Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jpeg/jquant1.c
4389 views
1
/*
2
* jquant1.c
3
*
4
* Copyright (C) 1991-1996, Thomas G. Lane.
5
* Modified 2011-2020 by Guido Vollbeding.
6
* This file is part of the Independent JPEG Group's software.
7
* For conditions of distribution and use, see the accompanying README file.
8
*
9
* This file contains 1-pass color quantization (color mapping) routines.
10
* These routines provide mapping to a fixed color map using equally spaced
11
* color values. Optional Floyd-Steinberg or ordered dithering is available.
12
*/
13
14
#define JPEG_INTERNALS
15
#include "jinclude.h"
16
#include "jpeglib.h"
17
18
#ifdef QUANT_1PASS_SUPPORTED
19
20
21
/*
22
* The main purpose of 1-pass quantization is to provide a fast, if not very
23
* high quality, colormapped output capability. A 2-pass quantizer usually
24
* gives better visual quality; however, for quantized grayscale output this
25
* quantizer is perfectly adequate. Dithering is highly recommended with this
26
* quantizer, though you can turn it off if you really want to.
27
*
28
* In 1-pass quantization the colormap must be chosen in advance of seeing the
29
* image. We use a map consisting of all combinations of Ncolors[i] color
30
* values for the i'th component. The Ncolors[] values are chosen so that
31
* their product, the total number of colors, is no more than that requested.
32
* (In most cases, the product will be somewhat less.)
33
*
34
* Since the colormap is orthogonal, the representative value for each color
35
* component can be determined without considering the other components;
36
* then these indexes can be combined into a colormap index by a standard
37
* N-dimensional-array-subscript calculation. Most of the arithmetic involved
38
* can be precalculated and stored in the lookup table colorindex[].
39
* colorindex[i][j] maps pixel value j in component i to the nearest
40
* representative value (grid plane) for that component; this index is
41
* multiplied by the array stride for component i, so that the
42
* index of the colormap entry closest to a given pixel value is just
43
* sum( colorindex[component-number][pixel-component-value] )
44
* Aside from being fast, this scheme allows for variable spacing between
45
* representative values with no additional lookup cost.
46
*
47
* If gamma correction has been applied in color conversion, it might be wise
48
* to adjust the color grid spacing so that the representative colors are
49
* equidistant in linear space. At this writing, gamma correction is not
50
* implemented by jdcolor, so nothing is done here.
51
*/
52
53
54
/* Declarations for ordered dithering.
55
*
56
* We use a standard 16x16 ordered dither array. The basic concept of ordered
57
* dithering is described in many references, for instance Dale Schumacher's
58
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
59
* In place of Schumacher's comparisons against a "threshold" value, we add a
60
* "dither" value to the input pixel and then round the result to the nearest
61
* output value. The dither value is equivalent to (0.5 - threshold) times
62
* the distance between output values. For ordered dithering, we assume that
63
* the output colors are equally spaced; if not, results will probably be
64
* worse, since the dither may be too much or too little at a given point.
65
*
66
* The normal calculation would be to form pixel value + dither, range-limit
67
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
68
* We can skip the separate range-limiting step by extending the colorindex
69
* table in both directions.
70
*/
71
72
#define ODITHER_SIZE 16 /* dimension of dither matrix */
73
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
74
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
75
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
76
77
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
78
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
79
80
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
81
/* Bayer's order-4 dither array. Generated by the code given in
82
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
83
* The values in this array must range from 0 to ODITHER_CELLS-1.
84
*/
85
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
86
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
87
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
88
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
89
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
90
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
91
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
92
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
93
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
94
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
95
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
96
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
97
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
98
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
99
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
100
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
101
};
102
103
104
/* Declarations for Floyd-Steinberg dithering.
105
*
106
* Errors are accumulated into the array fserrors[], at a resolution of
107
* 1/16th of a pixel count. The error at a given pixel is propagated
108
* to its not-yet-processed neighbors using the standard F-S fractions,
109
* ... (here) 7/16
110
* 3/16 5/16 1/16
111
* We work left-to-right on even rows, right-to-left on odd rows.
