Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jmemmgr.c
4389 views
1
/*
2
* jmemmgr.c
3
*
4
* Copyright (C) 1991-1997, Thomas G. Lane.
5
* Modified 2011-2019 by Guido Vollbeding.
6
* This file is part of the Independent JPEG Group's software.
7
* For conditions of distribution and use, see the accompanying README file.
8
*
9
* This file contains the JPEG system-independent memory management
10
* routines. This code is usable across a wide variety of machines; most
11
* of the system dependencies have been isolated in a separate file.
12
* The major functions provided here are:
13
* * pool-based allocation and freeing of memory;
14
* * policy decisions about how to divide available memory among the
15
* virtual arrays;
16
* * control logic for swapping virtual arrays between main memory and
17
* backing storage.
18
* The separate system-dependent file provides the actual backing-storage
19
* access code, and it contains the policy decision about how much total
20
* main memory to use.
21
* This file is system-dependent in the sense that some of its functions
22
* are unnecessary in some systems. For example, if there is enough virtual
23
* memory so that backing storage will never be used, much of the virtual
24
* array control logic could be removed. (Of course, if you have that much
25
* memory then you shouldn't care about a little bit of unused code...)
26
*/
27
28
#define JPEG_INTERNALS
29
#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
30
#include "jinclude.h"
31
#include "jpeglib.h"
32
#include "jmemsys.h" /* import the system-dependent declarations */
33
34
#ifndef NO_GETENV
35
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
36
extern char * getenv JPP((const char * name));
37
#endif
38
#endif
39
40
41
/*
42
* Some important notes:
43
* The allocation routines provided here must never return NULL.
44
* They should exit to error_exit if unsuccessful.
45
*
46
* It's not a good idea to try to merge the sarray and barray routines,
47
* even though they are textually almost the same, because samples are
48
* usually stored as bytes while coefficients are shorts or ints. Thus,
49
* in machines where byte pointers have a different representation from
50
* word pointers, the resulting machine code could not be the same.
51
*/
52
53
54
/*
55
* Many machines require storage alignment: longs must start on 4-byte
56
* boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
57
* always returns pointers that are multiples of the worst-case alignment
58
* requirement, and we had better do so too.
59
* There isn't any really portable way to determine the worst-case alignment
60
* requirement. This module assumes that the alignment requirement is
61
* multiples of sizeof(ALIGN_TYPE).
62
* By default, we define ALIGN_TYPE as double. This is necessary on some
63
* workstations (where doubles really do need 8-byte alignment) and will work
64
* fine on nearly everything. If your machine has lesser alignment needs,
65
* you can save a few bytes by making ALIGN_TYPE smaller.
66
* The only place I know of where this will NOT work is certain Macintosh
67
* 680x0 compilers that define double as a 10-byte IEEE extended float.
68
* Doing 10-byte alignment is counterproductive because longwords won't be
69
* aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
70
* such a compiler.
71
*/
72
73
#ifndef ALIGN_TYPE /* so can override from jconfig.h */
74
#define ALIGN_TYPE double
75
#endif
76
77
78
/*
79
* We allocate objects from "pools", where each pool is gotten with a single
80
* request to jpeg_get_small() or jpeg_get_large(). There is no per-object
81
* overhead within a pool, except for alignment padding. Each pool has a
82
* header with a link to the next pool of the same class.
83
* Small and large pool headers are identical except that the latter's
84
* link pointer must be FAR on 80x86 machines.
85
* Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
86
* field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
87
* of the alignment requirement of ALIGN_TYPE.
88
*/
89
90
typedef union small_pool_struct * small_pool_ptr;
91
92
typedef union small_pool_struct {
93
struct {
94
small_pool_ptr next; /* next in list of pools */
95
size_t bytes_used; /* how many bytes already used within pool */
96
size_t bytes_left; /* bytes still available in this pool */
97
} hdr;
98
ALIGN_TYPE dummy; /* included in union to ensure alignment */
99
} small_pool_hdr;
100
101
typedef union large_pool_struct FAR * large_pool_ptr;
102
103
typedef union large_pool_struct {
104
struct {
105
large_pool_ptr next; /* next in list of pools */
106
size_t bytes_used; /* how many bytes already used within pool */
107
size_t bytes_left; /* bytes still available in this pool */
108
} hdr;
109
ALIGN_TYPE dummy; /* included in union to ensure alignment */
110
} large_pool_hdr;
111
112
113
/*
114
* Here is the full definition of a memory manager object.
115
*/
116
117
typedef struct {
118
struct jpeg_memory_mgr pub; /* public fields */
119
120
/* Each pool identifier (lifetime class) names a linked list of pools. */
121
small_pool_ptr small_list[JPOOL_NUMPOOLS];
122
large_pool_ptr large_list[JPOOL_NUMPOOLS];
123
124
/* Since we only have one lifetime class of virtual arrays, only one
125
* linked list is necessary (for each datatype). Note that the virtual
126
* array control blocks being linked together are actually stored somewhere
127
* in the small-pool list.
