Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
wine-mirror
GitHub Repository: wine-mirror/wine
Path: blob/master/libs/jxr/image/decode/segdec.c
4393 views
1
//*@@@+++@@@@******************************************************************
2
//
3
// Copyright © Microsoft Corp.
4
// All rights reserved.
5
//
6
// Redistribution and use in source and binary forms, with or without
7
// modification, are permitted provided that the following conditions are met:
8
//
9
// • Redistributions of source code must retain the above copyright notice,
10
// this list of conditions and the following disclaimer.
11
// • Redistributions in binary form must reproduce the above copyright notice,
12
// this list of conditions and the following disclaimer in the documentation
13
// and/or other materials provided with the distribution.
14
//
15
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
19
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25
// POSSIBILITY OF SUCH DAMAGE.
26
//
27
//*@@@---@@@@******************************************************************
28
29
#include "strcodec.h"
30
#include "decode.h"
31
32
#ifdef MEM_TRACE
33
#define TRACE_MALLOC 1
34
#define TRACE_NEW 0
35
#define TRACE_HEAP 0
36
#include "memtrace.h"
37
#endif
38
39
extern const int dctIndex[3][16];
40
extern const int blkOffset[16];
41
extern const int blkOffsetUV[4];
42
static Int DecodeSignificantAbsLevel (struct CAdaptiveHuffman *pAHexpt, BitIOInfo* pIO);
43
44
//#undef X86OPT_INLINE
45
46
#ifdef X86OPT_INLINE
47
#define _FORCEINLINE __forceinline
48
#else // X86OPT_INLINE
49
#define _FORCEINLINE
50
#endif // X86OPT_INLINE
51
52
//================================================================
53
// Memory access functions
54
//================================================================
55
static U32 _FORCEINLINE _load4(void* pv)
56
{
57
#ifdef _BIG__ENDIAN_
58
return (*(U32*)pv);
59
#else // _BIG__ENDIAN_
60
#if defined(_M_IA64) || defined(_ARM_)
61
U32 v;
62
v = ((U16 *) pv)[0];
63
v |= ((U32)((U16 *) pv)[1]) << 16;
64
return _byteswap_ulong(v);
65
#else // _M_IA64
66
return _byteswap_ulong(*(U32*)pv);
67
#endif // _M_IA64
68
#endif // _BIG__ENDIAN_
69
}
70
71
static _FORCEINLINE U32 _peekBit16(BitIOInfo* pIO, U32 cBits)
72
{
73
PEEKBIT16(pIO, cBits);
74
// masking is not needed here because shift of unsigned int is implemented as a logical shift (SHR)!
75
}
76
77
#define LOAD16 _load4
78
static _FORCEINLINE U32 _flushBit16(BitIOInfo* pIO, U32 cBits)
79
{
80
FLUSHBIT16(pIO, cBits);
81
}
82
83
static _FORCEINLINE U32 _getBit16(BitIOInfo* pIO, U32 cBits)
84
{
85
U32 uiRet = _peekBit16(pIO, cBits);
86
_flushBit16(pIO, cBits);
87
88
return uiRet;
89
}
90
91
#define SIGN_BIT(TypeOrValue) (((UInt) 1) << (8 * sizeof (TypeOrValue) - 1))
92
/***********************************************************************************************************
93
Huffman decode (input is a fully built Huffman table)
94
***********************************************************************************************************/
95
Int getHuff(const short *pDecodeTable, BitIOInfo* pIO)
96
{
97
Int iSymbol, iSymbolHuff;
98
iSymbol = pDecodeTable[peekBit16(pIO, HUFFMAN_DECODE_ROOT_BITS)];
99
100
flushBit16(pIO, iSymbol < 0 ? HUFFMAN_DECODE_ROOT_BITS : iSymbol & ((1 << HUFFMAN_DECODE_ROOT_BITS_LOG) - 1));
101
iSymbolHuff = iSymbol >> HUFFMAN_DECODE_ROOT_BITS_LOG;
102
103
if (iSymbolHuff < 0) {
104
iSymbolHuff = iSymbol;
105
while ((iSymbolHuff = pDecodeTable[iSymbolHuff + SIGN_BIT (pDecodeTable[0]) + getBit16(pIO, 1)]) < 0);
106
}
107
return (iSymbolHuff);
108
}
109
110
#if 1
111
static _FORCEINLINE U32 _getBool16(BitIOInfo* pIO)
112
{
113
U32 uiRet = pIO->uiAccumulator >> 31;//_peekBit16(pIO, 1);
114
//_flushBit16(pIO, 1);
115
pIO->cBitsUsed++;
116
if (pIO->cBitsUsed < 16) {
117
pIO->uiAccumulator <<= 1;
118
}
119
else {
120
pIO->pbCurrent = MASKPTR(pIO->pbCurrent + ((pIO->cBitsUsed >> 3)/* & 2*/), pIO->iMask);
121
pIO->cBitsUsed &= 16 - 1;
122
pIO->uiAccumulator = LOAD16(pIO->pbCurrent) << pIO->cBitsUsed;
123
}
124
125
return uiRet;
126
}
127
128
static _FORCEINLINE I32 _getSign(BitIOInfo* pIO)
129
{
130
I32 uiRet = (int) pIO->uiAccumulator >> 31;//_peekBit16(pIO, 1);
131
//_flushBit16(pIO, 1);
132
pIO->cBitsUsed++;
133
if (pIO->cBitsUsed < 16) {
134
pIO->uiAccumulator <<= 1;
135
}
136
else {
137
pIO->pbCurrent = MASKPTR(pIO->pbCurrent + ((pIO->cBitsUsed >> 3)/* & 2*/), pIO->iMask);
138
pIO->cBitsUsed &= 16 - 1;
139
pIO->uiAccumulator = LOAD16(pIO->pbCurrent) << pIO->cBitsUsed;
140
}
141
142
return uiRet;
143
}
144
#else
145
#define _getBool16(x) _getBit16((x),1)
146
#define _getSign(x) (-_getBit16((x),1))
