Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jdhuff.c
4389 views
1
/*
2
* jdhuff.c
3
*
4
* Copyright (C) 1991-1997, Thomas G. Lane.
5
* Modified 2006-2020 by Guido Vollbeding.
6
* This file is part of the Independent JPEG Group's software.
7
* For conditions of distribution and use, see the accompanying README file.
8
*
9
* This file contains Huffman entropy decoding routines.
10
* Both sequential and progressive modes are supported in this single module.
11
*
12
* Much of the complexity here has to do with supporting input suspension.
13
* If the data source module demands suspension, we want to be able to back
14
* up to the start of the current MCU. To do this, we copy state variables
15
* into local working storage, and update them back to the permanent
16
* storage only upon successful completion of an MCU.
17
*/
18
19
#define JPEG_INTERNALS
20
#include "jinclude.h"
21
#include "jpeglib.h"
22
23
24
/* Derived data constructed for each Huffman table */
25
26
#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
27
28
typedef struct {
29
/* Basic tables: (element [0] of each array is unused) */
30
INT32 maxcode[18]; /* largest code of length k (-1 if none) */
31
/* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
32
INT32 valoffset[17]; /* huffval[] offset for codes of length k */
33
/* valoffset[k] = huffval[] index of 1st symbol of code length k, less
34
* the smallest code of length k; so given a code of length k, the
35
* corresponding symbol is huffval[code + valoffset[k]]
36
*/
37
38
/* Link to public Huffman table (needed only in jpeg_huff_decode) */
39
JHUFF_TBL *pub;
40
41
/* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
42
* the input data stream. If the next Huffman code is no more
43
* than HUFF_LOOKAHEAD bits long, we can obtain its length and
44
* the corresponding symbol directly from these tables.
45
*/
46
int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
47
UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
48
} d_derived_tbl;
49
50
51
/*
52
* Fetching the next N bits from the input stream is a time-critical operation
53
* for the Huffman decoders. We implement it with a combination of inline
54
* macros and out-of-line subroutines. Note that N (the number of bits
55
* demanded at one time) never exceeds 15 for JPEG use.
56
*
57
* We read source bytes into get_buffer and dole out bits as needed.
58
* If get_buffer already contains enough bits, they are fetched in-line
59
* by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
60
* bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
61
* as full as possible (not just to the number of bits needed; this
62
* prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
63
* Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
64
* On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
65
* at least the requested number of bits --- dummy zeroes are inserted if
66
* necessary.
67
*/
68
69
typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
70
#define BIT_BUF_SIZE 32 /* size of buffer in bits */
71
72
/* If long is > 32 bits on your machine, and shifting/masking longs is
73
* reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
74
* appropriately should be a win. Unfortunately we can't define the size
75
* with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
76
* because not all machines measure sizeof in 8-bit bytes.
77
*/
78
79
typedef struct { /* Bitreading state saved across MCUs */
80
bit_buf_type get_buffer; /* current bit-extraction buffer */
81
int bits_left; /* # of unused bits in it */
82
} bitread_perm_state;
83
84
typedef struct { /* Bitreading working state within an MCU */
85
/* Current data source location */
86
/* We need a copy, rather than munging the original, in case of suspension */
87
const JOCTET * next_input_byte; /* => next byte to read from source */
88
size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
89
/* Bit input buffer --- note these values are kept in register variables,
90
* not in this struct, inside the inner loops.
91
*/
92
bit_buf_type get_buffer; /* current bit-extraction buffer */
93
int bits_left; /* # of unused bits in it */
94
/* Pointer needed by jpeg_fill_bit_buffer. */
95
j_decompress_ptr cinfo; /* back link to decompress master record */
96
} bitread_working_state;
97
98
/* Macros to declare and load/save bitread local variables. */
99
#define BITREAD_STATE_VARS \
100
register bit_buf_type get_buffer; \
101
register int bits_left; \
102
bitread_working_state br_state
103
104
#define BITREAD_LOAD_STATE(cinfop,permstate) \
105
br_state.cinfo = cinfop; \
106
br_state.next_input_byte = cinfop->src->next_input_byte; \
107
br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
108
get_buffer = permstate.get_buffer; \
109
bits_left = permstate.bits_left;
110
111
#define BITREAD_SAVE_STATE(cinfop,permstate) \
112
cinfop->src->next_input_byte = br_state.next_input_byte; \
113
cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
114
permstate.get_buffer = get_buffer; \
115
permstate.bits_left = bits_left
116
117
/*
118
* These macros provide the in-line portion of bit fetching.
119
* Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
120
* before using GET_BITS, PEEK_BITS, or DROP_BITS.
121
* The variables get_buffer and bits_left are assumed to be locals,
122
* but the state struct might not be (jpeg_huff_decode needs this).
123
* CHECK_BIT_BUFFER(state,n,action);
124
* Ensure there are N bits in get_buffer; if suspend, take action.
125
* val = GET_BITS(n);
126
* Fetch next N bits.
127
* val = PEEK_BITS(n);
128
* Fetch next N bits without removing them from the buffer.
129
* DROP_BITS(n);
130
* Discard next N bits.
131
* The value N should be a simple variable, not an expression, because it
132
* is evaluated multiple times.
133
*/
134
135
#define CHECK_BIT_BUFFER(state,nbits,action) \
136
{ if (bits_left < (nbits)) { \
137
if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
138
{ action; } \
139
get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
140
141
#define GET_BITS(nbits) \
142
(((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
143
144
#define PEEK_BITS(nbits) \
145
(((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits))
146
147
#define DROP_BITS(nbits) \
148
(bits_left -= (nbits))
149
150
151
/*
152
* Code for extracting next Huffman-coded symbol from input bit stream.
153
* Again, this is time-critical and we make the main paths be macros.
154
*
155
* We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
156
* without looping. Usually, more than 95% of the Huffman codes will be 8
157
* or fewer bits long. The few overlength codes are handled with a loop,
158
* which need not be inline code.
159
*
160
* Notes about the HUFF_DECODE macro:
161
* 1. Near the end of the data segment, we may fail to get enough bits
162
* for a lookahead. In that case, we do it the hard way.
163
* 2. If the lookahead table contains no entry, the next code must be
164
* more than HUFF_LOOKAHEAD bits long.
165
* 3. jpeg_huff_decode returns -1 if forced to suspend.
