Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jidctfst.c
8736 views
1
/*
2
* jidctfst.c
3
*
4
* Copyright (C) 1994-1998, Thomas G. Lane.
5
* Modified 2015-2025 by Guido Vollbeding.
6
* This file is part of the Independent JPEG Group's software.
7
* For conditions of distribution and use, see the accompanying README file.
8
*
9
* This file contains a fast, not so accurate integer implementation of the
10
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
11
* must also perform dequantization of the input coefficients.
12
*
13
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
14
* on each row (or vice versa, but it's more convenient to emit a row at
15
* a time). Direct algorithms are also available, but they are much more
16
* complex and seem not to be any faster when reduced to code.
17
*
18
* This implementation is based on Arai, Agui, and Nakajima's algorithm
19
* for scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is
20
* in Japanese, but the algorithm is described in the Pennebaker & Mitchell
21
* JPEG textbook (see REFERENCES section in file README). The following
22
* code is based directly on figure 4-8 in P&M.
23
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
24
* possible to arrange the computation so that many of the multiplies are
25
* simple scalings of the final outputs. These multiplies can then be
26
* folded into the multiplications or divisions by the JPEG quantization
27
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
28
* to be done in the DCT itself.
29
* The primary disadvantage of this method is that with fixed-point math,
30
* accuracy is lost due to imprecise representation of the scaled
31
* quantization values. The smaller the quantization table entry,
32
* the less precise the scaled value, so this implementation does
33
* worse with high-quality-setting files than with low-quality ones.
34
*/
35
36
#define JPEG_INTERNALS
37
#include "jinclude.h"
38
#include "jpeglib.h"
39
#include "jdct.h" /* Private declarations for DCT subsystem */
40
41
#ifdef DCT_IFAST_SUPPORTED
42
43
44
/*
45
* This module is specialized to the case DCTSIZE = 8.
46
*/
47
48
#if DCTSIZE != 8
49
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
50
#endif
51
52
53
/* Scaling decisions are generally the same as in the LL&M algorithm;
54
* see jidctint.c for more details. However, we choose to descale
55
* (right shift) multiplication products as soon as they are formed,
56
* rather than carrying additional fractional bits into subsequent additions.
57
* This compromises accuracy slightly, but it lets us save a few shifts.
58
* More importantly, 16-bit arithmetic is then adequate (for up to 10-bit
59
* data) everywhere except in the multiplications proper;
60
* this saves a good deal of work on 16-bit-int machines.
61
*
62
* The dequantized coefficients are not integers because the AA&N scaling
63
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
64
* so that the first and second IDCT rounds have the same input scaling.
65
* For up to 10-bit data, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
66
* avoid a descaling shift; this compromises accuracy rather drastically
67
* for small quantization table entries, but it saves a lot of shifts.
68
* For higher bit depths, there's no hope of using 16x16 multiplies anyway,
69
* so we use a much larger scaling factor to preserve accuracy.
70
*
71
* A final compromise is to represent the multiplicative constants to only
72
* 8 fractional bits, rather than 13. This saves some shifting work on some
73
* machines, and may also reduce the cost of multiplication (since there
74
* are fewer one-bits in the constants).
75
*/
76
77
#if JPEG_DATA_PRECISION <= 10 && BITS_IN_JSAMPLE <= 13
78
#define CONST_BITS 8
79
#define PASS1_BITS (10 - JPEG_DATA_PRECISION)
80
#define PASS2_BITS (13 - BITS_IN_JSAMPLE)
81
#else
82
#if JPEG_DATA_PRECISION <= 13 && BITS_IN_JSAMPLE <= 16
83
#define CONST_BITS 8
84
#define PASS1_BITS (13 - JPEG_DATA_PRECISION)
85
#define PASS2_BITS (16 - BITS_IN_JSAMPLE)
86
#endif
87
#endif
88
89
/* Some C compilers fail to reduce "FIX(constant)" at compile time,
90
* thus causing a lot of useless floating-point operations at run time.
91
* To get around this we use the following pre-calculated constants.
92
* If you change CONST_BITS you may want to add appropriate values.
93
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
94
*/
95
96
#if CONST_BITS == 8
97
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
98
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
99
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
100
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
101
#else
102
#define FIX_1_082392200 FIX(1.082392200)
103
#define FIX_1_414213562 FIX(1.414213562)
104
#define FIX_1_847759065 FIX(1.847759065)
105
#define FIX_2_613125930 FIX(2.613125930)
106
#endif
107
108
109
/* We can gain a little more speed, with a further compromise
110
* in accuracy, by omitting the addition in a descaling shift.