128
*/
129
jvirt_sarray_ptr virt_sarray_list;
130
jvirt_barray_ptr virt_barray_list;
131
132
/* This counts total space obtained from jpeg_get_small/large */
133
size_t total_space_allocated;
134
135
/* alloc_sarray and alloc_barray set this value for use by virtual
136
* array routines.
137
*/
138
JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
139
} my_memory_mgr;
140
141
typedef my_memory_mgr * my_mem_ptr;
142
143
144
/*
145
* The control blocks for virtual arrays.
146
* Note that these blocks are allocated in the "small" pool area.
147
* System-dependent info for the associated backing store (if any) is hidden
148
* inside the backing_store_info struct.
149
*/
150
151
struct jvirt_sarray_control {
152
JSAMPARRAY mem_buffer; /* => the in-memory buffer */
153
JDIMENSION rows_in_array; /* total virtual array height */
154
JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
155
JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
156
JDIMENSION rows_in_mem; /* height of memory buffer */
157
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
158
JDIMENSION cur_start_row; /* first logical row # in the buffer */
159
JDIMENSION first_undef_row; /* row # of first uninitialized row */
160
boolean pre_zero; /* pre-zero mode requested? */
161
boolean dirty; /* do current buffer contents need written? */
162
boolean b_s_open; /* is backing-store data valid? */
163
jvirt_sarray_ptr next; /* link to next virtual sarray control block */
164
backing_store_info b_s_info; /* System-dependent control info */
165
};
166
167
struct jvirt_barray_control {
168
JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
169
JDIMENSION rows_in_array; /* total virtual array height */
170
JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
171
JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
172
JDIMENSION rows_in_mem; /* height of memory buffer */
173
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
174
JDIMENSION cur_start_row; /* first logical row # in the buffer */
175
JDIMENSION first_undef_row; /* row # of first uninitialized row */
176
boolean pre_zero; /* pre-zero mode requested? */
177
boolean dirty; /* do current buffer contents need written? */
178
boolean b_s_open; /* is backing-store data valid? */
179
jvirt_barray_ptr next; /* link to next virtual barray control block */
180
backing_store_info b_s_info; /* System-dependent control info */
181
};
182
183
184
#ifdef MEM_STATS /* optional extra stuff for statistics */
185
186
LOCAL(void)
187
print_mem_stats (j_common_ptr cinfo, int pool_id)
188
{
189
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
190
small_pool_ptr shdr_ptr;
191
large_pool_ptr lhdr_ptr;
192
193
/* Since this is only a debugging stub, we can cheat a little by using
194
* fprintf directly rather than going through the trace message code.
195
* This is helpful because message parm array can't handle longs.
196
*/
197
fprintf(stderr, "Freeing pool %d, total space = %ld\n",
198
pool_id, (long) mem->total_space_allocated);
199
200
for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
201
lhdr_ptr = lhdr_ptr->hdr.next) {
202
fprintf(stderr, " Large chunk used %ld\n",
203
(long) lhdr_ptr->hdr.bytes_used);
204
}
205
206
for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
207
shdr_ptr = shdr_ptr->hdr.next) {
208
fprintf(stderr, " Small chunk used %ld free %ld\n",
209
(long) shdr_ptr->hdr.bytes_used,
210
(long) shdr_ptr->hdr.bytes_left);
211
}
212
}
213
214
#endif /* MEM_STATS */
215
216
217
LOCAL(noreturn_t)
218
out_of_memory (j_common_ptr cinfo, int which)
219
/* Report an out-of-memory error and stop execution */
220
/* If we compiled MEM_STATS support, report alloc requests before dying */
221
{
222
#ifdef MEM_STATS
223
cinfo->err->trace_level = 2; /* force self_destruct to report stats */
224
#endif
225
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
226
}
227
228
229
/*
230
* Allocation of "small" objects.
231
*
232
* For these, we use pooled storage. When a new pool must be created,
233
* we try to get enough space for the current request plus a "slop" factor,
234
* where the slop will be the amount of leftover space in the new pool.
235
* The speed vs. space tradeoff is largely determined by the slop values.
236
* A different slop value is provided for each pool class (lifetime),
237
* and we also distinguish the first pool of a class from later ones.
238
* NOTE: the values given work fairly well on both 16- and 32-bit-int
239
* machines, but may be too small if longs are 64 bits or more.
