/*1* jmemmgr.c2*3* Copyright (C) 1991-1997, Thomas G. Lane.4* Modified 2011-2019 by Guido Vollbeding.5* This file is part of the Independent JPEG Group's software.6* For conditions of distribution and use, see the accompanying README file.7*8* This file contains the JPEG system-independent memory management9* routines. This code is usable across a wide variety of machines; most10* of the system dependencies have been isolated in a separate file.11* The major functions provided here are:12* * pool-based allocation and freeing of memory;13* * policy decisions about how to divide available memory among the14* virtual arrays;15* * control logic for swapping virtual arrays between main memory and16* backing storage.17* The separate system-dependent file provides the actual backing-storage18* access code, and it contains the policy decision about how much total19* main memory to use.20* This file is system-dependent in the sense that some of its functions21* are unnecessary in some systems. For example, if there is enough virtual22* memory so that backing storage will never be used, much of the virtual23* array control logic could be removed. (Of course, if you have that much24* memory then you shouldn't care about a little bit of unused code...)25*/2627#define JPEG_INTERNALS28#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */29#include "jinclude.h"30#include "jpeglib.h"31#include "jmemsys.h" /* import the system-dependent declarations */3233#ifndef NO_GETENV34#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */35extern char * getenv JPP((const char * name));36#endif37#endif383940/*41* Some important notes:42* The allocation routines provided here must never return NULL.43* They should exit to error_exit if unsuccessful.44*45* It's not a good idea to try to merge the sarray and barray routines,46* even though they are textually almost the same, because samples are47* usually stored as bytes while coefficients are shorts or ints. Thus,48* in machines where byte pointers have a different representation from49* word pointers, the resulting machine code could not be the same.50*/515253/*54* Many machines require storage alignment: longs must start on 4-byte55* boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()56* always returns pointers that are multiples of the worst-case alignment57* requirement, and we had better do so too.58* There isn't any really portable way to determine the worst-case alignment59* requirement. This module assumes that the alignment requirement is60* multiples of sizeof(ALIGN_TYPE).61* By default, we define ALIGN_TYPE as double. This is necessary on some62* workstations (where doubles really do need 8-byte alignment) and will work63* fine on nearly everything. If your machine has lesser alignment needs,64* you can save a few bytes by making ALIGN_TYPE smaller.65* The only place I know of where this will NOT work is certain Macintosh66* 680x0 compilers that define double as a 10-byte IEEE extended float.67* Doing 10-byte alignment is counterproductive because longwords won't be68* aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have69* such a compiler.70*/7172#ifndef ALIGN_TYPE /* so can override from jconfig.h */73#define ALIGN_TYPE double74#endif757677/*78* We allocate objects from "pools", where each pool is gotten with a single79* request to jpeg_get_small() or jpeg_get_large(). There is no per-object80* overhead within a pool, except for alignment padding. Each pool has a81* header with a link to the next pool of the same class.82* Small and large pool headers are identical except that the latter's83* link pointer must be FAR on 80x86 machines.84* Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE85* field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple86* of the alignment requirement of ALIGN_TYPE.87*/8889typedef union small_pool_struct * small_pool_ptr;9091typedef union small_pool_struct {92struct {93small_pool_ptr next; /* next in list of pools */94size_t bytes_used; /* how many bytes already used within pool */95size_t bytes_left; /* bytes still available in this pool */96} hdr;97ALIGN_TYPE dummy; /* included in union to ensure alignment */98} small_pool_hdr;99100typedef union large_pool_struct FAR * large_pool_ptr;101102typedef union large_pool_struct {103struct {104large_pool_ptr next; /* next in list of pools */105size_t bytes_used; /* how many bytes already used within pool */106size_t bytes_left; /* bytes still available in this pool */107} hdr;108ALIGN_TYPE dummy; /* included in union to ensure alignment */109} large_pool_hdr;110111112/*113* Here is the full definition of a memory manager object.114*/115116typedef struct {117struct jpeg_memory_mgr pub; /* public fields */118119/* Each pool identifier (lifetime class) names a linked list of pools. */120small_pool_ptr small_list[JPOOL_NUMPOOLS];121large_pool_ptr large_list[JPOOL_NUMPOOLS];122123/* Since we only have one lifetime class of virtual arrays, only one124* linked list is necessary (for each datatype). Note that the