147
#endif
148
149
/** this function returns cBits if zero is read, or a signed value if first cBits are not all zero **/
150
static _FORCEINLINE I32 _getBit16s(BitIOInfo* pIO, U32 cBits)
151
{
152
I32 iRet = (I32)_peekBit16(pIO, cBits + 1);
153
iRet = ((iRet >> 1) ^ (-(iRet & 1))) + (iRet & 1);
154
_flushBit16(pIO, cBits + (iRet != 0));
155
return iRet;
156
}
157
158
/*************************************************************************
159
Huffman decoding with short tables
160
*************************************************************************/
161
static _FORCEINLINE Int _getHuffShort(const short *pDecodeTable, BitIOInfo* pIO)
162
{
163
Int iSymbol = pDecodeTable[_peekBit16(pIO, HUFFMAN_DECODE_ROOT_BITS)];
164
assert(iSymbol >= 0);
165
// for some strange reason, inlining flushBit doesn't work well
166
flushBit16(pIO, iSymbol & ((1 << HUFFMAN_DECODE_ROOT_BITS_LOG) - 1));
167
return (iSymbol >> HUFFMAN_DECODE_ROOT_BITS_LOG);
168
}
169
/*************************************************************************
170
Adapt + Huffman init
171
*************************************************************************/
172
static Int AdaptDecFixed (CAdaptiveHuffman *pAH)
173
{
174
AdaptDiscriminant (pAH);
175
return ICERR_OK;
176
}
177
178
/*************************************************************************
179
DecodeCBP
180
*************************************************************************/
181
static Void DecodeCBP(CWMImageStrCodec * pSC, CCodingContext *pContext)
182
{
183
BitIOInfo* pIO = pContext->m_pIOAC;
184
const COLORFORMAT cf = pSC->m_param.cfColorFormat;
185
const Int iChannel = (cf == NCOMPONENT || cf == CMYK) ? (Int) pSC->m_param.cNumChannels : 1;
186
Int iCBPCY, iCBPCU , iCBPCV;
187
Int k, iBlock, i;
188
Int iNumCBP;
189
Bool bIsChroma;
190
CAdaptiveHuffman *pAHCBP = pContext->m_pAdaptHuffCBPCY;
191
CAdaptiveHuffman *pAHCBP1 = pContext->m_pAdaptHuffCBPCY1;
192
CAdaptiveHuffman *pAHex1 = pContext->m_pAHexpt[1];
193
194
readIS_L1(pSC, pIO);
195
196
for (i = 0; i < iChannel; i++) {
197
198
iCBPCY = iCBPCU = iCBPCV = 0;
199
iNumCBP = _getHuffShort(pAHCBP1->m_hufDecTable, pIO);
200
pAHCBP1->m_iDiscriminant += pAHCBP1->m_pDelta[iNumCBP];
201
202
switch (iNumCBP) {
203
case 2:
204
iNumCBP = _getBit16(pIO, 2);
205
if (iNumCBP == 0)
206
iNumCBP = 3;
207
else if (iNumCBP == 1)
208
iNumCBP = 5;
209
else {
210
static const Int aTab[] = { 6, 9, 10, 12 };
211
iNumCBP = aTab[iNumCBP * 2 + _getBool16 (pIO) - 4];
212
}
213
break;
214
case 1:
215
iNumCBP = 1 << _getBit16(pIO, 2);
216
break;
217
case 3:
218
iNumCBP = 0xf ^ (1 << _getBit16(pIO, 2));
219
break;
220
case 4:
221
iNumCBP = 0xf;
222
}
223
224
for (iBlock = 0; iBlock < 4; iBlock++) {
225
if (iNumCBP & (1 << iBlock)) {
226
static const UInt gFLC0[] = { 0,2,1,2,2,0 };
227
static const UInt gOff0[] = { 0,4,2,8,12,1 };
228
static const UInt gOut0[] = { 0,15,3,12, 1,2,4,8, 5,6,9,10, 7,11,13,14 };
229
Int iNumBlockCBP = getHuff(pAHCBP->m_hufDecTable, pIO);
230
unsigned int val = (unsigned int) iNumBlockCBP + 1, iCode1;
231
232
pAHCBP->m_iDiscriminant += pAHCBP->m_pDelta[iNumBlockCBP];
233
iNumBlockCBP = 0;
234
235
if (val >= 6) { // chroma present
236
if (_getBool16 (pIO)) {
237
iNumBlockCBP = 0x10;
238
}
239
else if (_getBool16 (pIO)) {
240
iNumBlockCBP = 0x20;
241
}
242
else {
243
iNumBlockCBP = 0x30;
244
}
245
if (val == 9) {
246
if (_getBool16 (pIO)) {
247
// do nothing
248
}
249
else if (_getBool16 (pIO)) {
250
val = 10;
251
}
252
else {
253
val = 11;
254
}
255
}
256
val -= 6;
257
}
258
iCode1 = gOff0[val];
259
if (gFLC0[val]) {
260
iCode1 += _getBit16(pIO, gFLC0[val]);
261
}
262
iNumBlockCBP += gOut0[iCode1];
263
264
switch (cf) {
265
case YUV_444:
266
iCBPCY |= ((iNumBlockCBP & 0xf) << (iBlock * 4));
267
for (k = 0; k < 2; k++) {
268
bIsChroma = ((iNumBlockCBP>>(k+4)) & 0x01);
269
if (bIsChroma) { // U is present in block
270
Int iCode = _getHuffShort(pAHex1->m_hufDecTable, pIO);
271
switch (iCode) {
272
case 1:
273
iCode = _getBit16(pIO, 2);
274
if (iCode == 0)
275
iCode = 3;
276
else if (iCode == 1)
277
iCode = 5;
278
else {
279
static const Int aTab[] = { 6, 9, 10, 12 };
280
iCode = aTab[iCode * 2 + _getBool16 (pIO) - 4];
281
}
282
break;
283
case 0:
284
iCode = 1 << _getBit16(pIO, 2);
285
break;
286
case 2:
287
iCode = 0xf ^ (1 << _getBit16(pIO, 2));
288
break;
289
case 3:
290
iCode = 0xf;
291
}
292
if (k == 0)
293
iCBPCU |= (iCode << (iBlock * 4));
294
else
295
iCBPCV |= (iCode << (iBlock * 4));
296
}
297
}
298
break;
299
300
case YUV_420:
301
iCBPCY |= ((iNumBlockCBP & 0xf) << (iBlock * 4));
302
iCBPCU |= ((iNumBlockCBP >> 4) & 0x1) << (iBlock);
303
iCBPCV |= ((iNumBlockCBP >> 5) & 0x1) << (iBlock);