112
*
113
* We can get away with a single array (holding one row's worth of errors)
114
* by using it to store the current row's errors at pixel columns not yet
115
* processed, but the next row's errors at columns already processed. We
116
* need only a few extra variables to hold the errors immediately around the
117
* current column. (If we are lucky, those variables are in registers, but
118
* even if not, they're probably cheaper to access than array elements are.)
119
*
120
* The fserrors[] array is indexed [component#][position].
121
* We provide (#columns + 2) entries per component; the extra entry at each
122
* end saves us from special-casing the first and last pixels.
123
*
124
* Note: on a wide image, we might not have enough room in a PC's near data
125
* segment to hold the error array; so it is allocated with alloc_large.
126
*/
127
128
#if BITS_IN_JSAMPLE == 8
129
typedef INT16 FSERROR; /* 16 bits should be enough */
130
typedef int LOCFSERROR; /* use 'int' for calculation temps */
131
#else
132
typedef INT32 FSERROR; /* may need more than 16 bits */
133
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
134
#endif
135
136
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
137
138
139
/* Private subobject */
140
141
#define MAX_Q_COMPS 4 /* max components I can handle */
142
143
typedef struct {
144
struct jpeg_color_quantizer pub; /* public fields */
145
146
/* Initially allocated colormap is saved here */
147
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
148
int sv_actual; /* number of entries in use */
149
150
JSAMPARRAY colorindex; /* Precomputed mapping for speed */
151
/* colorindex[i][j] = index of color closest to pixel value j in component i,
152
* premultiplied as described above. Since colormap indexes must fit into
153
* JSAMPLEs, the entries of this array will too.
154
*/
155
boolean is_padded; /* is the colorindex padded for odither? */
156
157
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
158
159
/* Variables for ordered dithering */
160
int row_index; /* cur row's vertical index in dither matrix */
161
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
162
163
/* Variables for Floyd-Steinberg dithering */
164
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
165
boolean on_odd_row; /* flag to remember which row we are on */
166
} my_cquantizer;
167
168
typedef my_cquantizer * my_cquantize_ptr;
169
170
171
/*
172
* Policy-making subroutines for create_colormap and create_colorindex.
173
* These routines determine the colormap to be used. The rest of the module
174
* only assumes that the colormap is orthogonal.
175
*
176
* * select_ncolors decides how to divvy up the available colors
177
* among the components.
178
* * output_value defines the set of representative values for a component.
179
* * largest_input_value defines the mapping from input values to
180
* representative values for a component.
181
* Note that the latter two routines may impose different policies for
182
* different components, though this is not currently done.
183
*/
184
185
186
LOCAL(int)
187
select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
188
/* Determine allocation of desired colors to components, */
189
/* and fill in Ncolors[] array to indicate choice. */
190
/* Return value is total number of colors (product of Ncolors[] values). */
191
{
192
int nc = cinfo->out_color_components; /* number of color components */
193
int max_colors = cinfo->desired_number_of_colors;
194
int total_colors, iroot, i, j;
195
boolean changed;
196
long temp;
197
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
198
199
/* We can allocate at least the nc'th root of max_colors per component. */
200
/* Compute floor(nc'th root of max_colors). */
201
iroot = 1;
202
do {
203
iroot++;
204
temp = iroot; /* set temp = iroot ** nc */
205
for (i = 1; i < nc; i++)
206
temp *= iroot;
207
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
208
iroot--; /* now iroot = floor(root) */
209
210
/* Must have at least 2 color values per component */
211
if (iroot < 2)
212
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
213
214
/* Initialize to iroot color values for each component */
215
total_colors = 1;
216
for (i = 0; i < nc; i++) {
217
Ncolors[i] = iroot;
218
total_colors *= iroot;
219
}
220
/* We may be able to increment the count for one or more components without
221
* exceeding max_colors, though we know not all can be incremented.
222
* Sometimes, the first component can be incremented more than once!
223
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
224
* In RGB colorspace, try to increment G first, then R, then B.
