Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jfdctflt.c
4389 views
1
/*
2
* jfdctflt.c
3
*
4
* Copyright (C) 1994-1996, Thomas G. Lane.
5
* Modified 2003-2017 by Guido Vollbeding.
6
* This file is part of the Independent JPEG Group's software.
7
* For conditions of distribution and use, see the accompanying README file.
8
*
9
* This file contains a floating-point implementation of the
10
* forward DCT (Discrete Cosine Transform).
11
*
12
* This implementation should be more accurate than either of the integer
13
* DCT implementations. However, it may not give the same results on all
14
* machines because of differences in roundoff behavior. Speed will depend
15
* on the hardware's floating point capacity.
16
*
17
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
18
* on each column. Direct algorithms are also available, but they are
19
* much more complex and seem not to be any faster when reduced to code.
20
*
21
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
22
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
23
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
24
* JPEG textbook (see REFERENCES section in file README). The following code
25
* is based directly on figure 4-8 in P&M.
26
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
27
* possible to arrange the computation so that many of the multiplies are
28
* simple scalings of the final outputs. These multiplies can then be
29
* folded into the multiplications or divisions by the JPEG quantization
30
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
31
* to be done in the DCT itself.
32
* The primary disadvantage of this method is that with a fixed-point
33
* implementation, accuracy is lost due to imprecise representation of the
34
* scaled quantization values. However, that problem does not arise if
35
* we use floating point arithmetic.
36
*/
37
38
#define JPEG_INTERNALS
39
#include "jinclude.h"
40
#include "jpeglib.h"
41
#include "jdct.h" /* Private declarations for DCT subsystem */
42
43
#ifdef DCT_FLOAT_SUPPORTED
44
45
46
/*
47
* This module is specialized to the case DCTSIZE = 8.
48
*/
49
50
#if DCTSIZE != 8
51
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
52
#endif
53
54
55
/*
56
* Perform the forward DCT on one block of samples.
57
*
58
* cK represents cos(K*pi/16).
59
*/
60
61
GLOBAL(void)
62
jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
63
{
64
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
65
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
66
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
67
FAST_FLOAT *dataptr;
68
JSAMPROW elemptr;
69
int ctr;
70
71
/* Pass 1: process rows. */
72
73
dataptr = data;
74
for (ctr = 0; ctr < DCTSIZE; ctr++) {
75
elemptr = sample_data[ctr] + start_col;
76
77
/* Load data into workspace */
78
tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
79
tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
80
tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
81
tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
82
tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
83
tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
84
tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
85
tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
86
87
/* Even part */
88
89
tmp10 = tmp0 + tmp3; /* phase 2 */
90
tmp13 = tmp0 - tmp3;
91
tmp11 = tmp1 + tmp2;
92
tmp12 = tmp1 - tmp2;
93
94
/* Apply unsigned->signed conversion. */
95
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
96
dataptr[4] = tmp10 - tmp11;
97
98
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
99
dataptr[2] = tmp13 + z1; /* phase 5 */
100
dataptr[6] = tmp13 - z1;
101
102
/* Odd part */
103
104
tmp10 = tmp4 + tmp5; /* phase 2 */
105
tmp11 = tmp5 + tmp6;
106
tmp12 = tmp6 + tmp7;
107
108
/* The rotator is modified from fig 4-8 to avoid extra negations. */
109
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
110
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
111
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
112
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
113
114
z11 = tmp7 + z3; /* phase 5 */
115
z13 = tmp7 - z3;
116
117
dataptr[5] = z13 + z2; /* phase 6 */
118
dataptr[3] = z13 - z2;
119
dataptr[1] = z11 + z4;
120
dataptr[7] = z11 - z4;
121
122
dataptr += DCTSIZE; /* advance pointer to next row */
123
}
124
125
/* Pass 2: process columns. */
126
127
dataptr = data;
128
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
129
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
130
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
131
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
132
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
133
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
134
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
135
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
136
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
137
138
/* Even part */
139
140
tmp10 = tmp0 + tmp3; /* phase 2 */
141
tmp13 = tmp0 - tmp3;
142
tmp11 = tmp1 + tmp2;
143
tmp12 = tmp1 - tmp2;
144
145
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
146
dataptr[DCTSIZE*4] = tmp10 - tmp11;
147
148
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
149
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
150
dataptr[DCTSIZE*6] = tmp13 - z1;
151
152
/* Odd part */
153
154
tmp10 = tmp4 + tmp5; /* phase 2 */
155
tmp11 = tmp5 + tmp6;
156
tmp12 = tmp6 + tmp7;
157
158
/* The rotator is modified from fig 4-8 to avoid extra negations. */
159
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
160
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
161
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
162
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
163
164
z11 = tmp7 + z3; /* phase 5 */
165
z13 = tmp7 - z3;
166
167
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
168
dataptr[DCTSIZE*3] = z13 - z2;
169
dataptr[DCTSIZE*1] = z11 + z4;
170
dataptr[DCTSIZE*7] = z11 - z4;
171
172
dataptr++; /* advance pointer to next column */
173
}
174
}
175
176
#endif /* DCT_FLOAT_SUPPORTED */
177
178