Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jcsample.c
4389 views
1
/*
2
* jcsample.c
3
*
4
* Copyright (C) 1991-1996, Thomas G. Lane.
5
* Modified 2003-2020 by Guido Vollbeding.
6
* This file is part of the Independent JPEG Group's software.
7
* For conditions of distribution and use, see the accompanying README file.
8
*
9
* This file contains downsampling routines.
10
*
11
* Downsampling input data is counted in "row groups". A row group
12
* is defined to be max_v_samp_factor pixel rows of each component,
13
* from which the downsampler produces v_samp_factor sample rows.
14
* A single row group is processed in each call to the downsampler module.
15
*
16
* The downsampler is responsible for edge-expansion of its output data
17
* to fill an integral number of DCT blocks horizontally. The source buffer
18
* may be modified if it is helpful for this purpose (the source buffer is
19
* allocated wide enough to correspond to the desired output width).
20
* The caller (the prep controller) is responsible for vertical padding.
21
*
22
* The downsampler may request "context rows" by setting need_context_rows
23
* during startup. In this case, the input arrays will contain at least
24
* one row group's worth of pixels above and below the passed-in data;
25
* the caller will create dummy rows at image top and bottom by replicating
26
* the first or last real pixel row.
27
*
28
* An excellent reference for image resampling is
29
* Digital Image Warping, George Wolberg, 1990.
30
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
31
*
32
* The downsampling algorithm used here is a simple average of the source
33
* pixels covered by the output pixel. The hi-falutin sampling literature
34
* refers to this as a "box filter". In general the characteristics of a box
35
* filter are not very good, but for the specific cases we normally use (1:1
36
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
37
* nearly so bad. If you intend to use other sampling ratios, you'd be well
38
* advised to improve this code.
39
*
40
* A simple input-smoothing capability is provided. This is mainly intended
41
* for cleaning up color-dithered GIF input files (if you find it inadequate,
42
* we suggest using an external filtering program such as pnmconvol). When
43
* enabled, each input pixel P is replaced by a weighted sum of itself and its
44
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
45
* where SF = (smoothing_factor / 1024).
46
* Currently, smoothing is only supported for 2h2v sampling factors.
47
*/
48
49
#define JPEG_INTERNALS
50
#include "jinclude.h"
51
#include "jpeglib.h"
52
53
54
/* Pointer to routine to downsample a single component */
55
typedef JMETHOD(void, downsample1_ptr,
56
(j_compress_ptr cinfo, jpeg_component_info * compptr,
57
JSAMPARRAY input_data, JSAMPARRAY output_data));
58
59
/* Private subobject */
60
61
typedef struct {
62
struct jpeg_downsampler pub; /* public fields */
63
64
/* Downsampling method pointers, one per component */
65
downsample1_ptr methods[MAX_COMPONENTS];
66
67
/* Height of an output row group for each component. */
68
int rowgroup_height[MAX_COMPONENTS];
69
70
/* These arrays save pixel expansion factors so that int_downsample need not
71
* recompute them each time. They are unused for other downsampling methods.
72
*/
73
UINT8 h_expand[MAX_COMPONENTS];
74
UINT8 v_expand[MAX_COMPONENTS];
75
} my_downsampler;
76
77
typedef my_downsampler * my_downsample_ptr;
78
79
80
/*
81
* Initialize for a downsampling pass.
82
*/
83
84
METHODDEF(void)
85
start_pass_downsample (j_compress_ptr cinfo)
86
{
87
/* no work for now */
88
}
89
90
91
/*
92
* Expand a component horizontally from width input_cols to width output_cols,
93
* by duplicating the rightmost samples.
94
*/
95
96
LOCAL(void)
97
expand_right_edge (JSAMPARRAY image_data, int num_rows,
98
JDIMENSION input_cols, JDIMENSION output_cols)
99
{
100
register JSAMPROW ptr;
101
register JSAMPLE pixval;
102
register int count;
103
int row;
104
int numcols = (int) (output_cols - input_cols);
105
106
if (numcols > 0) {
107
for (row = 0; row < num_rows; row++) {
108
ptr = image_data[row] + input_cols;
109
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
110
for (count = numcols; count > 0; count--)
111
*ptr++ = pixval;
112
}
113
}
114
}
115
116
117
/*
118
* Do downsampling for a whole row group (all components).
119
*
120
* In this version we simply downsample each component independently.