virtual125* array control blocks being linked together are actually stored somewhere126* in the small-pool list.127*/128jvirt_sarray_ptr virt_sarray_list;129jvirt_barray_ptr virt_barray_list;130131/* This counts total space obtained from jpeg_get_small/large */132size_t total_space_allocated;133134/* alloc_sarray and alloc_barray set this value for use by virtual135* array routines.136*/137JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */138} my_memory_mgr;139140typedef my_memory_mgr * my_mem_ptr;141142143/*144* The control blocks for virtual arrays.145* Note that these blocks are allocated in the "small" pool area.146* System-dependent info for the associated backing store (if any) is hidden147* inside the backing_store_info struct.148*/149150struct jvirt_sarray_control {151JSAMPARRAY mem_buffer; /* => the in-memory buffer */152JDIMENSION rows_in_array; /* total virtual array height */153JDIMENSION samplesperrow; /* width of array (and of memory buffer) */154JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */155JDIMENSION rows_in_mem; /* height of memory buffer */156JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */157JDIMENSION cur_start_row; /* first logical row # in the buffer */158JDIMENSION first_undef_row; /* row # of first uninitialized row */159boolean pre_zero; /* pre-zero mode requested? */160boolean dirty; /* do current buffer contents need written? */161boolean b_s_open; /* is backing-store data valid? */162jvirt_sarray_ptr next; /* link to next virtual sarray control block */163backing_store_info b_s_info; /* System-dependent control info */164};165166struct jvirt_barray_control {167JBLOCKARRAY mem_buffer; /* => the in-memory buffer */168JDIMENSION rows_in_array; /* total virtual array height */169JDIMENSION blocksperrow; /* width of array (and of memory buffer) */170JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */171JDIMENSION rows_in_mem; /* height of memory buffer */172JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */173JDIMENSION cur_start_row; /* first logical row # in the buffer */174JDIMENSION first_undef_row; /* row # of first uninitialized row */175boolean pre_zero; /* pre-zero mode requested? */176boolean dirty; /* do current buffer contents need written? */177boolean b_s_open; /* is backing-store data valid? */178jvirt_barray_ptr next; /* link to next virtual barray control block */179backing_store_info b_s_info; /* System-dependent control info */180};181182183#ifdef MEM_STATS /* optional extra stuff for statistics */184185LOCAL(void)186print_mem_stats (j_common_ptr cinfo, int pool_id)187{188my_mem_ptr mem = (my_mem_ptr) cinfo->mem;189small_pool_ptr shdr_ptr;190large_pool_ptr lhdr_ptr;191192/* Since this is only a debugging stub, we can cheat a little by using193* fprintf directly rather than going through the trace message code.194* This is helpful because message parm array can't handle longs.195*/196fprintf(stderr, "Freeing pool %d, total space = %ld\n",197pool_id, (long) mem->total_space_allocated);198199for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;200lhdr_ptr = lhdr_ptr->hdr.next) {201fprintf(stderr, " Large chunk used %ld\n",202(long) lhdr_ptr->hdr.bytes_used);203}204205for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;206shdr_ptr = shdr_ptr->hdr.next) {207fprintf(stderr, " Small chunk used %ld free %ld\n",208(long) shdr_ptr->hdr.bytes_used,209(long) shdr_ptr->hdr.bytes_left);210}211}212213#endif /* MEM_STATS */214215216LOCAL(noreturn_t)217out_of_memory (j_common_ptr cinfo, int which)218/* Report an out-of-memory error and stop execution */219/* If we compiled MEM_STATS support, report alloc requests before dying */220{221#ifdef MEM_STATS222cinfo->err->trace_level = 2; /* force self_destruct to report stats */223#endif224ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);225}226227228/*229* Allocation of "small" objects.230*231* For these, we use pooled storage. When a new pool must be created,232* we try to get enough space for the current request plus a "slop" factor,233* where the slop will be the amount of leftover space in the new pool.234* The speed vs. space tradeoff is largely determined by the slop values.235* A different slop value is provided for each pool class (lifetime),236* and we also distinguish the first pool of a class from later ones.237* NOTE: the values given work fairly well on both 16- and 32-bit-int238* machines, but may be too small if longs are 64 bits or more.239*/240241static const size_t first_pool_slop[JPOOL_NUMPOOLS] =242{2431600, /* first PERMANENT pool */24416000 /* first IMAGE pool */245};246247static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =248{2490, /* additional PERMANENT pools */2505000 /* additional IMAGE pools */251};252253#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */254255256METHODDEF(void *)257alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)258/* Allocate a "small" object */259{260my_mem_ptr mem = (my_mem_ptr) cinfo->mem;261small_pool_ptr hdr_ptr, prev_hdr_ptr;262size_t odd_bytes, min_request, slop;263char * data_ptr;264265/* Check for unsatisfiable request (do now to ensure no overflow below) */266if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(small_pool_hdr))267out_of_memory(cinfo, 1); /* request exceeds malloc's ability */268269/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */270odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);271if (odd_bytes > 0)272sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;273274/* See if space is available in any existing pool */275if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)276ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */277prev_hdr_ptr = NULL;278hdr_ptr = mem->small_list[pool_id];279while (hdr_ptr != NULL) {280if (hdr_ptr->hdr.bytes_left >= sizeofobject)281break; /* found pool with enough space */282prev_hdr_ptr = hdr_ptr;283hdr_ptr = hdr_ptr->hdr.next;284}285286/* Time to make a new pool? */287if (hdr_ptr == NULL) {288/* min_request is what we need now, slop is what will be leftover */289min_request = sizeofobject + SIZEOF(small_pool_hdr);290if (prev_hdr_ptr == NULL) /* first pool in class? */291slop = first_pool_slop[pool_id];292else293slop = extra_pool_slop[pool_id];294/* Don't ask for more than MAX_ALLOC_CHUNK */295if (slop > (size_t) MAX_ALLOC_CHUNK - min_request)296slop = (size_t) MAX_ALLOC_CHUNK - min_request;297/* Try to get space, if fail reduce slop and try again */298for (;;) {299hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);300if (hdr_ptr != NULL)301break;302slop /= 2;303if (slop < MIN_SLOP) /* give up when it gets real small */304out_of_memory(cinfo, 2); /* jpeg_get_small failed */305}306mem->total_space_allocated += min_request + slop;307/* Success, initialize the new pool header and add to end of list */308hdr_ptr->hdr.next = NULL;309hdr_ptr->hdr.bytes_used = 0;310hdr_ptr->hdr.bytes_left = sizeofobject + slop;311if (prev_hdr_ptr == NULL) /* first pool in class? */312mem->small_list[pool_id] = hdr_ptr;313else314prev_hdr_ptr->hdr.next = hdr_ptr;315}316317/* OK, allocate the object from the current pool */318data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */319data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */320hdr_ptr->hdr.bytes_used += sizeofobject;321hdr_ptr->hdr.bytes_left -= sizeofobject;322323return (void *) data_ptr;324}325326327/*328* Allocation of "large" objects.329*330* The external semantics of these are the same as "small" objects,331* except that FAR pointers are used on 80x86. However the pool332* management heuristics are quite different. We assume that each333* request is large enough that it may as well be passed directly to334* jpeg_get_large; the pool management just links everything together335* so that we can free it all on demand.336* Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY337* structures. The routines that create these structures (see below)338* deliberately bunch rows together to ensure a large request size.339*/340341METHODDEF(void FAR *)342alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)343/* Allocate a "large" object */344{345my_mem_ptr mem = (my_mem_ptr) cinfo->mem;346large_pool_ptr hdr_ptr;347size_t odd_bytes;348349/* Check for unsatisfiable request (do now to ensure no overflow below) */350if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr))351out_of_memory(cinfo, 3); /* request exceeds malloc's ability */352353/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */354odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);355if (odd_bytes > 0)356sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;357358/* Always make a new pool */359if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)360ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */361362hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +363SIZEOF(large_pool_hdr));364if (hdr_ptr == NULL)365out_of_memory(cinfo, 4); /* jpeg_get_large failed */366mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);367368/* Success, initialize the new pool header and add to list */369hdr_ptr->hdr.next = mem->large_list[pool_id];370/* We maintain space counts in each pool header for statistical purposes,371* even though they are not needed for allocation.372*/373hdr_ptr->hdr.bytes_used = sizeofobject;374hdr_ptr->hdr.bytes_left = 0;375mem->large_list[pool_id] = hdr_ptr;376377return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */378}379380381/*382* Creation of 2-D sample arrays.383* The pointers are in near heap, the samples themselves in FAR heap.384*385* To minimize allocation overhead and to allow I/O of large contiguous386* blocks, we allocate the sample rows in groups of as many rows as possible387* without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.388* NB: the virtual array control routines, later in this file, know about389* this chunking of rows. The rowsperchunk value is left in the mem manager390* object so that it can be saved away if this sarray is the workspace for391* a virtual array.392*/393394METHODDEF(JSAMPARRAY)395alloc_sarray (j_common_ptr cinfo, int