166
*/
167
168
#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
169
{ register int nb, look; \
170
if (bits_left < HUFF_LOOKAHEAD) { \
171
if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
172
get_buffer = state.get_buffer; bits_left = state.bits_left; \
173
if (bits_left < HUFF_LOOKAHEAD) { \
174
nb = 1; goto slowlabel; \
175
} \
176
} \
177
look = PEEK_BITS(HUFF_LOOKAHEAD); \
178
if ((nb = htbl->look_nbits[look]) != 0) { \
179
DROP_BITS(nb); \
180
result = htbl->look_sym[look]; \
181
} else { \
182
nb = HUFF_LOOKAHEAD+1; \
183
slowlabel: \
184
if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
185
{ failaction; } \
186
get_buffer = state.get_buffer; bits_left = state.bits_left; \
187
} \
188
}
189
190
191
/*
192
* Expanded entropy decoder object for Huffman decoding.
193
*
194
* The savable_state subrecord contains fields that change within an MCU,
195
* but must not be updated permanently until we complete the MCU.
196
*/
197
198
typedef struct {
199
unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
200
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
201
} savable_state;
202
203
/* This macro is to work around compilers with missing or broken
204
* structure assignment. You'll need to fix this code if you have
205
* such a compiler and you change MAX_COMPS_IN_SCAN.
206
*/
207
208
#ifndef NO_STRUCT_ASSIGN
209
#define ASSIGN_STATE(dest,src) ((dest) = (src))
210
#else
211
#if MAX_COMPS_IN_SCAN == 4
212
#define ASSIGN_STATE(dest,src) \
213
((dest).EOBRUN = (src).EOBRUN, \
214
(dest).last_dc_val[0] = (src).last_dc_val[0], \
215
(dest).last_dc_val[1] = (src).last_dc_val[1], \
216
(dest).last_dc_val[2] = (src).last_dc_val[2], \
217
(dest).last_dc_val[3] = (src).last_dc_val[3])
218
#endif
219
#endif
220
221
222
typedef struct {
223
struct jpeg_entropy_decoder pub; /* public fields */
224
225
/* These fields are loaded into local variables at start of each MCU.
226
* In case of suspension, we exit WITHOUT updating them.
227
*/
228
bitread_perm_state bitstate; /* Bit buffer at start of MCU */
229
savable_state saved; /* Other state at start of MCU */
230
231
/* These fields are NOT loaded into local working state. */
232
boolean insufficient_data; /* set TRUE after emitting warning */
233
unsigned int restarts_to_go; /* MCUs left in this restart interval */
234
235
/* Following two fields used only in progressive mode */
236
237
/* Pointers to derived tables (these workspaces have image lifespan) */
238
d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
239
240
d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
241
242
/* Following fields used only in sequential mode */
243
244
/* Pointers to derived tables (these workspaces have image lifespan) */
245
d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
246
d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
247
248
/* Precalculated info set up by start_pass for use in decode_mcu: */
249
250
/* Pointers to derived tables to be used for each block within an MCU */
251
d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
252
d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
253
/* Whether we care about the DC and AC coefficient values for each block */
254
int coef_limit[D_MAX_BLOCKS_IN_MCU];
255
} huff_entropy_decoder;
256
257
typedef huff_entropy_decoder * huff_entropy_ptr;
258
259
260
static const int jpeg_zigzag_order[8][8] = {
261
{ 0, 1, 5, 6, 14, 15, 27, 28 },
262
{ 2, 4, 7, 13, 16, 26, 29, 42 },
263
{ 3, 8, 12, 17, 25, 30, 41, 43 },
264
{ 9, 11, 18, 24, 31, 40, 44, 53 },
265
{ 10, 19, 23, 32, 39, 45, 52, 54 },
266
{ 20, 22, 33, 38, 46, 51, 55, 60 },
267
{ 21, 34, 37, 47, 50, 56, 59, 61 },
268
{ 35, 36, 48, 49, 57, 58, 62, 63 }
269
};
270
271
static const int jpeg_zigzag_order7[7][7] = {
272
{ 0, 1, 5, 6, 14, 15, 27 },
273
{ 2, 4, 7, 13, 16, 26, 28 },
274
{ 3, 8, 12, 17, 25, 29, 38 },
275
{ 9, 11, 18, 24, 30, 37, 39 },
276
{ 10, 19, 23, 31, 36, 40, 45 },
277
{ 20, 22, 32, 35, 41, 44, 46 },
278
{ 21, 33, 34, 42, 43, 47, 48 }
279
};
280
281
static const int jpeg_zigzag_order6[6][6] = {
282
{ 0, 1, 5, 6, 14, 15 },
283
{ 2, 4, 7, 13, 16, 25 },
284
{ 3, 8, 12, 17, 24, 26 },
285
{ 9, 11, 18, 23, 27, 32 },
286
{ 10, 19, 22, 28, 31, 33 },
287
{ 20, 21, 29, 30, 34, 35 }
288
};
289
290
static const int jpeg_zigzag_order5[5][5] = {
291
{ 0, 1, 5, 6, 14 },
292
{ 2, 4, 7, 13, 15 },
293
{ 3, 8, 12, 16, 21 },
294
{ 9, 11, 17, 20, 22 },
295
{ 10, 18, 19, 23, 24 }
296
};
297
298
static const int jpeg_zigzag_order4[4][4] = {
299
{ 0, 1, 5, 6 },
300
{ 2, 4, 7, 12 },
301
{ 3, 8, 11, 13 },
302
{ 9, 10, 14, 15 }
303
};
304
305
static const int jpeg_zigzag_order3[3][3] = {
306
{ 0, 1, 5 },
307
{ 2, 4, 6 },
308
{ 3, 7, 8 }
309
};
310
311
static const int jpeg_zigzag_order2[2][2] = {
312
{ 0, 1 },
313
{ 2, 3 }
314
};
315
316
317
/*
318
* Compute the derived values for a Huffman table.
319
* This routine also performs some validation checks on the table.
320
*/
321
322
LOCAL(void)
323
jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
324
d_derived_tbl ** pdtbl)
325
{
326
JHUFF_TBL *htbl;
327
d_derived_tbl *dtbl;
328
int p, i, l, si, numsymbols;
329
int lookbits, ctr;
330
char huffsize[257];
331
unsigned int huffcode[257];
332
unsigned int code;
333
334
/* Note that huffsize[] and huffcode[] are filled in code-length order,
335
* paralleling the order of the symbols themselves in htbl->huffval[].