304
break;
305
306
case YUV_422:
307
iCBPCY |= ((iNumBlockCBP & 0xf) << (iBlock * 4));
308
for (k = 0; k < 2; k ++) {
309
Int iCode = 5;
310
const Int iShift[4] = {0, 1, 4, 5};
311
if((iNumBlockCBP >> (k + 4)) & 0x01) {
312
if(_getBool16(pIO)) {
313
iCode = 1;
314
}
315
else if(_getBool16(pIO)){
316
iCode = 4;
317
}
318
iCode <<= iShift[iBlock];
319
if(k == 0) iCBPCU |= iCode;
320
else iCBPCV |= iCode;
321
}
322
}
323
break;
324
325
default:
326
iCBPCY |= (iNumBlockCBP << (iBlock * 4));
327
}
328
}
329
}
330
331
pSC->MBInfo.iDiffCBP[i] = iCBPCY;
332
if (cf == YUV_420 || cf == YUV_444 || cf == YUV_422) {
333
pSC->MBInfo.iDiffCBP[1] = iCBPCU;
334
pSC->MBInfo.iDiffCBP[2] = iCBPCV;
335
}
336
}
337
}
338
339
/*************************************************************************
340
Experimental code -- decodeBlock
341
SR = <0 1 2> == <last, nonsignificant, significant run>
342
alphabet 12:
343
pAHexpt[0] == <SR', SL, SR | first symbol>
344
alphabet 6:
345
pAHexpt[1] == <SR', SL | continuous>
346
pAHexpt[2] == <SR', SL | continuous>
347
alphabet 4:
348
pAHexpt[3] == <SR', SL | 2 free slots> (SR may be last or insignificant only)
349
alphabet f(run) (this can be extended to 6 contexts - SL and SR')
350
pAHexpt[4] == <run | continuous>
351
alphabet f(lev) (this can be extended to 9 contexts)
352
pAHexpt[5-6] == <lev | continuous> first symbol
353
pAHexpt[7-8] == <lev | continuous> condition on SRn no use
354
*************************************************************************/
355
356
Int _FORCEINLINE DecodeSignificantRun (Int iMaxRun, struct CAdaptiveHuffman *pAHexpt, BitIOInfo* pIO)
357
{
358
Int iIndex;
359
static const Int aRemap[] = {1,2,3,5,7, 1,2,3,5,7, /*1,2,3,4,6, */1,2,3,4,5 };
360
Int iBin = gSignificantRunBin[iMaxRun];
361
Int iRun = 0, iFLC = 0;
362
363
if (iMaxRun < 5) {
364
if (iMaxRun == 1) {
365
return 1;
366
}
367
else if (_getBool16 (pIO)) {
368
return 1;
369
}
370
else if (iMaxRun == 2 || _getBool16 (pIO)) {
371
return 2;
372
}
373
else if (iMaxRun == 3 || _getBool16 (pIO)) {
374
return 3;
375
}
376
return 4;
377
}
378
iIndex = _getHuffShort (pAHexpt->m_hufDecTable, pIO);
379
iIndex += iBin * 5;
380
iRun = aRemap[iIndex];
381
iFLC = gSignificantRunFixedLength[iIndex];
382
if (iFLC) {
383
iRun += _getBit16 (pIO, iFLC);
384
}
385
return iRun;
386
}
387
388
#ifndef X86OPT_INLINE
389
static Void DecodeFirstIndex (Int *pIndex, struct CAdaptiveHuffman *pAHexpt,
390
BitIOInfo* pIO)
391
#else
392
static __forceinline Void DecodeFirstIndex (Int *pIndex, struct CAdaptiveHuffman *pAHexpt,
393
BitIOInfo* pIO)
394
#endif
395
{
396
Int iIndex;
397
iIndex = getHuff (pAHexpt->m_hufDecTable, pIO);
398
pAHexpt->m_iDiscriminant += pAHexpt->m_pDelta[iIndex];
399
pAHexpt->m_iDiscriminant1 += pAHexpt->m_pDelta1[iIndex];
400
*pIndex = iIndex;
401
}
402
403
#ifndef X86OPT_INLINE
404
static Void DecodeIndex (Int *pIndex, Int iLoc, struct CAdaptiveHuffman *pAHexpt,
405
BitIOInfo* pIO)
406
#else
407
static __forceinline Void DecodeIndex (Int *pIndex, Int iLoc,
408
struct CAdaptiveHuffman *pAHexpt, BitIOInfo* pIO)
409
#endif
410
{
411
Int iIndex;
412
if (iLoc < 15) {
413
iIndex = _getHuffShort (pAHexpt->m_hufDecTable, pIO);
414
pAHexpt->m_iDiscriminant += pAHexpt->m_pDelta[iIndex];
415
pAHexpt->m_iDiscriminant1 += pAHexpt->m_pDelta1[iIndex];
416
*pIndex = iIndex;
417
}
418
else if (iLoc == 15) {
419
if (_getBool16 (pIO) == 0) {
420
iIndex = 0;
421
}
422
else if (_getBool16 (pIO) == 0) {
423
iIndex = 2;
424
}
425
else {
426
iIndex = 1 + 2 * _getBool16 (pIO);
427
}
428
*pIndex = iIndex;
429
}
430
else { //if (iLoc == 16) { /* deterministic */
431
Int iSL = _getBit16 (pIO, 1/* + 1*/);
432
*pIndex = iSL;// >> 1;
433
}
434
}
435
436
static _FORCEINLINE Int DecodeBlock (Bool bChroma, Int *aLocalCoef, struct CAdaptiveHuffman **pAHexpt,
437
const Int iContextOffset, BitIOInfo* pIO, Int iLocation)
438
{
439
Int iSR, iSRn, iIndex, iNumNonzero = 1, iCont, iSign;
440
struct CAdaptiveHuffman **pAH1 = pAHexpt + iContextOffset + bChroma * 3;
441
442
/** first symbol **/
443
DecodeFirstIndex (&iIndex, /*&iSign, */pAH1[0], pIO);
444
iSR = (iIndex & 1);
445
iSRn = iIndex >> 2;
446
447
iCont = iSR & iSRn;
448
iSign = _getSign(pIO);
449
450
if (iIndex & 2 /* iSL */) {
451
aLocalCoef[1] = (DecodeSignificantAbsLevel (pAHexpt[6 + iContextOffset + iCont], pIO) ^ iSign) - iSign;
452
}
453
else {
454
aLocalCoef[1] = (1 | iSign); // 0 -> 1; -1 -> -1
455
}
456
aLocalCoef[0] = 0;
457
if (iSR == 0) {
458
aLocalCoef[0] = DecodeSignificantRun (15 - iLocation, pAHexpt[0], pIO);
459
}
460
iLocation += aLocalCoef[0] + 1;
461
462
while (iSRn != 0) {
463
iSR = iSRn & 1;
464