pool_id,396JDIMENSION samplesperrow, JDIMENSION numrows)397/* Allocate a 2-D sample array */398{399my_mem_ptr mem = (my_mem_ptr) cinfo->mem;400JSAMPARRAY result;401JSAMPROW workspace;402JDIMENSION rowsperchunk, currow, i;403long ltemp;404405/* Calculate max # of rows allowed in one allocation chunk */406ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /407((long) samplesperrow * SIZEOF(JSAMPLE));408if (ltemp <= 0)409ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);410if (ltemp < (long) numrows)411rowsperchunk = (JDIMENSION) ltemp;412else413rowsperchunk = numrows;414mem->last_rowsperchunk = rowsperchunk;415416/* Get space for row pointers (small object) */417result = (JSAMPARRAY) alloc_small(cinfo, pool_id,418(size_t) numrows * SIZEOF(JSAMPROW));419420/* Get the rows themselves (large objects) */421currow = 0;422while (currow < numrows) {423rowsperchunk = MIN(rowsperchunk, numrows - currow);424workspace = (JSAMPROW) alloc_large(cinfo, pool_id,425(size_t) rowsperchunk * (size_t) samplesperrow * SIZEOF(JSAMPLE));426for (i = rowsperchunk; i > 0; i--) {427result[currow++] = workspace;428workspace += samplesperrow;429}430}431432return result;433}434435436/*437* Creation of 2-D coefficient-block arrays.438* This is essentially the same as the code for sample arrays, above.439*/440441METHODDEF(JBLOCKARRAY)442alloc_barray (j_common_ptr cinfo, int pool_id,443JDIMENSION blocksperrow, JDIMENSION numrows)444/* Allocate a 2-D coefficient-block array */445{446my_mem_ptr mem = (my_mem_ptr) cinfo->mem;447JBLOCKARRAY result;448JBLOCKROW workspace;449JDIMENSION rowsperchunk, currow, i;450long ltemp;451452/* Calculate max # of rows allowed in one allocation chunk */453ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /454((long) blocksperrow * SIZEOF(JBLOCK));455if (ltemp <= 0)456ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);457if (ltemp < (long) numrows)458rowsperchunk = (JDIMENSION) ltemp;459else460rowsperchunk = numrows;461mem->last_rowsperchunk = rowsperchunk;462463/* Get space for row pointers (small object) */464result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,465(size_t) numrows * SIZEOF(JBLOCKROW));466467/* Get the rows themselves (large objects) */468currow = 0;469while (currow < numrows) {470rowsperchunk = MIN(rowsperchunk, numrows - currow);471workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,472(size_t) rowsperchunk * (size_t) blocksperrow * SIZEOF(JBLOCK));473for (i = rowsperchunk; i > 0; i--) {474result[currow++] = workspace;475workspace += blocksperrow;476}477}478479return result;480}481482483/*484* About virtual array management:485*486* The above "normal" array routines are only used to allocate strip buffers487* (as wide as the image, but just a few rows high). Full-image-sized buffers488* are handled as "virtual" arrays. The array is still accessed a strip at a489* time, but the memory manager must save the whole array for repeated490* accesses. The intended implementation is that there is a strip buffer in491* memory (as high as is possible given the desired memory limit), plus a492* backing file that holds the rest of the array.493*494* The request_virt_array routines are told the total size of the image and495* the maximum number of rows that will be accessed at once. The in-memory496* buffer must be at least as large as the maxaccess value.497*498* The request routines create control blocks but not the in-memory buffers.499* That is postponed until realize_virt_arrays is called. At that time the500* total amount of space needed is known (approximately, anyway), so free501* memory can be divided up fairly.502*503* The access_virt_array routines are responsible for making a specific strip504* area accessible (after reading or writing the backing file, if necessary).505* Note that the access routines are told whether the caller intends to modify506* the accessed strip; during a read-only pass this saves having to rewrite507* data to disk. The access routines are also responsible for pre-zeroing508* any newly accessed rows, if pre-zeroing was requested.509*510* In current usage, the access requests are usually for nonoverlapping511* strips; that is, successive access start_row numbers differ by exactly512* num_rows = maxaccess. This means we can get good performance with simple513* buffer dump/reload logic, by making the in-memory buffer be a multiple514* of the access height; then there will never be accesses across bufferload515* boundaries. The code will still work with overlapping access requests,516* but it doesn't handle bufferload overlaps very efficiently.517*/518519520METHODDEF(jvirt_sarray_ptr)521request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,522JDIMENSION samplesperrow, JDIMENSION numrows,523JDIMENSION maxaccess)524/* Request a virtual 2-D sample array */525{526my_mem_ptr mem = (my_mem_ptr) cinfo->mem;527jvirt_sarray_ptr result;528529/* Only IMAGE-lifetime virtual arrays are currently supported */530if (pool_id != JPOOL_IMAGE)531ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */532533/* get