Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jdcoefct.c
4394 views
1
/*
2
* jdcoefct.c
3
*
4
* Copyright (C) 1994-1997, Thomas G. Lane.
5
* Modified 2002-2020 by Guido Vollbeding.
6
* This file is part of the Independent JPEG Group's software.
7
* For conditions of distribution and use, see the accompanying README file.
8
*
9
* This file contains the coefficient buffer controller for decompression.
10
* This controller is the top level of the JPEG decompressor proper.
11
* The coefficient buffer lies between entropy decoding and inverse-DCT steps.
12
*
13
* In buffered-image mode, this controller is the interface between
14
* input-oriented processing and output-oriented processing.
15
* Also, the input side (only) is used when reading a file for transcoding.
16
*/
17
18
#define JPEG_INTERNALS
19
#include "jinclude.h"
20
#include "jpeglib.h"
21
22
23
/* Block smoothing is only applicable for progressive JPEG, so: */
24
#ifndef D_PROGRESSIVE_SUPPORTED
25
#undef BLOCK_SMOOTHING_SUPPORTED
26
#endif
27
28
29
/* Private buffer controller object */
30
31
typedef struct {
32
struct jpeg_d_coef_controller pub; /* public fields */
33
34
/* These variables keep track of the current location of the input side. */
35
/* cinfo->input_iMCU_row is also used for this. */
36
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
37
int MCU_vert_offset; /* counts MCU rows within iMCU row */
38
int MCU_rows_per_iMCU_row; /* number of such rows needed */
39
40
/* The output side's location is represented by cinfo->output_iMCU_row. */
41
42
/* In single-pass modes, it's sufficient to buffer just one MCU.
43
* We append a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
44
* and let the entropy decoder write into that workspace each time.
45
* In multi-pass modes, this array points to the current MCU's blocks
46
* within the virtual arrays; it is used only by the input side.
47
*/
48
JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
49
50
#ifdef D_MULTISCAN_FILES_SUPPORTED
51
/* In multi-pass modes, we need a virtual block array for each component. */
52
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
53
#endif
54
55
#ifdef BLOCK_SMOOTHING_SUPPORTED
56
/* When doing block smoothing, we latch coefficient Al values here */
57
int * coef_bits_latch;
58
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
59
#endif
60
61
/* Workspace for single-pass modes (omitted otherwise). */
62
JBLOCK blk_buffer[D_MAX_BLOCKS_IN_MCU];
63
} my_coef_controller;
64
65
typedef my_coef_controller * my_coef_ptr;
66
67
68
/* Forward declarations */
69
METHODDEF(int) decompress_onepass
70
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
71
#ifdef D_MULTISCAN_FILES_SUPPORTED
72
METHODDEF(int) decompress_data
73
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
74
#endif
75
#ifdef BLOCK_SMOOTHING_SUPPORTED
76
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
77
METHODDEF(int) decompress_smooth_data
78
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
79
#endif
80
81
82
LOCAL(void)
83
start_iMCU_row (j_decompress_ptr cinfo)
84
/* Reset within-iMCU-row counters for a new row (input side) */
85
{
86
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
87
88
/* In an interleaved scan, an MCU row is the same as an iMCU row.
89
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
90
* But at the bottom of the image, process only what's left.
91
*/
92
if (cinfo->comps_in_scan > 1) {
93
coef->MCU_rows_per_iMCU_row = 1;
94
} else {
95
if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
96
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
97
else
98
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
99
}
100
101
coef->MCU_ctr = 0;
102
coef->MCU_vert_offset = 0;
103
}
104
105
106
/*
107
* Initialize for an input processing pass.
108
*/
109
110
METHODDEF(void)
111
start_input_pass (j_decompress_ptr cinfo)
112
{
113
cinfo->input_iMCU_row = 0;
114
start_iMCU_row(cinfo);
115
}
116
117
118
/*
119
* Initialize for an output processing pass.
120
*/
121
122
METHODDEF(void)
123
start_output_pass (j_decompress_ptr cinfo)
124
{
125
#ifdef BLOCK_SMOOTHING_SUPPORTED
126
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
127
128
/* If multipass, check to see whether to use block smoothing on this pass */
129
if (coef->pub.coef_arrays != NULL) {
130
if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
131
coef->pub.decompress_data = decompress_smooth_data;
132
else
133
coef->pub.decompress_data = decompress_data;
134
}
135
#endif
136
cinfo->output_iMCU_row = 0;
137
}
138
139
140
/*
141
* Decompress and return some data in the single-pass case.