aLocalCoef[iNumNonzero * 2] = 0;
465
if (iSR == 0) {
466
aLocalCoef[iNumNonzero * 2] = DecodeSignificantRun (15 - iLocation, pAHexpt[0], pIO);
467
}
468
iLocation += aLocalCoef[iNumNonzero * 2] + 1;
469
DecodeIndex (&iIndex, /*&iSign, */iLocation, pAH1[iCont + 1], pIO);
470
iSRn = iIndex >> 1;
471
472
assert (iSRn >= 0 && iSRn < 3);
473
iCont &= iSRn; /** huge difference! **/
474
iSign = _getSign(pIO);
475
476
if (iIndex & 1 /* iSL */) {
477
aLocalCoef[iNumNonzero * 2 + 1] =
478
(DecodeSignificantAbsLevel (pAHexpt[6 + iContextOffset + iCont], pIO) ^ iSign) - iSign;
479
}
480
else {
481
aLocalCoef[iNumNonzero * 2 + 1] = (1 | iSign); // 0 -> 1; -1 -> -1 (was 1 + (iSign * 2))
482
}
483
iNumNonzero++;
484
}
485
return iNumNonzero;
486
}
487
488
/*************************************************************************
489
DecodeBlockHighpass :
490
*************************************************************************/
491
static _FORCEINLINE Int DecodeBlockHighpass (const Bool bChroma, struct CAdaptiveHuffman **pAHexpt,
492
BitIOInfo* pIO, const Int iQP, Int *pCoef, CAdaptiveScan *pScan)
493
{
494
const Int iContextOffset = CTDC + CONTEXTX;
495
UInt iLoc = 1;
496
Int iSR, iSRn, iIndex, iNumNonzero = 1, iCont, iSign, iLevel;
497
struct CAdaptiveHuffman **pAH1 = pAHexpt + iContextOffset + bChroma * 3;
498
const CAdaptiveScan *pConstScan = (const CAdaptiveScan *) pScan;
499
500
/** first symbol **/
501
DecodeFirstIndex (&iIndex, /*&iSign, */pAH1[0], pIO);
502
iSR = (iIndex & 1);
503
iSRn = iIndex >> 2;
504
505
iCont = iSR & iSRn;
506
iSign = _getSign(pIO);
507
508
iLevel = (iQP ^ iSign) - iSign;
509
if (iIndex & 2 /* iSL */) {
510
iLevel *= DecodeSignificantAbsLevel (pAHexpt[6 + iContextOffset + iCont], pIO);// ^ iSign) - iSign;
511
}
512
//else {
513
// iLevel = (1 | iSign); // 0 -> 1; -1 -> -1
514
//}
515
if (iSR == 0) {
516
iLoc += DecodeSignificantRun (15 - iLoc, pAHexpt[0], pIO);
517
}
518
iLoc &= 0xf;
519
pCoef[pConstScan[iLoc].uScan] = (PixelI) iLevel;//(PixelI)(iQP * iLevel);
520
pScan[iLoc].uTotal++;
521
if (iLoc && pScan[iLoc].uTotal > pScan[iLoc - 1].uTotal) {
522
CAdaptiveScan cTemp = pScan[iLoc];
523
pScan[iLoc] = pScan[iLoc - 1];
524
pScan[iLoc - 1] = cTemp;
525
}
526
iLoc = (iLoc + 1) & 0xf;
527
//iLoc++;
528
529
while (iSRn != 0) {
530
iSR = iSRn & 1;
531
if (iSR == 0) {
532
iLoc += DecodeSignificantRun (15 - iLoc, pAHexpt[0], pIO);
533
if (iLoc >= 16)
534
return 16;
535
}
536
DecodeIndex (&iIndex, /*&iSign, */iLoc + 1, pAH1[iCont + 1], pIO);
537
iSRn = iIndex >> 1;
538
539
assert (iSRn >= 0 && iSRn < 3);
540
iCont &= iSRn; /** huge difference! **/
541
iSign = _getSign(pIO);
542
543
iLevel = (iQP ^ iSign) - iSign;
544
if (iIndex & 1 /* iSL */) {
545
iLevel *= DecodeSignificantAbsLevel (pAHexpt[6 + iContextOffset + iCont], pIO);// ^ iSign) - iSign;
546
//iLevel = (DecodeSignificantAbsLevel (pAHexpt[6 + iContextOffset + iCont], pIO) ^ iSign) - iSign;
547
}
548
//else {
549
// iLevel = (1 | iSign); // 0 -> 1; -1 -> -1 (was 1 + (iSign * 2))
550
//}
551
552
pCoef[pConstScan[iLoc].uScan] = (PixelI) iLevel;//(PixelI)(iQP * iLevel);
553
pScan[iLoc].uTotal++;
554
if (iLoc && pScan[iLoc].uTotal > pScan[iLoc - 1].uTotal) {
555
CAdaptiveScan cTemp = pScan[iLoc];
556
pScan[iLoc] = pScan[iLoc - 1];
557
pScan[iLoc - 1] = cTemp;
558
}
559
560
iLoc = (iLoc + 1) & 0xf;
561
iNumNonzero++;
562
}
563
return iNumNonzero;
564
}
565
566
/*************************************************************************
567
DecodeBlockAdaptive
568
*************************************************************************/
569
static _FORCEINLINE Int DecodeBlockAdaptive (Bool bNoSkip, Bool bChroma, CAdaptiveHuffman **pAdHuff,
570
BitIOInfo *pIO, BitIOInfo *pIOFL,
571
PixelI *pCoeffs, CAdaptiveScan *pScan,
572
const Int iModelBits, const Int iTrim, const Int iQP,
573
const Int *pOrder, const Bool bSkipFlexbits)
574
{
575
// const Int iLocation = 1;
576
// const Int iContextOffset = CTDC + CONTEXTX;
577
Int kk, iNumNonzero = 0, iFlex = iModelBits - iTrim;
578
579
if (iFlex < 0 || bSkipFlexbits)
580
iFlex = 0;
581
582
if (bNoSkip) {
583
const Int iQP1 = (iQP << iModelBits);
584
iNumNonzero = DecodeBlockHighpass (bChroma, pAdHuff, pIO, iQP1, pCoeffs, pScan);
585
}
586
if (iFlex) {
587
UInt k;
588
if (iQP + iTrim == 1) { // only iTrim = 0, iQP = 1 is legal
589
assert (iTrim == 0);
590
assert (iQP == 1);
591
592
for (k = 1; k < 16; k++) {
593
PixelI *pk = pCoeffs + pOrder[k];
594
if (*pk < 0) {
595
Int fine = _getBit16(pIOFL, iFlex);
596
*pk -= (PixelI)(fine);
597
}
598
else if (*pk > 0) {
599
Int fine = _getBit16(pIOFL, iFlex);
600
*pk += (PixelI)(fine);
601
}
602
else {
603
*pk = (PixelI)(_getBit16s(pIOFL, iFlex));
