Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jdarith.c
4389 views
1
/*
2
* jdarith.c
3
*
4
* Developed 1997-2020 by Guido Vollbeding.
5
* This file is part of the Independent JPEG Group's software.
6
* For conditions of distribution and use, see the accompanying README file.
7
*
8
* This file contains portable arithmetic entropy decoding routines for JPEG
9
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10
*
11
* Both sequential and progressive modes are supported in this single module.
12
*
13
* Suspension is not currently supported in this module.
14
*/
15
16
#define JPEG_INTERNALS
17
#include "jinclude.h"
18
#include "jpeglib.h"
19
20
21
/* Expanded entropy decoder object for arithmetic decoding. */
22
23
typedef struct {
24
struct jpeg_entropy_decoder pub; /* public fields */
25
26
INT32 c; /* C register, base of coding interval + input bit buffer */
27
INT32 a; /* A register, normalized size of coding interval */
28
int ct; /* bit shift counter, # of bits left in bit buffer part of C */
29
/* init: ct = -16 */
30
/* run: ct = 0..7 */
31
/* error: ct = -1 */
32
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
33
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
34
35
unsigned int restarts_to_go; /* MCUs left in this restart interval */
36
37
/* Pointers to statistics areas (these workspaces have image lifespan) */
38
unsigned char * dc_stats[NUM_ARITH_TBLS];
39
unsigned char * ac_stats[NUM_ARITH_TBLS];
40
41
/* Statistics bin for coding with fixed probability 0.5 */
42
unsigned char fixed_bin[4];
43
} arith_entropy_decoder;
44
45
typedef arith_entropy_decoder * arith_entropy_ptr;
46
47
/* The following two definitions specify the allocation chunk size
48
* for the statistics area.
49
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
50
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
51
*
52
* We use a compact representation with 1 byte per statistics bin,
53
* thus the numbers directly represent byte sizes.
54
* This 1 byte per statistics bin contains the meaning of the MPS
55
* (more probable symbol) in the highest bit (mask 0x80), and the
56
* index into the probability estimation state machine table
57
* in the lower bits (mask 0x7F).
58
*/
59
60
#define DC_STAT_BINS 64
61
#define AC_STAT_BINS 256
62
63
64
LOCAL(int)
65
get_byte (j_decompress_ptr cinfo)
66
/* Read next input byte; we do not support suspension in this module. */
67
{
68
struct jpeg_source_mgr * src = cinfo->src;
69
70
if (src->bytes_in_buffer == 0)
71
if (! (*src->fill_input_buffer) (cinfo))
72
ERREXIT(cinfo, JERR_CANT_SUSPEND);
73
src->bytes_in_buffer--;
74
return GETJOCTET(*src->next_input_byte++);
75
}
76
77
78
/*
79
* The core arithmetic decoding routine (common in JPEG and JBIG).
80
* This needs to go as fast as possible.
81
* Machine-dependent optimization facilities
82
* are not utilized in this portable implementation.
83
* However, this code should be fairly efficient and
84
* may be a good base for further optimizations anyway.
85
*
86
* Return value is 0 or 1 (binary decision).
87
*
88
* Note: I've changed the handling of the code base & bit
89
* buffer register C compared to other implementations
90
* based on the standards layout & procedures.
91
* While it also contains both the actual base of the
92
* coding interval (16 bits) and the next-bits buffer,
93
* the cut-point between these two parts is floating
94
* (instead of fixed) with the bit shift counter CT.
95
* Thus, we also need only one (variable instead of
96
* fixed size) shift for the LPS/MPS decision, and
97
* we can do away with any renormalization update
98
* of C (except for new data insertion, of course).
99
*
100
* I've also introduced a new scheme for accessing
101
* the probability estimation state machine table,
102
* derived from Markus Kuhn's JBIG implementation.