142
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
143
* Input and output must run in lockstep since we have only a one-MCU buffer.
144
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
145
*
146
* NB: output_buf contains a plane for each component in image,
147
* which we index according to the component's SOF position.
148
*/
149
150
METHODDEF(int)
151
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
152
{
153
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
154
JDIMENSION MCU_col_num; /* index of current MCU within row */
155
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
156
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
157
int ci, xindex, yindex, yoffset, useful_width;
158
JBLOCKROW blkp;
159
JSAMPARRAY output_ptr;
160
JDIMENSION start_col, output_col;
161
jpeg_component_info *compptr;
162
inverse_DCT_method_ptr inverse_DCT;
163
164
/* Loop to process as much as one whole iMCU row */
165
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
166
yoffset++) {
167
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
168
MCU_col_num++) {
169
blkp = coef->blk_buffer; /* pointer to current DCT block within MCU */
170
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
171
if (cinfo->lim_Se) /* can bypass in DC only case */
172
MEMZERO(blkp, cinfo->blocks_in_MCU * SIZEOF(JBLOCK));
173
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
174
/* Suspension forced; update state counters and exit */
175
coef->MCU_vert_offset = yoffset;
176
coef->MCU_ctr = MCU_col_num;
177
return JPEG_SUSPENDED;
178
}
179
/* Determine where data should go in output_buf and do the IDCT thing.
180
* We skip dummy blocks at the right and bottom edges (but blkp gets
181
* incremented past them!).
182
*/
183
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
184
compptr = cinfo->cur_comp_info[ci];
185
/* Don't bother to IDCT an uninteresting component. */
186
if (! compptr->component_needed) {
187
blkp += compptr->MCU_blocks;
188
continue;
189
}
190
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
191
output_ptr = output_buf[compptr->component_index] +
192
yoffset * compptr->DCT_v_scaled_size;
193
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
194
: compptr->last_col_width;
195
start_col = MCU_col_num * compptr->MCU_sample_width;
196
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
197
if (cinfo->input_iMCU_row < last_iMCU_row ||
198
yoffset + yindex < compptr->last_row_height) {
199
output_col = start_col;
200
for (xindex = 0; xindex < useful_width; xindex++) {
201
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) (blkp + xindex),
202
output_ptr, output_col);
203
output_col += compptr->DCT_h_scaled_size;
204
}
205
output_ptr += compptr->DCT_v_scaled_size;
206
}
207
blkp += compptr->MCU_width;
208
}
209
}
210
}
211
/* Completed an MCU row, but perhaps not an iMCU row */
212
coef->MCU_ctr = 0;
213
}
214
/* Completed the iMCU row, advance counters for next one */
215
cinfo->output_iMCU_row++;
216
if (++(cinfo->input_iMCU_row) <= last_iMCU_row) {
217
start_iMCU_row(cinfo);
218
return JPEG_ROW_COMPLETED;
219
}
220
/* Completed the scan */
221
(*cinfo->inputctl->finish_input_pass) (cinfo);
222
return JPEG_SCAN_COMPLETED;
223
}
224
225
226
/*
227
* Dummy consume-input routine for single-pass operation.
228
*/
229
230
METHODDEF(int)
231
dummy_consume_data (j_decompress_ptr cinfo)
232
{
233
return JPEG_SUSPENDED; /* Always indicate nothing was done */
234
}
235
236
237
#ifdef D_MULTISCAN_FILES_SUPPORTED
238
239
/*
240
* Consume input data and store it in the full-image coefficient buffer.
241
* We read as much as one fully interleaved MCU row ("iMCU" row) per call,
242
* ie, v_samp_factor block rows for each component in the scan.
243
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
244
*/
245
246
METHODDEF(int)
247
consume_data (j_decompress_ptr cinfo)
248
{
249
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
250
JDIMENSION MCU_col_num; /* index of current MCU within row */
251
int ci, xindex, yindex, yoffset;
252
JDIMENSION start_col;
253
JBLOCKARRAY blkp;
254
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
255
JBLOCKROW buffer_ptr;
256
jpeg_component_info *compptr;
257
258
/* Align the virtual buffers for the components used in this scan. */
259
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
260
compptr = cinfo->cur_comp_info[ci];
261
buffer[ci] = (*cinfo->mem->access_virt_barray)
262
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
263
cinfo->input_iMCU_row * compptr->v_samp_factor,
264
(JDIMENSION) compptr->v_samp_factor, TRUE);
265
/* Note: entropy decoder expects buffer to be zeroed,
266
* but this is handled automatically by the memory manager
267
* because we requested a pre-zeroed array.