336
*/
337
338
/* Find the input Huffman table */
339
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
340
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
341
htbl =
342
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
343
if (htbl == NULL)
344
htbl = jpeg_std_huff_table((j_common_ptr) cinfo, isDC, tblno);
345
346
/* Allocate a workspace if we haven't already done so. */
347
if (*pdtbl == NULL)
348
*pdtbl = (d_derived_tbl *) (*cinfo->mem->alloc_small)
349
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(d_derived_tbl));
350
dtbl = *pdtbl;
351
dtbl->pub = htbl; /* fill in back link */
352
353
/* Figure C.1: make table of Huffman code length for each symbol */
354
355
p = 0;
356
for (l = 1; l <= 16; l++) {
357
i = (int) htbl->bits[l];
358
if (i < 0 || p + i > 256) /* protect against table overrun */
359
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
360
while (i--)
361
huffsize[p++] = (char) l;
362
}
363
huffsize[p] = 0;
364
numsymbols = p;
365
366
/* Figure C.2: generate the codes themselves */
367
/* We also validate that the counts represent a legal Huffman code tree. */
368
369
code = 0;
370
si = huffsize[0];
371
p = 0;
372
while (huffsize[p]) {
373
while (((int) huffsize[p]) == si) {
374
huffcode[p++] = code;
375
code++;
376
}
377
/* code is now 1 more than the last code used for codelength si; but
378
* it must still fit in si bits, since no code is allowed to be all ones.
379
*/
380
if (((INT32) code) >= (((INT32) 1) << si))
381
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
382
code <<= 1;
383
si++;
384
}
385
386
/* Figure F.15: generate decoding tables for bit-sequential decoding */
387
388
p = 0;
389
for (l = 1; l <= 16; l++) {
390
if (htbl->bits[l]) {
391
/* valoffset[l] = huffval[] index of 1st symbol of code length l,
392
* minus the minimum code of length l
393
*/
394
dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
395
p += htbl->bits[l];
396
dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
397
} else {
398
dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
399
}
400
}
401
dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
402
403
/* Compute lookahead tables to speed up decoding.
404
* First we set all the table entries to 0, indicating "too long";
405
* then we iterate through the Huffman codes that are short enough and
406
* fill in all the entries that correspond to bit sequences starting
407
* with that code.
408
*/
409
410
MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
411
412
p = 0;
413
for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
414
for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
415
/* l = current code's length, p = its index in huffcode[] & huffval[]. */
416
/* Generate left-justified code followed by all possible bit sequences */
417
lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
418
for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
419
dtbl->look_nbits[lookbits] = l;
420
dtbl->look_sym[lookbits] = htbl->huffval[p];
421
lookbits++;
422
}
423
}
424
}
425
426
/* Validate symbols as being reasonable.
427
* For AC tables, we make no check, but accept all byte values 0..255.
428
* For DC tables, we require the symbols to be in range 0..15.
429
* (Tighter bounds could be applied depending on the data depth and mode,
430
* but this is sufficient to ensure safe decoding.)
431
*/
432
if (isDC) {
433
for (i = 0; i < numsymbols; i++) {
434
int sym = htbl->huffval[i];
435
if (sym < 0 || sym > 15)
436
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
437
}
438
}
439
}
440
441
442
/*
443
* Out-of-line code for bit fetching.
444
* Note: current values of get_buffer and bits_left are passed as parameters,
445
* but are returned in the corresponding fields of the state struct.
446
*
447
* On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
448
* of get_buffer to be used. (On machines with wider words, an even larger
449
* buffer could be used.) However, on some machines 32-bit shifts are
450
* quite slow and take time proportional to the number of places shifted.
451
* (This is true with most PC compilers, for instance.) In this case it may
452
* be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
453
* average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
454
*/
455
456
#ifdef SLOW_SHIFT_32
457
#define MIN_GET_BITS 15 /* minimum allowable value */
458
#else
459
#define MIN_GET_BITS (BIT_BUF_SIZE-7)
460
#endif
461
462
463
LOCAL(boolean)
464
jpeg_fill_bit_buffer (bitread_working_state * state,
465
register bit_buf_type get_buffer, register int bits_left,
466
int nbits)
467
/* Load up the bit buffer to a depth of at least nbits */
468
{
469
/* Copy heavily used state fields into locals (hopefully registers) */
470
register const JOCTET * next_input_byte = state->next_input_byte;
471
register size_t bytes_in_buffer = state->bytes_in_buffer;
472
j_decompress_ptr cinfo = state->cinfo;
473
474
/* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
475
/* (It is assumed that no request will be for more than that many bits.) */
476
/* We fail to do so only if we hit a marker or are forced to suspend. */
477
478
if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
479
while (bits_left < MIN_GET_BITS) {
480
register int c;
481
482
/* Attempt to read a byte */
483
if (bytes_in_buffer == 0) {
484
if (! (*cinfo->src->fill_input_buffer) (cinfo))
485
return FALSE;
486
next_input_byte = cinfo->src->next_input_byte;
487
bytes_in_buffer = cinfo->src->bytes_in_buffer;
488
}
489
bytes_in_buffer--;
490
c = GETJOCTET(*next_input_byte++);
491
492
/* If it's 0xFF, check and discard stuffed zero byte */
493
if (c == 0xFF) {
494
/* Loop here to discard any padding FF's on terminating marker,
495
* so that we can save a valid unread_marker value. NOTE: we will
496
* accept multiple FF's followed by a 0 as meaning a single FF data
497
* byte. This data pattern is not valid according to the standard.
498
*/
499
do {
500
if (bytes_in_buffer == 0) {
501
if (! (*cinfo->src->fill_input_buffer) (cinfo))
502
return FALSE;
503
next_input_byte = cinfo->src->next_input_byte;
504
bytes_in_buffer = cinfo->src->bytes_in_buffer;
505
}
506
bytes_in_buffer--;
507
c = GETJOCTET(*next_input_byte++);
508
} while (c == 0xFF);
509
510
if (c == 0) {
511
/* Found FF/00, which represents an FF data byte */
512
c = 0xFF;
513
} else {
514
/* Oops, it's actually a marker indicating end of compressed data.
515
* Save the marker code for later use.
516
* Fine point: it might appear that we should save the marker into
517
* bitread working state, not straight into permanent state. But
518
* once we have hit a marker, we cannot need to suspend within the
519
* current MCU, because we will read no more bytes from the data
520
* source. So it is OK to update permanent state right away.
521
*/
522
cinfo->unread_marker = c;
523
/* See if we need to insert some fake zero bits. */
524
goto no_more_bytes;
525
}
526
}
527
528
/* OK, load c into get_buffer */
529
get_buffer = (get_buffer << 8) | c;
530
bits_left += 8;
531
} /* end while */
532
} else {
533
no_more_bytes:
534
/* We get here if we've read the marker that terminates the compressed
535
* data segment. There should be enough bits in the buffer register
536
* to satisfy the request; if so, no problem.