240
*/
241
242
static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
243
{
244
1600, /* first PERMANENT pool */
245
16000 /* first IMAGE pool */
246
};
247
248
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
249
{
250
0, /* additional PERMANENT pools */
251
5000 /* additional IMAGE pools */
252
};
253
254
#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
255
256
257
METHODDEF(void *)
258
alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
259
/* Allocate a "small" object */
260
{
261
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
262
small_pool_ptr hdr_ptr, prev_hdr_ptr;
263
size_t odd_bytes, min_request, slop;
264
char * data_ptr;
265
266
/* Check for unsatisfiable request (do now to ensure no overflow below) */
267
if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(small_pool_hdr))
268
out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
269
270
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
271
odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
272
if (odd_bytes > 0)
273
sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
274
275
/* See if space is available in any existing pool */
276
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
277
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
278
prev_hdr_ptr = NULL;
279
hdr_ptr = mem->small_list[pool_id];
280
while (hdr_ptr != NULL) {
281
if (hdr_ptr->hdr.bytes_left >= sizeofobject)
282
break; /* found pool with enough space */
283
prev_hdr_ptr = hdr_ptr;
284
hdr_ptr = hdr_ptr->hdr.next;
285
}
286
287
/* Time to make a new pool? */
288
if (hdr_ptr == NULL) {
289
/* min_request is what we need now, slop is what will be leftover */
290
min_request = sizeofobject + SIZEOF(small_pool_hdr);
291
if (prev_hdr_ptr == NULL) /* first pool in class? */
292
slop = first_pool_slop[pool_id];
293
else
294
slop = extra_pool_slop[pool_id];
295
/* Don't ask for more than MAX_ALLOC_CHUNK */
296
if (slop > (size_t) MAX_ALLOC_CHUNK - min_request)
297
slop = (size_t) MAX_ALLOC_CHUNK - min_request;
298
/* Try to get space, if fail reduce slop and try again */
299
for (;;) {
300
hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
301
if (hdr_ptr != NULL)
302
break;
303
slop /= 2;
304
if (slop < MIN_SLOP) /* give up when it gets real small */
305
out_of_memory(cinfo, 2); /* jpeg_get_small failed */
306
}
307
mem->total_space_allocated += min_request + slop;
308
/* Success, initialize the new pool header and add to end of list */
309
hdr_ptr->hdr.next = NULL;
310
hdr_ptr->hdr.bytes_used = 0;
311
hdr_ptr->hdr.bytes_left = sizeofobject + slop;
312
if (prev_hdr_ptr == NULL) /* first pool in class? */
313
mem->small_list[pool_id] = hdr_ptr;
314
else
315
prev_hdr_ptr->hdr.next = hdr_ptr;
316
}
317
318
/* OK, allocate the object from the current pool */
319
data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
320
data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
321
hdr_ptr->hdr.bytes_used += sizeofobject;
322
hdr_ptr->hdr.bytes_left -= sizeofobject;
323
324
return (void *) data_ptr;
325
}
326
327
328
/*
329
* Allocation of "large" objects.
330
*
331
* The external semantics of these are the same as "small" objects,
332
* except that FAR pointers are used on 80x86. However the pool
333
* management heuristics are quite different. We assume that each
334
* request is large enough that it may as well be passed directly to
335
* jpeg_get_large; the pool management just links everything together
336
* so that we can free it all on demand.
337
* Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
338
* structures. The routines that create these structures (see below)
339
* deliberately bunch rows together to ensure a large request size.
340
*/
341
342
METHODDEF(void FAR *)
343
alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
344
/* Allocate a "large" object */
345
{
346
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
347
large_pool_ptr hdr_ptr;
348
size_t odd_bytes;
349
350
/* Check for unsatisfiable request (do now to ensure no overflow below) */
351
if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr))
352
out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
353
354
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
355
odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
356
if (odd_bytes > 0)
357
sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
358
359
/* Always make a new pool */
360
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
361
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
362
363
hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
364
SIZEOF(large_pool_hdr));
365
if (hdr_ptr == NULL)
366
out_of_memory(cinfo, 4); /* jpeg_get_large failed */
367
mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
368
369
/* Success, initialize the new pool header and add to list */
370
hdr_ptr->hdr.next = mem->large_list[pool_id];
371
/* We maintain space counts in each pool header for statistical purposes,
372
* even though they are not needed for allocation.
373
*/
374
hdr_ptr->hdr.bytes_used = sizeofobject;
375
hdr_ptr->hdr.bytes_left = 0;
376
mem->large_list[pool_id] = hdr_ptr;
377
378
return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
379
}
380
381
382
/*
383
* Creation of 2-D sample arrays.
384
* The pointers are in near heap, the samples themselves in FAR heap.
385
*
386
* To minimize allocation overhead and to allow I/O of large contiguous
387
* blocks, we allocate the sample rows in groups of as many rows as possible
388
* without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
389
* NB: the virtual array control routines, later in this file, know about
390
* this chunking of rows. The rowsperchunk value is left in the mem manager
391
* object so that it can be saved away if this sarray is the workspace for
392
* a virtual array.