268
*/
269
}
270
271
/* Loop to process one whole iMCU row */
272
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
273
yoffset++) {
274
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
275
MCU_col_num++) {
276
/* Construct list of pointers to DCT blocks belonging to this MCU */
277
blkp = coef->MCU_buffer; /* pointer to current DCT block within MCU */
278
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
279
compptr = cinfo->cur_comp_info[ci];
280
start_col = MCU_col_num * compptr->MCU_width;
281
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
282
buffer_ptr = buffer[ci][yoffset + yindex] + start_col;
283
xindex = compptr->MCU_width;
284
do {
285
*blkp++ = buffer_ptr++;
286
} while (--xindex);
287
}
288
}
289
/* Try to fetch the MCU. */
290
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
291
/* Suspension forced; update state counters and exit */
292
coef->MCU_vert_offset = yoffset;
293
coef->MCU_ctr = MCU_col_num;
294
return JPEG_SUSPENDED;
295
}
296
}
297
/* Completed an MCU row, but perhaps not an iMCU row */
298
coef->MCU_ctr = 0;
299
}
300
/* Completed the iMCU row, advance counters for next one */
301
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
302
start_iMCU_row(cinfo);
303
return JPEG_ROW_COMPLETED;
304
}
305
/* Completed the scan */
306
(*cinfo->inputctl->finish_input_pass) (cinfo);
307
return JPEG_SCAN_COMPLETED;
308
}
309
310
311
/*
312
* Decompress and return some data in the multi-pass case.
313
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
314
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
315
*
316
* NB: output_buf contains a plane for each component in image.
317
*/
318
319
METHODDEF(int)
320
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
321
{
322
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
323
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
324
JDIMENSION block_num;
325
int ci, block_row, block_rows;
326
JBLOCKARRAY buffer;
327
JBLOCKROW buffer_ptr;
328
JSAMPARRAY output_ptr;
329
JDIMENSION output_col;
330
jpeg_component_info *compptr;
331
inverse_DCT_method_ptr inverse_DCT;
332
333
/* Force some input to be done if we are getting ahead of the input. */
334
while (cinfo->input_scan_number < cinfo->output_scan_number ||
335
(cinfo->input_scan_number == cinfo->output_scan_number &&
336
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
337
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
338
return JPEG_SUSPENDED;
339
}
340
341
/* OK, output from the virtual arrays. */
342
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
343
ci++, compptr++) {
344
/* Don't bother to IDCT an uninteresting component. */
345
if (! compptr->component_needed)
346
continue;
347
/* Align the virtual buffer for this component. */
348
buffer = (*cinfo->mem->access_virt_barray)
349
((j_common_ptr) cinfo, coef->whole_image[ci],
350
cinfo->output_iMCU_row * compptr->v_samp_factor,
351
(JDIMENSION) compptr->v_samp_factor, FALSE);
352
/* Count non-dummy DCT block rows in this iMCU row. */
353
if (cinfo->output_iMCU_row < last_iMCU_row)
354
block_rows = compptr->v_samp_factor;
355
else {
356
/* NB: can't use last_row_height here; it is input-side-dependent! */
357
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
358
if (block_rows == 0) block_rows = compptr->v_samp_factor;
359
}
360
inverse_DCT = cinfo->idct->inverse_DCT[ci];
361
output_ptr = output_buf[ci];
362
/* Loop over all DCT blocks to be processed. */
363
for (block_row = 0; block_row < block_rows; block_row++) {
364
buffer_ptr = buffer[block_row];
365
output_col = 0;
366
for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
367
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
368
output_ptr, output_col);
369
buffer_ptr++;
370
output_col += compptr->DCT_h_scaled_size;
371
}
372
output_ptr += compptr->DCT_v_scaled_size;
373
}
374
}
375
376
if (++(cinfo->output_iMCU_row) <= last_iMCU_row)
377
return JPEG_ROW_COMPLETED;
378
return JPEG_SCAN_COMPLETED;
379
}
380
381
#endif /* D_MULTISCAN_FILES_SUPPORTED */
382
383
384
#ifdef BLOCK_SMOOTHING_SUPPORTED
385
386
/*
387
* This code applies interblock smoothing as described by section K.8
388
* of the JPEG standard: the first 5 AC coefficients are estimated from
389
* the DC values of a DCT block and its 8 neighboring blocks.