121
*/
122
123
METHODDEF(void)
124
sep_downsample (j_compress_ptr cinfo,
125
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
126
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
127
{
128
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
129
int ci;
130
jpeg_component_info * compptr;
131
JSAMPARRAY in_ptr, out_ptr;
132
133
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
134
ci++, compptr++) {
135
in_ptr = input_buf[ci] + in_row_index;
136
out_ptr = output_buf[ci] +
137
(out_row_group_index * downsample->rowgroup_height[ci]);
138
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
139
}
140
}
141
142
143
/*
144
* Downsample pixel values of a single component.
145
* One row group is processed per call.
146
* This version handles arbitrary integral sampling ratios, without smoothing.
147
* Note that this version is not actually used for customary sampling ratios.
148
*/
149
150
METHODDEF(void)
151
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
152
JSAMPARRAY input_data, JSAMPARRAY output_data)
153
{
154
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
155
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
156
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
157
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
158
JSAMPROW inptr, outptr;
159
INT32 outvalue;
160
161
h_expand = downsample->h_expand[compptr->component_index];
162
v_expand = downsample->v_expand[compptr->component_index];
163
numpix = h_expand * v_expand;
164
numpix2 = numpix/2;
165
166
/* Expand input data enough to let all the output samples be generated
167
* by the standard loop. Special-casing padded output would be more
168
* efficient.
169
*/
170
expand_right_edge(input_data, cinfo->max_v_samp_factor,
171
cinfo->image_width, output_cols * h_expand);
172
173
inrow = outrow = 0;
174
while (inrow < cinfo->max_v_samp_factor) {
175
outptr = output_data[outrow];
176
for (outcol = 0, outcol_h = 0; outcol < output_cols;
177
outcol++, outcol_h += h_expand) {
178
outvalue = 0;
179
for (v = 0; v < v_expand; v++) {
180
inptr = input_data[inrow+v] + outcol_h;
181
for (h = 0; h < h_expand; h++) {
182
outvalue += (INT32) GETJSAMPLE(*inptr++);
183
}
184
}
185
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
186
}
187
inrow += v_expand;
188
outrow++;
189
}
190
}
191
192
193
/*
194
* Downsample pixel values of a single component.
195
* This version handles the special case of a full-size component,
196
* without smoothing.
197
*/
198
199
METHODDEF(void)
200
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
201
JSAMPARRAY input_data, JSAMPARRAY output_data)
202
{
203
/* Copy the data */
204
jcopy_sample_rows(input_data, output_data,
205
cinfo->max_v_samp_factor, cinfo->image_width);
206
/* Edge-expand */
207
expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
208
compptr->width_in_blocks * compptr->DCT_h_scaled_size);
209
}
210
211
212
/*
213
* Downsample pixel values of a single component.
214
* This version handles the common case of 2:1 horizontal and 1:1 vertical,
215
* without smoothing.
216
*
217
* A note about the "bias" calculations: when rounding fractional values to
218
* integer, we do not want to always round 0.5 up to the next integer.
219
* If we did that, we'd introduce a noticeable bias towards larger values.
220
* Instead, this code is arranged so that 0.5 will be rounded up or down at
221
* alternate pixel locations (a simple ordered dither pattern).
222
*/
223
224
METHODDEF(void)
225
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
226
JSAMPARRAY input_data, JSAMPARRAY output_data)
227
{
228
int inrow;
229
JDIMENSION outcol;
230
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
231
register JSAMPROW inptr, outptr;
232
register int bias;
233
234
/* Expand input data enough to let all the output samples be generated
235
* by the standard loop. Special-casing padded output would be more
236
* efficient.
237
*/
238
expand_right_edge(input_data, cinfo->max_v_samp_factor,
239
cinfo->image_width, output_cols * 2);
240
241
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
242
outptr = output_data[inrow];
243
inptr = input_data[inrow];
244
bias = 0; /* bias = 0,1,0,1,... for successive samples */
245
for (outcol = 0; outcol < output_cols; outcol++) {
246
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
247
+ bias) >> 1);
248
bias ^= 1; /* 0=>1, 1=>0 */
249
inptr += 2;
250
}
251
}
252
}
253
254
255
/*
256
* Downsample pixel values of a single component.
257
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
258
* without smoothing.
259
*/
260
261
METHODDEF(void)
262
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
263
JSAMPARRAY input_data, JSAMPARRAY output_data)
264
{
265
int inrow, outrow;
266
JDIMENSION outcol;
267
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
268
register JSAMPROW inptr0, inptr1, outptr;
269
register int bias;
270
271
/* Expand input data enough to let all the output samples be generated
272
* by the standard loop. Special-casing padded output would be more
273
* efficient.