393
*/
394
395
METHODDEF(JSAMPARRAY)
396
alloc_sarray (j_common_ptr cinfo, int pool_id,
397
JDIMENSION samplesperrow, JDIMENSION numrows)
398
/* Allocate a 2-D sample array */
399
{
400
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
401
JSAMPARRAY result;
402
JSAMPROW workspace;
403
JDIMENSION rowsperchunk, currow, i;
404
long ltemp;
405
406
/* Calculate max # of rows allowed in one allocation chunk */
407
ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /
408
((long) samplesperrow * SIZEOF(JSAMPLE));
409
if (ltemp <= 0)
410
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
411
if (ltemp < (long) numrows)
412
rowsperchunk = (JDIMENSION) ltemp;
413
else
414
rowsperchunk = numrows;
415
mem->last_rowsperchunk = rowsperchunk;
416
417
/* Get space for row pointers (small object) */
418
result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
419
(size_t) numrows * SIZEOF(JSAMPROW));
420
421
/* Get the rows themselves (large objects) */
422
currow = 0;
423
while (currow < numrows) {
424
rowsperchunk = MIN(rowsperchunk, numrows - currow);
425
workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
426
(size_t) rowsperchunk * (size_t) samplesperrow * SIZEOF(JSAMPLE));
427
for (i = rowsperchunk; i > 0; i--) {
428
result[currow++] = workspace;
429
workspace += samplesperrow;
430
}
431
}
432
433
return result;
434
}
435
436
437
/*
438
* Creation of 2-D coefficient-block arrays.
439
* This is essentially the same as the code for sample arrays, above.
440
*/
441
442
METHODDEF(JBLOCKARRAY)
443
alloc_barray (j_common_ptr cinfo, int pool_id,
444
JDIMENSION blocksperrow, JDIMENSION numrows)
445
/* Allocate a 2-D coefficient-block array */
446
{
447
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
448
JBLOCKARRAY result;
449
JBLOCKROW workspace;
450
JDIMENSION rowsperchunk, currow, i;
451
long ltemp;
452
453
/* Calculate max # of rows allowed in one allocation chunk */
454
ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /
455
((long) blocksperrow * SIZEOF(JBLOCK));
456
if (ltemp <= 0)
457
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
458
if (ltemp < (long) numrows)
459
rowsperchunk = (JDIMENSION) ltemp;
460
else
461
rowsperchunk = numrows;
462
mem->last_rowsperchunk = rowsperchunk;
463
464
/* Get space for row pointers (small object) */
465
result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
466
(size_t) numrows * SIZEOF(JBLOCKROW));
467
468
/* Get the rows themselves (large objects) */
469
currow = 0;
470
while (currow < numrows) {
471
rowsperchunk = MIN(rowsperchunk, numrows - currow);
472
workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
473
(size_t) rowsperchunk * (size_t) blocksperrow * SIZEOF(JBLOCK));
474
for (i = rowsperchunk; i > 0; i--) {
475
result[currow++] = workspace;
476
workspace += blocksperrow;
477
}
478
}
479
480
return result;
481
}
482
483
484
/*
485
* About virtual array management:
486
*
487
* The above "normal" array routines are only used to allocate strip buffers
488
* (as wide as the image, but just a few rows high). Full-image-sized buffers
489
* are handled as "virtual" arrays. The array is still accessed a strip at a
490
* time, but the memory manager must save the whole array for repeated
491
* accesses. The intended implementation is that there is a strip buffer in
492
* memory (as high as is possible given the desired memory limit), plus a
493
* backing file that holds the rest of the array.
494
*
495
* The request_virt_array routines are told the total size of the image and
496
* the maximum number of rows that will be accessed at once. The in-memory
497
* buffer must be at least as large as the maxaccess value.
498
*
499
* The request routines create control blocks but not the in-memory buffers.
500
* That is postponed until realize_virt_arrays is called. At that time the
501
* total amount of space needed is known (approximately, anyway), so free
502
* memory can be divided up fairly.
503
*
504
* The access_virt_array routines are responsible for making a specific strip
505
* area accessible (after reading or writing the backing file, if necessary).
506
* Note that the access routines are told whether the caller intends to modify
507
* the accessed strip; during a read-only pass this saves having to rewrite
508
* data to disk. The access routines are also responsible for pre-zeroing
509
* any newly accessed rows, if pre-zeroing was requested.
510
*
511
* In current usage, the access requests are usually for nonoverlapping
512
* strips; that is, successive access start_row numbers differ by exactly
513
* num_rows = maxaccess. This means we can get good performance with simple
514
* buffer dump/reload logic, by making the in-memory buffer be a multiple
515
* of the access height; then there will never be accesses across bufferload
516
* boundaries. The code will still work with overlapping access requests,
517
* but it doesn't handle bufferload overlaps very efficiently.