537
*/
538
if (nbits > bits_left) {
539
/* Uh-oh. Report corrupted data to user and stuff zeroes into
540
* the data stream, so that we can produce some kind of image.
541
* We use a nonvolatile flag to ensure that only one warning message
542
* appears per data segment.
543
*/
544
if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
545
WARNMS(cinfo, JWRN_HIT_MARKER);
546
((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
547
}
548
/* Fill the buffer with zero bits */
549
get_buffer <<= MIN_GET_BITS - bits_left;
550
bits_left = MIN_GET_BITS;
551
}
552
}
553
554
/* Unload the local registers */
555
state->next_input_byte = next_input_byte;
556
state->bytes_in_buffer = bytes_in_buffer;
557
state->get_buffer = get_buffer;
558
state->bits_left = bits_left;
559
560
return TRUE;
561
}
562
563
564
/*
565
* Figure F.12: extend sign bit.
566
* On some machines, a shift and sub will be faster than a table lookup.
567
*/
568
569
#ifdef AVOID_TABLES
570
571
#define BIT_MASK(nbits) ((1<<(nbits))-1)
572
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
573
574
#else
575
576
#define BIT_MASK(nbits) bmask[nbits]
577
#define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
578
579
static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */
580
{ 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
581
0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
582
583
#endif /* AVOID_TABLES */
584
585
586
/*
587
* Out-of-line code for Huffman code decoding.
588
*/
589
590
LOCAL(int)
591
jpeg_huff_decode (bitread_working_state * state,
592
register bit_buf_type get_buffer, register int bits_left,
593
d_derived_tbl * htbl, int min_bits)
594
{
595
register int l = min_bits;
596
register INT32 code;
597
598
/* HUFF_DECODE has determined that the code is at least min_bits */
599
/* bits long, so fetch that many bits in one swoop. */
600
601
CHECK_BIT_BUFFER(*state, l, return -1);
602
code = GET_BITS(l);
603
604
/* Collect the rest of the Huffman code one bit at a time. */
605
/* This is per Figure F.16 in the JPEG spec. */
606
607
while (code > htbl->maxcode[l]) {
608
code <<= 1;
609
CHECK_BIT_BUFFER(*state, 1, return -1);
610
code |= GET_BITS(1);
611
l++;
612
}
613
614
/* Unload the local registers */
615
state->get_buffer = get_buffer;
616
state->bits_left = bits_left;
617
618
/* With garbage input we may reach the sentinel value l = 17. */
619
620
if (l > 16) {
621
WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
622
return 0; /* fake a zero as the safest result */
623
}
624
625
return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
626
}
627
628
629
/*
630
* Finish up at the end of a Huffman-compressed scan.
631
*/
632
633
METHODDEF(void)
634
finish_pass_huff (j_decompress_ptr cinfo)
635
{
636
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
637
638
/* Throw away any unused bits remaining in bit buffer; */
639
/* include any full bytes in next_marker's count of discarded bytes */
640
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
641
entropy->bitstate.bits_left = 0;
642
}
643
644
645
/*
646
* Check for a restart marker & resynchronize decoder.
647
* Returns FALSE if must suspend.
648
*/
649
650
LOCAL(boolean)
651
process_restart (j_decompress_ptr cinfo)
652
{
653
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
654
int ci;
655
656
finish_pass_huff(cinfo);
657
658
/* Advance past the RSTn marker */
659
if (! (*cinfo->marker->read_restart_marker) (cinfo))
660
return FALSE;
661
662
/* Re-initialize DC predictions to 0 */
663
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
664
entropy->saved.last_dc_val[ci] = 0;
665
/* Re-init EOB run count, too */
666
entropy->saved.EOBRUN = 0;
667
668
/* Reset restart counter */
669
entropy->restarts_to_go = cinfo->restart_interval;
670
671
/* Reset out-of-data flag, unless read_restart_marker left us smack up
672
* against a marker. In that case we will end up treating the next data
673
* segment as empty, and we can avoid producing bogus output pixels by
674
* leaving the flag set.
675
*/
676
if (cinfo->unread_marker == 0)
677
entropy->insufficient_data = FALSE;
678
679
return TRUE;
680
}
681
682
683
/*
684
* Huffman MCU decoding.
685
* Each of these routines decodes and returns one MCU's worth of
686
* Huffman-compressed coefficients.
687
* The coefficients are reordered from zigzag order into natural array order,
688
* but are not dequantized.
689
*
690
* The i'th block of the MCU is stored into the block pointed to by
691
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
692
* (Wholesale zeroing is usually a little faster than retail...)
693
*
694
* We return FALSE if data source requested suspension. In that case no
695
* changes have been made to permanent state. (Exception: some output
696
* coefficients may already have been assigned. This is harmless for
697
* spectral selection, since we'll just re-assign them on the next call.
698
* Successive approximation AC refinement has to be more careful, however.)
699
*/
700
701
/*
702
* MCU decoding for DC initial scan (either spectral selection,
703
* or first pass of successive approximation).
704
*/
705
706
METHODDEF(boolean)
707
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
708
{
709
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
710
int Al = cinfo->Al;
711
register int s, r;
712
int blkn, ci;
713
JBLOCKROW block;
714
BITREAD_STATE_VARS;
715
savable_state state;
716
d_derived_tbl * tbl;
717
jpeg_component_info * compptr;
718
719
/* Process restart marker if needed; may have to suspend */
720
if (cinfo->restart_interval) {
721
if (entropy->restarts_to_go == 0)
722
if (! process_restart(cinfo))
723
return FALSE;
724
}
725
726
/* If we've run out of data, just leave the MCU set to zeroes.
727
* This way, we return uniform gray for the remainder of the segment.
728
*/
729
if (! entropy->insufficient_data) {
730
731
/* Load up working state */
732
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
733
ASSIGN_STATE(state, entropy->saved);
734
735
/* Outer loop handles each block in the MCU */
736
737
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
738
block = MCU_data[blkn];
739
ci = cinfo->MCU_membership[blkn];
740
compptr = cinfo->cur_comp_info[ci];
741
tbl = entropy->derived_tbls[compptr->dc_tbl_no];
742
743
/* Decode a single block's worth of coefficients */
744
745
/* Section F.2.2.1: decode the DC coefficient difference */
746
HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
747
if (s) {
748
CHECK_BIT_BUFFER(br_state, s, return FALSE);
749
r = GET_BITS(s);
750
s = HUFF_EXTEND(r, s);
751
}
752
753
/* Convert DC difference to actual value, update last_dc_val */
754
s += state.last_dc_val[ci];
755
state.last_dc_val[ci] = s;
756
/* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
757
(*block)[0] = (JCOEF) (s << Al);
758
}
759
760
/* Completed MCU, so update state */
761
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
762
ASSIGN_STATE(entropy->saved, state);
763
}
764
765
/* Account for restart interval if using restarts */
766
if (cinfo->restart_interval)
767
entropy->restarts_to_go--;
768
769
return TRUE;
770
}
771
772
773
/*
774
* MCU decoding for AC initial scan (either spectral selection,
775
* or first pass of successive approximation).