274
*/
275
expand_right_edge(input_data, cinfo->max_v_samp_factor,
276
cinfo->image_width, output_cols * 2);
277
278
inrow = outrow = 0;
279
while (inrow < cinfo->max_v_samp_factor) {
280
outptr = output_data[outrow];
281
inptr0 = input_data[inrow];
282
inptr1 = input_data[inrow+1];
283
bias = 1; /* bias = 1,2,1,2,... for successive samples */
284
for (outcol = 0; outcol < output_cols; outcol++) {
285
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
286
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
287
+ bias) >> 2);
288
bias ^= 3; /* 1=>2, 2=>1 */
289
inptr0 += 2; inptr1 += 2;
290
}
291
inrow += 2;
292
outrow++;
293
}
294
}
295
296
297
#ifdef INPUT_SMOOTHING_SUPPORTED
298
299
/*
300
* Downsample pixel values of a single component.
301
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
302
* with smoothing. One row of context is required.
303
*/
304
305
METHODDEF(void)
306
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
307
JSAMPARRAY input_data, JSAMPARRAY output_data)
308
{
309
int inrow, outrow;
310
JDIMENSION colctr;
311
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
312
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
313
INT32 membersum, neighsum, memberscale, neighscale;
314
315
/* Expand input data enough to let all the output samples be generated
316
* by the standard loop. Special-casing padded output would be more
317
* efficient.
318
*/
319
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
320
cinfo->image_width, output_cols * 2);
321
322
/* We don't bother to form the individual "smoothed" input pixel values;
323
* we can directly compute the output which is the average of the four
324
* smoothed values. Each of the four member pixels contributes a fraction
325
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three
326
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
327
* output. The four corner-adjacent neighbor pixels contribute a fraction
328
* SF to just one smoothed pixel, or SF/4 to the final output; while the
329
* eight edge-adjacent neighbors contribute SF to each of two smoothed
330
* pixels, or SF/2 overall. In order to use integer arithmetic, these
331
* factors are scaled by 2^16 = 65536.
332
* Also recall that SF = smoothing_factor / 1024.
333
*/
334
335
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
336
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
337
338
inrow = outrow = 0;
339
while (inrow < cinfo->max_v_samp_factor) {
340
outptr = output_data[outrow];
341
inptr0 = input_data[inrow];
342
inptr1 = input_data[inrow+1];
343
above_ptr = input_data[inrow-1];
344
below_ptr = input_data[inrow+2];
345
346
/* Special case for first column: pretend column -1 is same as column 0 */
347
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
348
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
349
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
350
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
351
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
352
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
353
neighsum += neighsum;
354
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
355
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
356
membersum = membersum * memberscale + neighsum * neighscale;
357
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
358
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
359
360
for (colctr = output_cols - 2; colctr > 0; colctr--) {
361
/* sum of pixels directly mapped to this output element */
362
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
363
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
364
/* sum of edge-neighbor pixels */
365
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
366
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
367
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
368
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
369
/* The edge-neighbors count twice as much as corner-neighbors */
370
neighsum += neighsum;
371
/* Add in the corner-neighbors */
372
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
373
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
374
/* form final output scaled up by 2^16 */
375
membersum = membersum * memberscale + neighsum * neighscale;
376
/* round, descale and output it */
377
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
378
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
379
}
380
381
/* Special case for last column */
382
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
383
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
384
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
385
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
386
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
387
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
388
neighsum += neighsum;
389
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
390
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
391
membersum = membersum * memberscale + neighsum * neighscale;
392
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
393
394
inrow += 2;
395
outrow++;
396
}
397
}
398
399
400
/*
401
* Downsample pixel values of a single component.
402
* This version handles the special case of a full-size component,
403
* with smoothing. One row of context is required.
404
*/
405
406
METHODDEF(void)
407
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
408
JSAMPARRAY input_data, JSAMPARRAY output_data)
409
{
410
int inrow;
411
JDIMENSION colctr;
412
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
413
register JSAMPROW inptr, above_ptr, below_ptr, outptr;
414
INT32 membersum, neighsum, memberscale, neighscale;
415
int colsum, lastcolsum, nextcolsum;
416
417
/* Expand input data enough to let all the output samples be generated
418
* by the standard loop. Special-casing padded output would be more
419
* efficient.