518
*/
519
520
521
METHODDEF(jvirt_sarray_ptr)
522
request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
523
JDIMENSION samplesperrow, JDIMENSION numrows,
524
JDIMENSION maxaccess)
525
/* Request a virtual 2-D sample array */
526
{
527
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
528
jvirt_sarray_ptr result;
529
530
/* Only IMAGE-lifetime virtual arrays are currently supported */
531
if (pool_id != JPOOL_IMAGE)
532
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
533
534
/* get control block */
535
result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
536
SIZEOF(struct jvirt_sarray_control));
537
538
result->mem_buffer = NULL; /* marks array not yet realized */
539
result->rows_in_array = numrows;
540
result->samplesperrow = samplesperrow;
541
result->maxaccess = maxaccess;
542
result->pre_zero = pre_zero;
543
result->b_s_open = FALSE; /* no associated backing-store object */
544
result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
545
mem->virt_sarray_list = result;
546
547
return result;
548
}
549
550
551
METHODDEF(jvirt_barray_ptr)
552
request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
553
JDIMENSION blocksperrow, JDIMENSION numrows,
554
JDIMENSION maxaccess)
555
/* Request a virtual 2-D coefficient-block array */
556
{
557
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
558
jvirt_barray_ptr result;
559
560
/* Only IMAGE-lifetime virtual arrays are currently supported */
561
if (pool_id != JPOOL_IMAGE)
562
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
563
564
/* get control block */
565
result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
566
SIZEOF(struct jvirt_barray_control));
567
568
result->mem_buffer = NULL; /* marks array not yet realized */
569
result->rows_in_array = numrows;
570
result->blocksperrow = blocksperrow;
571
result->maxaccess = maxaccess;
572
result->pre_zero = pre_zero;
573
result->b_s_open = FALSE; /* no associated backing-store object */
574
result->next = mem->virt_barray_list; /* add to list of virtual arrays */
575
mem->virt_barray_list = result;
576
577
return result;
578
}
579
580
581
METHODDEF(void)
582
realize_virt_arrays (j_common_ptr cinfo)
583
/* Allocate the in-memory buffers for any unrealized virtual arrays */
584
{
585
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
586
long bytesperrow, space_per_minheight, maximum_space;
587
long avail_mem, minheights, max_minheights;
588
jvirt_sarray_ptr sptr;
589
jvirt_barray_ptr bptr;
590
591
/* Compute the minimum space needed (maxaccess rows in each buffer)
592
* and the maximum space needed (full image height in each buffer).
593
* These may be of use to the system-dependent jpeg_mem_available routine.
594
*/
595
space_per_minheight = 0;
596
maximum_space = 0;
597
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
598
if (sptr->mem_buffer == NULL) { /* if not realized yet */
599
bytesperrow = (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
600
space_per_minheight += (long) sptr->maxaccess * bytesperrow;
601
maximum_space += (long) sptr->rows_in_array * bytesperrow;
602
}
603
}
604
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
605
if (bptr->mem_buffer == NULL) { /* if not realized yet */
606
bytesperrow = (long) bptr->blocksperrow * SIZEOF(JBLOCK);
607
space_per_minheight += (long) bptr->maxaccess * bytesperrow;
608
maximum_space += (long) bptr->rows_in_array * bytesperrow;
609
}
610
}
611
612
if (space_per_minheight <= 0)
613
return; /* no unrealized arrays, no work */
614
615
/* Determine amount of memory to actually use; this is system-dependent. */
616
avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
617
(long) mem->total_space_allocated);
618
619
/* If the maximum space needed is available, make all the buffers full
620
* height; otherwise parcel it out with the same number of minheights
621
* in each buffer.
622
*/
623
if (avail_mem >= maximum_space)
624
max_minheights = 1000000000L;
625
else {
626
max_minheights = avail_mem / space_per_minheight;
627
/* If there doesn't seem to be enough space, try to get the minimum
628
* anyway. This allows a "stub" implementation of jpeg_mem_available().
629
*/
630
if (max_minheights <= 0)
631
max_minheights = 1;
632
}
633
634
/* Allocate the in-memory buffers and initialize backing store as needed. */
635
636
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
637
if (sptr->mem_buffer == NULL) { /* if not realized yet */
638
minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
639
if (minheights <= max_minheights) {
640
/* This buffer fits in memory */
641
sptr->rows_in_mem = sptr->rows_in_array;
642
} else {
643
/* It doesn't fit in memory, create backing store. */
644
sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
645
jpeg_open_backing_store(cinfo, & sptr->b_s_info,
646
(long) sptr->rows_in_array *
647
(long) sptr->samplesperrow *
648
(long) SIZEOF(JSAMPLE));
649
sptr->b_s_open = TRUE;
650
}
651
sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
652
sptr->samplesperrow, sptr->rows_in_mem);
653
sptr->rowsperchunk = mem->last_rowsperchunk;
654
sptr->cur_start_row = 0;
655
sptr->first_undef_row = 0;
656
sptr->dirty = FALSE;
657
}
658
}
659
660
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
661
if (bptr->mem_buffer == NULL) { /* if not realized yet */
662
minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
663
if (minheights <= max_minheights) {
664
/* This buffer fits in memory */
