Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jidctfst.c
4389 views
1
/*
2
* jidctfst.c
3
*
4
* Copyright (C) 1994-1998, Thomas G. Lane.
5
* Modified 2015-2017 by Guido Vollbeding.
6
* This file is part of the Independent JPEG Group's software.
7
* For conditions of distribution and use, see the accompanying README file.
8
*
9
* This file contains a fast, not so accurate integer implementation of the
10
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
11
* must also perform dequantization of the input coefficients.
12
*
13
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
14
* on each row (or vice versa, but it's more convenient to emit a row at
15
* a time). Direct algorithms are also available, but they are much more
16
* complex and seem not to be any faster when reduced to code.
17
*
18
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
19
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
20
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
21
* JPEG textbook (see REFERENCES section in file README). The following code
22
* is based directly on figure 4-8 in P&M.
23
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
24
* possible to arrange the computation so that many of the multiplies are
25
* simple scalings of the final outputs. These multiplies can then be
26
* folded into the multiplications or divisions by the JPEG quantization
27
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
28
* to be done in the DCT itself.
29
* The primary disadvantage of this method is that with fixed-point math,
30
* accuracy is lost due to imprecise representation of the scaled
31
* quantization values. The smaller the quantization table entry, the less
32
* precise the scaled value, so this implementation does worse with high-
33
* quality-setting files than with low-quality ones.
34
*/
35
36
#define JPEG_INTERNALS
37
#include "jinclude.h"
38
#include "jpeglib.h"
39
#include "jdct.h" /* Private declarations for DCT subsystem */
40
41
#ifdef DCT_IFAST_SUPPORTED
42
43
44
/*
45
* This module is specialized to the case DCTSIZE = 8.
46
*/
47
48
#if DCTSIZE != 8
49
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
50
#endif
51
52
53
/* Scaling decisions are generally the same as in the LL&M algorithm;
54
* see jidctint.c for more details. However, we choose to descale
55
* (right shift) multiplication products as soon as they are formed,
56
* rather than carrying additional fractional bits into subsequent additions.
57
* This compromises accuracy slightly, but it lets us save a few shifts.
58
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
59
* everywhere except in the multiplications proper; this saves a good deal
60
* of work on 16-bit-int machines.
61
*
62
* The dequantized coefficients are not integers because the AA&N scaling
63
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
64
* so that the first and second IDCT rounds have the same input scaling.
65
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
66
* avoid a descaling shift; this compromises accuracy rather drastically
67
* for small quantization table entries, but it saves a lot of shifts.
68
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
69
* so we use a much larger scaling factor to preserve accuracy.
70
*
71
* A final compromise is to represent the multiplicative constants to only
72
* 8 fractional bits, rather than 13. This saves some shifting work on some
73
* machines, and may also reduce the cost of multiplication (since there
74
* are fewer one-bits in the constants).
75
*/
76
77
#if BITS_IN_JSAMPLE == 8
78
#define CONST_BITS 8
79
#define PASS1_BITS 2
80
#else
81
#define CONST_BITS 8
82
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
83
#endif
84
85
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
86
* causing a lot of useless floating-point operations at run time.
87
* To get around this we use the following pre-calculated constants.
88
* If you change CONST_BITS you may want to add appropriate values.
89
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
90
*/
91
92
#if CONST_BITS == 8
93
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
94
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
95
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
96
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
97
#else
98
#define FIX_1_082392200 FIX(1.082392200)
99
#define FIX_1_414213562 FIX(1.414213562)
100
#define FIX_1_847759065 FIX(1.847759065)
101
#define FIX_2_613125930 FIX(2.613125930)
102
#endif
103
104
105
/* We can gain a little more speed, with a further compromise in accuracy,
106
* by omitting the addition in a descaling shift. This yields an incorrectly
107
* rounded result half the time...
108
*/
109
110
#ifndef USE_ACCURATE_ROUNDING
111
#undef DESCALE
112
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
113
#endif
114
115
116
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
117
* descale to yield a DCTELEM result.
