unused slot in the
1247
* longest codeword length category. Section K.2 of the JPEG spec suggests
1248
* reserving such a slot by pretending that symbol 256 is a valid symbol
1249
* with count 1. In theory that's not optimal; giving it count zero but
1250
* including it in the symbol set anyway should give a better Huffman code.
1251
* But the theoretically better code actually seems to come out worse in
1252
* practice, because it produces more all-ones bytes (which incur stuffed
1253
* zero bytes in the final file). In any case the difference is tiny.
1254
*
1255
* The JPEG standard requires Huffman codes to be no more than 16 bits long.
1256
* If some symbols have a very small but nonzero probability, the Huffman tree
1257
* must be adjusted to meet the code length restriction. We currently use
1258
* the adjustment method suggested in JPEG section K.2. This method is *not*
1259
* optimal; it may not choose the best possible limited-length code. But
1260
* typically only very-low-frequency symbols will be given less-than-optimal
1261
* lengths, so the code is almost optimal. Experimental comparisons against
1262
* an optimal limited-length-code algorithm indicate that the difference is
1263
* microscopic --- usually less than a hundredth of a percent of total size.
1264
* So the extra complexity of an optimal algorithm doesn't seem worthwhile.
1265
*/
1266
1267
LOCAL(void)
1268
jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
1269
{
1270
#define MAX_CLEN 32 /* assumed maximum initial code length */
1271
UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
1272
int codesize[257]; /* codesize[k] = code length of symbol k */
1273
int others[257]; /* next symbol in current branch of tree */
1274
int c1, c2, i, j;
1275
UINT8 *p;
1276
long v;
1277
1278
freq[256] = 1; /* make sure 256 has a nonzero count */
1279
/* Including the pseudo-symbol 256 in the Huffman procedure guarantees
1280
* that no real symbol is given code-value of all ones, because 256
1281
* will be placed last in the largest codeword category.
1282
* In the symbol list build procedure this element serves as sentinel
1283
* for the zero run loop.
1284
*/
1285
1286
#ifndef DONT_USE_FANCY_HUFF_OPT
1287
1288
/* Build list of symbols sorted in order of descending frequency */
1289
/* This approach has several benefits (thank to John Korejwa for the idea):
1290
* 1.
1291
* If a codelength category is split during the length limiting procedure
1292
* below, the feature that more frequent symbols are assigned shorter
1293
* codewords remains valid for the adjusted code.
1294
* 2.
1295
* To reduce consecutive ones in a Huffman data stream (thus reducing the
1296
* number of stuff bytes in JPEG) it is preferable to follow 0 branches
1297
* (and avoid 1 branches) as much as possible. This is easily done by
1298
* assigning symbols to leaves of the Huffman tree in order of decreasing
1299
* frequency, with no secondary sort based on codelengths.
1300
* 3.
1301
* The symbol list can be built independently from the assignment of code
1302
* lengths by the Huffman procedure below.
1303
* Note: The symbol list build procedure must be performed first, because
1304
* the Huffman procedure assigning the codelengths clobbers the frequency
1305
* counts!
1306
*/
1307
1308
/* Here we use the others array as a linked list of nonzero frequencies
1309
* to be sorted. Already sorted elements are removed from the list.
1310
*/
1311
1312
/* Building list */
1313
1314
/* This item does not correspond to a valid symbol frequency and is used
1315
* as starting index.
1316
*/
1317
j = 256;
1318
1319
for (i = 0;; i++) {
1320
if (freq[i] == 0) /* skip zero frequencies */
1321
continue;
1322
if (i > 255)
1323
break;
1324
others[j] = i; /* this symbol value */
1325
j = i; /* previous symbol value */
1326
}
1327
others[j] = -1; /* mark end of list */
1328
1329
/* Sorting list */
1330
1331
p = htbl->huffval;
1332
while ((c1 = others[256]) >= 0) {
1333
v = freq[c1];
1334
i = c1; /* first symbol value */
1335
j = 256; /* pseudo symbol value for starting index */
1336
while ((c2 = others[c1]) >= 0) {
1337
if (freq[c2] > v) {
1338
v = freq[c2];
1339
i = c2; /* this symbol value */
1340
j = c1; /* previous symbol value */
1341
}
1342
c1 = c2;
1343
}
1344
others[j] = others[i]; /* remove this symbol i from list */
1345
*p++ = (UINT8) i;
1346
}
1347
1348
#endif /* DONT_USE_FANCY_HUFF_OPT */
1349
1350
/* This algorithm is explained in section K.2 of the JPEG standard */
1351
1352