225
*/
226
do {
227
changed = FALSE;
228
for (i = 0; i < nc; i++) {
229
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
230
/* calculate new total_colors if Ncolors[j] is incremented */
231
temp = total_colors / Ncolors[j];
232
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
233
if (temp > (long) max_colors)
234
break; /* won't fit, done with this pass */
235
Ncolors[j]++; /* OK, apply the increment */
236
total_colors = (int) temp;
237
changed = TRUE;
238
}
239
} while (changed);
240
241
return total_colors;
242
}
243
244
245
LOCAL(int)
246
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
247
/* Return j'th output value, where j will range from 0 to maxj */
248
/* The output values must fall in 0..MAXJSAMPLE in increasing order */
249
{
250
/* We always provide values 0 and MAXJSAMPLE for each component;
251
* any additional values are equally spaced between these limits.
252
* (Forcing the upper and lower values to the limits ensures that
253
* dithering can't produce a color outside the selected gamut.)
254
*/
255
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
256
}
257
258
259
LOCAL(int)
260
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
261
/* Return largest input value that should map to j'th output value */
262
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
263
{
264
/* Breakpoints are halfway between values returned by output_value */
265
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
266
}
267
268
269
/*
270
* Create the colormap.
271
*/
272
273
LOCAL(void)
274
create_colormap (j_decompress_ptr cinfo)
275
{
276
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
277
JSAMPARRAY colormap; /* Created colormap */
278
int total_colors; /* Number of distinct output colors */
279
int i,j,k, nci, blksize, blkdist, ptr, val;
280
281
/* Select number of colors for each component */
282
total_colors = select_ncolors(cinfo, cquantize->Ncolors);
283
284
/* Report selected color counts */
285
if (cinfo->out_color_components == 3)
286
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
287
total_colors, cquantize->Ncolors[0],
288
cquantize->Ncolors[1], cquantize->Ncolors[2]);
289
else
290
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
291
292
/* Allocate and fill in the colormap. */
293
/* The colors are ordered in the map in standard row-major order, */
294
/* i.e. rightmost (highest-indexed) color changes most rapidly. */
295
296
colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE,
297
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
298
299
/* blksize is number of adjacent repeated entries for a component */
300
/* blkdist is distance between groups of identical entries for a component */
301
blkdist = total_colors;
302
303
for (i = 0; i < cinfo->out_color_components; i++) {
304
/* fill in colormap entries for i'th color component */
305
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
306
blksize = blkdist / nci;
307
for (j = 0; j < nci; j++) {
308
/* Compute j'th output value (out of nci) for component */
309
val = output_value(cinfo, i, j, nci-1);
310
/* Fill in all colormap entries that have this value of this component */
311
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
312
/* fill in blksize entries beginning at ptr */
313
for (k = 0; k < blksize; k++)
314
colormap[i][ptr+k] = (JSAMPLE) val;
315
}
316
}
317
blkdist = blksize; /* blksize of this color is blkdist of next */
318
}
319
320
/* Save the colormap in private storage,
321
* where it will survive color quantization mode changes.
322
*/
323
cquantize->sv_colormap = colormap;
324
cquantize->sv_actual = total_colors;
325
}
326
327
328
/*
329
* Create the color index table.
330
*/
331
332
LOCAL(void)
333
create_colorindex (j_decompress_ptr cinfo)
334
{
335
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
336
JSAMPROW indexptr;
337
int i,j,k, nci, blksize, val, pad;
338
339
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in
340
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
341
* This is not necessary in the other dithering modes. However, we
342
* flag whether it was done in case user changes dithering mode.
343
*/
344
if (cinfo->dither_mode == JDITHER_ORDERED) {
345
pad = MAXJSAMPLE*2;
346
cquantize->is_padded = TRUE;
347
} else {
348
pad = 0;
349
cquantize->is_padded = FALSE;
350
}
351
352
cquantize->colorindex = (*cinfo->mem->alloc_sarray)
353
((j_common_ptr) cinfo, JPOOL_IMAGE,
354
(JDIMENSION) (MAXJSAMPLE+1 + pad),
355
(JDIMENSION) cinfo->out_color_components);
356
357
/* blksize is number of adjacent repeated entries for a component */
358
blksize = cquantize->sv_actual;
359
360
for (i = 0; i < cinfo->out_color_components; i++) {
361
/* fill in colorindex entries for i'th color component */
362
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
363
blksize = blksize / nci;
364
365
/* adjust colorindex pointers to provide padding at negative indexes. */
366
if (pad)
367
cquantize->colorindex[i] += MAXJSAMPLE;
368
369
/* in loop, val = index of current output value, */
370
/* and k = largest j that maps to current val */
371
indexptr = cquantize->colorindex[i];
372
val = 0;
373
k = largest_input_value(cinfo, i, 0, nci-1);
374
for (j = 0; j <= MAXJSAMPLE; j++) {
375
while (j > k) /* advance val if past boundary */
376
k = largest_input_value(cinfo, i, ++val, nci-1);
377
/* premultiply so that no multiplication needed in main processing */
378
indexptr[j] = (JSAMPLE) (val * blksize);
379
}
380
/* Pad at both ends if necessary */
381
if (pad)
382
for (j = 1; j <= MAXJSAMPLE; j++) {
383
indexptr[-j] = indexptr[0];
384
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
385
}
386
}
387
}
388
389
390
/*
391
* Create an ordered-dither array for a component having ncolors
392
* distinct output values.
