/*1* jfdctflt.c2*3* Copyright (C) 1994-1996, Thomas G. Lane.4* Modified 2003-2017 by Guido Vollbeding.5* This file is part of the Independent JPEG Group's software.6* For conditions of distribution and use, see the accompanying README file.7*8* This file contains a floating-point implementation of the9* forward DCT (Discrete Cosine Transform).10*11* This implementation should be more accurate than either of the integer12* DCT implementations. However, it may not give the same results on all13* machines because of differences in roundoff behavior. Speed will depend14* on the hardware's floating point capacity.15*16* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT17* on each column. Direct algorithms are also available, but they are18* much more complex and seem not to be any faster when reduced to code.19*20* This implementation is based on Arai, Agui, and Nakajima's algorithm for21* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in22* Japanese, but the algorithm is described in the Pennebaker & Mitchell23* JPEG textbook (see REFERENCES section in file README). The following code24* is based directly on figure 4-8 in P&M.25* While an 8-point DCT cannot be done in less than 11 multiplies, it is26* possible to arrange the computation so that many of the multiplies are27* simple scalings of the final outputs. These multiplies can then be28* folded into the multiplications or divisions by the JPEG quantization29* table entries. The AA&N method leaves only 5 multiplies and 29 adds30* to be done in the DCT itself.31* The primary disadvantage of this method is that with a fixed-point32* implementation, accuracy is lost due to imprecise representation of the33* scaled quantization values. However, that problem does not arise if34* we use floating point arithmetic.35*/3637#define JPEG_INTERNALS38#include "jinclude.h"39#include "jpeglib.h"40#include "jdct.h" /* Private declarations for DCT subsystem */4142#ifdef DCT_FLOAT_SUPPORTED434445/*46* This module is specialized to the case DCTSIZE = 8.47*/4849#if DCTSIZE != 850Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */51#endif525354/*55* Perform the forward DCT on one block of samples.56*57* cK represents cos(K*pi/16).58*/5960GLOBAL(void)61jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)62{63FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;64FAST_FLOAT tmp10, tmp11, tmp12, tmp13;65FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;66FAST_FLOAT *dataptr;67JSAMPROW elemptr;68int ctr;6970/* Pass 1: process rows. */7172dataptr = data;73for (ctr = 0; ctr < DCTSIZE; ctr++) {74elemptr = sample_data[ctr] + start_col;7576/* Load data into workspace */77tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));78tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));79tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));80tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));81tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));82tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));83tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));84tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));8586/* Even part */8788tmp10 = tmp0 + tmp3; /* phase 2 */89tmp13 = tmp0 - tmp3;90tmp11 = tmp1 + tmp2;91tmp12 = tmp1 - tmp2;9293/* Apply unsigned->signed conversion. */94dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */95dataptr[4] = tmp10 - tmp11;9697z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */98dataptr[2] = tmp13 + z1; /* phase 5 */99dataptr[6] = tmp13 - z1;100101/* Odd part */102103tmp10 = tmp4 + tmp5; /* phase 2 */104tmp11 = tmp5 + tmp6;105tmp12 = tmp6 + tmp7;106107/* The rotator is modified from fig 4-8 to avoid extra negations. */108z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */109z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */110z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */111z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */112113z11 = tmp7 + z3; /* phase 5 */114z13 = tmp7 - z3;115116dataptr[5] = z13 + z2; /* phase 6 */117dataptr[3] = z13 - z2;118dataptr[1] = z11 + z4;119dataptr[7] = z11 - z4;120121dataptr += DCTSIZE; /* advance pointer to next row */122}123124/* Pass 2: process columns. */125126dataptr = data;127for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {128tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];129tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];130tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];131tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];132tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];133tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];134tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];135tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];136137/* Even part */138139tmp10 = tmp0 + tmp3; /* phase 2 */140tmp13 = tmp0 - tmp3;141tmp11 = tmp1 + tmp2;142tmp12 = tmp1 - tmp2;143144dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */145dataptr[DCTSIZE*4] = tmp10 - tmp11;146147z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */148dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */149dataptr[DCTSIZE*6] = tmp13 - z1;150151/* Odd part */152153tmp10 = tmp4 + tmp5; /* phase 2 */154tmp11 = tmp5 + tmp6;155tmp12 = tmp6 + tmp7;156157/* The rotator is modified from fig 4-8 to avoid extra negations. */158z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */159z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */160z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */161z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */162163z11 = tmp7 + z3; /* phase 5 */164z13 = tmp7 - z3;165166dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */167dataptr[DCTSIZE*3] = z13 - z2;168dataptr[DCTSIZE*1] = z11 + z4;169dataptr[DCTSIZE*7] = z11 - z4;170171dataptr++; /* advance pointer to next column */172}173}174175#endif /* DCT_FLOAT_SUPPORTED */176177178