390
* We apply smoothing only for progressive JPEG decoding, and only if
391
* the coefficients it can estimate are not yet known to full precision.
392
*/
393
394
/* Natural-order array positions of the first 5 zigzag-order coefficients */
395
#define Q01_POS 1
396
#define Q10_POS 8
397
#define Q20_POS 16
398
#define Q11_POS 9
399
#define Q02_POS 2
400
401
/*
402
* Determine whether block smoothing is applicable and safe.
403
* We also latch the current states of the coef_bits[] entries for the
404
* AC coefficients; otherwise, if the input side of the decompressor
405
* advances into a new scan, we might think the coefficients are known
406
* more accurately than they really are.
407
*/
408
409
LOCAL(boolean)
410
smoothing_ok (j_decompress_ptr cinfo)
411
{
412
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
413
boolean smoothing_useful = FALSE;
414
int ci, coefi;
415
jpeg_component_info *compptr;
416
JQUANT_TBL * qtable;
417
int * coef_bits;
418
int * coef_bits_latch;
419
420
if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
421
return FALSE;
422
423
/* Allocate latch area if not already done */
424
if (coef->coef_bits_latch == NULL)
425
coef->coef_bits_latch = (int *) (*cinfo->mem->alloc_small)
426
((j_common_ptr) cinfo, JPOOL_IMAGE,
427
cinfo->num_components * (SAVED_COEFS * SIZEOF(int)));
428
coef_bits_latch = coef->coef_bits_latch;
429
430
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
431
ci++, compptr++) {
432
/* All components' quantization values must already be latched. */
433
if ((qtable = compptr->quant_table) == NULL)
434
return FALSE;
435
/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
436
if (qtable->quantval[0] == 0 ||
437
qtable->quantval[Q01_POS] == 0 ||
438
qtable->quantval[Q10_POS] == 0 ||
439
qtable->quantval[Q20_POS] == 0 ||
440
qtable->quantval[Q11_POS] == 0 ||
441
qtable->quantval[Q02_POS] == 0)
442
return FALSE;
443
/* DC values must be at least partly known for all components. */
444
coef_bits = cinfo->coef_bits[ci];
445
if (coef_bits[0] < 0)
446
return FALSE;
447
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */
448
for (coefi = 1; coefi <= 5; coefi++) {
449
coef_bits_latch[coefi] = coef_bits[coefi];
450
if (coef_bits[coefi] != 0)
451
smoothing_useful = TRUE;
452
}
453
coef_bits_latch += SAVED_COEFS;
454
}
455
456
return smoothing_useful;
457
}
458
459
460
/*
461
* Variant of decompress_data for use when doing block smoothing.
462
*/
463
464
METHODDEF(int)
465
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
466
{
467
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
468
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
469
JDIMENSION block_num, last_block_column;
470
int ci, block_row, block_rows, access_rows;
471
JBLOCKARRAY buffer;
472
JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
473
JSAMPARRAY output_ptr;
474
JDIMENSION output_col;
475
jpeg_component_info *compptr;
476
inverse_DCT_method_ptr inverse_DCT;
477
boolean first_row, last_row;
478
JBLOCK workspace;
479
int *coef_bits;
480
JQUANT_TBL *quanttbl;
481
INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
482
int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
483
int Al, pred;
484
485
/* Force some input to be done if we are getting ahead of the input. */
486
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
487
! cinfo->inputctl->eoi_reached) {
488
if (cinfo->input_scan_number == cinfo->output_scan_number) {
489
/* If input is working on current scan, we ordinarily want it to
490
* have completed the current row. But if input scan is DC,
491
* we want it to keep one row ahead so that next block row's DC
492
* values are up to date.