393
*/
394
395
LOCAL(ODITHER_MATRIX_PTR)
396
make_odither_array (j_decompress_ptr cinfo, int ncolors)
397
{
398
ODITHER_MATRIX_PTR odither;
399
int j,k;
400
INT32 num,den;
401
402
odither = (ODITHER_MATRIX_PTR) (*cinfo->mem->alloc_small)
403
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(ODITHER_MATRIX));
404
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
405
* Hence the dither value for the matrix cell with fill order f
406
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
407
* On 16-bit-int machine, be careful to avoid overflow.
408
*/
409
den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
410
for (j = 0; j < ODITHER_SIZE; j++) {
411
for (k = 0; k < ODITHER_SIZE; k++) {
412
num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
413
* MAXJSAMPLE;
414
/* Ensure round towards zero despite C's lack of consistency
415
* about rounding negative values in integer division...
416
*/
417
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
418
}
419
}
420
return odither;
421
}
422
423
424
/*
425
* Create the ordered-dither tables.
426
* Components having the same number of representative colors may
427
* share a dither table.
428
*/
429
430
LOCAL(void)
431
create_odither_tables (j_decompress_ptr cinfo)
432
{
433
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
434
ODITHER_MATRIX_PTR odither;
435
int i, j, nci;
436
437
for (i = 0; i < cinfo->out_color_components; i++) {
438
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
439
odither = NULL; /* search for matching prior component */
440
for (j = 0; j < i; j++) {
441
if (nci == cquantize->Ncolors[j]) {
442
odither = cquantize->odither[j];
443
break;
444
}
445
}
446
if (odither == NULL) /* need a new table? */
447
odither = make_odither_array(cinfo, nci);
448
cquantize->odither[i] = odither;
449
}
450
}
451
452
453
/*
454
* Map some rows of pixels to the output colormapped representation.
455
*/
456
457
METHODDEF(void)
458
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
459
JSAMPARRAY output_buf, int num_rows)
460
/* General case, no dithering */
461
{
462
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
463
JSAMPARRAY colorindex = cquantize->colorindex;
464
register int pixcode, ci;
465
register JSAMPROW ptrin, ptrout;
466
int row;
467
JDIMENSION col;
468
JDIMENSION width = cinfo->output_width;
469
register int nc = cinfo->out_color_components;
470
471
for (row = 0; row < num_rows; row++) {
472
ptrin = input_buf[row];
473
ptrout = output_buf[row];
474
for (col = width; col > 0; col--) {
475
pixcode = 0;
476
for (ci = 0; ci < nc; ci++) {
477
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
478
}
479
*ptrout++ = (JSAMPLE) pixcode;
480
}
481
}
482
}
483
484
485
METHODDEF(void)
486
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
487
JSAMPARRAY output_buf, int num_rows)
488
/* Fast path for out_color_components==3, no dithering */
489
{
490
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
491
register int pixcode;
492
register JSAMPROW ptrin, ptrout;
493
JSAMPROW colorindex0 = cquantize->colorindex[0];
494
JSAMPROW colorindex1 = cquantize->colorindex[1];
495
JSAMPROW colorindex2 = cquantize->colorindex[2];
496
int row;
497
JDIMENSION col;
498
JDIMENSION width = cinfo->output_width;
499
500
for (row = 0; row < num_rows; row++) {
501
ptrin = input_buf[row];
502
ptrout = output_buf[row];
503
for (col = width; col > 0; col--) {
504
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
505
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
506
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
507
*ptrout++ = (JSAMPLE) pixcode;
508
}
509
}
510
}
511
512
513
METHODDEF(void)
514
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
515
JSAMPARRAY output_buf, int num_rows)
516
/* General case, with ordered dithering */
517
{
518
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
519
register JSAMPROW input_ptr;
520
register JSAMPROW output_ptr;
521
JSAMPROW colorindex_ci;
522
