Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jfdctfst.c
4389 views
1
/*
2
* jfdctfst.c
3
*
4
* Copyright (C) 1994-1996, Thomas G. Lane.
5
* Modified 2003-2017 by Guido Vollbeding.
6
* This file is part of the Independent JPEG Group's software.
7
* For conditions of distribution and use, see the accompanying README file.
8
*
9
* This file contains a fast, not so accurate integer implementation of the
10
* forward DCT (Discrete Cosine Transform).
11
*
12
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
13
* on each column. Direct algorithms are also available, but they are
14
* much more complex and seem not to be any faster when reduced to code.
15
*
16
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
17
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
18
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
19
* JPEG textbook (see REFERENCES section in file README). The following code
20
* is based directly on figure 4-8 in P&M.
21
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
22
* possible to arrange the computation so that many of the multiplies are
23
* simple scalings of the final outputs. These multiplies can then be
24
* folded into the multiplications or divisions by the JPEG quantization
25
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
26
* to be done in the DCT itself.
27
* The primary disadvantage of this method is that with fixed-point math,
28
* accuracy is lost due to imprecise representation of the scaled
29
* quantization values. The smaller the quantization table entry, the less
30
* precise the scaled value, so this implementation does worse with high-
31
* quality-setting files than with low-quality ones.
32
*/
33
34
#define JPEG_INTERNALS
35
#include "jinclude.h"
36
#include "jpeglib.h"
37
#include "jdct.h" /* Private declarations for DCT subsystem */
38
39
#ifdef DCT_IFAST_SUPPORTED
40
41
42
/*
43
* This module is specialized to the case DCTSIZE = 8.
44
*/
45
46
#if DCTSIZE != 8
47
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
48
#endif
49
50
51
/* Scaling decisions are generally the same as in the LL&M algorithm;
52
* see jfdctint.c for more details. However, we choose to descale
53
* (right shift) multiplication products as soon as they are formed,
54
* rather than carrying additional fractional bits into subsequent additions.
55
* This compromises accuracy slightly, but it lets us save a few shifts.
56
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
57
* everywhere except in the multiplications proper; this saves a good deal
58
* of work on 16-bit-int machines.
59
*
60
* Again to save a few shifts, the intermediate results between pass 1 and
61
* pass 2 are not upscaled, but are represented only to integral precision.
62
*
63
* A final compromise is to represent the multiplicative constants to only
64
* 8 fractional bits, rather than 13. This saves some shifting work on some
65
* machines, and may also reduce the cost of multiplication (since there
66
* are fewer one-bits in the constants).
67
*/
68
69
#define CONST_BITS 8
70
71
72
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
73
* causing a lot of useless floating-point operations at run time.
74
* To get around this we use the following pre-calculated constants.
75
* If you change CONST_BITS you may want to add appropriate values.
76
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
77
*/
78
79
#if CONST_BITS == 8
80
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
81
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
82
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
83
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
84
#else
85
#define FIX_0_382683433 FIX(0.382683433)
86
#define FIX_0_541196100 FIX(0.541196100)
87
#define FIX_0_707106781 FIX(0.707106781)
88
#define FIX_1_306562965 FIX(1.306562965)
89
#endif
90
91
92
/* We can gain a little more speed, with a further compromise in accuracy,
93
* by omitting the addition in a descaling shift. This yields an incorrectly
94
* rounded result half the time...
95
*/
96
97
#ifndef USE_ACCURATE_ROUNDING
98
#undef DESCALE
99
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
100
#endif
101
102
103
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
104
* descale to yield a DCTELEM result.
105
*/
106
107
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
108
109
110
/*
111
* Perform the forward DCT on one block of samples.
112
*
113
* cK represents cos(K*pi/16).
114
*/
115
116
GLOBAL(void)
117
jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
118
{
119
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
120
DCTELEM tmp10, tmp11, tmp12, tmp13;
121
DCTELEM z1, z2, z3, z4, z5, z11, z13;
122
DCTELEM *dataptr;
123
JSAMPROW elemptr;
124
int ctr;
125
SHIFT_TEMPS
126
127
/* Pass 1: process rows. */
128
129
dataptr = data;
130
for (ctr = 0; ctr < DCTSIZE; ctr++) {
131
elemptr = sample_data[ctr] + start_col;
132
133
/* Load data into workspace */
134
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
135
tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
136
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
137
tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
138
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
139
tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
140
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
141
tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
142
143
/* Even part */
144
145
tmp10 = tmp0 + tmp3; /* phase 2 */
146
tmp13 = tmp0 - tmp3;
147
tmp11 = tmp1 + tmp2;
148
tmp12 = tmp1 - tmp2;
149
150
/* Apply unsigned->signed conversion. */
151
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
152
dataptr[4] = tmp10 - tmp11;
153
154
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
155
dataptr[2] = tmp13 + z1; /* phase 5 */
156
dataptr[6] = tmp13 - z1;
157
158
/* Odd part */
159
160
tmp10 = tmp4 + tmp5; /* phase 2 */
161
tmp11 = tmp5 + tmp6;
162
tmp12 = tmp6 + tmp7;
163
164
/* The rotator is modified from fig 4-8 to avoid extra negations. */
165
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
166
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
167
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
168
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
169
170
z11 = tmp7 + z3; /* phase 5 */
171
z13 = tmp7 - z3;
172
173
dataptr[5] = z13 + z2; /* phase 6 */
174
dataptr[3] = z13 - z2;
175
dataptr[1] = z11 + z4;
176
dataptr[7] = z11 - z4;
177
178
dataptr += DCTSIZE; /* advance pointer to next row */
179
}
180
181
/* Pass 2: process columns. */
182
183
dataptr = data;
184
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
185
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
186
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
187
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
188
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
189
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
190
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
191
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
192
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
193
194
/* Even part */
195
196
tmp10 = tmp0 + tmp3; /* phase 2 */
197
tmp13 = tmp0 - tmp3;
198
tmp11 = tmp1 + tmp2;
199
tmp12 = tmp1 - tmp2;
200
201
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
202
dataptr[DCTSIZE*4] = tmp10 - tmp11;
203
204
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
205
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
206
dataptr[DCTSIZE*6] = tmp13 - z1;
207
208
/* Odd part */
209
210
tmp10 = tmp4 + tmp5; /* phase 2 */
211
tmp11 = tmp5 + tmp6;
212
tmp12 = tmp6 + tmp7;
213
214
/* The rotator is modified from fig 4-8 to avoid extra negations. */
215
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
216
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
217
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
218
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
219
220
z11 = tmp7 + z3; /* phase 5 */
221
z13 = tmp7 - z3;
222
223
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
224
dataptr[DCTSIZE*3] = z13 - z2;
225
dataptr[DCTSIZE*1] = z11 + z4;
226
dataptr[DCTSIZE*7] = z11 - z4;
227
228
dataptr++; /* advance pointer to next column */
229
}
230
}
231
232
#endif /* DCT_IFAST_SUPPORTED */
233
234