Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jddctmgr.c
8743 views
1
/*
2
* jddctmgr.c
3
*
4
* Copyright (C) 1994-1996, Thomas G. Lane.
5
* Modified 2002-2025 by Guido Vollbeding.
6
* This file is part of the Independent JPEG Group's software.
7
* For conditions of distribution and use, see the accompanying README file.
8
*
9
* This file contains the inverse-DCT management logic.
10
* This code selects a particular IDCT implementation to be used,
11
* and it performs related housekeeping chores. No code in this file
12
* is executed per IDCT step, only during output pass setup.
13
*
14
* Note that the IDCT routines are responsible for performing coefficient
15
* dequantization as well as the IDCT proper. This module sets up the
16
* dequantization multiplier table needed by the IDCT routine.
17
*/
18
19
#define JPEG_INTERNALS
20
#include "jinclude.h"
21
#include "jpeglib.h"
22
#include "jdct.h" /* Private declarations for DCT subsystem */
23
24
25
/*
26
* The decompressor input side (jdinput.c) saves away the appropriate
27
* quantization table for each component at the start of the first scan
28
* involving that component. (This is necessary in order to correctly
29
* decode files that reuse Q-table slots.)
30
* When we are ready to make an output pass, the saved Q-table is converted
31
* to a multiplier table that will actually be used by the IDCT routine.
32
* The multiplier table contents are IDCT-method-dependent. To support
33
* application changes in IDCT method between scans, we can remake the
34
* multiplier tables if necessary.
35
* In buffered-image mode, the first output pass may occur before any data
36
* has been seen for some components, and thus before their Q-tables have
37
* been saved away. To handle this case, multiplier tables are preset
38
* to zeroes; the result of the IDCT will be a neutral gray level.
39
*/
40
41
42
/* Private subobject for this module */
43
44
typedef struct {
45
struct jpeg_inverse_dct pub; /* public fields */
46
47
/* This array contains the IDCT method code that each multiplier table
48
* is currently set up for, or -1 if it's not yet set up.
49
* The actual multiplier tables are pointed to by dct_table
50
* in the per-component comp_info structures.
51
*/
52
int cur_method[MAX_COMPONENTS];
53
} my_idct_controller;
54
55
typedef my_idct_controller * my_idct_ptr;
56
57
58
/* Allocated multiplier tables: big enough for any supported variant */
59
60
typedef union {
61
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
62
#ifdef DCT_IFAST_SUPPORTED
63
IFAST_MULT_TYPE ifast_array[DCTSIZE2];
64
#endif
65
#ifdef DCT_FLOAT_SUPPORTED
66
FLOAT_MULT_TYPE float_array[DCTSIZE2];
67
#endif
68
} multiplier_table;
69
70
71
/*
72
* Prepare for an output pass.
73
* Here we select the proper IDCT routine for each component and build
74
* a matching multiplier table.
75
*/
76
77
METHODDEF(void)
78
start_pass (j_decompress_ptr cinfo)
79
{
80
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
81
int ci, i;
82
jpeg_component_info *compptr;
83
int method = 0;
84
inverse_DCT_method_ptr method_ptr = NULL;
85
JQUANT_TBL * qtbl;
86
87
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
88
ci++, compptr++) {
89
/* Select the proper IDCT routine for this component's scaling */
90
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
91
#ifdef IDCT_SCALING_SUPPORTED
92
/*
93
* The current scaled-IDCT routines require ISLOW-style multiplier tables,
94
* so be sure to compile that code if either ISLOW or SCALING is requested.
95
*/
96
#ifndef PROVIDE_ISLOW_TABLES
97
#define PROVIDE_ISLOW_TABLES
98
#endif
99
case ((1 << 8) + 1):
100
method_ptr = jpeg_idct_1x1;
101
method = JDCT_ISLOW; /* jidctint uses islow-style table */
102
break;
103
case ((2 << 8) + 2):
104
method_ptr = jpeg_idct_2x2;
105
method = JDCT_ISLOW; /* jidctint uses islow-style table */
106
break;
107
case ((3 << 8) + 3):
108
method_ptr = jpeg_idct_3x3;
109
method = JDCT_ISLOW; /* jidctint uses islow-style table */
110
break;
111
case ((4 << 8) + 4):
112
method_ptr = jpeg_idct_4x4;
113
method = JDCT_ISLOW; /* jidctint uses islow-style table */
114
break;
115
case ((5 << 8) + 5):
116
method_ptr = jpeg_idct_5x5;
117
method = JDCT_ISLOW; /* jidctint uses islow-style table */
118
break;
119
case ((6 << 8) + 6):