int * dither; /* points to active row of dither matrix */
523
int row_index, col_index; /* current indexes into dither matrix */
524
int nc = cinfo->out_color_components;
525
int ci;
526
int row;
527
JDIMENSION col;
528
JDIMENSION width = cinfo->output_width;
529
530
for (row = 0; row < num_rows; row++) {
531
/* Initialize output values to 0 so can process components separately */
532
FMEMZERO((void FAR *) output_buf[row], (size_t) width * SIZEOF(JSAMPLE));
533
row_index = cquantize->row_index;
534
for (ci = 0; ci < nc; ci++) {
535
input_ptr = input_buf[row] + ci;
536
output_ptr = output_buf[row];
537
colorindex_ci = cquantize->colorindex[ci];
538
dither = cquantize->odither[ci][row_index];
539
col_index = 0;
540
541
for (col = width; col > 0; col--) {
542
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
543
* select output value, accumulate into output code for this pixel.
544
* Range-limiting need not be done explicitly, as we have extended
545
* the colorindex table to produce the right answers for out-of-range
546
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the
547
* required amount of padding.
548
*/
549
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
550
input_ptr += nc;
551
output_ptr++;
552
col_index = (col_index + 1) & ODITHER_MASK;
553
}
554
}
555
/* Advance row index for next row */
556
row_index = (row_index + 1) & ODITHER_MASK;
557
cquantize->row_index = row_index;
558
}
559
}
560
561
562
METHODDEF(void)
563
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
564
JSAMPARRAY output_buf, int num_rows)
565
/* Fast path for out_color_components==3, with ordered dithering */
566
{
567
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
568
register int pixcode;
569
register JSAMPROW input_ptr;
570
register JSAMPROW output_ptr;
571
JSAMPROW colorindex0 = cquantize->colorindex[0];
572
JSAMPROW colorindex1 = cquantize->colorindex[1];
573
JSAMPROW colorindex2 = cquantize->colorindex[2];
574
int * dither0; /* points to active row of dither matrix */
575
int * dither1;
576
int * dither2;
577
int row_index, col_index; /* current indexes into dither matrix */
578
int row;
579
JDIMENSION col;
580
JDIMENSION width = cinfo->output_width;
581
582
for (row = 0; row < num_rows; row++) {
583
row_index = cquantize->row_index;
584
input_ptr = input_buf[row];
585
output_ptr = output_buf[row];
586
dither0 = cquantize->odither[0][row_index];
587
dither1 = cquantize->odither[1][row_index];
588
dither2 = cquantize->odither[2][row_index];
589
col_index = 0;
590
591
for (col = width; col > 0; col--) {
592
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
593
dither0[col_index]]);
594
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
595
dither1[col_index]]);
596
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
597
dither2[col_index]]);
598
*output_ptr++ = (JSAMPLE) pixcode;
599
col_index = (col_index + 1) & ODITHER_MASK;
600
}
601
row_index = (row_index + 1) & ODITHER_MASK;
602
cquantize->row_index = row_index;
603
}
604
}
605
606
607
METHODDEF(void)
608
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
609
JSAMPARRAY output_buf, int num_rows)
610
/* General case, with Floyd-Steinberg dithering */
611
{
612
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
613
register LOCFSERROR cur; /* current error or pixel value */
614
LOCFSERROR belowerr; /* error for pixel below cur */
615
LOCFSERROR bpreverr; /* error for below/prev col */
616
LOCFSERROR bnexterr; /* error for below/next col */
617
LOCFSERROR delta;
618
register FSERRPTR errorptr; /* => fserrors[] at column before current */
619
register JSAMPROW input_ptr;
620
register JSAMPROW output_ptr;
621
JSAMPROW colorindex_ci;
622
JSAMPROW colormap_ci;
623
int pixcode;
624
int nc = cinfo->out_color_components;
625
int dir; /* 1 for left-to-right, -1 for right-to-left */
626
int dirnc; /* dir * nc */
627
int ci;
628
int row;
629
JDIMENSION col;
630
JDIMENSION width = cinfo->output_width;
631
JSAMPLE *range_limit = cinfo->sample_range_limit;
632