776
*/
777
778
METHODDEF(boolean)
779
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
780
{
781
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
782
register int s, k, r;
783
unsigned int EOBRUN;
784
int Se, Al;
785
const int * natural_order;
786
JBLOCKROW block;
787
BITREAD_STATE_VARS;
788
d_derived_tbl * tbl;
789
790
/* Process restart marker if needed; may have to suspend */
791
if (cinfo->restart_interval) {
792
if (entropy->restarts_to_go == 0)
793
if (! process_restart(cinfo))
794
return FALSE;
795
}
796
797
/* If we've run out of data, just leave the MCU set to zeroes.
798
* This way, we return uniform gray for the remainder of the segment.
799
*/
800
if (! entropy->insufficient_data) {
801
802
/* Load up working state.
803
* We can avoid loading/saving bitread state if in an EOB run.
804
*/
805
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
806
807
/* There is always only one block per MCU */
808
809
if (EOBRUN) /* if it's a band of zeroes... */
810
EOBRUN--; /* ...process it now (we do nothing) */
811
else {
812
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
813
Se = cinfo->Se;
814
Al = cinfo->Al;
815
natural_order = cinfo->natural_order;
816
block = MCU_data[0];
817
tbl = entropy->ac_derived_tbl;
818
819
for (k = cinfo->Ss; k <= Se; k++) {
820
HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
821
r = s >> 4;
822
s &= 15;
823
if (s) {
824
k += r;
825
CHECK_BIT_BUFFER(br_state, s, return FALSE);
826
r = GET_BITS(s);
827
s = HUFF_EXTEND(r, s);
828
/* Scale and output coefficient in natural (dezigzagged) order */
829
(*block)[natural_order[k]] = (JCOEF) (s << Al);
830
} else {
831
if (r != 15) { /* EOBr, run length is 2^r + appended bits */
832
if (r) { /* EOBr, r > 0 */
833
EOBRUN = 1 << r;
834
CHECK_BIT_BUFFER(br_state, r, return FALSE);
835
r = GET_BITS(r);
836
EOBRUN += r;
837
EOBRUN--; /* this band is processed at this moment */
838
}
839
break; /* force end-of-band */
840
}
841
k += 15; /* ZRL: skip 15 zeroes in band */
842
}
843
}
844
845
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
846
}
847
848
/* Completed MCU, so update state */
849
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
850
}
851
852
/* Account for restart interval if using restarts */
853
if (cinfo->restart_interval)
854
entropy->restarts_to_go--;
855
856
return TRUE;
857
}
858
859
860
/*
861
* MCU decoding for DC successive approximation refinement scan.
862
* Note: we assume such scans can be multi-component,
863
* although the spec is not very clear on the point.
864
*/
865
866
METHODDEF(boolean)
867
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
868
{
869
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
870
JCOEF p1;
871
int blkn;
872
BITREAD_STATE_VARS;
873
874
/* Process restart marker if needed; may have to suspend */
875
if (cinfo->restart_interval) {
876
if (entropy->restarts_to_go == 0)
877
if (! process_restart(cinfo))
878
return FALSE;
879
}
880
881
/* Not worth the cycles to check insufficient_data here,
882
* since we will not change the data anyway if we read zeroes.
883
*/
884
885
/* Load up working state */
886
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
887
888
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
889
890
/* Outer loop handles each block in the MCU */
891
892
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
893
/* Encoded data is simply the next bit of the two's-complement DC value */
894
CHECK_BIT_BUFFER(br_state, 1, return FALSE);
895
if (GET_BITS(1))
896
MCU_data[blkn][0][0] |= p1;
897
/* Note: since we use |=, repeating the assignment later is safe */
898
}
899
900
/* Completed MCU, so update state */
901
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
902
903
/* Account for restart interval if using restarts */
904
if (cinfo->restart_interval)
905
entropy->restarts_to_go--;
906
907
return TRUE;
908
}
909
910
911
/*
912
* MCU decoding for AC successive approximation refinement scan.
913
*/
914
915
METHODDEF(boolean)
916
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
917
{
918
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
919
register int s, k, r;
920
unsigned int EOBRUN;
921
int Se;
922
JCOEF p1, m1;
923
const int * natural_order;
924
JBLOCKROW block;
925
JCOEFPTR thiscoef;
926
BITREAD_STATE_VARS;
927
d_derived_tbl * tbl;
928
int num_newnz;
929
int newnz_pos[DCTSIZE2];
930
931
/* Process restart marker if needed; may have to suspend */
932
if (cinfo->restart_interval) {
933
if (entropy->restarts_to_go == 0)
934
if (! process_restart(cinfo))
935
return FALSE;
936
}
937
938
/* If we've run out of data, don't modify the MCU.
939
*/
940
if (! entropy->insufficient_data) {
941
942
Se = cinfo->Se;
943
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
944
m1 = -p1; /* -1 in the bit position being coded */
945
natural_order = cinfo->natural_order;
946
947
/* Load up working state */
948
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
949
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
950
951
/* There is always only one block per MCU */
952
block = MCU_data[0];
953
tbl = entropy->ac_derived_tbl;
954
955
/* If we are forced to suspend, we must undo the assignments to any newly
956
* nonzero coefficients in the block, because otherwise we'd get confused
957
* next time about which coefficients were already nonzero.
958
* But we need not undo addition of bits to already-nonzero coefficients;
959
* instead, we can test the current bit to see if we already did it.