118
*/
119
120
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
121
122
123
/* Dequantize a coefficient by multiplying it by the multiplier-table
124
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
125
* multiplication will do. For 12-bit data, the multiplier table is
126
* declared INT32, so a 32-bit multiply will be used.
127
*/
128
129
#if BITS_IN_JSAMPLE == 8
130
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
131
#else
132
#define DEQUANTIZE(coef,quantval) \
133
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
134
#endif
135
136
137
/*
138
* Perform dequantization and inverse DCT on one block of coefficients.
139
*
140
* cK represents cos(K*pi/16).
141
*/
142
143
GLOBAL(void)
144
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
145
JCOEFPTR coef_block,
146
JSAMPARRAY output_buf, JDIMENSION output_col)
147
{
148
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
149
DCTELEM tmp10, tmp11, tmp12, tmp13;
150
DCTELEM z5, z10, z11, z12, z13;
151
JCOEFPTR inptr;
152
IFAST_MULT_TYPE * quantptr;
153
int * wsptr;
154
JSAMPROW outptr;
155
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
156
int ctr;
157
int workspace[DCTSIZE2]; /* buffers data between passes */
158
SHIFT_TEMPS /* for DESCALE */
159
ISHIFT_TEMPS /* for IRIGHT_SHIFT */
160
161
/* Pass 1: process columns from input, store into work array. */
162
163
inptr = coef_block;
164
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
165
wsptr = workspace;
166
for (ctr = DCTSIZE; ctr > 0; ctr--) {
167
/* Due to quantization, we will usually find that many of the input
168
* coefficients are zero, especially the AC terms. We can exploit this
169
* by short-circuiting the IDCT calculation for any column in which all
170
* the AC terms are zero. In that case each output is equal to the
171
* DC coefficient (with scale factor as needed).
172
* With typical images and quantization tables, half or more of the
173
* column DCT calculations can be simplified this way.
174
*/
175
176
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
177
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
178
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
179
inptr[DCTSIZE*7] == 0) {
180
/* AC terms all zero */
181
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
182
183
wsptr[DCTSIZE*0] = dcval;
184
wsptr[DCTSIZE*1] = dcval;
185
wsptr[DCTSIZE*2] = dcval;
186
wsptr[DCTSIZE*3] = dcval;
187
wsptr[DCTSIZE*4] = dcval;
188
wsptr[DCTSIZE*5] = dcval;
189
wsptr[DCTSIZE*6] = dcval;
190
wsptr[DCTSIZE*7] = dcval;
191
192
inptr++; /* advance pointers to next column */
193
quantptr++;
194
wsptr++;
195
continue;
196
}
197
198
/* Even part */
199
200
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
201
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
202
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
203
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
204
205
tmp10 = tmp0 + tmp2; /* phase 3 */
206
tmp11 = tmp0 - tmp2;
207
208
tmp13 = tmp1 + tmp3; /* phases 5-3 */
209
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
210
211
tmp0 = tmp10 + tmp13; /* phase 2 */
212
tmp3 = tmp10 - tmp13;
213
tmp1 = tmp11 + tmp12;
214
tmp2 = tmp11 - tmp12;
215
216
/* Odd part */
217
218
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
219
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
220
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
221
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
222
223
z13 = tmp6 + tmp5; /* phase 6 */
224
z10 = tmp6 - tmp5;
225
z11 = tmp4 + tmp7;
226
z12 = tmp4 - tmp7;
227
228
tmp7 = z11 + z13; /* phase 5 */
229
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
230
231
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
232
tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */
233
tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */
234
235
tmp6 = tmp12 - tmp7; /* phase 2 */
236
tmp5 = tmp11 - tmp6;
237
tmp4 = tmp10 - tmp5;
238
239
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
240
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
241
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
242
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
243
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
244
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
245
wsptr[DCTSIZE*3] = (int) (tmp3 + tmp4);
246
wsptr[DCTSIZE*4] = (int) (tmp3 - tmp4);
247
248
inptr++; /* advance pointers to next column */
249
quantptr++;
250
wsptr++;
251
}
252
253
/* Pass 2: process rows from work array, store into output array.