103
*/
104
105
LOCAL(int)
106
arith_decode (j_decompress_ptr cinfo, unsigned char *st)
107
{
108
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
109
register unsigned char nl, nm;
110
register INT32 qe, temp;
111
register int sv, data;
112
113
/* Renormalization & data input per section D.2.6 */
114
while (e->a < 0x8000L) {
115
if (--e->ct < 0) {
116
/* Need to fetch next data byte */
117
if (cinfo->unread_marker)
118
data = 0; /* stuff zero data */
119
else {
120
data = get_byte(cinfo); /* read next input byte */
121
if (data == 0xFF) { /* zero stuff or marker code */
122
do data = get_byte(cinfo);
123
while (data == 0xFF); /* swallow extra 0xFF bytes */
124
if (data == 0)
125
data = 0xFF; /* discard stuffed zero byte */
126
else {
127
/* Note: Different from the Huffman decoder, hitting
128
* a marker while processing the compressed data
129
* segment is legal in arithmetic coding.
130
* The convention is to supply zero data
131
* then until decoding is complete.
132
*/
133
cinfo->unread_marker = data;
134
data = 0;
135
}
136
}
137
}
138
e->c = (e->c << 8) | data; /* insert data into C register */
139
if ((e->ct += 8) < 0) /* update bit shift counter */
140
/* Need more initial bytes */
141
if (++e->ct == 0)
142
/* Got 2 initial bytes -> re-init A and exit loop */
143
e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
144
}
145
e->a <<= 1;
146
}
147
148
/* Fetch values from our compact representation of Table D.3(D.2):
149
* Qe values and probability estimation state machine
150
*/
151
sv = *st;
152
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
153
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
154
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
155
156
/* Decode & estimation procedures per sections D.2.4 & D.2.5 */
157
temp = e->a - qe;
158
e->a = temp;
159
temp <<= e->ct;
160
if (e->c >= temp) {
161
e->c -= temp;
162
/* Conditional LPS (less probable symbol) exchange */
163
if (e->a < qe) {
164
e->a = qe;
165
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
166
} else {
167
e->a = qe;
168
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
169
sv ^= 0x80; /* Exchange LPS/MPS */
170
}
171
} else if (e->a < 0x8000L) {
172
/* Conditional MPS (more probable symbol) exchange */
173
if (e->a < qe) {
174
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
175
sv ^= 0x80; /* Exchange LPS/MPS */
176
} else {
177
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
178
}
179
}
180
181
return sv >> 7;
182
}
183
184
185
/*
186
* Check for a restart marker & resynchronize decoder.
187
*/
188
189
LOCAL(void)
190
process_restart (j_decompress_ptr cinfo)
191
{
192
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
193
int ci;
194
jpeg_component_info * compptr;
195
196
/* Advance past the RSTn marker */
197
if (! (*cinfo->marker->read_restart_marker) (cinfo))
198
ERREXIT(cinfo, JERR_CANT_SUSPEND);
199
200
/* Re-initialize statistics areas */
201
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
202
compptr = cinfo->cur_comp_info[ci];
203
if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
204
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
205
/* Reset DC predictions to 0 */
206
entropy->last_dc_val[ci] = 0;
207
entropy->dc_context[ci] = 0;
208
}
209
if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
210
(cinfo->progressive_mode && cinfo->Ss)) {
211
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
212
}
213
}
214
215
/* Reset arithmetic decoding variables */
216
entropy->c = 0;
217
entropy->a = 0;
218
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
219
220
/* Reset restart counter */
221
entropy->restarts_to_go = cinfo->restart_interval;
222
}
223
224
225
/*
226
* Arithmetic MCU decoding.
227
* Each of these routines decodes and returns one MCU's worth of
228
* arithmetic-compressed coefficients.
229
* The coefficients are reordered from zigzag order into natural array order,
230
* but are not dequantized.
231
*
232
* The i'th block of the MCU is stored into the block pointed to by
233
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
234
*/
235
236
/*
237
* MCU decoding for DC initial scan (either spectral selection,
238
* or first pass of successive approximation).