control block */534result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,535SIZEOF(struct jvirt_sarray_control));536537result->mem_buffer = NULL; /* marks array not yet realized */538result->rows_in_array = numrows;539result->samplesperrow = samplesperrow;540result->maxaccess = maxaccess;541result->pre_zero = pre_zero;542result->b_s_open = FALSE; /* no associated backing-store object */543result->next = mem->virt_sarray_list; /* add to list of virtual arrays */544mem->virt_sarray_list = result;545546return result;547}548549550METHODDEF(jvirt_barray_ptr)551request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,552JDIMENSION blocksperrow, JDIMENSION numrows,553JDIMENSION maxaccess)554/* Request a virtual 2-D coefficient-block array */555{556my_mem_ptr mem = (my_mem_ptr) cinfo->mem;557jvirt_barray_ptr result;558559/* Only IMAGE-lifetime virtual arrays are currently supported */560if (pool_id != JPOOL_IMAGE)561ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */562563/* get control block */564result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,565SIZEOF(struct jvirt_barray_control));566567result->mem_buffer = NULL; /* marks array not yet realized */568result->rows_in_array = numrows;569result->blocksperrow = blocksperrow;570result->maxaccess = maxaccess;571result->pre_zero = pre_zero;572result->b_s_open = FALSE; /* no associated backing-store object */573result->next = mem->virt_barray_list; /* add to list of virtual arrays */574mem->virt_barray_list = result;575576return result;577}578579580METHODDEF(void)581realize_virt_arrays (j_common_ptr cinfo)582/* Allocate the in-memory buffers for any unrealized virtual arrays */583{584my_mem_ptr mem = (my_mem_ptr) cinfo->mem;585long bytesperrow, space_per_minheight, maximum_space;586long avail_mem, minheights, max_minheights;587jvirt_sarray_ptr sptr;588jvirt_barray_ptr bptr;589590/* Compute the minimum space needed (maxaccess rows in each buffer)591* and the maximum space needed (full image height in each buffer).592* These may be of use to the system-dependent jpeg_mem_available routine.593*/594space_per_minheight = 0;595maximum_space = 0;596for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {597if (sptr->mem_buffer == NULL) { /* if not realized yet */598bytesperrow = (long) sptr->samplesperrow * SIZEOF(JSAMPLE);599space_per_minheight += (long) sptr->maxaccess * bytesperrow;600maximum_space += (long) sptr->rows_in_array * bytesperrow;601}602}603for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {604if (bptr->mem_buffer == NULL) { /* if not realized yet */605bytesperrow = (long) bptr->blocksperrow * SIZEOF(JBLOCK);606space_per_minheight += (long) bptr->maxaccess * bytesperrow;607maximum_space += (long) bptr->rows_in_array * bytesperrow;608}609}610611if (space_per_minheight <= 0)612return; /* no unrealized arrays, no work */613614/* Determine amount of memory to actually use; this is system-dependent. */615avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,616(long) mem->total_space_allocated);617618/* If the maximum space needed is available, make all the buffers full619* height; otherwise parcel it out with the same number of minheights620* in each buffer.621*/622if (avail_mem >= maximum_space)623max_minheights = 1000000000L;624else {625max_minheights = avail_mem / space_per_minheight;626/* If there doesn't seem to be enough space, try to get the minimum627* anyway. This allows a "stub" implementation of jpeg_mem_available().628*/629if (max_minheights <= 0)630max_minheights = 1;631}632633/* Allocate the in-memory buffers and initialize backing store as needed. */634635for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {636if (sptr->mem_buffer == NULL) { /* if not realized yet */637minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;638if (minheights <= max_minheights) {639/* This buffer fits in memory */640sptr->rows_in_mem = sptr->rows_in_array;641} else {642/* It doesn't fit in memory, create backing store. */643sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);644jpeg_open_backing_store(cinfo, & sptr->b_s_info,645(long) sptr->rows_in_array *646(long) sptr->samplesperrow *647(long) SIZEOF(JSAMPLE));648sptr->b_s_open = TRUE;649}650sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,651sptr->samplesperrow, sptr->rows_in_mem);652sptr->rowsperchunk = mem->last_rowsperchunk;653sptr->cur_start_row = 0;654sptr->first_undef_row = 0;655sptr->dirty = FALSE;656}657}658659for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {660if (bptr->mem_buffer == NULL) { /* if not realized yet */661minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;662if (minheights <= max_minheights) {663/* This buffer fits in memory */664bptr->rows_in_mem = bptr->rows_in_array;665} else {666/* It doesn't fit in memory, create backing store. */667bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);668jpeg_open_backing_store(cinfo, & bptr->b_s_info,669(long) bptr->rows_in_array *670(long) bptr->blocksperrow *671(long) SIZEOF(JBLOCK));672bptr->b_s_open = TRUE;673}674bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,675bptr->blocksperrow, bptr->rows_in_mem);676bptr->rowsperchunk = mem->last_rowsperchunk;677bptr->cur_start_row = 0;678bptr->first_undef_row = 0;679bptr->dirty = FALSE;680}681}682}683684685LOCAL(void)686do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)687/* Do backing store read or write of a virtual sample array */688{689long bytesperrow, file_offset, byte_count, rows, thisrow, i;690691bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);692file_offset = (long) ptr->cur_start_row * bytesperrow;693/* Loop to read or write each allocation chunk in mem_buffer */694for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {695/* One chunk, but check for short chunk at end of buffer */696rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);697/* Transfer no more than is currently defined */698thisrow = (long) ptr->cur_start_row + i;699rows = MIN(rows, (long) ptr->first_undef_row - thisrow);700/* Transfer no more than fits in file */701rows = MIN(rows, (long) ptr->rows_in_array - thisrow);702if (rows <= 0) /* this chunk might be past end of file! */703break;704byte_count = rows * bytesperrow;705if (writing)706(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,707(void FAR *) ptr->mem_buffer[i],708file_offset, byte_count);709else710(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,711(void FAR *) ptr->mem_buffer[i],712file_offset, byte_count);713file_offset += byte_count;714}715}716717718LOCAL(void)719do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)720/* Do backing store read or write of a virtual coefficient-block array */721{722long bytesperrow, file_offset, byte_count, rows, thisrow, i;723724bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);725file_offset = (long) ptr->cur_start_row * bytesperrow;726/* Loop to read or write each allocation chunk in mem_buffer */727for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {728/* One chunk, but check for short chunk at end of buffer */729rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);730/* Transfer no more than is currently defined */731thisrow = (long) ptr->cur_start_row + i;732rows = MIN(rows, (long) ptr->first_undef_row - thisrow);733/* Transfer no more than fits in file */734rows = MIN(rows, (long) ptr->rows_in_array - thisrow);735if (rows <= 0) /* this chunk might be past end of file! */736break;737byte_count = rows * bytesperrow;738if (writing)739(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,740(void FAR *) ptr->mem_buffer[i],741file_offset, byte_count);742else743(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,744(void FAR *) ptr->mem_buffer[i],745file_offset, byte_count);746file_offset += byte_count;747}748}749750751METHODDEF(JSAMPARRAY)752access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,753JDIMENSION start_row, JDIMENSION num_rows,754boolean writable)755/* Access the part of a virtual sample array starting at start_row */756/* and extending for num_rows rows. writable is true if */757/* caller intends to modify the accessed area. */758{759JDIMENSION end_row = start_row + num_rows;760JDIMENSION undef_row;761762/* debugging check */763if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||764ptr->mem_buffer == NULL)765ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);766767/* Make the desired part of the virtual array accessible */768if (start_row < ptr->cur_start_row ||769end_row > ptr->cur_start_row + ptr->rows_in_mem) {770if (! ptr->b_s_open)771ERREXIT(cinfo, JERR_VIRTUAL_BUG);772/* Flush old buffer contents if necessary */773if (ptr->dirty) {774do_sarray_io(cinfo, ptr, TRUE);775ptr->dirty = FALSE;776}777/* Decide what part of virtual array to access.778* Algorithm: if target address > current window, assume forward scan,779* load starting at target address. If target address < current window,780* assume backward scan, load so that target area is top of window.781* Note that when switching from forward write to forward read, will have782* start_row = 0, so the limiting case applies and we load from 0 anyway.783*/784if (start_row > ptr->cur_start_row) {785ptr->cur_start_row = start_row;786} else {787/* use long arithmetic here to avoid overflow & unsigned problems */788long ltemp;789790ltemp = (long) end_row - (long) ptr->rows_in_mem;791if (ltemp < 0)792ltemp = 0; /* don't fall off front end of file */793ptr->cur_start_row = (JDIMENSION) ltemp;794}795/* Read in the selected part of the array.796* During the initial write pass, we will do no actual read797* because the selected part is all undefined.798*/799do_sarray_io(cinfo, ptr, FALSE);800}801/* Ensure the accessed part of the array is defined; prezero if needed.802* To improve locality of access, we only prezero the part of the array803* that the caller is about to access, not the entire in-memory array.804*/805if (ptr->first_undef_row < end_row) {806if (ptr->first_undef_row < start_row) {807if (writable) /* writer skipped over a section of array */808ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);809undef_row = start_row; /* but reader is allowed to read ahead */810} else {811undef_row = ptr->first_undef_row;812}813if (writable)814ptr->first_undef_row = end_row;815if (ptr->pre_zero) {816size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);817undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */818end_row -= ptr->cur_start_row;819while (undef_row < end_row) {820FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);821undef_row++;822}823} else {824if (! writable) /* reader looking at undefined data */825ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);826}827}828/* Flag the buffer dirty if caller will write in it */829if (writable)830ptr->dirty = TRUE;831/* Return address of proper part of the buffer */832return ptr->mem_buffer + (start_row - ptr->cur_start_row);833}834835836METHODDEF(JBLOCKARRAY)837access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,838JDIMENSION start_row, JDIMENSION num_rows,839boolean writable)840/* Access the part of a virtual block array starting at start_row */841/* and extending for num_rows rows. writable is true if */842/* caller intends to modify the accessed area. */843{844JDIMENSION end_row = start_row + num_rows;845JDIMENSION undef_row;846847/* debugging check */848if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||849ptr->mem_buffer == NULL)850ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);851852/* Make the desired part of the virtual array accessible */853if (start_row < ptr->cur_start_row ||854end_row > ptr->cur_start_row + ptr->rows_in_mem) {855if (! ptr->b_s_open)856ERREXIT(cinfo, JERR_VIRTUAL_BUG);857/* Flush old buffer contents if necessary */858if (ptr->dirty) {859do_barray_io(cinfo, ptr, TRUE);860ptr->dirty = FALSE;861}862/* Decide what part of virtual array to access.863* Algorithm: if target address > current window, assume forward scan,864* load starting at target address. If target address < current window,865* assume backward scan, load so that target area is top of window.866* Note that when switching from forward write to forward read, will have867* start_row = 0, so the limiting case applies and we load from 0 anyway.868*/869if (start_row > ptr->cur_start_row) {870ptr->cur_start_row = start_row;871} else {872/* use long arithmetic here to avoid overflow & unsigned problems */873long ltemp;874875ltemp = (long) end_row - (long) ptr->rows_in_mem;876if (ltemp < 0)877ltemp = 0; /* don't fall off front end of file */878ptr->cur_start_row = (JDIMENSION) ltemp;879}880/* Read in the selected part of the array.881* During the initial write pass, we will do no actual read882* because the selected part is all undefined.883*/884do_barray_io(cinfo, ptr, FALSE);885}886/* Ensure the accessed part of the array is defined; prezero if needed.887* To improve locality of access, we only prezero the part of the array888* that the caller is about to access, not the entire in-memory array.889*/890if (ptr->first_undef_row < end_row) {891if (ptr->first_undef_row < start_row) {892if (writable) /* writer skipped over a section of array */893ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);894undef_row = start_row; /* but reader is allowed to read ahead */895} else {896undef_row = ptr->first_undef_row;897}898if (writable)899ptr->first_undef_row = end_row;900if (ptr->pre_zero) {901size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);902undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */903end_row -= ptr->cur_start_row;904while (undef_row < end_row) {905FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);906undef_row++;907}908} else {909if (! writable) /* reader looking at undefined data */910ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);911}912}913/* Flag the buffer dirty if caller will write in it */914if (writable)915ptr->dirty = TRUE;916/* Return address of proper part of the buffer */917return ptr->mem_buffer + (start_row - ptr->cur_start_row);918}919920921/*922* Release all objects belonging to a specified pool.923*/924925METHODDEF(void)926free_pool (j_common_ptr cinfo, int pool_id)927{928my_mem_ptr mem = (my_mem_ptr) cinfo->mem;929small_pool_ptr shdr_ptr;930large_pool_ptr lhdr_ptr;931size_t space_freed;932933if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)934ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */935936#ifdef MEM_STATS937if (cinfo->err->trace_level > 1)938print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */939#endif940941/* If freeing IMAGE pool, close any virtual arrays first */942if (pool_id == JPOOL_IMAGE) {943jvirt_sarray_ptr sptr;944jvirt_barray_ptr bptr;945946for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {947if (sptr->b_s_open) { /* there may be no backing store */948sptr->b_s_open = FALSE; /* prevent recursive close if error */949(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);950}951}952mem->virt_sarray_list = NULL;953for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {954if (bptr->b_s_open) { /* there may be no backing store */955bptr->b_s_open = FALSE; /* prevent recursive close if