604
}
605
}
606
}
607
else {
608
const Int iQP1 = iQP << iTrim;
609
for (k = 1; k < 16; k++) {
610
kk = pCoeffs[pOrder[k]];
611
if (kk < 0) {
612
Int fine = _getBit16(pIOFL, iFlex);
613
pCoeffs[pOrder[k]] -= (PixelI)(iQP1 * fine);
614
}
615
else if (kk > 0) {
616
Int fine = _getBit16(pIOFL, iFlex);
617
pCoeffs[pOrder[k]] += (PixelI)(iQP1 * fine);
618
}
619
else {
620
pCoeffs[pOrder[k]] = (PixelI)(iQP1 * _getBit16s(pIOFL, iFlex));
621
}
622
}
623
}
624
}
625
626
return iNumNonzero;
627
}
628
629
630
/*************************************************************************
631
GetCoeffs
632
*************************************************************************/
633
static _FORCEINLINE Int DecodeCoeffs (CWMImageStrCodec * pSC, CCodingContext *pContext,
634
Int iMBX, Int iMBY,
635
BitIOInfo* pIO, BitIOInfo *pIOFL)
636
{
637
CWMITile * pTile = pSC->pTile + pSC->cTileColumn;
638
const COLORFORMAT cf = pSC->m_param.cfColorFormat;
639
const Int iChannels = (Int) pSC->m_param.cNumChannels;
640
const Int iPlanes = (cf == YUV_420 || cf == YUV_422) ? 1 : iChannels;
641
Int iQP;
642
CAdaptiveScan *pScan;
643
PixelI *pCoeffs;
644
Int i, iBlock, iSubblock, iNBlocks = 4;
645
Int iModelBits = pContext->m_aModelAC.m_iFlcBits[0];
646
Int aLaplacianMean[2] = { 0, 0}, *pLM = aLaplacianMean + 0;
647
const Int *pOrder = dctIndex[0];
648
const Int iOrient = pSC->MBInfo.iOrientation;
649
Bool bChroma = FALSE;
650
651
Int iCBPCU = pSC->MBInfo.iCBP[1];
652
Int iCBPCV = pSC->MBInfo.iCBP[2];
653
Int iCBPCY = pSC->MBInfo.iCBP[0];
654
655
UNREFERENCED_PARAMETER( iMBX );
656
UNREFERENCED_PARAMETER( iMBY );
657
658
/** set scan arrays and other MB level constants **/
659
if (iOrient == 1) {
660
pScan = pContext->m_aScanVert;
661
}
662
else {
663
pScan = pContext->m_aScanHoriz;
664
}
665
666
if (cf == YUV_420) {
667
iNBlocks = 6;
668
iCBPCY += (iCBPCU << 16) + (iCBPCV << 20);
669
}
670
else if (cf == YUV_422) {
671
iNBlocks = 8;
672
iCBPCY += (iCBPCU << 16) + (iCBPCV << 24);
673
}
674
675
for (i = 0; i < iPlanes; i++) {
676
Int iIndex = 0, iNumNonZero;
677
678
if(pSC->WMISCP.sbSubband != SB_NO_FLEXBITS)
679
readIS_L1(pSC, pIOFL);
680
681
for (iBlock = 0; iBlock < iNBlocks; iBlock++) {
682
683
readIS_L2(pSC, pIO);
684
if (pIO != pIOFL)
685
readIS_L2(pSC, pIOFL);
686
687
iQP = (pSC->m_param.bTranscode ? 1 : pTile->pQuantizerHP[iPlanes > 1 ? i : (iBlock > 3 ? (cf == YUV_420 ? iBlock - 3 : iBlock / 2 - 1) : 0)][pSC->MBInfo.iQIndexHP].iQP);
688
689
for (iSubblock = 0; iSubblock < 4; iSubblock++, iIndex++, iCBPCY >>= 1) {
690
pCoeffs = pSC->p1MBbuffer[i] + blkOffset[iIndex & 0xf];
691
692
//if (iBlock < 4) {//(cf == YUV_444) {
693
//bBlockNoSkip = ((iTempCBPC & (1 << iIndex1)) != 0);
694
//pCoeffs = pSC->p1MBbuffer[iBlock >> 2] + blkOffset[iIndex & 0xf];
695
//}
696
//else {
697
if (iBlock >= 4) {
698
if(cf == YUV_420) {
699
pCoeffs = pSC->p1MBbuffer[iBlock - 3] + blkOffsetUV[iSubblock];
700
}
701
else { // YUV_422
702
pCoeffs = pSC->p1MBbuffer[1 + (1 & (iBlock >> 1))] + ((iBlock & 1) * 32) + blkOffsetUV_422[iSubblock];
703
}
704
}
705
706
/** read AC values **/
707
assert (pSC->m_Dparam->bSkipFlexbits == 0 || pSC->WMISCP.bfBitstreamFormat == FREQUENCY || pSC->WMISCP.sbSubband == SB_NO_FLEXBITS);
708
iNumNonZero = DecodeBlockAdaptive ((iCBPCY & 1), bChroma, pContext->m_pAHexpt,
709
pIO, pIOFL, pCoeffs, pScan, iModelBits, pContext->m_iTrimFlexBits,
710
iQP, pOrder, pSC->m_Dparam->bSkipFlexbits);
711
if(iNumNonZero > 16) // something is wrong!
712
return ICERR_ERROR;
713
// shouldn't this be > 15?
714
(*pLM) += iNumNonZero;
715
}
716
if (iBlock == 3) {
717
iModelBits = pContext->m_aModelAC.m_iFlcBits[1];
718
pLM = aLaplacianMean + 1;
719
bChroma = TRUE;
720
}
721
}
722
723
iCBPCY = pSC->MBInfo.iCBP[(i + 1) & 0xf];
724
assert (MAX_CHANNELS == 16);
725
}
726
727
/** update model at end of MB **/
728
UpdateModelMB (cf, iChannels, aLaplacianMean, &(pContext->m_aModelAC));
729
return ICERR_OK;
730
}
731
732
/*************************************************************************
733
DecodeSignificantAbsLevel
734
*************************************************************************/
735
#ifndef X86OPT_INLINE
736
static Int DecodeSignificantAbsLevel (struct CAdaptiveHuffman *pAHexpt, BitIOInfo* pIO)
737
#else
738
static __forceinline Int DecodeSignificantAbsLevel (struct CAdaptiveHuffman *pAHexpt, BitIOInfo* pIO)
739
#endif
740
{
741
UInt iIndex;
742
Int iFixed, iLevel;
743
static const Int aRemap[] = { 2, 3, 4, 6, 10, 14 };
744
static const Int aFixedLength[] = { 0, 0, 1, 2, 2, 2 };
745
746
iIndex = (UInt)getHuff (pAHexpt->m_hufDecTable, pIO);
747
assert(iIndex <= 6);
748