120
method_ptr = jpeg_idct_6x6;
121
method = JDCT_ISLOW; /* jidctint uses islow-style table */
122
break;
123
case ((7 << 8) + 7):
124
method_ptr = jpeg_idct_7x7;
125
method = JDCT_ISLOW; /* jidctint uses islow-style table */
126
break;
127
case ((9 << 8) + 9):
128
method_ptr = jpeg_idct_9x9;
129
method = JDCT_ISLOW; /* jidctint uses islow-style table */
130
break;
131
case ((10 << 8) + 10):
132
method_ptr = jpeg_idct_10x10;
133
method = JDCT_ISLOW; /* jidctint uses islow-style table */
134
break;
135
case ((11 << 8) + 11):
136
method_ptr = jpeg_idct_11x11;
137
method = JDCT_ISLOW; /* jidctint uses islow-style table */
138
break;
139
case ((12 << 8) + 12):
140
method_ptr = jpeg_idct_12x12;
141
method = JDCT_ISLOW; /* jidctint uses islow-style table */
142
break;
143
case ((13 << 8) + 13):
144
method_ptr = jpeg_idct_13x13;
145
method = JDCT_ISLOW; /* jidctint uses islow-style table */
146
break;
147
case ((14 << 8) + 14):
148
method_ptr = jpeg_idct_14x14;
149
method = JDCT_ISLOW; /* jidctint uses islow-style table */
150
break;
151
case ((15 << 8) + 15):
152
method_ptr = jpeg_idct_15x15;
153
method = JDCT_ISLOW; /* jidctint uses islow-style table */
154
break;
155
case ((16 << 8) + 16):
156
method_ptr = jpeg_idct_16x16;
157
method = JDCT_ISLOW; /* jidctint uses islow-style table */
158
break;
159
case ((16 << 8) + 8):
160
method_ptr = jpeg_idct_16x8;
161
method = JDCT_ISLOW; /* jidctint uses islow-style table */
162
break;
163
case ((14 << 8) + 7):
164
method_ptr = jpeg_idct_14x7;
165
method = JDCT_ISLOW; /* jidctint uses islow-style table */
166
break;
167
case ((12 << 8) + 6):
168
method_ptr = jpeg_idct_12x6;
169
method = JDCT_ISLOW; /* jidctint uses islow-style table */
170
break;
171
case ((10 << 8) + 5):
172
method_ptr = jpeg_idct_10x5;
173
method = JDCT_ISLOW; /* jidctint uses islow-style table */
174
break;
175
case ((8 << 8) + 4):
176
method_ptr = jpeg_idct_8x4;
177
method = JDCT_ISLOW; /* jidctint uses islow-style table */
178
break;
179
case ((6 << 8) + 3):
180
method_ptr = jpeg_idct_6x3;
181
method = JDCT_ISLOW; /* jidctint uses islow-style table */
182
break;
183
case ((4 << 8) + 2):
184
method_ptr = jpeg_idct_4x2;
185
method = JDCT_ISLOW; /* jidctint uses islow-style table */
186
break;
187
case ((2 << 8) + 1):
188
method_ptr = jpeg_idct_2x1;
189
method = JDCT_ISLOW; /* jidctint uses islow-style table */
190
break;
191
case ((8 << 8) + 16):
192
method_ptr = jpeg_idct_8x16;
193
method = JDCT_ISLOW; /* jidctint uses islow-style table */
194
break;
195
case ((7 << 8) + 14):
196
method_ptr = jpeg_idct_7x14;
197
method = JDCT_ISLOW; /* jidctint uses islow-style table */
198
break;
199
case ((6 << 8) + 12):
200
method_ptr = jpeg_idct_6x12;
201
method = JDCT_ISLOW; /* jidctint uses islow-style table */
202
break;
203
case ((5 << 8) + 10):
204
method_ptr = jpeg_idct_5x10;
205
method = JDCT_ISLOW; /* jidctint uses islow-style table */
206
break;
207
case ((4 << 8) + 8):
208
method_ptr = jpeg_idct_4x8;
209
method = JDCT_ISLOW; /* jidctint uses islow-style table */
210
break;
211
case ((3 << 8) + 6):
212
method_ptr = jpeg_idct_3x6;
213
method = JDCT_ISLOW; /* jidctint uses islow-style table */
214
break;
215
case ((2 << 8) + 4):
216
method_ptr = jpeg_idct_2x4;
217
method = JDCT_ISLOW; /* jidctint uses islow-style table */
218
break;
219
case ((1 << 8) + 2):
220
method_ptr = jpeg_idct_1x2;
221
method = JDCT_ISLOW; /* jidctint uses islow-style table */
222
break;
223
#endif
224
case ((DCTSIZE << 8) + DCTSIZE):
225
switch (cinfo->dct_method) {
226
#ifdef DCT_ISLOW_SUPPORTED
227
case JDCT_ISLOW:
228
#ifndef PROVIDE_ISLOW_TABLES
229
#define PROVIDE_ISLOW_TABLES
230
#endif
231
method_ptr = jpeg_idct_islow;
232
method = JDCT_ISLOW;
233
break;
234
#endif
235
#ifdef DCT_IFAST_SUPPORTED
236
case JDCT_IFAST:
237
method_ptr = jpeg_idct_ifast;
238
method = JDCT_IFAST;
239
break;
240
#endif
241
#ifdef DCT_FLOAT_SUPPORTED
242
case JDCT_FLOAT:
243
method_ptr = jpeg_idct_float;
244
method = JDCT_FLOAT;
245
break;
246
#endif
247
default:
248
ERREXIT(cinfo, JERR_NOT_COMPILED);
249
}
250
break;
251
default:
252
ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
253
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
254
}
255
idct->pub.inverse_DCT[ci] = method_ptr;
256
/* Create multiplier table from quant table.