MEMZERO(bits, SIZEOF(bits));
1353
MEMZERO(codesize, SIZEOF(codesize));
1354
for (i = 0; i < 257; i++)
1355
others[i] = -1; /* init links to empty */
1356
1357
/* Huffman's basic algorithm to assign optimal code lengths to symbols */
1358
1359
for (;;) {
1360
/* Find the smallest nonzero frequency, set c1 = its symbol */
1361
/* In case of ties, take the larger symbol number */
1362
c1 = -1;
1363
v = 1000000000L;
1364
for (i = 0; i <= 256; i++) {
1365
if (freq[i] && freq[i] <= v) {
1366
v = freq[i];
1367
c1 = i;
1368
}
1369
}
1370
1371
/* Find the next smallest nonzero frequency, set c2 = its symbol */
1372
/* In case of ties, take the larger symbol number */
1373
c2 = -1;
1374
v = 1000000000L;
1375
for (i = 0; i <= 256; i++) {
1376
if (freq[i] && freq[i] <= v && i != c1) {
1377
v = freq[i];
1378
c2 = i;
1379
}
1380
}
1381
1382
/* Done if we've merged everything into one frequency */
1383
if (c2 < 0)
1384
break;
1385
1386
/* Else merge the two counts/trees */
1387
freq[c1] += freq[c2];
1388
freq[c2] = 0;
1389
1390
/* Increment the codesize of everything in c1's tree branch */
1391
codesize[c1]++;
1392
while (others[c1] >= 0) {
1393
c1 = others[c1];
1394
codesize[c1]++;
1395
}
1396
1397
others[c1] = c2; /* chain c2 onto c1's tree branch */
1398
1399
/* Increment the codesize of everything in c2's tree branch */
1400
codesize[c2]++;
1401
while (others[c2] >= 0) {
1402
c2 = others[c2];
1403
codesize[c2]++;
1404
}
1405
}
1406
1407
/* Now count the number of symbols of each code length */
1408
for (i = 0; i <= 256; i++) {
1409
if (codesize[i]) {
1410
/* The JPEG standard seems to think that this can't happen, */
1411
/* but I'm paranoid... */
1412
if (codesize[i] > MAX_CLEN)
1413
ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS);
1414
1415
bits[codesize[i]]++;
1416
}
1417
}
1418
1419
/* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
1420
* Huffman procedure assigned any such lengths, we must adjust the coding.
1421
* Here is what the JPEG spec says about how this next bit works:
1422
* Since symbols are paired for the longest Huffman code, the symbols are
1423
* removed from this length category two at a time. The prefix for the pair
1424
* (which is one bit shorter) is allocated to one of the pair; then,
1425
* skipping the BITS entry for that prefix length, a code word from the next
1426
* shortest nonzero BITS entry is converted into a prefix for two code words
1427
* one bit longer.
1428
*/
1429
1430
for (i = MAX_CLEN; i > 16; i--) {
1431
while (bits[i] > 0) {
1432
j = i - 2; /* find length of new prefix to be used */
1433
while (bits[j] == 0) {
1434
if (j == 0)
1435
ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS);
1436
j--;
1437
}
1438
1439
bits[i] -= 2; /* remove two symbols */
1440
bits[i-1]++; /* one goes in this length */
1441
bits[j+1] += 2; /* two new symbols in this length */
1442
bits[j]--; /* symbol of this length is now a prefix */
1443
}
1444
}
1445
1446
/* Remove the count for the pseudo-symbol 256 from the largest codelength */
1447
while (bits[i] == 0) /* find largest codelength still in use */
1448
i--;
1449
bits[i]--;
1450
1451
/* Return final symbol counts (only for lengths 0..16) */
1452
MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
1453
1454
#ifdef DONT_USE_FANCY_HUFF_OPT
1455
1456
/* Return a list of the symbols sorted by code length */
1457
/* Note: Due to the codelength changes made above, it can happen
1458
* that more frequent symbols are assigned longer codewords.
1459
*/
1460
p = htbl->huffval;
1461
for (i = 1; i <= MAX_CLEN; i++) {
1462
for (j = 0; j <= 255; j++) {
1463
if (codesize[j] == i) {
1464
*p++ = (UINT8) j;
1465
}
1466
}
1467
}
1468
1469
#endif /* DONT_USE_FANCY_HUFF_OPT */
1470
1471
/* Set sent_table FALSE so updated table will be written to JPEG file. */
1472
htbl->sent_table = FALSE;
1473
}
1474
1475
1476
/*
1477
* Finish up a statistics-gathering pass and create the new Huffman tables.
1478
*/
1479
1480
METHODDEF(void)
1481
finish_pass_gather (j_compress_ptr cinfo)
1482
{
1483
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1484
int ci, tbl;
1485
jpeg_component_info * compptr;
1486
JHUFF_TBL **htblptr;
1487
boolean did_dc[NUM_HUFF_TBLS];
1488
boolean did_ac[NUM_HUFF_TBLS];
1489
1490
if (cinfo->progressive_mode)
1491
/* Flush out buffered data (all we care about is counting the EOB symbol) */
1492
emit_eobrun(entropy);
1493
1494
/* It's important not to apply jpeg_gen_optimal_table more than once
1495
* per table, because it clobbers the input frequency counts!