239
*/
240
241
METHODDEF(boolean)
242
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
243
{
244
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
245
JBLOCKROW block;
246
unsigned char *st;
247
int blkn, ci, tbl, sign;
248
int v, m;
249
250
/* Process restart marker if needed */
251
if (cinfo->restart_interval) {
252
if (entropy->restarts_to_go == 0)
253
process_restart(cinfo);
254
entropy->restarts_to_go--;
255
}
256
257
if (entropy->ct == -1) return TRUE; /* if error do nothing */
258
259
/* Outer loop handles each block in the MCU */
260
261
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
262
block = MCU_data[blkn];
263
ci = cinfo->MCU_membership[blkn];
264
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
265
266
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
267
268
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
269
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
270
271
/* Figure F.19: Decode_DC_DIFF */
272
if (arith_decode(cinfo, st) == 0)
273
entropy->dc_context[ci] = 0;
274
else {
275
/* Figure F.21: Decoding nonzero value v */
276
/* Figure F.22: Decoding the sign of v */
277
sign = arith_decode(cinfo, st + 1);
278
st += 2; st += sign;
279
/* Figure F.23: Decoding the magnitude category of v */
280
if ((m = arith_decode(cinfo, st)) != 0) {
281
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
282
while (arith_decode(cinfo, st)) {
283
if ((m <<= 1) == (int) 0x8000U) {
284
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
285
entropy->ct = -1; /* magnitude overflow */
286
return TRUE;
287
}
288
st += 1;
289
}
290
}
291
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
292
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
293
entropy->dc_context[ci] = 0; /* zero diff category */
294
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
295
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
296
else
297
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
298
v = m;
299
/* Figure F.24: Decoding the magnitude bit pattern of v */
300
st += 14;
301
while (m >>= 1)
302
if (arith_decode(cinfo, st)) v |= m;
303
v += 1; if (sign) v = -v;
304
entropy->last_dc_val[ci] += v;
305
}
306
307
/* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
308
(*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
309
}
310
311
return TRUE;
312
}
313
314
315
/*
316
* MCU decoding for AC initial scan (either spectral selection,
317
* or first pass of successive approximation).
318
*/
319
320
METHODDEF(boolean)
321
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
322
{
323
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
324
JBLOCKROW block;
325
unsigned char *st;
326
int tbl, sign, k;
327
int v, m;
328
const int * natural_order;
329
330
/* Process restart marker if needed */
331
if (cinfo->restart_interval) {
332
if (entropy->restarts_to_go == 0)
333
process_restart(cinfo);
334
entropy->restarts_to_go--;
335
}
336
337
if (entropy->ct == -1) return TRUE; /* if error do nothing */
338
339
natural_order = cinfo->natural_order;
340
341
/* There is always only one block per MCU */
342
block = MCU_data[0];
343
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
344
345
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
346
347
/* Figure F.20: Decode_AC_coefficients */
348
k = cinfo->Ss - 1;
349
do {
350
st = entropy->ac_stats[tbl] + 3 * k;
351
if (arith_decode(cinfo, st)) break; /* EOB flag */
352
for (;;) {
353
k++;
354
if (arith_decode(cinfo, st + 1)) break;
355
st += 3;
356
if (k >= cinfo->Se) {
357
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
358
entropy->ct = -1; /* spectral overflow */
359
return TRUE;
360
}
361
}
362
/* Figure F.21: Decoding nonzero value v */
363
/* Figure F.22: Decoding the sign of v */
364
sign = arith_decode(cinfo, entropy->fixed_bin);
365
st += 2;
366
/* Figure F.23: Decoding the magnitude category of v */
367
if ((m = arith_decode(cinfo, st)) != 0) {
368
if (arith_decode(cinfo, st)) {
369
m <<= 1;
370
st = entropy->ac_stats[tbl] +
371
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
372
while (arith_decode(cinfo, st)) {
373
if ((m <<= 1) == (int) 0x8000U) {
374
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
375
entropy->ct = -1; /* magnitude overflow */
376
return TRUE;
377
}
378
st += 1;
379
}
380
}
381
}
382
v = m;
383
/* Figure F.24: Decoding the magnitude bit pattern of v */
384
st += 14;
385
while (m >>= 1)
386
if (arith_decode(cinfo, st)) v |= m;
387
v += 1; if (sign) v = -v;
388
/* Scale and output coefficient in natural (dezigzagged) order */
389
(*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
390
} while (k < cinfo->Se);
391
392
return TRUE;
393
}
394
395
396
/*
397
* MCU decoding for DC successive approximation refinement scan.