SHIFT_TEMPS
633
634
for (row = 0; row < num_rows; row++) {
635
/* Initialize output values to 0 so can process components separately */
636
FMEMZERO((void FAR *) output_buf[row], (size_t) width * SIZEOF(JSAMPLE));
637
for (ci = 0; ci < nc; ci++) {
638
input_ptr = input_buf[row] + ci;
639
output_ptr = output_buf[row];
640
if (cquantize->on_odd_row) {
641
/* work right to left in this row */
642
input_ptr += (width-1) * nc; /* so point to rightmost pixel */
643
output_ptr += width-1;
644
dir = -1;
645
dirnc = -nc;
646
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
647
} else {
648
/* work left to right in this row */
649
dir = 1;
650
dirnc = nc;
651
errorptr = cquantize->fserrors[ci]; /* => entry before first column */
652
}
653
colorindex_ci = cquantize->colorindex[ci];
654
colormap_ci = cquantize->sv_colormap[ci];
655
/* Preset error values: no error propagated to first pixel from left */
656
cur = 0;
657
/* and no error propagated to row below yet */
658
belowerr = bpreverr = 0;
659
660
for (col = width; col > 0; col--) {
661
/* cur holds the error propagated from the previous pixel on the
662
* current line. Add the error propagated from the previous line
663
* to form the complete error correction term for this pixel, and
664
* round the error term (which is expressed * 16) to an integer.
665
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
666
* for either sign of the error value.
667
* Note: errorptr points to *previous* column's array entry.
668
*/
669
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
670
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
671
* The maximum error is +- MAXJSAMPLE; this sets the required size
672
* of the range_limit array.
673
*/
674
cur += GETJSAMPLE(*input_ptr);
675
cur = GETJSAMPLE(range_limit[cur]);
676
/* Select output value, accumulate into output code for this pixel */
677
pixcode = GETJSAMPLE(colorindex_ci[cur]);
678
*output_ptr += (JSAMPLE) pixcode;
679
/* Compute actual representation error at this pixel */
680
/* Note: we can do this even though we don't have the final */
681
/* pixel code, because the colormap is orthogonal. */
682
cur -= GETJSAMPLE(colormap_ci[pixcode]);
683
/* Compute error fractions to be propagated to adjacent pixels.
684
* Add these into the running sums, and simultaneously shift the
685
* next-line error sums left by 1 column.
686
*/
687
bnexterr = cur;
688
delta = cur * 2;
689
cur += delta; /* form error * 3 */
690
errorptr[0] = (FSERROR) (bpreverr + cur);
691
cur += delta; /* form error * 5 */
692
bpreverr = belowerr + cur;
693
belowerr = bnexterr;
694
cur += delta; /* form error * 7 */
695
/* At this point cur contains the 7/16 error value to be propagated
696
* to the next pixel on the current line, and all the errors for the
697
* next line have been shifted over. We are therefore ready to move on.
698
*/
699
input_ptr += dirnc; /* advance input ptr to next column */
700
output_ptr += dir; /* advance output ptr to next column */
701
errorptr += dir; /* advance errorptr to current column */
702
}
703
/* Post-loop cleanup: we must unload the final error value into the
704
* final fserrors[] entry. Note we need not unload belowerr because
705
* it is for the dummy column before or after the actual array.
706
*/
707
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
708
}
709
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
710
}
711
}
712
713
714
/*
715
* Allocate workspace for Floyd-Steinberg errors.
716
*/
717
718
LOCAL(void)
719
alloc_fs_workspace (j_decompress_ptr cinfo)
720
{
721
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
722
size_t arraysize;
723
int i;
724
725
arraysize = ((size_t) cinfo->output_width + (size_t) 2) * SIZEOF(FSERROR);
726
for (i = 0; i < cinfo->out_color_components; i++) {
727
cquantize->fserrors[i] = (FSERRPTR) (*cinfo->mem->alloc_large)
728
((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
729
}
730
}
731
732
733
/*
734
* Initialize for one-pass color quantization.