111
* This yields an incorrectly rounded result half the time...
112
*/
113
114
#ifndef USE_ACCURATE_ROUNDING
115
#undef DESCALE
116
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
117
#endif
118
119
120
/* Multiply a DCTELEM variable by an INT32 constant,
121
* and immediately descale to yield a DCTELEM result.
122
*/
123
124
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
125
126
127
/* Dequantize a coefficient by multiplying it by the multiplier-table
128
* entry; produce a DCTELEM result. For up to 10-bit data a 16x16->16
129
* multiplication will do. For higher bit depths, the multiplier table
130
* is declared INT32, so a 32-bit multiply will be used.
131
*/
132
133
#if JPEG_DATA_PRECISION <= 10 && BITS_IN_JSAMPLE <= 13
134
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
135
#else
136
#define DEQUANTIZE(coef,quantval) \
137
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
138
#endif
139
140
141
/* Final output conversion: scale down and range-limit. */
142
143
#if PASS2_BITS > 0
144
#define FINAL_OUTPUT(x) \
145
range_limit[(int) IRIGHT_SHIFT(x, PASS2_BITS) & RANGE_MASK]
146
#else
147
#define FINAL_OUTPUT(x) range_limit[(int) (x) & RANGE_MASK]
148
#endif
149
150
151
/*
152
* Perform dequantization and inverse DCT on one block of coefficients.
153
*
154
* cK represents cos(K*pi/16).
155
*/
156
157
GLOBAL(void)
158
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
159
JCOEFPTR coef_block,
160
JSAMPARRAY output_buf, JDIMENSION output_col)
161
{
162
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
163
DCTELEM tmp10, tmp11, tmp12, tmp13;
164
DCTELEM z5, z10, z11, z12, z13;
165
JCOEFPTR inptr;
166
IFAST_MULT_TYPE * quantptr;
167
int * wsptr;
168
JSAMPROW outptr;
169
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
170
int ctr;
171
int workspace[DCTSIZE2]; /* buffers data between passes */
172
SHIFT_TEMPS /* for DESCALE */
173
ISHIFT_TEMPS /* for IRIGHT_SHIFT */
174
175
/* Pass 1: process columns from input, store into work array. */
176
177
inptr = coef_block;
178
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
179
wsptr = workspace;
180
for (ctr = DCTSIZE; ctr > 0; ctr--) {
181
/* Due to quantization, we will usually find that many of the input
182
* coefficients are zero, especially the AC terms. We can exploit this
183
* by short-circuiting the IDCT calculation for any column in which all
184
* the AC terms are zero. In that case each output is equal to the
185
* DC coefficient (with scale factor as needed).
186
* With typical images and quantization tables, half or more of the
187
* column DCT calculations can be simplified this way.
188
*/
189
190
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
191
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
192
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
193
inptr[DCTSIZE*7] == 0) {
194
/* AC terms all zero */
195
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
196
197
wsptr[DCTSIZE*0] = dcval;
198
wsptr[DCTSIZE*1] = dcval;
199
wsptr[DCTSIZE*2] = dcval;
200
wsptr[DCTSIZE*3] = dcval;
201
wsptr[DCTSIZE*4] = dcval;
202
wsptr[DCTSIZE*5] = dcval;
203
wsptr[DCTSIZE*6] = dcval;
204
wsptr[DCTSIZE*7] = dcval;
205
206
inptr++; /* advance pointers to next column */
207
quantptr++;
208
wsptr++;
209
continue;
210
}
211
212
/* Even part */
213
214
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
215
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
216
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
217
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
218
219
tmp10 = tmp0 + tmp2; /* phase 3 */
220
tmp11 = tmp0 - tmp2;
221
222
tmp13 = tmp1 + tmp3; /* phases 5-3 */
223
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
224
225
tmp0 = tmp10 + tmp13; /* phase 2 */
226
tmp3 = tmp10 - tmp13;
227
tmp1 = tmp11 + tmp12;
228
tmp2 = tmp11 - tmp12;
229
230
/* Odd part */
231
232
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
233
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
234
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
235
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
236
237
z13 = tmp6 + tmp5; /* phase 6 */
238
z10 = tmp6 - tmp5;
239
z11 = tmp4 + tmp7;
240
z12 = tmp4 - tmp7;
241
242
tmp7 = z11 + z13; /* phase 5 */
243
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
244
245
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
246
tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */
247
tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */
248
249
tmp6 = tmp12 - tmp7; /* phase 2 */
250
tmp5 = tmp11 - tmp6;
251
tmp4 = tmp10 - tmp5;
252
253
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
254
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
255
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
256
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
257
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
258
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
259
wsptr[DCTSIZE*3] = (int) (tmp3 + tmp4);
260
wsptr[DCTSIZE*4] = (int) (tmp3 - tmp4);
261
262
inptr++; /* advance pointers to next column */
263
quantptr++;
264
wsptr++;
265
}
266
267
/* Pass 2: process rows from work array, store into output array.