398
* Note: we assume such scans can be multi-component,
399
* although the spec is not very clear on the point.
400
*/
401
402
METHODDEF(boolean)
403
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
404
{
405
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
406
unsigned char *st;
407
JCOEF p1;
408
int blkn;
409
410
/* Process restart marker if needed */
411
if (cinfo->restart_interval) {
412
if (entropy->restarts_to_go == 0)
413
process_restart(cinfo);
414
entropy->restarts_to_go--;
415
}
416
417
st = entropy->fixed_bin; /* use fixed probability estimation */
418
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
419
420
/* Outer loop handles each block in the MCU */
421
422
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
423
/* Encoded data is simply the next bit of the two's-complement DC value */
424
if (arith_decode(cinfo, st))
425
MCU_data[blkn][0][0] |= p1;
426
}
427
428
return TRUE;
429
}
430
431
432
/*
433
* MCU decoding for AC successive approximation refinement scan.
434
*/
435
436
METHODDEF(boolean)
437
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
438
{
439
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
440
JBLOCKROW block;
441
JCOEFPTR thiscoef;
442
unsigned char *st;
443
int tbl, k, kex;
444
JCOEF p1, m1;
445
const int * natural_order;
446
447
/* Process restart marker if needed */
448
if (cinfo->restart_interval) {
449
if (entropy->restarts_to_go == 0)
450
process_restart(cinfo);
451
entropy->restarts_to_go--;
452
}
453
454
if (entropy->ct == -1) return TRUE; /* if error do nothing */
455
456
natural_order = cinfo->natural_order;
457
458
/* There is always only one block per MCU */
459
block = MCU_data[0];
460
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
461
462
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
463
m1 = -p1; /* -1 in the bit position being coded */
464
465
/* Establish EOBx (previous stage end-of-block) index */
466
kex = cinfo->Se;
467
do {
468
if ((*block)[natural_order[kex]]) break;
469
} while (--kex);
470
471
k = cinfo->Ss - 1;
472
do {
473
st = entropy->ac_stats[tbl] + 3 * k;
474
if (k >= kex)
475
if (arith_decode(cinfo, st)) break; /* EOB flag */
476
for (;;) {
477
thiscoef = *block + natural_order[++k];
478
if (*thiscoef) { /* previously nonzero coef */
479
if (arith_decode(cinfo, st + 2)) {
480
if (*thiscoef < 0)
481
*thiscoef += m1;
482
else
483
*thiscoef += p1;
484
}
485
break;
486
}
487
if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
488
if (arith_decode(cinfo, entropy->fixed_bin))
489
*thiscoef = m1;
490
else
491
*thiscoef = p1;
492
break;
493
}
494
st += 3;
495
if (k >= cinfo->Se) {
496
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
497
entropy->ct = -1; /* spectral overflow */
498
return TRUE;
499
}
500
}
501
} while (k < cinfo->Se);
502
503
return TRUE;
504
}
505
506
507
/*
508
* Decode one MCU's worth of arithmetic-compressed coefficients.
