Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jidctflt.c
4389 views
1
/*
2
* jidctflt.c
3
*
4
* Copyright (C) 1994-1998, Thomas G. Lane.
5
* Modified 2010-2017 by Guido Vollbeding.
6
* This file is part of the Independent JPEG Group's software.
7
* For conditions of distribution and use, see the accompanying README file.
8
*
9
* This file contains a floating-point implementation of the
10
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
11
* must also perform dequantization of the input coefficients.
12
*
13
* This implementation should be more accurate than either of the integer
14
* IDCT implementations. However, it may not give the same results on all
15
* machines because of differences in roundoff behavior. Speed will depend
16
* on the hardware's floating point capacity.
17
*
18
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
19
* on each row (or vice versa, but it's more convenient to emit a row at
20
* a time). Direct algorithms are also available, but they are much more
21
* complex and seem not to be any faster when reduced to code.
22
*
23
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
24
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
25
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
26
* JPEG textbook (see REFERENCES section in file README). The following code
27
* is based directly on figure 4-8 in P&M.
28
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
29
* possible to arrange the computation so that many of the multiplies are
30
* simple scalings of the final outputs. These multiplies can then be
31
* folded into the multiplications or divisions by the JPEG quantization
32
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
33
* to be done in the DCT itself.
34
* The primary disadvantage of this method is that with a fixed-point
35
* implementation, accuracy is lost due to imprecise representation of the
36
* scaled quantization values. However, that problem does not arise if
37
* we use floating point arithmetic.
38
*/
39
40
#define JPEG_INTERNALS
41
#include "jinclude.h"
42
#include "jpeglib.h"
43
#include "jdct.h" /* Private declarations for DCT subsystem */
44
45
#ifdef DCT_FLOAT_SUPPORTED
46
47
48
/*
49
* This module is specialized to the case DCTSIZE = 8.
50
*/
51
52
#if DCTSIZE != 8
53
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
54
#endif
55
56
57
/* Dequantize a coefficient by multiplying it by the multiplier-table
58
* entry; produce a float result.
59
*/
60
61
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
62
63
64
/*
65
* Perform dequantization and inverse DCT on one block of coefficients.
66
*
67
* cK represents cos(K*pi/16).
68
*/
69
70
GLOBAL(void)
71
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
72
JCOEFPTR coef_block,
73
JSAMPARRAY output_buf, JDIMENSION output_col)
74
{
75
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
76
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
77
FAST_FLOAT z5, z10, z11, z12, z13;
78
JCOEFPTR inptr;
79
FLOAT_MULT_TYPE * quantptr;
80
FAST_FLOAT * wsptr;
81
JSAMPROW outptr;
82
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
83
int ctr;
84
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
85
86
/* Pass 1: process columns from input, store into work array. */
87
88
inptr = coef_block;
89
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
90
wsptr = workspace;
91
for (ctr = DCTSIZE; ctr > 0; ctr--) {
92
/* Due to quantization, we will usually find that many of the input
93
* coefficients are zero, especially the AC terms. We can exploit this
94
* by short-circuiting the IDCT calculation for any column in which all
95
* the AC terms are zero. In that case each output is equal to the
96
* DC coefficient (with scale factor as needed).
97
* With typical images and quantization tables, half or more of the
98
* column DCT calculations can be simplified this way.