735
*/
736
737
METHODDEF(void)
738
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
739
{
740
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
741
size_t arraysize;
742
int i;
743
744
/* Install my colormap. */
745
cinfo->colormap = cquantize->sv_colormap;
746
cinfo->actual_number_of_colors = cquantize->sv_actual;
747
748
/* Initialize for desired dithering mode. */
749
switch (cinfo->dither_mode) {
750
case JDITHER_NONE:
751
if (cinfo->out_color_components == 3)
752
cquantize->pub.color_quantize = color_quantize3;
753
else
754
cquantize->pub.color_quantize = color_quantize;
755
break;
756
case JDITHER_ORDERED:
757
if (cinfo->out_color_components == 3)
758
cquantize->pub.color_quantize = quantize3_ord_dither;
759
else
760
cquantize->pub.color_quantize = quantize_ord_dither;
761
cquantize->row_index = 0; /* initialize state for ordered dither */
762
/* If user changed to ordered dither from another mode,
763
* we must recreate the color index table with padding.
764
* This will cost extra space, but probably isn't very likely.
765
*/
766
if (! cquantize->is_padded)
767
create_colorindex(cinfo);
768
/* Create ordered-dither tables if we didn't already. */
769
if (cquantize->odither[0] == NULL)
770
create_odither_tables(cinfo);
771
break;
772
case JDITHER_FS:
773
cquantize->pub.color_quantize = quantize_fs_dither;
774
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
775
/* Allocate Floyd-Steinberg workspace if didn't already. */
776
if (cquantize->fserrors[0] == NULL)
777
alloc_fs_workspace(cinfo);
778
/* Initialize the propagated errors to zero. */
779
arraysize = ((size_t) cinfo->output_width + (size_t) 2) * SIZEOF(FSERROR);
780
for (i = 0; i < cinfo->out_color_components; i++)
781
FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize);
782
break;
783
default:
784
ERREXIT(cinfo, JERR_NOT_COMPILED);
785
}
786
}
787
788
789
/*
790
* Finish up at the end of the pass.
791
*/
792
793
METHODDEF(void)
794
finish_pass_1_quant (j_decompress_ptr cinfo)
795
{
796
/* no work in 1-pass case */
797
}
798
799
800
/*
801
* Switch to a new external colormap between output passes.
802
* Shouldn't get to this module!
803
*/
804
805
METHODDEF(void)
806
new_color_map_1_quant (j_decompress_ptr cinfo)
807
{
808
ERREXIT(cinfo, JERR_MODE_CHANGE);
809
}
810
811
812
/*
813
* Module initialization routine for 1-pass color quantization.
814
*/
815
816
GLOBAL(void)
817
jinit_1pass_quantizer (j_decompress_ptr cinfo)
818
{
819
my_cquantize_ptr cquantize;
820
821
cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small)
822
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_cquantizer));
823
cinfo->cquantize = &cquantize->pub;
824
cquantize->pub.start_pass = start_pass_1_quant;
825
cquantize->pub.finish_pass = finish_pass_1_quant;
826
cquantize->pub.new_color_map = new_color_map_1_quant;
827
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
828
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
829
830
/* Make sure my internal arrays won't overflow */
831
if (cinfo->out_color_components > MAX_Q_COMPS)
832
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
833
/* Make sure colormap indexes can be represented by JSAMPLEs */
834
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
835
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
836
837
/* Create the colormap and color index table. */
838
create_colormap(cinfo);
839
create_colorindex(cinfo);
840
841
/* Allocate Floyd-Steinberg workspace now if requested.
842
* We do this now since it is FAR storage and may affect the memory
843
* manager's space calculations. If the user changes to FS dither
844
* mode in a later pass, we will allocate the space then, and will
845
* possibly overrun the max_memory_to_use setting.
846
*/
847
if (cinfo->dither_mode == JDITHER_FS)
848
alloc_fs_workspace(cinfo);
849
}
850
851
#endif /* QUANT_1PASS_SUPPORTED */
852
853