509
*/
510
511
METHODDEF(boolean)
512
decode_mcu (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
513
{
514
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
515
jpeg_component_info * compptr;
516
JBLOCKROW block;
517
unsigned char *st;
518
int blkn, ci, tbl, sign, k;
519
int v, m;
520
const int * natural_order;
521
522
/* Process restart marker if needed */
523
if (cinfo->restart_interval) {
524
if (entropy->restarts_to_go == 0)
525
process_restart(cinfo);
526
entropy->restarts_to_go--;
527
}
528
529
if (entropy->ct == -1) return TRUE; /* if error do nothing */
530
531
natural_order = cinfo->natural_order;
532
533
/* Outer loop handles each block in the MCU */
534
535
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
536
block = MCU_data[blkn];
537
ci = cinfo->MCU_membership[blkn];
538
compptr = cinfo->cur_comp_info[ci];
539
540
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
541
542
tbl = compptr->dc_tbl_no;
543
544
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
545
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
546
547
/* Figure F.19: Decode_DC_DIFF */
548
if (arith_decode(cinfo, st) == 0)
549
entropy->dc_context[ci] = 0;
550
else {
551
/* Figure F.21: Decoding nonzero value v */
552
/* Figure F.22: Decoding the sign of v */
553
sign = arith_decode(cinfo, st + 1);
554
st += 2; st += sign;
555
/* Figure F.23: Decoding the magnitude category of v */
556
if ((m = arith_decode(cinfo, st)) != 0) {
557
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
558
while (arith_decode(cinfo, st)) {
559
if ((m <<= 1) == (int) 0x8000U) {
560
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
561
entropy->ct = -1; /* magnitude overflow */
562
return TRUE;
563
}
564
st += 1;
565
}
566
}
567
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
568
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
569
entropy->dc_context[ci] = 0; /* zero diff category */
570
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
571
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
572
else
573
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
574
v = m;
575
/* Figure F.24: Decoding the magnitude bit pattern of v */
576
st += 14;
577
while (m >>= 1)
578
if (arith_decode(cinfo, st)) v |= m;
579
v += 1; if (sign) v = -v;
580
entropy->last_dc_val[ci] += v;
581
}
582
583
(*block)[0] = (JCOEF) entropy->last_dc_val[ci];
584
585
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
586
587
if (cinfo->lim_Se == 0) continue;
588
tbl = compptr->ac_tbl_no;
589
k = 0;
590
591
/* Figure F.20: Decode_AC_coefficients */
592
do {
593
st = entropy->ac_stats[tbl] + 3 * k;
594
if (arith_decode(cinfo, st)) break; /* EOB flag */
595
for (;;) {
596
k++;
597
if (arith_decode(cinfo, st + 1)) break;
598
st += 3;
599
if (k >= cinfo->lim_Se) {
600
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
601
entropy->ct = -1; /* spectral overflow */
602
return TRUE;
603
}
604
}
605
/* Figure F.21: Decoding nonzero value v */
606
/* Figure F.22: Decoding the sign of v */
607
sign = arith_decode(cinfo, entropy->fixed_bin);
608
st += 2;
609
/* Figure F.23: Decoding the magnitude category of v */
610
if ((m = arith_decode(cinfo, st)) != 0) {
611
if (arith_decode(cinfo, st)) {
612
m <<= 1;
613
st = entropy->ac_stats[tbl] +
614
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
615
while (arith_decode(cinfo, st)) {
616
if ((m <<= 1) == (int) 0x8000U) {
617
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
618
entropy->ct = -1; /* magnitude overflow */
619
return TRUE;
620
}
621
st += 1;
622
}
623
}
624
}
625
v = m;
626
/* Figure F.24: Decoding the magnitude bit pattern of v */
627
st += 14;
628
while (m >>= 1)
629
if (arith_decode(cinfo, st)) v |= m;
630
v += 1; if (sign) v = -v;
631
(*block)[natural_order[k]] = (JCOEF) v;
632
} while (k < cinfo->lim_Se);
633
}
634
635
return TRUE;
636
}
637
638
639
/*
640
* Initialize for an arithmetic-compressed scan.
641
*/
642
643
METHODDEF(void)
644
start_pass (j_decompress_ptr cinfo)
645
{
646
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
647
int ci, tbl;
648
jpeg_component_info * compptr;
649
650
if (cinfo->progressive_mode) {
651
/* Validate progressive scan parameters */
652
if (cinfo->Ss == 0) {
653
if (cinfo->Se != 0)
654
goto bad;
655
} else {
656
/* need not check Ss/Se < 0 since they came from unsigned bytes */
657
if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
658
goto bad;
659
/* AC scans may have only one component */
660
if (cinfo->comps_in_scan != 1)
661
goto bad;
662
}
663
if (cinfo->Ah != 0) {
664
/* Successive approximation refinement scan: must have Al = Ah-1. */
665
if (cinfo->Ah-1 != cinfo->Al)
666
goto bad;
667
}
668
if (cinfo->Al > 13) { /* need not check for < 0 */
669
bad:
670
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
671
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
672
}
673
/* Update progression status, and verify that scan order is legal.