960
*/
961
num_newnz = 0;
962
963
/* initialize coefficient loop counter to start of band */
964
k = cinfo->Ss;
965
966
if (EOBRUN == 0) {
967
do {
968
HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
969
r = s >> 4;
970
s &= 15;
971
if (s) {
972
if (s != 1) /* size of new coef should always be 1 */
973
WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
974
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
975
if (GET_BITS(1))
976
s = p1; /* newly nonzero coef is positive */
977
else
978
s = m1; /* newly nonzero coef is negative */
979
} else {
980
if (r != 15) {
981
EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
982
if (r) {
983
CHECK_BIT_BUFFER(br_state, r, goto undoit);
984
r = GET_BITS(r);
985
EOBRUN += r;
986
}
987
break; /* rest of block is handled by EOB logic */
988
}
989
/* note s = 0 for processing ZRL */
990
}
991
/* Advance over already-nonzero coefs and r still-zero coefs,
992
* appending correction bits to the nonzeroes. A correction bit is 1
993
* if the absolute value of the coefficient must be increased.
994
*/
995
do {
996
thiscoef = *block + natural_order[k];
997
if (*thiscoef) {
998
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
999
if (GET_BITS(1)) {
1000
if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
1001
if (*thiscoef >= 0)
1002
*thiscoef += p1;
1003
else
1004
*thiscoef += m1;
1005
}
1006
}
1007
} else {
1008
if (--r < 0)
1009
break; /* reached target zero coefficient */
1010
}
1011
k++;
1012
} while (k <= Se);
1013
if (s) {
1014
int pos = natural_order[k];
1015
/* Output newly nonzero coefficient */
1016
(*block)[pos] = (JCOEF) s;
1017
/* Remember its position in case we have to suspend */
1018
newnz_pos[num_newnz++] = pos;
1019
}
1020
k++;
1021
} while (k <= Se);
1022
}
1023
1024
if (EOBRUN) {
1025
/* Scan any remaining coefficient positions after the end-of-band
1026
* (the last newly nonzero coefficient, if any). Append a correction
1027
* bit to each already-nonzero coefficient. A correction bit is 1
1028
* if the absolute value of the coefficient must be increased.
1029
*/
1030
do {
1031
thiscoef = *block + natural_order[k];
1032
if (*thiscoef) {
1033
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
1034
if (GET_BITS(1)) {
1035
if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
1036
if (*thiscoef >= 0)
1037
*thiscoef += p1;
1038
else
1039
*thiscoef += m1;
1040
}
1041
}
1042
}
1043
k++;
1044
} while (k <= Se);
1045
/* Count one block completed in EOB run */
1046
EOBRUN--;
1047
}
1048
1049
/* Completed MCU, so update state */
1050
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
1051
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
1052
}
1053
1054
/* Account for restart interval if using restarts */
1055
if (cinfo->restart_interval)
1056
entropy->restarts_to_go--;
1057
1058
return TRUE;
1059
1060
undoit:
1061
/* Re-zero any output coefficients that we made newly nonzero */
1062
while (num_newnz)
1063
(*block)[newnz_pos[--num_newnz]] = 0;
1064
1065
return FALSE;
1066
}
1067
1068
1069
/*
1070
* Decode one MCU's worth of Huffman-compressed coefficients,
1071
* partial blocks.
1072
*/
1073
1074
METHODDEF(boolean)
1075
decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
1076
{
1077
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1078
const int * natural_order;
1079
int Se, blkn;
1080
BITREAD_STATE_VARS;
1081
savable_state state;
1082
1083
/* Process restart marker if needed; may have to suspend */
1084
if (cinfo->restart_interval) {
1085
if (entropy->restarts_to_go == 0)
1086
if (! process_restart(cinfo))
1087
return FALSE;
1088
}
1089
1090
/* If we've run out of data, just leave the MCU set to zeroes.
1091
* This way, we return uniform gray for the remainder of the segment.
1092
*/
1093
if (! entropy->insufficient_data) {
1094
1095
natural_order = cinfo->natural_order;
1096
Se = cinfo->lim_Se;
1097
1098
/* Load up working state */
1099
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
1100
ASSIGN_STATE(state, entropy->saved);
1101
1102
/* Outer loop handles each block in the MCU */
1103
1104
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1105
JBLOCKROW block = MCU_data[blkn];
1106
d_derived_tbl * htbl;
1107
register int s, k, r;
1108
int coef_limit, ci;
1109
1110
/* Decode a single block's worth of coefficients */
1111
1112
/* Section F.2.2.1: decode the DC coefficient difference */
1113
htbl = entropy->dc_cur_tbls[blkn];
1114
HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
1115
1116
htbl = entropy->ac_cur_tbls[blkn];
1117
k = 1;
1118
coef_limit = entropy->coef_limit[blkn];
1119
if (coef_limit) {
1120
/* Convert DC difference to actual value, update last_dc_val */
1121
if (s) {
1122
CHECK_BIT_BUFFER(br_state, s, return FALSE);
1123
r = GET_BITS(s);
1124
s = HUFF_EXTEND(r, s);
1125
}
1126
ci = cinfo->MCU_membership[blkn];
1127
s += state.last_dc_val[ci];
1128
state.last_dc_val[ci] = s;
1129
/* Output the DC coefficient */
1130
(*block)[0] = (JCOEF) s;
1131
1132
/* Section F.2.2.2: decode the AC coefficients */
1133
/* Since zeroes are skipped, output area must be cleared beforehand */
1134
for (; k < coef_limit; k++) {
1135
HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
1136
1137
r = s >> 4;
1138
s &= 15;
1139
1140
if (s) {
1141
k += r;
1142
CHECK_BIT_BUFFER(br_state, s, return FALSE);
1143
r = GET_BITS(s);
1144
s = HUFF_EXTEND(r, s);
1145
/* Output coefficient in natural (dezigzagged) order.
1146
* Note: the extra entries in natural_order[] will save us
1147
* if k > Se, which could happen if the data is corrupted.
1148
*/
1149
(*block)[natural_order[k]] = (JCOEF) s;
1150
} else {
1151
if (r != 15)
1152
goto EndOfBlock;
1153
k += 15;
1154
}
1155
}
1156
} else {
1157
if (s) {
1158
CHECK_BIT_BUFFER(br_state, s, return FALSE);
1159
DROP_BITS(s);
1160
}
1161
}
1162
1163
/* Section F.2.2.2: decode the AC coefficients */
1164
/* In this path we just discard the values */
1165
for (; k <= Se; k++) {
1166
HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
1167
1168
r = s >> 4;
1169
s &= 15;
1170
1171
if (s) {
1172
k += r;
1173
CHECK_BIT_BUFFER(br_state, s, return FALSE);
1174
DROP_BITS(s);
1175
} else {
1176
if (r != 15)
1177
break;
1178
k += 15;
1179
}
1180
}
1181
1182
EndOfBlock: ;
1183
}
1184
1185
/* Completed MCU, so update state */
1186
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
1187
ASSIGN_STATE(entropy->saved, state);
1188
}
1189
1190
/* Account for restart interval if using restarts */
1191
if (cinfo->restart_interval)
1192
entropy->restarts_to_go--;
1193
1194
return TRUE;
1195
}
1196
1197
1198
/*
1199
* Decode one MCU's worth of Huffman-compressed coefficients,
1200
* full-size blocks.