665
bptr->rows_in_mem = bptr->rows_in_array;
666
} else {
667
/* It doesn't fit in memory, create backing store. */
668
bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
669
jpeg_open_backing_store(cinfo, & bptr->b_s_info,
670
(long) bptr->rows_in_array *
671
(long) bptr->blocksperrow *
672
(long) SIZEOF(JBLOCK));
673
bptr->b_s_open = TRUE;
674
}
675
bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
676
bptr->blocksperrow, bptr->rows_in_mem);
677
bptr->rowsperchunk = mem->last_rowsperchunk;
678
bptr->cur_start_row = 0;
679
bptr->first_undef_row = 0;
680
bptr->dirty = FALSE;
681
}
682
}
683
}
684
685
686
LOCAL(void)
687
do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
688
/* Do backing store read or write of a virtual sample array */
689
{
690
long bytesperrow, file_offset, byte_count, rows, thisrow, i;
691
692
bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
693
file_offset = (long) ptr->cur_start_row * bytesperrow;
694
/* Loop to read or write each allocation chunk in mem_buffer */
695
for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
696
/* One chunk, but check for short chunk at end of buffer */
697
rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
698
/* Transfer no more than is currently defined */
699
thisrow = (long) ptr->cur_start_row + i;
700
rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
701
/* Transfer no more than fits in file */
702
rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
703
if (rows <= 0) /* this chunk might be past end of file! */
704
break;
705
byte_count = rows * bytesperrow;
706
if (writing)
707
(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
708
(void FAR *) ptr->mem_buffer[i],
709
file_offset, byte_count);
710
else
711
(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
712
(void FAR *) ptr->mem_buffer[i],
713
file_offset, byte_count);
714
file_offset += byte_count;
715
}
716
}
717
718
719
LOCAL(void)
720
do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
721
/* Do backing store read or write of a virtual coefficient-block array */
722
{
723
long bytesperrow, file_offset, byte_count, rows, thisrow, i;
724
725
bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
726
file_offset = (long) ptr->cur_start_row * bytesperrow;
727
/* Loop to read or write each allocation chunk in mem_buffer */
728
for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
729
/* One chunk, but check for short chunk at end of buffer */
730
rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
731
/* Transfer no more than is currently defined */
732
thisrow = (long) ptr->cur_start_row + i;
733
rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
734
/* Transfer no more than fits in file */
735
rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
736
if (rows <= 0) /* this chunk might be past end of file! */
737
break;
738
byte_count = rows * bytesperrow;
739
if (writing)
740
(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
741
(void FAR *) ptr->mem_buffer[i],
742
file_offset, byte_count);
743
else
744
(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
745
(void FAR *) ptr->mem_buffer[i],
746
file_offset, byte_count);
747
file_offset += byte_count;
748
}
749
}
750
751
752
METHODDEF(JSAMPARRAY)
753
access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
754
JDIMENSION start_row, JDIMENSION num_rows,
755
boolean writable)
756
/* Access the part of a virtual sample array starting at start_row */
757
/* and extending for num_rows rows. writable is true if */
758
/* caller intends to modify the accessed area. */
759
{
760
JDIMENSION end_row = start_row + num_rows;
761
JDIMENSION undef_row;
762
763
/* debugging check */
764
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
765
ptr->mem_buffer == NULL)
766
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
767
768
/* Make the desired part of the virtual array accessible */
769
if (start_row < ptr->cur_start_row ||
770
end_row > ptr->cur_start_row + ptr->rows_in_mem) {
771
if (! ptr->b_s_open)
772
ERREXIT(cinfo, JERR_VIRTUAL_BUG);
773
/* Flush old buffer contents if necessary */
774
if (ptr->dirty) {
775
do_sarray_io(cinfo, ptr, TRUE);
776
ptr->dirty = FALSE;
777
}
778
/* Decide what part of virtual array to access.
779
* Algorithm: if target address > current window, assume forward scan,
780
* load starting at target address. If target address < current window,
781
* assume backward scan, load so that target area is top of window.
782
* Note that when switching from forward write to forward read, will have
783
* start_row = 0, so the limiting case applies and we load from 0 anyway.
784
*/
785
if (start_row > ptr->cur_start_row) {
786
ptr->cur_start_row = start_row;
787
} else {
788
/* use long arithmetic here to avoid overflow & unsigned problems */
789
long ltemp;
790
791
ltemp = (long) end_row - (long) ptr->rows_in_mem;
792
if (ltemp < 0)
793
ltemp = 0; /* don't fall off front end of file */
794
ptr->cur_start_row = (JDIMENSION) ltemp;
795
}
796
/* Read in the selected part of the array.
797
* During the initial write pass, we will do no actual read
798
* because the selected part is all undefined.
799
*/
800
do_sarray_io(cinfo, ptr, FALSE);
801
}
802
/* Ensure the accessed part of the array is defined; prezero if needed.
803
* To improve locality of access, we only prezero the part of the array
804
* that the caller is about to access, not the entire in-memory array.