pAHexpt->m_iDiscriminant += pAHexpt->m_pDelta[iIndex];
749
if (iIndex < 2) {
750
iLevel = iIndex + 2; // = aRemap[iIndex]
751
}
752
else if (iIndex < 6) {
753
iFixed = aFixedLength[iIndex];
754
iLevel = aRemap[iIndex] + _getBit16 (pIO, iFixed);
755
}
756
else{
757
iFixed = _getBit16 (pIO, 4) + 4;
758
if (iFixed == 19) {
759
iFixed += _getBit16 (pIO, 2);
760
if (iFixed == 22) {
761
iFixed += _getBit16 (pIO, 3);
762
}
763
}
764
iLevel = 2 + (1 << iFixed);
765
iIndex = getBit32 (pIO, iFixed);
766
iLevel += iIndex;
767
}
768
return iLevel;
769
}
770
771
U8 decodeQPIndex(BitIOInfo* pIO,U8 cBits)
772
{
773
if(_getBit16(pIO, 1) == 0)
774
return 0;
775
return (U8)(_getBit16(pIO, cBits) + 1);
776
}
777
778
/*************************************************************************
779
DecodeSecondStageCoeff
780
*************************************************************************/
781
Int DecodeMacroblockLowpass (CWMImageStrCodec * pSC, CCodingContext *pContext,
782
Int iMBX, Int iMBYdummy)
783
{
784
const COLORFORMAT cf = pSC->m_param.cfColorFormat;
785
const Int iChannels = (Int) pSC->m_param.cNumChannels;
786
const Int iFullPlanes = (cf == YUV_420 || cf == YUV_422) ? 2 : iChannels;
787
Int k;
788
CAdaptiveScan *pScan = pContext->m_aScanLowpass;
789
BitIOInfo* pIO = pContext->m_pIOLP;
790
Int iModelBits = pContext->m_aModelLP.m_iFlcBits[0];
791
Int aRLCoeffs[32], iNumNonzero = 0, iIndex = 0;
792
Int aLaplacianMean[2] = { 0, 0}, *pLM = aLaplacianMean;
793
Int iChannel, iCBP = 0;
794
#ifndef ARMOPT_BITIO // ARM opt always uses 32-bit version of getBits
795
U32 (*getBits)(BitIOInfo* pIO, U32 cBits) = _getBit16;
796
#endif
797
CWMIMBInfo * pMBInfo = &pSC->MBInfo;
798
I32 *aDC[MAX_CHANNELS];
799
800
UNREFERENCED_PARAMETER( iMBX );
801
UNREFERENCED_PARAMETER( iMBYdummy );
802
803
readIS_L1(pSC, pIO);
804
if((pSC->WMISCP.bfBitstreamFormat != SPATIAL) && (pSC->pTile[pSC->cTileColumn].cBitsLP > 0)) // MB-based LP QP index
805
pMBInfo->iQIndexLP = decodeQPIndex(pIO, pSC->pTile[pSC->cTileColumn].cBitsLP);
806
807
// set arrays
808
for (k = 0; k < (Int) pSC->m_param.cNumChannels; k++) {
809
aDC[k & 15] = pMBInfo->iBlockDC[k];
810
}
811
812
/** reset adaptive scan totals **/
813
if (pSC->m_bResetRGITotals) {
814
int iScale = 2;
815
int iWeight = iScale * 16;
816
pScan[0].uTotal = MAXTOTAL;
817
for (k = 1; k < 16; k++) {
818
pScan[k].uTotal = iWeight;
819
iWeight -= iScale;
820
}
821
}
822
823
/** in raw mode, this can take 6% of the bits in the extreme low rate case!!! **/
824
if (cf == YUV_420 || cf == YUV_422 || cf == YUV_444) {
825
int iCountM = pContext->m_iCBPCountMax, iCountZ = pContext->m_iCBPCountZero;
826
int iMax = iFullPlanes * 4 - 5; /* actually (1 << iNChannels) - 1 **/
827
if (iCountZ <= 0 || iCountM < 0) {
828
iCBP = 0;
829
if (_getBool16 (pIO)) {
830
iCBP = 1;
831
k = _getBit16 (pIO, iFullPlanes - 1);
832
if (k) {
833
iCBP = k * 2 + _getBit16(pIO, 1);
834
}
835
}
836
if (iCountM < iCountZ)
837
iCBP = iMax - iCBP;
838
}
839
else {
840
iCBP = _getBit16(pIO, iFullPlanes);
841
}
842
843
iCountM += 1 - 4 * (iCBP == iMax);//(b + c - 2*a);
844
iCountZ += 1 - 4 * (iCBP == 0);//(a + b - 2*c);
845
if (iCountM < -8)
846
iCountM = -8;
847
else if (iCountM > 7)
848
iCountM = 7;
849
pContext->m_iCBPCountMax = iCountM;
850
851
if (iCountZ < -8)
852
iCountZ = -8;
853
else if (iCountZ > 7)
854
iCountZ = 7;
855
pContext->m_iCBPCountZero = iCountZ;
856
}
857
else { /** 1 or N channel **/
858
for (iChannel = 0; iChannel < iChannels; iChannel++)
859
iCBP |= (getBits (pIO, 1) << iChannel);
860
}
861
862
#ifndef ARMOPT_BITIO // ARM opt always uses 32-bit version of getBits
863
if (pContext->m_aModelLP.m_iFlcBits[0] > 14 || pContext->m_aModelLP.m_iFlcBits[1] > 14) {
864
getBits = getBit32;
865
}
866
#endif
867
868
for (iChannel = 0; iChannel < iFullPlanes; iChannel++) {
869
PixelI *pCoeffs = aDC[iChannel];
870
871
if (iCBP & 1) {
872
iNumNonzero = DecodeBlock (iChannel > 0, aRLCoeffs, pContext->m_pAHexpt,
873
CTDC, pIO, 1 + 9 * ((cf == YUV_420) && (iChannel == 1))
874
+ ((cf == YUV_422) && (iChannel == 1)));
875
876
if ((cf == YUV_420 || cf == YUV_422) && iChannel) {
877
Int aTemp[16]; //14 required, 16 for security
878
static const Int aRemap[] = { 4, 1,2,3, 5,6,7 };
879
const Int *pRemap = aRemap + (cf == YUV_420);
880
const Int iCount = (cf == YUV_420) ? 6 : 14;
881
882
(*pLM) += iNumNonzero;
883
iIndex = 0;
884
memset (aTemp, 0, sizeof(aTemp));
885
886
for (k = 0; k < iNumNonzero; k++) {
887
iIndex += aRLCoeffs[k * 2];
888
aTemp[iIndex & 0xf] = aRLCoeffs[k * 2 + 1];
889
iIndex++;
890
}
891
892
for (k = 0; k < iCount; k++) {
893
aDC[(k & 1) + 1][pRemap[k >> 1]] = aTemp[k];
894
}
895
}
896
else {
897