1201
*/
1202
1203
METHODDEF(boolean)
1204
decode_mcu (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
1205
{
1206
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1207
int blkn;
1208
BITREAD_STATE_VARS;
1209
savable_state state;
1210
1211
/* Process restart marker if needed; may have to suspend */
1212
if (cinfo->restart_interval) {
1213
if (entropy->restarts_to_go == 0)
1214
if (! process_restart(cinfo))
1215
return FALSE;
1216
}
1217
1218
/* If we've run out of data, just leave the MCU set to zeroes.
1219
* This way, we return uniform gray for the remainder of the segment.
1220
*/
1221
if (! entropy->insufficient_data) {
1222
1223
/* Load up working state */
1224
BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
1225
ASSIGN_STATE(state, entropy->saved);
1226
1227
/* Outer loop handles each block in the MCU */
1228
1229
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1230
JBLOCKROW block = MCU_data[blkn];
1231
d_derived_tbl * htbl;
1232
register int s, k, r;
1233
int coef_limit, ci;
1234
1235
/* Decode a single block's worth of coefficients */
1236
1237
/* Section F.2.2.1: decode the DC coefficient difference */
1238
htbl = entropy->dc_cur_tbls[blkn];
1239
HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
1240
1241
htbl = entropy->ac_cur_tbls[blkn];
1242
k = 1;
1243
coef_limit = entropy->coef_limit[blkn];
1244
if (coef_limit) {
1245
/* Convert DC difference to actual value, update last_dc_val */
1246
if (s) {
1247
CHECK_BIT_BUFFER(br_state, s, return FALSE);
1248
r = GET_BITS(s);
1249
s = HUFF_EXTEND(r, s);
1250
}
1251
ci = cinfo->MCU_membership[blkn];
1252
s += state.last_dc_val[ci];
1253
state.last_dc_val[ci] = s;
1254
/* Output the DC coefficient */
1255
(*block)[0] = (JCOEF) s;
1256
1257
/* Section F.2.2.2: decode the AC coefficients */
1258
/* Since zeroes are skipped, output area must be cleared beforehand */
1259
for (; k < coef_limit; k++) {
1260
HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
1261
1262
r = s >> 4;
1263
s &= 15;
1264
1265
if (s) {
1266
k += r;
1267
CHECK_BIT_BUFFER(br_state, s, return FALSE);
1268
r = GET_BITS(s);
1269
s = HUFF_EXTEND(r, s);
1270
/* Output coefficient in natural (dezigzagged) order.
1271
* Note: the extra entries in jpeg_natural_order[] will save us
1272
* if k >= DCTSIZE2, which could happen if the data is corrupted.
1273
*/
1274
(*block)[jpeg_natural_order[k]] = (JCOEF) s;
1275
} else {
1276
if (r != 15)
1277
goto EndOfBlock;
1278
k += 15;
1279
}
1280
}
1281
} else {
1282
if (s) {
1283
CHECK_BIT_BUFFER(br_state, s, return FALSE);
1284
DROP_BITS(s);
1285
}
1286
}
1287
1288
/* Section F.2.2.2: decode the AC coefficients */
1289
/* In this path we just discard the values */
1290
for (; k < DCTSIZE2; k++) {
1291
HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
1292
1293
r = s >> 4;
1294
s &= 15;
1295
1296
if (s) {
1297
k += r;
1298
CHECK_BIT_BUFFER(br_state, s, return FALSE);
1299
DROP_BITS(s);
1300
} else {
1301
if (r != 15)
1302
break;
1303
k += 15;
1304
}
1305
}
1306
1307
EndOfBlock: ;
1308
}
1309
1310
/* Completed MCU, so update state */
1311
BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
1312
ASSIGN_STATE(entropy->saved, state);
1313
}
1314
1315
/* Account for restart interval if using restarts */
1316
if (cinfo->restart_interval)
1317
entropy->restarts_to_go--;
1318
1319
return TRUE;
1320
}
1321
1322
1323
/*
1324
* Initialize for a Huffman-compressed scan.
1325
*/
1326
1327
METHODDEF(void)
1328
start_pass_huff_decoder (j_decompress_ptr cinfo)
1329
{
1330
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1331
int ci, blkn, tbl, i;
1332
jpeg_component_info * compptr;
1333
1334
if (cinfo->progressive_mode) {
1335
/* Validate progressive scan parameters */
1336
if (cinfo->Ss == 0) {
1337
if (cinfo->Se != 0)
1338
goto bad;
1339
} else {
1340
/* need not check Ss/Se < 0 since they came from unsigned bytes */
1341
if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
1342
goto bad;
1343
/* AC scans may have only one component */
1344
if (cinfo->comps_in_scan != 1)
1345
goto bad;
1346
}
1347
if (cinfo->Ah != 0) {
1348
/* Successive approximation refinement scan: must have Al = Ah-1. */
1349
if (cinfo->Ah-1 != cinfo->Al)
1350
goto bad;
1351
}
1352
if (cinfo->Al > 13) { /* need not check for < 0 */
1353
/* Arguably the maximum Al value should be less than 13 for 8-bit
1354
* precision, but the spec doesn't say so, and we try to be liberal
1355
* about what we accept. Note: large Al values could result in
1356
* out-of-range DC coefficients during early scans, leading to bizarre
1357
* displays due to overflows in the IDCT math. But we won't crash.
1358
*/
1359
bad:
1360
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
1361
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
1362
}
1363
/* Update progression status, and verify that scan order is legal.
1364
* Note that inter-scan inconsistencies are treated as warnings
1365
* not fatal errors ... not clear if this is right way to behave.
1366
*/
1367
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1368
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
1369
int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
1370
if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
1371
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
1372
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
1373
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
1374
if (cinfo->Ah != expected)
1375
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
1376
coef_bit_ptr[coefi] = cinfo->Al;
1377
}
1378
}
1379
1380
/* Select MCU decoding routine */
1381
if (cinfo->Ah == 0) {
1382
if (cinfo->Ss == 0)
1383
entropy->pub.decode_mcu = decode_mcu_DC_first;
1384
else
1385
entropy->pub.decode_mcu = decode_mcu_AC_first;
1386
} else {
1387
if (cinfo->Ss == 0)
1388
entropy->pub.decode_mcu = decode_mcu_DC_refine;
1389
else
1390
entropy->pub.decode_mcu = decode_mcu_AC_refine;
1391
}
1392
1393
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1394
compptr = cinfo->cur_comp_info[ci];
1395
/* Make sure requested tables are present, and compute derived tables.