805
*/
806
if (ptr->first_undef_row < end_row) {
807
if (ptr->first_undef_row < start_row) {
808
if (writable) /* writer skipped over a section of array */
809
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
810
undef_row = start_row; /* but reader is allowed to read ahead */
811
} else {
812
undef_row = ptr->first_undef_row;
813
}
814
if (writable)
815
ptr->first_undef_row = end_row;
816
if (ptr->pre_zero) {
817
size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
818
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
819
end_row -= ptr->cur_start_row;
820
while (undef_row < end_row) {
821
FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
822
undef_row++;
823
}
824
} else {
825
if (! writable) /* reader looking at undefined data */
826
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
827
}
828
}
829
/* Flag the buffer dirty if caller will write in it */
830
if (writable)
831
ptr->dirty = TRUE;
832
/* Return address of proper part of the buffer */
833
return ptr->mem_buffer + (start_row - ptr->cur_start_row);
834
}
835
836
837
METHODDEF(JBLOCKARRAY)
838
access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
839
JDIMENSION start_row, JDIMENSION num_rows,
840
boolean writable)
841
/* Access the part of a virtual block array starting at start_row */
842
/* and extending for num_rows rows. writable is true if */
843
/* caller intends to modify the accessed area. */
844
{
845
JDIMENSION end_row = start_row + num_rows;
846
JDIMENSION undef_row;
847
848
/* debugging check */
849
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
850
ptr->mem_buffer == NULL)
851
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
852
853
/* Make the desired part of the virtual array accessible */
854
if (start_row < ptr->cur_start_row ||
855
end_row > ptr->cur_start_row + ptr->rows_in_mem) {
856
if (! ptr->b_s_open)
857
ERREXIT(cinfo, JERR_VIRTUAL_BUG);
858
/* Flush old buffer contents if necessary */
859
if (ptr->dirty) {
860
do_barray_io(cinfo, ptr, TRUE);
861
ptr->dirty = FALSE;
862
}
863
/* Decide what part of virtual array to access.
864
* Algorithm: if target address > current window, assume forward scan,
865
* load starting at target address. If target address < current window,
866
* assume backward scan, load so that target area is top of window.
867
* Note that when switching from forward write to forward read, will have
868
* start_row = 0, so the limiting case applies and we load from 0 anyway.
869
*/
870
if (start_row > ptr->cur_start_row) {
871
ptr->cur_start_row = start_row;
872
} else {
873
/* use long arithmetic here to avoid overflow & unsigned problems */
874
long ltemp;
875
876
ltemp = (long) end_row - (long) ptr->rows_in_mem;
877
if (ltemp < 0)
878
ltemp = 0; /* don't fall off front end of file */
879
ptr->cur_start_row = (JDIMENSION) ltemp;
880
}
881
/* Read in the selected part of the array.
882
* During the initial write pass, we will do no actual read
883
* because the selected part is all undefined.
884
*/
885
do_barray_io(cinfo, ptr, FALSE);
886
}
887
/* Ensure the accessed part of the array is defined; prezero if needed.
888
* To improve locality of access, we only prezero the part of the array
889
* that the caller is about to access, not the entire in-memory array.
890
*/
891
if (ptr->first_undef_row < end_row) {
892
if (ptr->first_undef_row < start_row) {
893
if (writable) /* writer skipped over a section of array */
894
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
895
undef_row = start_row; /* but reader is allowed to read ahead */
896
} else {
897
undef_row = ptr->first_undef_row;
898
}
899
if (writable)
900
ptr->first_undef_row = end_row;
901
if (ptr->pre_zero) {
902
size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
903
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
904
end_row -= ptr->cur_start_row;
905
while (undef_row < end_row) {
906
FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
907
undef_row++;
908
}
909
} else {
910
if (! writable) /* reader looking at undefined data */
911
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
912
}
913
}
914
/* Flag the buffer dirty if caller will write in it */
915
if (writable)
916
ptr->dirty = TRUE;
917
/* Return address of proper part of the buffer */
918
return ptr->mem_buffer + (start_row - ptr->cur_start_row);
919
}
920
921
922
/*
923
* Release all objects belonging to a specified pool.
924
*/
925
926
METHODDEF(void)
927
free_pool (j_common_ptr cinfo, int pool_id)
928
{
929
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
930
small_pool_ptr shdr_ptr;
931
large_pool_ptr lhdr_ptr;
932
size_t space_freed;
933
934
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
935
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
936
937
#ifdef MEM_STATS
938
if (cinfo->err->trace_level > 1)
939
print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
940
#endif
941
942
/* If freeing IMAGE pool, close any virtual arrays first */
943
if (pool_id == JPOOL_IMAGE) {
944
jvirt_sarray_ptr sptr;
945
jvirt_barray_ptr bptr;
946
947
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
948
if (sptr->b_s_open) { /* there may be no backing store */
949
sptr->b_s_open = FALSE; /* prevent recursive close if error */
950
(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
951
}
952
}
953
mem->virt_sarray_list = NULL;
954
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
955
if (bptr->b_s_open) { /* there may be no backing store */
956
bptr->b_s_open = FALSE; /* prevent recursive close if error */
957
(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
958
}
959
}
960
mem->virt_barray_list = NULL;
961
}
962
963
/* Release large objects */
964
lhdr_ptr = mem->large_list[pool_id];
965
mem->large_list[pool_id] = NULL;
966
967
while (lhdr_ptr != NULL) {
968
large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
969
space_freed = lhdr_ptr->hdr.bytes_used +
970
lhdr_ptr->hdr.bytes_left +
971
SIZEOF(large_pool_hdr);
972
jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
973
mem->total_space_allocated -= space_freed;
974
lhdr_ptr = next_lhdr_ptr;
975
}
976
977
/* Release small objects */
978
shdr_ptr = mem->small_list[pool_id];
979
mem->small_list[pool_id] = NULL;
980
981
while (shdr_ptr != NULL) {
982
small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
983
space_freed = shdr_ptr->hdr.bytes_used +
984
shdr_ptr->hdr.bytes_left +
985
SIZEOF(small_pool_hdr);
986
jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
987
mem->total_space_allocated -= space_freed;
988
shdr_ptr = next_shdr_ptr;
989
}
990
}
991
992
993
/*
994
* Close up shop entirely.