254
* Note that we must descale the results by a factor of 8 == 2**3,
255
* and also undo the PASS1_BITS scaling.
256
*/
257
258
wsptr = workspace;
259
for (ctr = 0; ctr < DCTSIZE; ctr++) {
260
outptr = output_buf[ctr] + output_col;
261
262
/* Add range center and fudge factor for final descale and range-limit. */
263
z5 = (DCTELEM) wsptr[0] +
264
((((DCTELEM) RANGE_CENTER) << (PASS1_BITS+3)) +
265
(1 << (PASS1_BITS+2)));
266
267
/* Rows of zeroes can be exploited in the same way as we did with columns.
268
* However, the column calculation has created many nonzero AC terms, so
269
* the simplification applies less often (typically 5% to 10% of the time).
270
* On machines with very fast multiplication, it's possible that the
271
* test takes more time than it's worth. In that case this section
272
* may be commented out.
273
*/
274
275
#ifndef NO_ZERO_ROW_TEST
276
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
277
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
278
/* AC terms all zero */
279
JSAMPLE dcval = range_limit[(int) IRIGHT_SHIFT(z5, PASS1_BITS+3)
280
& RANGE_MASK];
281
282
outptr[0] = dcval;
283
outptr[1] = dcval;
284
outptr[2] = dcval;
285
outptr[3] = dcval;
286
outptr[4] = dcval;
287
outptr[5] = dcval;
288
outptr[6] = dcval;
289
outptr[7] = dcval;
290
291
wsptr += DCTSIZE; /* advance pointer to next row */
292
continue;
293
}
294
#endif
295
296
/* Even part */
297
298
tmp10 = z5 + (DCTELEM) wsptr[4];
299
tmp11 = z5 - (DCTELEM) wsptr[4];
300
301
tmp13 = (DCTELEM) wsptr[2] + (DCTELEM) wsptr[6];
302
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6],
303
FIX_1_414213562) - tmp13; /* 2*c4 */
304
305
tmp0 = tmp10 + tmp13;
306
tmp3 = tmp10 - tmp13;
307
tmp1 = tmp11 + tmp12;
308
tmp2 = tmp11 - tmp12;
309
310
/* Odd part */
311
312
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
313
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
314
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
315
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
316
317
tmp7 = z11 + z13; /* phase 5 */
318
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
319
320
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
321
tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */
322
tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */
323
324
tmp6 = tmp12 - tmp7; /* phase 2 */
325
tmp5 = tmp11 - tmp6;
326
tmp4 = tmp10 - tmp5;
327
328
/* Final output stage: scale down by a factor of 8 and range-limit */
329
330
outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp7, PASS1_BITS+3)
331
& RANGE_MASK];
332
outptr[7] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp7, PASS1_BITS+3)
333
& RANGE_MASK];
334
outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp1 + tmp6, PASS1_BITS+3)
335
& RANGE_MASK];
336
outptr[6] = range_limit[(int) IRIGHT_SHIFT(tmp1 - tmp6, PASS1_BITS+3)
337
& RANGE_MASK];
338
outptr[2] = range_limit[(int) IRIGHT_SHIFT(tmp2 + tmp5, PASS1_BITS+3)
339
& RANGE_MASK];
340
outptr[5] = range_limit[(int) IRIGHT_SHIFT(tmp2 - tmp5, PASS1_BITS+3)
341
& RANGE_MASK];
342
outptr[3] = range_limit[(int) IRIGHT_SHIFT(tmp3 + tmp4, PASS1_BITS+3)
343
& RANGE_MASK];
344
outptr[4] = range_limit[(int) IRIGHT_SHIFT(tmp3 - tmp4, PASS1_BITS+3)
345
& RANGE_MASK];
346
347
wsptr += DCTSIZE; /* advance pointer to next row */
348
}
349
}
350
351
#endif /* DCT_IFAST_SUPPORTED */
352
353