1396
* We may build same derived table more than once, but it's not expensive.
1397
*/
1398
if (cinfo->Ss == 0) {
1399
if (cinfo->Ah == 0) { /* DC refinement needs no table */
1400
tbl = compptr->dc_tbl_no;
1401
jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
1402
& entropy->derived_tbls[tbl]);
1403
}
1404
} else {
1405
tbl = compptr->ac_tbl_no;
1406
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
1407
& entropy->derived_tbls[tbl]);
1408
/* remember the single active table */
1409
entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
1410
}
1411
/* Initialize DC predictions to 0 */
1412
entropy->saved.last_dc_val[ci] = 0;
1413
}
1414
1415
/* Initialize private state variables */
1416
entropy->saved.EOBRUN = 0;
1417
} else {
1418
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
1419
* This ought to be an error condition, but we make it a warning because
1420
* there are some baseline files out there with all zeroes in these bytes.
1421
*/
1422
if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
1423
((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
1424
cinfo->Se != cinfo->lim_Se))
1425
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
1426
1427
/* Select MCU decoding routine */
1428
/* We retain the hard-coded case for full-size blocks.
1429
* This is not necessary, but it appears that this version is slightly
1430
* more performant in the given implementation.
1431
* With an improved implementation we would prefer a single optimized
1432
* function.
1433
*/
1434
if (cinfo->lim_Se != DCTSIZE2-1)
1435
entropy->pub.decode_mcu = decode_mcu_sub;
1436
else
1437
entropy->pub.decode_mcu = decode_mcu;
1438
1439
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1440
compptr = cinfo->cur_comp_info[ci];
1441
/* Compute derived values for Huffman tables */
1442
/* We may do this more than once for a table, but it's not expensive */
1443
tbl = compptr->dc_tbl_no;
1444
jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
1445
& entropy->dc_derived_tbls[tbl]);
1446
if (cinfo->lim_Se) { /* AC needs no table when not present */
1447
tbl = compptr->ac_tbl_no;
1448
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
1449
& entropy->ac_derived_tbls[tbl]);
1450
}
1451
/* Initialize DC predictions to 0 */
1452
entropy->saved.last_dc_val[ci] = 0;
1453
}
1454
1455
/* Precalculate decoding info for each block in an MCU of this scan */
1456
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1457
ci = cinfo->MCU_membership[blkn];
1458
compptr = cinfo->cur_comp_info[ci];
1459
/* Precalculate which table to use for each block */
1460
entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
1461
entropy->ac_cur_tbls[blkn] = /* AC needs no table when not present */
1462
cinfo->lim_Se ? entropy->ac_derived_tbls[compptr->ac_tbl_no] : NULL;
1463
/* Decide whether we really care about the coefficient values */
1464
if (compptr->component_needed) {
1465
ci = compptr->DCT_v_scaled_size;
1466
i = compptr->DCT_h_scaled_size;
1467
switch (cinfo->lim_Se) {
1468
case (1*1-1):
1469
entropy->coef_limit[blkn] = 1;
1470
break;
1471
case (2*2-1):
1472
if (ci <= 0 || ci > 2) ci = 2;
1473
if (i <= 0 || i > 2) i = 2;
1474
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
1475
break;
1476
case (3*3-1):
1477
if (ci <= 0 || ci > 3) ci = 3;
1478
if (i <= 0 || i > 3) i = 3;
1479
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
1480
break;
1481
case (4*4-1):
1482
if (ci <= 0 || ci > 4) ci = 4;
1483
if (i <= 0 || i > 4) i = 4;
1484
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
1485
break;
1486
case (5*5-1):
1487
if (ci <= 0 || ci > 5) ci = 5;
1488
if (i <= 0 || i > 5) i = 5;
1489
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
1490
break;
1491
case (6*6-1):
1492
if (ci <= 0 || ci > 6) ci = 6;
1493
if (i <= 0 || i > 6) i = 6;
1494
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
1495
break;
1496
case (7*7-1):
1497
if (ci <= 0 || ci > 7) ci = 7;
1498
if (i <= 0 || i > 7) i = 7;
1499
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
1500
break;
1501
default:
1502
if (ci <= 0 || ci > 8) ci = 8;
1503
if (i <= 0 || i > 8) i = 8;
1504
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
1505
}
1506
} else {
1507
entropy->coef_limit[blkn] = 0;
1508
}
1509
}
1510
}
1511
1512
/* Initialize bitread state variables */
1513
entropy->bitstate.bits_left = 0;
1514
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
1515
entropy->insufficient_data = FALSE;
1516
1517
/* Initialize restart counter */
1518
entropy->restarts_to_go = cinfo->restart_interval;
1519
}
1520
1521
1522
/*
1523
* Module initialization routine for Huffman entropy decoding.
1524
*/
1525
1526
GLOBAL(void)
1527
jinit_huff_decoder (j_decompress_ptr cinfo)
1528
{
1529
huff_entropy_ptr entropy;
1530
int i;
1531
1532
entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small)
1533
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_decoder));
1534
cinfo->entropy = &entropy->pub;
1535
entropy->pub.start_pass = start_pass_huff_decoder;
1536
entropy->pub.finish_pass = finish_pass_huff;
1537
1538
if (cinfo->progressive_mode) {
1539
/* Create progression status table */
1540
int *coef_bit_ptr, ci;
1541
cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small)
1542
((j_common_ptr) cinfo, JPOOL_IMAGE,
1543
cinfo->num_components * DCTSIZE2 * SIZEOF(int));
1544
coef_bit_ptr = & cinfo->coef_bits[0][0];
1545
for (ci = 0; ci < cinfo->num_components; ci++)
1546
for (i = 0; i < DCTSIZE2; i++)
1547
*coef_bit_ptr++ = -1;
1548
1549
/* Mark derived tables unallocated */
1550
for (i = 0; i < NUM_HUFF_TBLS; i++) {
1551
entropy->derived_tbls[i] = NULL;
1552
}
1553
} else {
1554
/* Mark derived tables unallocated */
1555
for (i = 0; i < NUM_HUFF_TBLS; i++) {
1556
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1557
}
1558
}
1559
}
1560
1561