(*pLM) += iNumNonzero;
898
iIndex = 1;
899
900
for (k = 0; k < iNumNonzero; k++) {
901
iIndex += aRLCoeffs[k * 2];
902
pCoeffs[pScan[iIndex].uScan] = aRLCoeffs[k * 2 + 1];
903
pScan[iIndex].uTotal++;
904
if (pScan[iIndex].uTotal > pScan[iIndex - 1].uTotal) {
905
CAdaptiveScan cTemp = pScan[iIndex];
906
pScan[iIndex] = pScan[iIndex - 1];
907
pScan[iIndex - 1] = cTemp;
908
}
909
iIndex++;
910
}
911
}
912
}
913
914
if (iModelBits) {
915
if ((cf == YUV_420 || cf == YUV_422) && iChannel) {
916
for (k = 1; k < (cf == YUV_420 ? 4 : 8); k++) {
917
if (aDC[1][k] > 0) {
918
aDC[1][k] <<= iModelBits;
919
aDC[1][k] += getBits (pIO, iModelBits);
920
}
921
else if (aDC[1][k] < 0) {
922
aDC[1][k] <<= iModelBits;
923
aDC[1][k] -= getBits (pIO, iModelBits);
924
}
925
else {
926
aDC[1][k] = getBits (pIO, iModelBits);
927
if (aDC[1][k] && _getBool16 (pIO))
928
aDC[1][k] = -aDC[1][k];
929
}
930
931
if (aDC[2][k] > 0) {
932
aDC[2][k] <<= iModelBits;
933
aDC[2][k] += getBits (pIO, iModelBits);
934
}
935
else if (aDC[2][k] < 0) {
936
aDC[2][k] <<= iModelBits;
937
aDC[2][k] -= getBits (pIO, iModelBits);
938
}
939
else {
940
aDC[2][k] = getBits (pIO, iModelBits);
941
if (aDC[2][k] && _getBool16 (pIO))
942
aDC[2][k] = -aDC[2][k];
943
}
944
}
945
}
946
else {
947
#ifdef WIN32
948
const Int iMask = (1 << iModelBits) - 1;
949
#endif // WIN32
950
for (k = 1; k < 16; k++) {
951
#ifdef WIN32
952
if (pCoeffs[k]) {
953
Int r1 = _rotl(pCoeffs[k], iModelBits);
954
pCoeffs[k] = (r1 ^ getBits(pIO, iModelBits)) - (r1 & iMask);
955
}
956
#else // WIN32
957
if (pCoeffs[k] > 0) {
958
pCoeffs[k] <<= iModelBits;
959
pCoeffs[k] += getBits (pIO, iModelBits);
960
}
961
else if (pCoeffs[k] < 0) {
962
pCoeffs[k] <<= iModelBits;
963
pCoeffs[k] -= getBits (pIO, iModelBits);
964
}
965
#endif // WIN32
966
else {
967
//pCoeffs[k] = getBits (pIO, iModelBits);
968
//if (pCoeffs[k] && _getBool16 (pIO))
969
// pCoeffs[k] = -pCoeffs[k];
970
Int r1 = _peekBit16 (pIO, iModelBits + 1);
971
pCoeffs[k] = ((r1 >> 1) ^ (-(r1 & 1))) + (r1 & 1);
972
_flushBit16 (pIO, iModelBits + (pCoeffs[k] != 0));
973
}
974
}
975
}
976
}
977
pLM = aLaplacianMean + 1;
978
iModelBits = pContext->m_aModelLP.m_iFlcBits[1];
979
980
iCBP >>= 1;
981
}
982
983
UpdateModelMB (cf, iChannels, aLaplacianMean, &(pContext->m_aModelLP));
984
985
if (pSC->m_bResetContext) {
986
AdaptLowpassDec(pContext);
987
}
988
989
return ICERR_OK;
990
}
991
992
/*************************************************************************
993
8 bit YUV 420 macroblock decode function with 4x4 transform
994
Index order is as follows:
995
Y: U: V:
996
0 1 4 5 16 17 20 21
997
2 3 6 7 18 19 22 23
998
8 9 12 13
999
10 11 14 15
1000
1001
DCAC coefficients stored for 4x4 - offsets (x == no storage)
1002
Y:
1003
x x x [0..3]
1004
x x x [4..7]
1005
x x x [8..11]
1006
[16..19] [20..23] [24..27] [28..31,12..15]
1007
1008
U, V:
1009
x [0..3]
1010
[8..11] [4..7,12..15]
1011
*************************************************************************/
1012
Int DecodeMacroblockDC(CWMImageStrCodec * pSC, CCodingContext *pContext, Int iMBX, Int iMBY)
1013
{
1014
CWMITile * pTile = pSC->pTile + pSC->cTileColumn;
1015
CWMIMBInfo * pMBInfo = &pSC->MBInfo;
1016
const COLORFORMAT cf = pSC->m_param.cfColorFormat;
1017
const Int iChannels = (Int) pSC->m_param.cNumChannels;
1018
BitIOInfo* pIO = pContext->m_pIODC;
1019
Int iIndex, i;
1020
Int aLaplacianMean[2] = { 0, 0}, *pLM = aLaplacianMean;
1021
Int iModelBits = pContext->m_aModelDC.m_iFlcBits[0];
1022
struct CAdaptiveHuffman *pAH;
1023
Int iQDCY, iQDCU, iQDCV;
1024
// const Int iChromaElements = (cf == YUV_420) ? 8 * 8 : ((cf == YUV_422) ? 8 * 16 : 16 * 16);
1025
1026
UNREFERENCED_PARAMETER( iMBX );
1027
UNREFERENCED_PARAMETER( iMBY );
1028
1029
for (i = 0; i < iChannels; i++)
1030
memset (pMBInfo->iBlockDC[i], 0, 16 * sizeof (I32));
1031
1032
readIS_L1(pSC, pIO);
1033
1034
pMBInfo->iQIndexLP = pMBInfo->iQIndexHP = 0;
1035
1036
if(pSC->WMISCP.bfBitstreamFormat == SPATIAL && pSC->WMISCP.sbSubband != SB_DC_ONLY){
1037
if(pTile->cBitsLP > 0) // MB-based LP QP index
1038
pMBInfo->iQIndexLP = decodeQPIndex(pIO, pTile->cBitsLP);
1039
if( pSC->WMISCP.sbSubband != SB_NO_HIGHPASS && pTile->cBitsHP > 0) // MB-based HP QP index
1040
pMBInfo->iQIndexHP = decodeQPIndex(pIO, pTile->cBitsHP);
1041
}
1042
if(pTile->cBitsHP == 0 && pTile->cNumQPHP > 1) // use LP QP
1043
pMBInfo->iQIndexHP = pMBInfo->iQIndexLP;
1044
if (pMBInfo->iQIndexLP >= pTile->cNumQPLP || pMBInfo->iQIndexHP >= pTile->cNumQPHP)
1045
return ICERR_ERROR;
1046
1047
if(cf == Y_ONLY || cf == CMYK || cf == NCOMPONENT) {
1048
for (i = 0; i < iChannels; i++) {
1049
iQDCY = 0;
1050
/** get luminance DC **/
1051