257
* However, we can skip this if the component is uninteresting
258
* or if we already built the table. Also, if no quant table
259
* has yet been saved for the component, we leave the
260
* multiplier table all-zero; we'll be reading zeroes
261
* from the coefficient controller's buffer anyway.
262
*/
263
if (! compptr->component_needed || idct->cur_method[ci] == method)
264
continue;
265
qtbl = compptr->quant_table;
266
if (qtbl == NULL) /* happens if no data yet for component */
267
continue;
268
idct->cur_method[ci] = method;
269
switch (method) {
270
#ifdef PROVIDE_ISLOW_TABLES
271
case JDCT_ISLOW:
272
{
273
/* For LL&M IDCT method, multipliers are equal to raw quantization
274
* coefficients, but are stored as ints to ensure access efficiency.
275
*/
276
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
277
for (i = 0; i < DCTSIZE2; i++) {
278
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
279
}
280
}
281
break;
282
#endif
283
#ifdef DCT_IFAST_SUPPORTED
284
case JDCT_IFAST:
285
{
286
/* For AA&N IDCT method, multipliers are equal to quantization
287
* coefficients scaled by scalefactor[row]*scalefactor[col], where
288
* scalefactor[0] = 1
289
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
290
* For integer operation, the multiplier table is to be scaled by
291
* IFAST_SCALE_BITS.
292
*/
293
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
294
#define CONST_BITS 14
295
static const INT16 aanscales[DCTSIZE2] = {
296
/* precomputed values scaled up by 14 bits */
297
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
298
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
299
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
300
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
301
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
302
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
303
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
304
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
305
};
306
SHIFT_TEMPS
307
308
for (i = 0; i < DCTSIZE2; i++) {
309
ifmtbl[i] = (IFAST_MULT_TYPE)
310
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
311
(INT32) aanscales[i]),
312
CONST_BITS-IFAST_SCALE_BITS);
313
}
314
}
315
break;
316
#endif
317
#ifdef DCT_FLOAT_SUPPORTED
318
case JDCT_FLOAT:
319
{
320
/* For float AA&N IDCT method, multipliers are equal to quantization
321
* coefficients scaled by scalefactor[row]*scalefactor[col], where
322
* scalefactor[0] = 1
323
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
324
* We apply a further scale factor of 1/8
325
* with adjustment if necessary.
326
*/
327
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
328
int row, col;
329
static const double aanscalefactor[DCTSIZE] = {
330
1.0, 1.387039845, 1.306562965, 1.175875602,
331
1.0, 0.785694958, 0.541196100, 0.275899379
332
};
333
#if JPEG_DATA_PRECISION == BITS_IN_JSAMPLE
334
335
i = 0;
336
for (row = 0; row < DCTSIZE; row++) {
337
for (col = 0; col < DCTSIZE; col++) {
338
fmtbl[i] = (FLOAT_MULT_TYPE) ((double) qtbl->quantval[i] *
339
aanscalefactor[row] * aanscalefactor[col] * 0.125);
340
#else
341
double extrafactor = 0.125;
342
343
/* Adjust extra factor */
344
#if JPEG_DATA_PRECISION < BITS_IN_JSAMPLE
345
i = BITS_IN_JSAMPLE - JPEG_DATA_PRECISION;
346
do { extrafactor *= 2.0; } while (--i);
347
#else
348
i = JPEG_DATA_PRECISION - BITS_IN_JSAMPLE;
349
do { extrafactor *= 0.5; } while (--i);
350
#endif
351
352
i = 0;
353
for (row = 0; row < DCTSIZE; row++) {
354
for (col = 0; col < DCTSIZE; col++) {
355
fmtbl[i] = (FLOAT_MULT_TYPE) ((double) qtbl->quantval[i] *
356
aanscalefactor[row] * aanscalefactor[col] * extrafactor);
357
#endif
358
i++;
359
}
360
}
361
}
362
break;
363
#endif
364
default:
365
ERREXIT(cinfo, JERR_NOT_COMPILED);
366
}
367
}
368
}
369
370
371
/*
372
* Initialize IDCT manager.
373
*/
374
375
GLOBAL(void)
376
jinit_inverse_dct (j_decompress_ptr cinfo)
377
{
378
my_idct_ptr idct;
379
int ci;
380
jpeg_component_info *compptr;
381
382
idct = (my_idct_ptr) (*cinfo->mem->alloc_small)
383
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_idct_controller));
384
cinfo->idct = &idct->pub;
385
idct->pub.start_pass = start_pass;
386
387
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
388
ci++, compptr++) {
389
/* Allocate and pre-zero a multiplier table for each component */
390
compptr->dct_table = (*cinfo->mem->alloc_small)
391
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(multiplier_table));
392
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
393
/* Mark multiplier table not yet set up for any method */
394
idct->cur_method[ci] = -1;
395
}
396
}
397
398