995
* Note that this cannot be called unless cinfo->mem is non-NULL.
996
*/
997
998
METHODDEF(void)
999
self_destruct (j_common_ptr cinfo)
1000
{
1001
int pool;
1002
1003
/* Close all backing store, release all memory.
1004
* Releasing pools in reverse order might help avoid fragmentation
1005
* with some (brain-damaged) malloc libraries.
1006
*/
1007
for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1008
free_pool(cinfo, pool);
1009
}
1010
1011
/* Release the memory manager control block too. */
1012
jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1013
cinfo->mem = NULL; /* ensures I will be called only once */
1014
1015
jpeg_mem_term(cinfo); /* system-dependent cleanup */
1016
}
1017
1018
1019
/*
1020
* Memory manager initialization.
1021
* When this is called, only the error manager pointer is valid in cinfo!
1022
*/
1023
1024
GLOBAL(void)
1025
jinit_memory_mgr (j_common_ptr cinfo)
1026
{
1027
my_mem_ptr mem;
1028
long max_to_use;
1029
int pool;
1030
size_t test_mac;
1031
1032
cinfo->mem = NULL; /* for safety if init fails */
1033
1034
/* Check for configuration errors.
1035
* SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1036
* doesn't reflect any real hardware alignment requirement.
1037
* The test is a little tricky: for X>0, X and X-1 have no one-bits
1038
* in common if and only if X is a power of 2, ie has only one one-bit.
1039
* Some compilers may give an "unreachable code" warning here; ignore it.
1040
*/
1041
if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1042
ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1043
/* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1044
* a multiple of SIZEOF(ALIGN_TYPE).
1045
* Again, an "unreachable code" warning may be ignored here.
1046
* But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1047
*/
1048
test_mac = (size_t) MAX_ALLOC_CHUNK;
1049
if ((long) test_mac != MAX_ALLOC_CHUNK ||
1050
(MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1051
ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1052
1053
max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1054
1055
/* Attempt to allocate memory manager's control block */
1056
mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1057
1058
if (mem == NULL) {
1059
jpeg_mem_term(cinfo); /* system-dependent cleanup */
1060
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1061
}
1062
1063
/* OK, fill in the method pointers */
1064
mem->pub.alloc_small = alloc_small;
1065
mem->pub.alloc_large = alloc_large;
1066
mem->pub.alloc_sarray = alloc_sarray;
1067
mem->pub.alloc_barray = alloc_barray;
1068
mem->pub.request_virt_sarray = request_virt_sarray;
1069
mem->pub.request_virt_barray = request_virt_barray;
1070
mem->pub.realize_virt_arrays = realize_virt_arrays;
1071
mem->pub.access_virt_sarray = access_virt_sarray;
1072
mem->pub.access_virt_barray = access_virt_barray;
1073
mem->pub.free_pool = free_pool;
1074
mem->pub.self_destruct = self_destruct;
1075
1076
/* Make MAX_ALLOC_CHUNK accessible to other modules */
1077
mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1078
1079
/* Initialize working state */
1080
mem->pub.max_memory_to_use = max_to_use;
1081
1082
for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1083
mem->small_list[pool] = NULL;
1084
mem->large_list[pool] = NULL;
1085
}
1086
mem->virt_sarray_list = NULL;
1087
mem->virt_barray_list = NULL;
1088
1089
mem->total_space_allocated = SIZEOF(my_memory_mgr);
1090
1091
/* Declare ourselves open for business */
1092
cinfo->mem = &mem->pub;
1093
1094
/* Check for an environment variable JPEGMEM; if found, override the
1095
* default max_memory setting from jpeg_mem_init. Note that the
1096
* surrounding application may again override this value.
1097
* If your system doesn't support getenv(), define NO_GETENV to disable
1098
* this feature.
1099
*/
1100
#ifndef NO_GETENV
1101
{ char * memenv;
1102
1103
if ((memenv = getenv("JPEGMEM")) != NULL) {
1104
char ch = 'x';
1105
1106
if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1107
if (ch == 'm' || ch == 'M')
1108
max_to_use *= 1000L;
1109
mem->pub.max_memory_to_use = max_to_use * 1000L;
1110
}
1111
}
1112
}
1113
#endif
1114
1115
}
1116
1117