493
*/
494
JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
495
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
496
break;
497
}
498
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
499
return JPEG_SUSPENDED;
500
}
501
502
/* OK, output from the virtual arrays. */
503
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
504
ci++, compptr++) {
505
/* Don't bother to IDCT an uninteresting component. */
506
if (! compptr->component_needed)
507
continue;
508
/* Count non-dummy DCT block rows in this iMCU row. */
509
if (cinfo->output_iMCU_row < last_iMCU_row) {
510
block_rows = compptr->v_samp_factor;
511
access_rows = block_rows * 2; /* this and next iMCU row */
512
last_row = FALSE;
513
} else {
514
/* NB: can't use last_row_height here; it is input-side-dependent! */
515
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
516
if (block_rows == 0) block_rows = compptr->v_samp_factor;
517
access_rows = block_rows; /* this iMCU row only */
518
last_row = TRUE;
519
}
520
/* Align the virtual buffer for this component. */
521
if (cinfo->output_iMCU_row > 0) {
522
access_rows += compptr->v_samp_factor; /* prior iMCU row too */
523
buffer = (*cinfo->mem->access_virt_barray)
524
((j_common_ptr) cinfo, coef->whole_image[ci],
525
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
526
(JDIMENSION) access_rows, FALSE);
527
buffer += compptr->v_samp_factor; /* point to current iMCU row */
528
first_row = FALSE;
529
} else {
530
buffer = (*cinfo->mem->access_virt_barray)
531
((j_common_ptr) cinfo, coef->whole_image[ci],
532
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
533
first_row = TRUE;
534
}
535
/* Fetch component-dependent info */
536
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
537
quanttbl = compptr->quant_table;
538
Q00 = quanttbl->quantval[0];
539
Q01 = quanttbl->quantval[Q01_POS];
540
Q10 = quanttbl->quantval[Q10_POS];
541
Q20 = quanttbl->quantval[Q20_POS];
542
Q11 = quanttbl->quantval[Q11_POS];
543
Q02 = quanttbl->quantval[Q02_POS];
544
inverse_DCT = cinfo->idct->inverse_DCT[ci];
545
output_ptr = output_buf[ci];
546
/* Loop over all DCT blocks to be processed. */
547
for (block_row = 0; block_row < block_rows; block_row++) {
548
buffer_ptr = buffer[block_row];
549
if (first_row && block_row == 0)
550
prev_block_row = buffer_ptr;
551
else
552
prev_block_row = buffer[block_row-1];
553
if (last_row && block_row == block_rows-1)
554
next_block_row = buffer_ptr;
555
else
556
next_block_row = buffer[block_row+1];
557
/* We fetch the surrounding DC values using a sliding-register approach.
558
* Initialize all nine here so as to do the right thing on narrow pics.
559
*/
560
DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
561
DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
562
DC7 = DC8 = DC9 = (int) next_block_row[0][0];
563
output_col = 0;
564
last_block_column = compptr->width_in_blocks - 1;
565
for (block_num = 0; block_num <= last_block_column; block_num++) {
566
/* Fetch current DCT block into workspace so we can modify it. */
567
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
568
/* Update DC values */
569
if (block_num < last_block_column) {
570
DC3 = (int) prev_block_row[1][0];
571
DC6 = (int) buffer_ptr[1][0];
572
DC9 = (int) next_block_row[1][0];
573
}
574
/* Compute coefficient estimates per K.8.
575
* An estimate is applied only if coefficient is still zero,
576
* and is not known to be fully accurate.
577
*/
578
/* AC01 */
579
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
580
num = 36 * Q00 * (DC4 - DC6);
581
if (num >= 0) {
582
pred = (int) (((Q01<<7) + num) / (Q01<<8));
583
if (Al > 0 && pred >= (1<<Al))
584
pred = (1<<Al)-1;
585
} else {
586
pred = (int) (((Q01<<7) - num) / (Q01<<8));
587
if (Al > 0 && pred >= (1<<Al))
588
pred = (1<<Al)-1;
589
pred = -pred;
590
}
591
workspace[1] = (JCOEF) pred;
592
}
593
/* AC10 */
594
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
595
num = 36 * Q00 * (DC2 - DC8);
596
if (num >= 0) {
597
pred = (int) (((Q10<<7) + num) / (Q10<<8));
598
if (Al > 0 && pred >= (1<<Al))
599
pred = (1<<Al)-1;
600
} else {
601
pred = (int) (((Q10<<7) - num) / (Q10<<8));
602
if (Al > 0 && pred >= (1<<Al))
603
pred = (1<<Al)-1;
604
pred = -pred;
605
}
606
workspace[8] = (JCOEF) pred;
607
}
608
/* AC20 */
609