99
*/
100
101
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
102
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
103
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
104
inptr[DCTSIZE*7] == 0) {
105
/* AC terms all zero */
106
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
107
108
wsptr[DCTSIZE*0] = dcval;
109
wsptr[DCTSIZE*1] = dcval;
110
wsptr[DCTSIZE*2] = dcval;
111
wsptr[DCTSIZE*3] = dcval;
112
wsptr[DCTSIZE*4] = dcval;
113
wsptr[DCTSIZE*5] = dcval;
114
wsptr[DCTSIZE*6] = dcval;
115
wsptr[DCTSIZE*7] = dcval;
116
117
inptr++; /* advance pointers to next column */
118
quantptr++;
119
wsptr++;
120
continue;
121
}
122
123
/* Even part */
124
125
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
126
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
127
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
128
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
129
130
tmp10 = tmp0 + tmp2; /* phase 3 */
131
tmp11 = tmp0 - tmp2;
132
133
tmp13 = tmp1 + tmp3; /* phases 5-3 */
134
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
135
136
tmp0 = tmp10 + tmp13; /* phase 2 */
137
tmp3 = tmp10 - tmp13;
138
tmp1 = tmp11 + tmp12;
139
tmp2 = tmp11 - tmp12;
140
141
/* Odd part */
142
143
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
144
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
145
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
146
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
147
148
z13 = tmp6 + tmp5; /* phase 6 */
149
z10 = tmp6 - tmp5;
150
z11 = tmp4 + tmp7;
151
z12 = tmp4 - tmp7;
152
153
tmp7 = z11 + z13; /* phase 5 */
154
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
155
156
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
157
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
158
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
159
160
tmp6 = tmp12 - tmp7; /* phase 2 */
161
tmp5 = tmp11 - tmp6;
162
tmp4 = tmp10 - tmp5;
163
164
wsptr[DCTSIZE*0] = tmp0 + tmp7;
165
wsptr[DCTSIZE*7] = tmp0 - tmp7;
166
wsptr[DCTSIZE*1] = tmp1 + tmp6;
167
wsptr[DCTSIZE*6] = tmp1 - tmp6;
168
wsptr[DCTSIZE*2] = tmp2 + tmp5;
169
wsptr[DCTSIZE*5] = tmp2 - tmp5;
170
wsptr[DCTSIZE*3] = tmp3 + tmp4;
171
wsptr[DCTSIZE*4] = tmp3 - tmp4;
172
173
inptr++; /* advance pointers to next column */
174
quantptr++;
175
wsptr++;
176
}
177
178
/* Pass 2: process rows from work array, store into output array. */
179
180
wsptr = workspace;
181
for (ctr = 0; ctr < DCTSIZE; ctr++) {
182
outptr = output_buf[ctr] + output_col;
183
/* Rows of zeroes can be exploited in the same way as we did with columns.
184
* However, the column calculation has created many nonzero AC terms, so
185
* the simplification applies less often (typically 5% to 10% of the time).
186
* And testing floats for zero is relatively expensive, so we don't bother.
187
*/
188
189
/* Even part */
190
191
/* Prepare range-limit and float->int conversion */
192
z5 = wsptr[0] + (((FAST_FLOAT) RANGE_CENTER) + ((FAST_FLOAT) 0.5));
193
tmp10 = z5 + wsptr[4];
194
tmp11 = z5 - wsptr[4];
195
196
tmp13 = wsptr[2] + wsptr[6];
197
tmp12 = (wsptr[2] - wsptr[6]) *
198
((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
199
200
tmp0 = tmp10 + tmp13;
201
tmp3 = tmp10 - tmp13;
202
tmp1 = tmp11 + tmp12;
203
tmp2 = tmp11 - tmp12;
204
205
/* Odd part */
206
207
z13 = wsptr[5] + wsptr[3];
208
z10 = wsptr[5] - wsptr[3];
209
z11 = wsptr[1] + wsptr[7];
210
z12 = wsptr[1] - wsptr[7];
211
212
tmp7 = z11 + z13; /* phase 5 */
213
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
214
215
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
216
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
217
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
218
219
tmp6 = tmp12 - tmp7; /* phase 2 */
220
tmp5 = tmp11 - tmp6;
221
tmp4 = tmp10 - tmp5;
222
223
/* Final output stage: float->int conversion and range-limit */
224
225
outptr[0] = range_limit[(int) (tmp0 + tmp7) & RANGE_MASK];
226
outptr[7] = range_limit[(int) (tmp0 - tmp7) & RANGE_MASK];
227
outptr[1] = range_limit[(int) (tmp1 + tmp6) & RANGE_MASK];
228
outptr[6] = range_limit[(int) (tmp1 - tmp6) & RANGE_MASK];
229
outptr[2] = range_limit[(int) (tmp2 + tmp5) & RANGE_MASK];
230
outptr[5] = range_limit[(int) (tmp2 - tmp5) & RANGE_MASK];
231
outptr[3] = range_limit[(int) (tmp3 + tmp4) & RANGE_MASK];
232
outptr[4] = range_limit[(int) (tmp3 - tmp4) & RANGE_MASK];
233
234
wsptr += DCTSIZE; /* advance pointer to next row */
235
}
236
}
237
238
#endif /* DCT_FLOAT_SUPPORTED */
239
240