420
*/
421
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
422
cinfo->image_width, output_cols);
423
424
/* Each of the eight neighbor pixels contributes a fraction SF to the
425
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
426
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
427
* Also recall that SF = smoothing_factor / 1024.
428
*/
429
430
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
431
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
432
433
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
434
outptr = output_data[inrow];
435
inptr = input_data[inrow];
436
above_ptr = input_data[inrow-1];
437
below_ptr = input_data[inrow+1];
438
439
/* Special case for first column */
440
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
441
GETJSAMPLE(*inptr);
442
membersum = GETJSAMPLE(*inptr++);
443
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
444
GETJSAMPLE(*inptr);
445
neighsum = colsum + (colsum - membersum) + nextcolsum;
446
membersum = membersum * memberscale + neighsum * neighscale;
447
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
448
lastcolsum = colsum; colsum = nextcolsum;
449
450
for (colctr = output_cols - 2; colctr > 0; colctr--) {
451
membersum = GETJSAMPLE(*inptr++);
452
above_ptr++; below_ptr++;
453
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
454
GETJSAMPLE(*inptr);
455
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
456
membersum = membersum * memberscale + neighsum * neighscale;
457
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
458
lastcolsum = colsum; colsum = nextcolsum;
459
}
460
461
/* Special case for last column */
462
membersum = GETJSAMPLE(*inptr);
463
neighsum = lastcolsum + (colsum - membersum) + colsum;
464
membersum = membersum * memberscale + neighsum * neighscale;
465
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
466
467
}
468
}
469
470
#endif /* INPUT_SMOOTHING_SUPPORTED */
471
472
473
/*
474
* Module initialization routine for downsampling.
475
* Note that we must select a routine for each component.
476
*/
477
478
GLOBAL(void)
479
jinit_downsampler (j_compress_ptr cinfo)
480
{
481
my_downsample_ptr downsample;
482
int ci;
483
jpeg_component_info * compptr;
484
boolean smoothok = TRUE;
485
int h_in_group, v_in_group, h_out_group, v_out_group;
486
487
downsample = (my_downsample_ptr) (*cinfo->mem->alloc_small)
488
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_downsampler));
489
cinfo->downsample = &downsample->pub;
490
downsample->pub.start_pass = start_pass_downsample;
491
downsample->pub.downsample = sep_downsample;
492
downsample->pub.need_context_rows = FALSE;
493
494
if (cinfo->CCIR601_sampling)
495
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
496
497
/* Verify we can handle the sampling factors, and set up method pointers */
498
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
499
ci++, compptr++) {
500
/* Compute size of an "output group" for DCT scaling. This many samples
501
* are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
502
*/
503
h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
504
cinfo->min_DCT_h_scaled_size;
505
v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
506
cinfo->min_DCT_v_scaled_size;
507
h_in_group = cinfo->max_h_samp_factor;
508
v_in_group = cinfo->max_v_samp_factor;
509
downsample->rowgroup_height[ci] = v_out_group; /* save for use later */
510
if (h_in_group == h_out_group && v_in_group == v_out_group) {
511
#ifdef INPUT_SMOOTHING_SUPPORTED
512
if (cinfo->smoothing_factor) {
513
downsample->methods[ci] = fullsize_smooth_downsample;
514
downsample->pub.need_context_rows = TRUE;
515
} else
516
#endif
517
downsample->methods[ci] = fullsize_downsample;
518
} else if (h_in_group == h_out_group * 2 &&
519
v_in_group == v_out_group) {
520
smoothok = FALSE;
521
downsample->methods[ci] = h2v1_downsample;
522
} else if (h_in_group == h_out_group * 2 &&
523
v_in_group == v_out_group * 2) {
524
#ifdef INPUT_SMOOTHING_SUPPORTED
525
if (cinfo->smoothing_factor) {
526
downsample->methods[ci] = h2v2_smooth_downsample;
527
downsample->pub.need_context_rows = TRUE;
528
} else
529
#endif
530
downsample->methods[ci] = h2v2_downsample;
531
} else if ((h_in_group % h_out_group) == 0 &&
532
(v_in_group % v_out_group) == 0) {
533
smoothok = FALSE;
534
downsample->methods[ci] = int_downsample;
535
downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group);
536
downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group);
537
} else
538
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
539
}
540
541
#ifdef INPUT_SMOOTHING_SUPPORTED
542
if (cinfo->smoothing_factor && !smoothok)
543
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
544
#endif
545
}
546
547