674
* Note that inter-scan inconsistencies are treated as warnings
675
* not fatal errors ... not clear if this is right way to behave.
676
*/
677
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
678
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
679
int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
680
if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
681
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
682
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
683
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
684
if (cinfo->Ah != expected)
685
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
686
coef_bit_ptr[coefi] = cinfo->Al;
687
}
688
}
689
/* Select MCU decoding routine */
690
if (cinfo->Ah == 0) {
691
if (cinfo->Ss == 0)
692
entropy->pub.decode_mcu = decode_mcu_DC_first;
693
else
694
entropy->pub.decode_mcu = decode_mcu_AC_first;
695
} else {
696
if (cinfo->Ss == 0)
697
entropy->pub.decode_mcu = decode_mcu_DC_refine;
698
else
699
entropy->pub.decode_mcu = decode_mcu_AC_refine;
700
}
701
} else {
702
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
703
* This ought to be an error condition, but we make it a warning.
704
*/
705
if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
706
(cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
707
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
708
/* Select MCU decoding routine */
709
entropy->pub.decode_mcu = decode_mcu;
710
}
711
712
/* Allocate & initialize requested statistics areas */
713
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
714
compptr = cinfo->cur_comp_info[ci];
715
if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
716
tbl = compptr->dc_tbl_no;
717
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
718
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
719
if (entropy->dc_stats[tbl] == NULL)
720
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
721
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
722
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
723
/* Initialize DC predictions to 0 */
724
entropy->last_dc_val[ci] = 0;
725
entropy->dc_context[ci] = 0;
726
}
727
if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
728
(cinfo->progressive_mode && cinfo->Ss)) {
729
tbl = compptr->ac_tbl_no;
730
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
731
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
732
if (entropy->ac_stats[tbl] == NULL)
733
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
734
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
735
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
736
}
737
}
738
739
/* Initialize arithmetic decoding variables */
740
entropy->c = 0;
741
entropy->a = 0;
742
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
743
744
/* Initialize restart counter */
745
entropy->restarts_to_go = cinfo->restart_interval;
746
}
747
748
749
/*
750
* Finish up at the end of an arithmetic-compressed scan.
751
*/
752
753
METHODDEF(void)
754
finish_pass (j_decompress_ptr cinfo)
755
{
756
/* no work necessary here */
757
}
758
759
760
/*
761
* Module initialization routine for arithmetic entropy decoding.
762
*/
763
764
GLOBAL(void)
765
jinit_arith_decoder (j_decompress_ptr cinfo)
766
{
767
arith_entropy_ptr entropy;
768
int i;
769
770
entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small)
771
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_decoder));
772
cinfo->entropy = &entropy->pub;
773
entropy->pub.start_pass = start_pass;
774
entropy->pub.finish_pass = finish_pass;
775
776
/* Mark tables unallocated */
777
for (i = 0; i < NUM_ARITH_TBLS; i++) {
778
entropy->dc_stats[i] = NULL;
779
entropy->ac_stats[i] = NULL;
780
}
781
782
/* Initialize index for fixed probability estimation */
783
entropy->fixed_bin[0] = 113;
784
785
if (cinfo->progressive_mode) {
786
/* Create progression status table */
787
int *coef_bit_ptr, ci;
788
cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small)
789
((j_common_ptr) cinfo, JPOOL_IMAGE,
790
cinfo->num_components * DCTSIZE2 * SIZEOF(int));
791
coef_bit_ptr = & cinfo->coef_bits[0][0];
792
for (ci = 0; ci < cinfo->num_components; ci++)
793
for (i = 0; i < DCTSIZE2; i++)
794
*coef_bit_ptr++ = -1;
795
}
796
}
797
798