1496
*/
1497
MEMZERO(did_dc, SIZEOF(did_dc));
1498
MEMZERO(did_ac, SIZEOF(did_ac));
1499
1500
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1501
compptr = cinfo->cur_comp_info[ci];
1502
/* DC needs no table for refinement scan */
1503
if (cinfo->Ss == 0 && cinfo->Ah == 0) {
1504
tbl = compptr->dc_tbl_no;
1505
if (! did_dc[tbl]) {
1506
htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
1507
if (*htblptr == NULL)
1508
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1509
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
1510
did_dc[tbl] = TRUE;
1511
}
1512
}
1513
/* AC needs no table when not present */
1514
if (cinfo->Se) {
1515
tbl = compptr->ac_tbl_no;
1516
if (! did_ac[tbl]) {
1517
htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
1518
if (*htblptr == NULL)
1519
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1520
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
1521
did_ac[tbl] = TRUE;
1522
}
1523
}
1524
}
1525
}
1526
1527
1528
/*
1529
* Initialize for a Huffman-compressed scan.
1530
* If gather_statistics is TRUE, we do not output anything during the scan,
1531
* just count the Huffman symbols used and generate Huffman code tables.
1532
*/
1533
1534
METHODDEF(void)
1535
start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
1536
{
1537
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1538
int ci, tbl;
1539
jpeg_component_info * compptr;
1540
1541
if (gather_statistics)
1542
entropy->pub.finish_pass = finish_pass_gather;
1543
else
1544
entropy->pub.finish_pass = finish_pass_huff;
1545
1546
if (cinfo->progressive_mode) {
1547
entropy->cinfo = cinfo;
1548
entropy->gather_statistics = gather_statistics;
1549
1550
/* We assume jcmaster.c already validated the scan parameters. */
1551
1552
/* Select execution routine */
1553
if (cinfo->Ah == 0) {
1554
if (cinfo->Ss == 0)
1555
entropy->pub.encode_mcu = encode_mcu_DC_first;
1556
else
1557
entropy->pub.encode_mcu = encode_mcu_AC_first;
1558
} else {
1559
if (cinfo->Ss == 0)
1560
entropy->pub.encode_mcu = encode_mcu_DC_refine;
1561
else {
1562
entropy->pub.encode_mcu = encode_mcu_AC_refine;
1563
/* AC refinement needs a correction bit buffer */
1564
if (entropy->bit_buffer == NULL)
1565
entropy->bit_buffer = (char *) (*cinfo->mem->alloc_small)
1566
((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(char));
1567
}
1568
}
1569
1570
/* Initialize AC stuff */
1571
entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
1572
entropy->EOBRUN = 0;
1573
entropy->BE = 0;
1574
} else {
1575
if (gather_statistics)
1576
entropy->pub.encode_mcu = encode_mcu_gather;
1577
else
1578
entropy->pub.encode_mcu = encode_mcu_huff;
1579
}
1580
1581
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1582
compptr = cinfo->cur_comp_info[ci];
1583
/* DC needs no table for refinement scan */
1584
if (cinfo->Ss == 0 && cinfo->Ah == 0) {
1585
tbl = compptr->dc_tbl_no;
1586
if (gather_statistics) {
1587
/* Check for invalid table index */
1588
/* (make_c_derived_tbl does this in the other path) */
1589
if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
1590
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
1591
/* Allocate and zero the statistics tables */
1592
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
1593
if (entropy->dc_count_ptrs[tbl] == NULL)
1594
entropy->dc_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small)
1595
((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long));
1596
MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
1597
} else {
1598
/* Compute derived values for Huffman tables */
1599
/* We may do this more than once for a table, but it's not expensive */
1600
jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
1601
& entropy->dc_derived_tbls[tbl]);
1602
}
1603
/* Initialize DC predictions to 0 */
1604
entropy->saved.last_dc_val[ci] = 0;
1605
}
1606
/* AC needs no table when not present */
1607
if (cinfo->Se) {
1608
tbl = compptr->ac_tbl_no;
1609
if (gather_statistics) {
1610
if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
1611
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
1612
if (entropy->ac_count_ptrs[tbl] == NULL)
1613
entropy->ac_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small)
1614
((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long));
1615
MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
1616
} else {
1617
jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
1618
& entropy->ac_derived_tbls[tbl]);
1619
}
1620
}
1621
}
1622
1623
/* Initialize bit buffer to empty */
1624
entropy->saved.put_buffer = 0;
1625
entropy->saved.put_bits = 0;
1626
1627
/* Initialize restart stuff */
1628
entropy->restarts_to_go = cinfo->restart_interval;
1629
entropy->next_restart_num = 0;
1630
}
1631
1632
1633
/*
1634
* Module initialization routine for Huffman entropy encoding.
1635
*/
1636
1637
GLOBAL(void)
1638
jinit_huff_encoder (j_compress_ptr cinfo)
1639
{
1640
huff_entropy_ptr entropy;
1641
int i;
1642
1643
entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small)
1644
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder));
1645
cinfo->entropy = &entropy->pub;
1646
entropy->pub.start_pass = start_pass_huff;
1647
1648
/* Mark tables unallocated */
1649
for (i = 0; i < NUM_HUFF_TBLS; i++) {
1650
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1651
entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1652
}
1653
1654
if (cinfo->progressive_mode)
1655
entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
1656
}
1657
1658