if (_getBool16 (pIO)) {
1052
iQDCY = DecodeSignificantAbsLevel(pContext->m_pAHexpt[3], pIO) - 1;
1053
*pLM += 1;
1054
}
1055
if (iModelBits) {
1056
iQDCY = (iQDCY << iModelBits) | _getBit16(pIO, iModelBits);
1057
}
1058
if (iQDCY && _getBool16 (pIO))
1059
iQDCY = -iQDCY;
1060
pMBInfo->iBlockDC[i][0] = iQDCY;
1061
1062
pLM = aLaplacianMean + 1;
1063
iModelBits = pContext->m_aModelDC.m_iFlcBits[1];
1064
}
1065
}
1066
else {
1067
/** find significant level in 3D **/
1068
pAH = pContext->m_pAHexpt[2];
1069
iIndex = getHuff (pAH->m_hufDecTable, pIO);
1070
iQDCY = iIndex >> 2;
1071
iQDCU = (iIndex >> 1) & 1;
1072
iQDCV = iIndex & 1;
1073
1074
/** get luminance DC **/
1075
if (iQDCY) {
1076
iQDCY = DecodeSignificantAbsLevel(pContext->m_pAHexpt[3], pIO) - 1;
1077
*pLM += 1;
1078
}
1079
if (iModelBits) {
1080
iQDCY = (iQDCY << iModelBits) | _getBit16(pIO, iModelBits);
1081
}
1082
if (iQDCY && _getBool16 (pIO))
1083
iQDCY = -iQDCY;
1084
pMBInfo->iBlockDC[0][0] = iQDCY;
1085
1086
/** get chrominance DC **/
1087
pLM = aLaplacianMean + 1;
1088
iModelBits = pContext->m_aModelDC.m_iFlcBits[1];
1089
1090
if (iQDCU) {
1091
iQDCU = DecodeSignificantAbsLevel(pContext->m_pAHexpt[4], pIO) - 1;
1092
*pLM += 1;
1093
}
1094
if (iModelBits) {
1095
iQDCU = (iQDCU << iModelBits) | _getBit16(pIO, iModelBits);
1096
}
1097
if (iQDCU && _getBool16 (pIO))
1098
iQDCU = -iQDCU;
1099
pMBInfo->iBlockDC[1][0] = iQDCU;
1100
1101
if (iQDCV) {
1102
iQDCV = DecodeSignificantAbsLevel(pContext->m_pAHexpt[4], pIO) - 1;
1103
*pLM += 1;
1104
}
1105
if (iModelBits) {
1106
iQDCV = (iQDCV << iModelBits) | _getBit16(pIO, iModelBits);
1107
}
1108
if (iQDCV && _getBool16 (pIO))
1109
iQDCV = -iQDCV;
1110
pMBInfo->iBlockDC[2][0] = iQDCV;
1111
}
1112
1113
UpdateModelMB (cf, iChannels, aLaplacianMean, &(pContext->m_aModelDC));
1114
1115
if(((!(pSC->WMISCP.bfBitstreamFormat != FREQUENCY || pSC->m_Dparam->cThumbnailScale < 16)) || pSC->WMISCP.sbSubband == SB_DC_ONLY) && pSC->m_bResetContext){
1116
Int kk;
1117
for (kk = 2; kk < 5; kk++) {
1118
if (ICERR_OK != AdaptDecFixed (pContext->m_pAHexpt[kk])) {
1119
return ICERR_ERROR;
1120
}
1121
}
1122
}
1123
1124
return ICERR_OK;
1125
}
1126
1127
/*************************************************************************
1128
DecodeMacroblockHighpass
1129
*************************************************************************/
1130
Int DecodeMacroblockHighpass (CWMImageStrCodec *pSC, CCodingContext *pContext,
1131
Int iMBX, Int iMBY)
1132
{
1133
/** reset adaptive scan totals **/
1134
if (pSC->m_bResetRGITotals) {
1135
int iScale = 2, k;
1136
int iWeight = iScale * 16;
1137
pContext->m_aScanHoriz[0].uTotal = pContext->m_aScanVert[0].uTotal = MAXTOTAL;
1138
for (k = 1; k < 16; k++) {
1139
pContext->m_aScanHoriz[k].uTotal = pContext->m_aScanVert[k].uTotal = iWeight;
1140
iWeight -= iScale;
1141
}
1142
}
1143
if((pSC->WMISCP.bfBitstreamFormat != SPATIAL) && (pSC->pTile[pSC->cTileColumn].cBitsHP > 0)) { // MB-based HP QP index
1144
pSC->MBInfo.iQIndexHP = decodeQPIndex(pContext->m_pIOAC, pSC->pTile[pSC->cTileColumn].cBitsHP);
1145
if (pSC->MBInfo.iQIndexHP >= pSC->pTile[pSC->cTileColumn].cNumQPHP)
1146
goto ErrorExit;
1147
}
1148
else if(pSC->pTile[pSC->cTileColumn].cBitsHP == 0 && pSC->pTile[pSC->cTileColumn].cNumQPHP > 1) // use LP QP
1149
pSC->MBInfo.iQIndexHP = pSC->MBInfo.iQIndexLP;
1150
1151
1152
DecodeCBP (pSC, pContext);
1153
predCBPDec(pSC, pContext);
1154
1155
if (DecodeCoeffs (pSC, pContext, iMBX, iMBY,
1156
pContext->m_pIOAC, pContext->m_pIOFL) != ICERR_OK)
1157
goto ErrorExit;
1158
1159
if (pSC->m_bResetContext) {
1160
AdaptHighpassDec(pContext);
1161
}
1162
1163
return ICERR_OK;
1164
ErrorExit:
1165
return ICERR_ERROR;
1166
}
1167
1168
/*************************************************************************
1169
Adapt
1170
*************************************************************************/
1171
Int AdaptLowpassDec(CCodingContext * pSC)
1172
{
1173
Int kk;
1174
for (kk = 0; kk < CONTEXTX + CTDC; kk++) {
1175
if (ICERR_OK != AdaptDecFixed (pSC->m_pAHexpt[kk])) {
1176
goto ErrorExit;
1177
}
1178
}
1179
return ICERR_OK;
1180
1181
ErrorExit:
1182
return ICERR_ERROR;
1183
1184
}
1185
1186
Int AdaptHighpassDec(CCodingContext * pSC)
1187
{
1188
Int kk;
1189
if (ICERR_OK != AdaptDecFixed (pSC->m_pAdaptHuffCBPCY)) {
1190
goto ErrorExit;
1191
}
1192
if (ICERR_OK != AdaptDecFixed (pSC->m_pAdaptHuffCBPCY1)) {
1193
goto ErrorExit;
1194
}
1195
for (kk = 0; kk < CONTEXTX; kk++) {
1196
if (ICERR_OK != AdaptDecFixed (pSC->m_pAHexpt[kk + CONTEXTX + CTDC])) {
1197
goto ErrorExit;
1198
}
1199
}
1200
1201
return ICERR_OK;
1202
1203
ErrorExit:
1204
return ICERR_ERROR;
1205
}
1206
1207