error */956(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);957}958}959mem->virt_barray_list = NULL;960}961962/* Release large objects */963lhdr_ptr = mem->large_list[pool_id];964mem->large_list[pool_id] = NULL;965966while (lhdr_ptr != NULL) {967large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;968space_freed = lhdr_ptr->hdr.bytes_used +969lhdr_ptr->hdr.bytes_left +970SIZEOF(large_pool_hdr);971jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);972mem->total_space_allocated -= space_freed;973lhdr_ptr = next_lhdr_ptr;974}975976/* Release small objects */977shdr_ptr = mem->small_list[pool_id];978mem->small_list[pool_id] = NULL;979980while (shdr_ptr != NULL) {981small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;982space_freed = shdr_ptr->hdr.bytes_used +983shdr_ptr->hdr.bytes_left +984SIZEOF(small_pool_hdr);985jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);986mem->total_space_allocated -= space_freed;987shdr_ptr = next_shdr_ptr;988}989}990991992/*993* Close up shop entirely.994* Note that this cannot be called unless cinfo->mem is non-NULL.995*/996997METHODDEF(void)998self_destruct (j_common_ptr cinfo)999{1000int pool;10011002/* Close all backing store, release all memory.1003* Releasing pools in reverse order might help avoid fragmentation1004* with some (brain-damaged) malloc libraries.1005*/1006for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {1007free_pool(cinfo, pool);1008}10091010/* Release the memory manager control block too. */1011jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));1012cinfo->mem = NULL; /* ensures I will be called only once */10131014jpeg_mem_term(cinfo); /* system-dependent cleanup */1015}101610171018/*1019* Memory manager initialization.1020* When this is called, only the error manager pointer is valid in cinfo!1021*/10221023GLOBAL(void)1024jinit_memory_mgr (j_common_ptr cinfo)1025{1026my_mem_ptr mem;1027long max_to_use;1028int pool;1029size_t test_mac;10301031cinfo->mem = NULL; /* for safety if init fails */10321033/* Check for configuration errors.1034* SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably1035* doesn't reflect any real hardware alignment requirement.1036* The test is a little tricky: for X>0, X and X-1 have no one-bits1037* in common if and only if X is a power of 2, ie has only one one-bit.1038* Some compilers may give an "unreachable code" warning here; ignore it.1039*/1040if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)1041ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);1042/* MAX_ALLOC_CHUNK must be representable as type size_t, and must be1043* a multiple of SIZEOF(ALIGN_TYPE).1044* Again, an "unreachable code" warning may be ignored here.1045* But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.1046*/1047test_mac = (size_t) MAX_ALLOC_CHUNK;1048if ((long) test_mac != MAX_ALLOC_CHUNK ||1049(MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)1050ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);10511052max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */10531054/* Attempt to allocate memory manager's control block */1055mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));10561057if (mem == NULL) {1058jpeg_mem_term(cinfo); /* system-dependent cleanup */1059ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);1060}10611062/* OK, fill in the method pointers */1063mem->pub.alloc_small = alloc_small;1064mem->pub.alloc_large = alloc_large;1065mem->pub.alloc_sarray = alloc_sarray;1066mem->pub.alloc_barray = alloc_barray;1067mem->pub.request_virt_sarray = request_virt_sarray;1068mem->pub.request_virt_barray = request_virt_barray;1069mem->pub.realize_virt_arrays = realize_virt_arrays;1070mem->pub.access_virt_sarray = access_virt_sarray;1071mem->pub.access_virt_barray = access_virt_barray;1072mem->pub.free_pool = free_pool;1073mem->pub.self_destruct = self_destruct;10741075/* Make MAX_ALLOC_CHUNK accessible to other modules */1076mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;10771078/* Initialize working state */1079mem->pub.max_memory_to_use = max_to_use;10801081for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {1082mem->small_list[pool] = NULL;1083mem->large_list[pool] = NULL;1084}1085mem->virt_sarray_list = NULL;1086mem->virt_barray_list = NULL;10871088mem->total_space_allocated = SIZEOF(my_memory_mgr);10891090/* Declare ourselves open for business */1091cinfo->mem = &mem->pub;10921093/* Check for an environment variable JPEGMEM; if found, override the1094* default max_memory setting from jpeg_mem_init. Note that the1095* surrounding application may again override this value.1096* If your system doesn't support getenv(), define NO_GETENV to disable1097* this feature.1098*/1099#ifndef NO_GETENV1100{ char * memenv;11011102if ((memenv = getenv("JPEGMEM")) != NULL) {1103char ch = 'x';11041105if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {1106if (ch == 'm' || ch == 'M')1107max_to_use *= 1000L;1108mem->pub.max_memory_to_use = max_to_use * 1000L;1109}1110}1111}1112#endif11131114}111511161117