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
610
num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
611
if (num >= 0) {
612
pred = (int) (((Q20<<7) + num) / (Q20<<8));
613
if (Al > 0 && pred >= (1<<Al))
614
pred = (1<<Al)-1;
615
} else {
616
pred = (int) (((Q20<<7) - num) / (Q20<<8));
617
if (Al > 0 && pred >= (1<<Al))
618
pred = (1<<Al)-1;
619
pred = -pred;
620
}
621
workspace[16] = (JCOEF) pred;
622
}
623
/* AC11 */
624
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
625
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
626
if (num >= 0) {
627
pred = (int) (((Q11<<7) + num) / (Q11<<8));
628
if (Al > 0 && pred >= (1<<Al))
629
pred = (1<<Al)-1;
630
} else {
631
pred = (int) (((Q11<<7) - num) / (Q11<<8));
632
if (Al > 0 && pred >= (1<<Al))
633
pred = (1<<Al)-1;
634
pred = -pred;
635
}
636
workspace[9] = (JCOEF) pred;
637
}
638
/* AC02 */
639
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
640
num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
641
if (num >= 0) {
642
pred = (int) (((Q02<<7) + num) / (Q02<<8));
643
if (Al > 0 && pred >= (1<<Al))
644
pred = (1<<Al)-1;
645
} else {
646
pred = (int) (((Q02<<7) - num) / (Q02<<8));
647
if (Al > 0 && pred >= (1<<Al))
648
pred = (1<<Al)-1;
649
pred = -pred;
650
}
651
workspace[2] = (JCOEF) pred;
652
}
653
/* OK, do the IDCT */
654
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
655
output_ptr, output_col);
656
/* Advance for next column */
657
DC1 = DC2; DC2 = DC3;
658
DC4 = DC5; DC5 = DC6;
659
DC7 = DC8; DC8 = DC9;
660
buffer_ptr++, prev_block_row++, next_block_row++;
661
output_col += compptr->DCT_h_scaled_size;
662
}
663
output_ptr += compptr->DCT_v_scaled_size;
664
}
665
}
666
667
if (++(cinfo->output_iMCU_row) <= last_iMCU_row)
668
return JPEG_ROW_COMPLETED;
669
return JPEG_SCAN_COMPLETED;
670
}
671
672
#endif /* BLOCK_SMOOTHING_SUPPORTED */
673
674
675
/*
676
* Initialize coefficient buffer controller.
677
*/
678
679
GLOBAL(void)
680
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
681
{
682
my_coef_ptr coef;
683
684
if (need_full_buffer) {
685
#ifdef D_MULTISCAN_FILES_SUPPORTED
686
/* Allocate a full-image virtual array for each component, */
687
/* padded to a multiple of samp_factor DCT blocks in each direction. */
688
/* Note we ask for a pre-zeroed array. */
689
int ci, access_rows;
690
jpeg_component_info *compptr;
691
692
coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
693
((j_common_ptr) cinfo, JPOOL_IMAGE,
694
SIZEOF(my_coef_controller) - SIZEOF(coef->blk_buffer));
695
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
696
ci++, compptr++) {
697
access_rows = compptr->v_samp_factor;
698
#ifdef BLOCK_SMOOTHING_SUPPORTED
699
/* If block smoothing could be used, need a bigger window */
700
if (cinfo->progressive_mode)
701
access_rows *= 3;
702
#endif
703
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
704
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
705
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
706
(long) compptr->h_samp_factor),
707
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
708
(long) compptr->v_samp_factor),
709
(JDIMENSION) access_rows);
710
}
711
coef->pub.consume_data = consume_data;
712
coef->pub.decompress_data = decompress_data;
713
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
714
#else
715
ERREXIT(cinfo, JERR_NOT_COMPILED);
716
#endif
717
} else {
718
/* We only need a single-MCU buffer. */
719
JBLOCKARRAY blkp;
720
JBLOCKROW buffer_ptr;
721
int bi;
722
723
coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
724
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller));
725
buffer_ptr = coef->blk_buffer;
726
if (cinfo->lim_Se == 0) /* DC only case: want to bypass later */
727
MEMZERO(buffer_ptr, SIZEOF(coef->blk_buffer));
728
blkp = coef->MCU_buffer;
729
bi = D_MAX_BLOCKS_IN_MCU;
730
do {
731
*blkp++ = buffer_ptr++;
732
} while (--bi);
733
coef->pub.consume_data = dummy_consume_data;
734
coef->pub.decompress_data = decompress_onepass;
735
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
736
}
737
738
coef->pub.start_input_pass = start_input_pass;
739
coef->pub.start_output_pass = start_output_pass;
740
#ifdef BLOCK_SMOOTHING_SUPPORTED
741
coef->coef_bits_latch = NULL;
742
#endif
743
cinfo->coef = &coef->pub;
744
}
745
746