268
* Note that we must descale the results by a factor of 8 == 2**3,
269
* which is folded into the PASS2_BITS value.
270
*/
271
272
wsptr = workspace;
273
for (ctr = 0; ctr < DCTSIZE; ctr++) {
274
outptr = output_buf[ctr] + output_col;
275
276
/* Add range center and fudge factor for final descale and range-limit. */
277
#if PASS2_BITS > 1
278
z5 = (DCTELEM) wsptr[0] +
279
((((DCTELEM) RANGE_CENTER) << PASS2_BITS) + (1 << (PASS2_BITS-1)));
280
#else
281
#if PASS2_BITS > 0
282
z5 = (DCTELEM) wsptr[0] + ((((DCTELEM) RANGE_CENTER) << 1) + 1);
283
#else
284
z5 = (DCTELEM) wsptr[0] + (DCTELEM) RANGE_CENTER;
285
#endif
286
#endif
287
288
/* Rows of zeroes can be exploited in the same way as we did with columns.
289
* However, the column calculation has created many nonzero AC terms, so
290
* the simplification applies less often (typically 5% to 10% of the time).
291
* On machines with very fast multiplication, it's possible that the
292
* test takes more time than it's worth. In that case this section
293
* may be commented out.
294
*/
295
296
#ifndef NO_ZERO_ROW_TEST
297
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
298
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
299
/* AC terms all zero */
300
JSAMPLE dcval = FINAL_OUTPUT(z5);
301
302
outptr[0] = dcval;
303
outptr[1] = dcval;
304
outptr[2] = dcval;
305
outptr[3] = dcval;
306
outptr[4] = dcval;
307
outptr[5] = dcval;
308
outptr[6] = dcval;
309
outptr[7] = dcval;
310
311
wsptr += DCTSIZE; /* advance pointer to next row */
312
continue;
313
}
314
#endif
315
316
/* Even part */
317
318
tmp10 = z5 + (DCTELEM) wsptr[4];
319
tmp11 = z5 - (DCTELEM) wsptr[4];
320
321
tmp13 = (DCTELEM) wsptr[2] + (DCTELEM) wsptr[6];
322
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6],
323
FIX_1_414213562) - tmp13; /* 2*c4 */
324
325
tmp0 = tmp10 + tmp13;
326
tmp3 = tmp10 - tmp13;
327
tmp1 = tmp11 + tmp12;
328
tmp2 = tmp11 - tmp12;
329
330
/* Odd part */
331
332
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
333
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
334
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
335
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
336
337
tmp7 = z11 + z13; /* phase 5 */
338
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
339
340
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
341
tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */
342
tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */
343
344
tmp6 = tmp12 - tmp7; /* phase 2 */
345
tmp5 = tmp11 - tmp6;
346
tmp4 = tmp10 - tmp5;
347
348
/* Final output stage: scale down and range-limit */
349
350
outptr[0] = FINAL_OUTPUT(tmp0 + tmp7);
351
outptr[7] = FINAL_OUTPUT(tmp0 - tmp7);
352
outptr[1] = FINAL_OUTPUT(tmp1 + tmp6);
353
outptr[6] = FINAL_OUTPUT(tmp1 - tmp6);
354
outptr[2] = FINAL_OUTPUT(tmp2 + tmp5);
355
outptr[5] = FINAL_OUTPUT(tmp2 - tmp5);
356
outptr[3] = FINAL_OUTPUT(tmp3 + tmp4);
357
outptr[4] = FINAL_OUTPUT(tmp3 - tmp4);
358
359
wsptr += DCTSIZE; /* advance pointer to next row */
360
}
361
}
362
363
#endif /* DCT_IFAST_SUPPORTED */
364
365